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Abstract
In this paper we discuss different approaches to generate cutaway illustrations. The purpose of such a drawing
is to allow the viewer to have a look into an otherwise solid opaque object. Traditional methods to draw these
kinds of illustrations are evaluated to extract a small and effective set of rules for a computer-based rendering
of cutaway illustrations. We show that our approaches are not limited to a specific rendering style but can be
successfully combined with a great variety of well-known artistic or technical illustration techniques. All methods
of this paper make use of modern graphics hardware functionality to achieve interactive frame rates.

1. Introduction

Research in the area of non-photorealistic rendering (NPR)
has grown a lot over the past few years, especially in the
field of illustrations and artistic rendering. Technical illus-
trations are of particular interest in NPR research as they
cover a quite large field of applications. Today technical il-
lustration styles can be found in manuals, text and science
books, advertisement, or even computer games18. One of the
major advantages of technical illustrations in contrast to pho-
torealistic renderings or actual photographs is that they can
provide a selective view on important details while extrane-
ous details are omitted6. For example, NPR styles may be
used to improve the recognition of the shape and structure of
objects, their orientation, or spatial relationships.

Research on automatically generating technical illustra-
tions has been focused on imitating the different rendering
styles traditionally used by illustrators. Unfortunately, these
computer-based techniques only provide some important de-
tails like shape, structure, or depth information, but often ne-
glect complex spatial relationships and especially issues of
occlusion. In photorealistic rendering, spatial relationships
between objects can be shown by using transparency. This
is also possible with technical illustrations and, in fact, this
solution is sometimes used by illustrators.

However, illustrators often prefer to use cutaway tech-
niques. Cutaway drawings in technical illustrations allow the
user to view the interior of a solid opaque object. In these il-
lustrations, entities lying inside or going through an opaque
object are of more interest than the surrounding one itself.

Instead of letting the inner object shine through the girdling
surface, parts of the exterior object are removed. This pro-
duces a visual appearance as if someone had cutout a piece
of the object or sliced it into parts. Cutaway illustrations
avoid ambiguities with respect to spatial ordering, provide a
sharp contrast between foreground and background objects,
and facilitate a good understanding of spatial ordering. An-
other reason for the popularity of cutaway illustrations might
be the fact that the appearance of semi-transparent surfaces
is hard to simulate with most classical drawing styles for
hand-made illustrations.

The purpose of this paper is to provide methods to gen-
erate cutaway drawings on a computer. These methods are
based on a small and effective set of rules that are extracted
from traditional techniques. Even though our rules lead to
a completely automatic generation of quite reasonable ini-
tial cutaway illustrations, interactivity is still very useful for
a fine adjustment of the initial parameters. Therefore, we
present ways to map the cutaway renderings directly to mod-
ern graphics hardware in order to achieve interactive frame
rates. Another aspect of this work is to show that cutaway
is de-coupled from the rendering style used in the final im-
age. For this reason the cutaway techniques can readily be
included in a great variety of already existing rendering sys-
tems.

2. Previous and Related Work

To our knowledge, the SIGGRAPH 99 advanced OpenGL
rendering course2 is the only work in the field of computer
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graphics research that explicitly mentions cutaway illustra-
tion. In this course, a simple method using α blending is dis-
cussed to achieve an appearance of cutaway drawings. How-
ever, α blending causes rather a smearing out than a cutting
out or slicing. Other work deals with using transparency in
the context of NPR to show inner-space relationships7, 14, 5.

Most research on technical illustrations has been fo-
cused on simulating different rendering styles. Gooch et al.11

present tone-based shading and various silhouette rendering
methods. Dooley and Cohen6, Winkenbach et al.27, and Sal-
isbury et al.23 investigate pen-and-ink illustrations. Recent
work by Raskar22, Praun et al.20, and Freudenberg et al.10

is based on hardware capabilities to render different render-
ing styles in real time. We demonstrate that these rendering
approaches are independent of our cutaway techniques and
that cutaway can be readily combined with these rendering
styles.

Another related field of research on technical illustrations
deals with rendering on a higher level of abstraction, where
semantics and user interaction have to be taken into ac-
count. An important aspect is labeling and annotating illus-
trations, cf., for example, the recent work by Bourguignon
et al.3. Seligman and Feiner introduce a rule-based illustra-
tion system24 for rendering photorealistic illustrations, with
an extension for supporting interactivity25.

3. Overview of Cutaway Illustrations

In this section we briefly review how cutaway illustrations
are traditionally created by illustrators in order to extract
some requirements for an automatic generation process on
the computer. For detailed background information on hand-
made technical illustrations in general and cutaway drawings
in particular we refer to classical artbooks26, 17.

The purpose of a cutaway drawing is to allow the viewer
to have a look into an otherwise solid opaque object. Instead
of letting the inner object shine through the surrounding sur-
face, parts of outside object are simply removed. From an
algorithmic point of view, the most interesting question is
where to cut the outside object. The answer to this funda-
mental question depends on many different factors, for ex-
ample, the sizes and shapes of the inside and outside ob-
jects, the semantics of the objects, personal taste, etc. Many
of these factors cannot be formalized in the form of a sim-
ple algorithm and need some user interaction. Nevertheless,
we found some interesting common properties in many ex-
amples of traditional cutaway drawings which allow us to
automatically generate quite reasonable cutaways.

In this paper we distinguish between two different sub-
classes of the general notion of a cutaway drawing: cutout
and breakaway. Figures 1 (a) and 1 (b) show the difference
between the two subclasses.

Artists and illustrators tend to restrict themselves to very

simple and regularly shaped cutout geometries. Often only a
small number of planar slices is cut into the outside object;
in many cases just two planes are sufficient. The location and
orientation of the cutting planes are determined by the spatial
distribution of the interior objects and, more importantly, by
the geometry of the outside body. Just enough is taken away
from the outlying object to allow the observer to view the
internal details. We have analyzed many cutaway illustra-
tions and have come to the conclusion that two planes inter-
secting at an angle between 90 to 140 degrees are sufficient
for a wide class of applications. Another common property
concerns the location of the slicing planes. The cut through
the object of interest often takes place at or around its main
axis. The main axis of an object is the axis with the greatest
spread.

A cutout in a technical illustration has not always to be
smooth. For example, a sawtooth-like or jittering cutting is
often applied to better distinguish between outer and inner
objects and produce a higher level of abstraction. Figure 1 (a)
shows such a jittering cutout for a simple example scene.
The image was generated by the computer-based method de-
scribed in Section 4.

The cutout approach is particularly useful when many ob-
jects or large objects are inside and cover a large portion of
the interior of the girdling object. In contrast, if only a few
small inside objects lie densely to each other, another ap-
proach is more appropriate. Here, an illustrator rather breaks
a virtual hole into the boundary to show the interior objects.
This boundary hole should be just wide enough to see these
objects. We call this method breakaway. Figure 1 (b) shows
a simple example of a breakaway illustration. The image
was generated by the computer-based technique described
in Section 5.

It has already been stated that hand-made illustrations are
influenced by various aspects many of which are hard to be
formalized for a computer-based processing. Nevertheless,
we have been able to extract a small number of rules that
lead to quite convincing, fully automatic cutaway drawings.
The user is still able to change parameters after the initial
automatic construction.

Let us start with the rules for the cutout approach. The
first, very basic question is: Which objects are potentially
subject to cutting? We have observed that interior objects are
not sliced by the cutout geometry. Cutting is only applied to
outside objects. Therefore, the first requirement is:

(R1) Inside and outside objects have to be distinguished
from each other.

Please note that this requirement not only covers scenes with
a single outside object, but has to allow for scenarios with
several disjoint outside objects and even nested layers of out-
side objects. Another issue is the shape of the cutout geom-
etry. We restrict ourselves to a specific class of shapes:
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(a) (b)

Figure 1: Comparison of computer-generated cutout and breakaway illustrations. The left image demonstrates the cutout
technique with a jittering boundary. In the right picture, the breakaway method is applied to the same scene.

(R2) The cutout geometry is represented by the intersec-
tion of (a few) half spaces†.

By construction, this cutout geometry is convex. Very often
good results are achieved by:

(R2’) A cutout geometry is represented by the intersection
of two half spaces.

The next rule determines the position and orientation of the
above cutout geometry:

(R3) The cutout is located at or around the main axis of
the outside object.

For a cutout with two planes, the intersection line between
the two planes lies on the main axis. The angle of rotation
around this axis is a free parameter that can be adjusted by
the user.

A cutout in a technical illustration does not always have
to be as smooth as the geometry defined by a collection of
half spaces. For example, a sawtooth-like or jittering cutting
is often applied to such a simple cutout geometry to produce
a higher level of abstraction.

(R4) An optional jittering mechanism is useful to allow
for rough cutouts.

Finally, the cutout produces new parts of the objects’ sur-
faces at the sliced walls. This leads to:

(R5) A possibility to make the wall visible is needed.

This requirement is important in the context of boundary
representations (BReps) of scene objects, which does not
explicity represent the solid interior of walls. Therefore, spe-
cial care has to be taken to make possible a correct illumina-
tion of cutout walls.

The other cutaway approach in the form of a breakaway

† A half space can be represented by the plane that separates the
space from its complement.

is based on a slightly different set of rules. The first require-
ment (R1) for a distinction between inside and outside ob-
jects is the same as in cutout drawings. However, the shape
and position of the breakaway geometry is not based on rules
(R2) and (R3), but on:

(R6) The breakaway should be realized by a single hole
in the outside object.

If several small openings were cut into the outside surface,
a rather disturbing and complex visual appearance would be
generated. Nevertheless:

(R7) All interior objects should be visible from any given
viewing angle.

The above rule for making the walls visible (R5) can be ap-
plied to breakaway illustrations as well. Jittering breakaway
illustrations are seldom and therefore (R4) is not a hard re-
quirement for these illustrations.

In the following two sections, we present two different
rendering algorithms which meet the above characteristics
for cutout and breakaway illustrations, respectively.

4. Cutout Drawings

In this section a class of rendering algorithms for cutout
drawings is presented. We show how a computer-based pro-
cess can fulfill the aforementioned rules (R1)–(R5) for the
cutout approach.

Classification. We assume that the classification of objects
as interior or exterior (R1) is provided by an outside mech-
anism. The problem is that a generic classification criterion
solely based on the spatial structure of the scene objects is
not available. For special cases, objects can be recognized
as being inside or outside by observing their geometry. For
example, the important class of nested surfaces can be han-
dled by an algorithm by Nooruddin and Turk19. However,
this method does not support exterior objects that already
have openings before the cutting process is performed.

c© The Eurographics Association and Blackwell Publishers 2003.



Diepstraten et al. / Interactive Cutaway Illustrations

In our implementation, a different approach is taken. The
objects are stored in a scenegraph structure; the classifica-
tion is based on an additional Boolean attribute that is at-
tached to each geometry node of the scenegraph. For practi-
cal purposes, geometric modeling of scenes is performed in
an outside, commercial modeling and animation tool (such
as 3D Studio Max or Maya) and the scenes are afterwards
imported into our software via a 3D data file. Since these
modeling tools do not directly support the additional clas-
sification attribute, other information stored in the 3D file
format has to be exploited. For example, the transparency
value can be (mis-) used, or the classification is coded in
the form of a string pattern in the name of 3D objects. This
approach allows the user to explicitly specify interior and
exterior objects and to introduce some external knowledge
into the system.

Main Axis. Another issue is the computation of the main
axes of the outside objects. Each object is assumed to be rep-
resented by a triangulated surface. Information on the con-
nectivity between triangles is not required, i.e., a “triangle
soup” can be used.

The algorithm makes use of first and second order statis-
tics that summarize the vertex coordinates. These are the
mean value and the covariance matrix8. The algorithm is
identical to Gottschalk et al.’s13 method for creating object-
oriented bounding boxes (OBB). If the vertices of the i’th

triangle are the points ~pi, ~qi and ~ri, then the mean value ~µ
and the covariance matrix C can be expressed in vector arith-
metics as

~µ =
1
3n

n

∑
i=0

(~pi +~qi +~ri) ,

C jk =
1
3n

n

∑
i=0

(~p′i
j
~p′i

k + ~q′i
j
~q′i

k + ~r′i
j
~r′i
k ) ,

where n is the number of triangles, ~p′i = ~pi
−~µ, ~q′i = ~qi

−~µ,
~r′i = ~ri

− µ, and C jk are the elements of the 3× 3 covari-
ance matrix. Acutally, not the vertices of the original mesh
are used, but the vertices of the convex hull. Moreover, a
uniform sampling of the convex hull is applied to avoid po-
tential artifacts caused by unevenly distributed sizes of trian-
gles. These improvements are also described by Gottschalk
et al.13 The eigenvectors of a symmetric matrix with different
eigenvalues are mutually orthogonal. The eigenvectors of the
symmetric covariance matrix can be used as an orthogonal
basis. Of special interest is the eigenvector corresponding to
the largest eigenvalue because it serves as the main axis of
the object.

CSG Cutout. Finally, the cut geometry has to be defined
and then applied at the previously determined location. An
object-space approach working directly on the geometry
could be realized by techniques known from constructive
solid geometry (CSG).

The intersection of half spaces (R2) can be realized by a
CSG intersection operation working on half spaces. An in-
tersection operation is equivalent to a logical “and” applied
to the corresponding elements of the spaces. A half space can
be represented by the plane that separates the space from its
complement. Therefore, this plane serves as a slicing plane
in the cutout approach. Note that we define the half space
in a way that outside objects are removed at all locations of
this half space; outside objects are left untouched in the com-
plementary space. The actual cutting process is modeled by
a CSG difference operation applied to the cutout geometry
and the geometry of the exterior objects. Intrinsic to all CSG
operations is the creation of new boundary surfaces at cuts.
Therefore, cutout walls are automatically modeled and can
be displayed afterwards, as required by (R5).

In the general approach of rule (R2), the number, loca-
tions, and orientations of the cutting planes have to be de-
fined by the user. The more restricted rule (R2’) prescribes a
fixed number of two planes. Moreover, the intersection line
between the planes is fixed by the main axis of the outside
object. The only free parameters are the relative angle be-
tween the planes and the angle of rotation of the cutout ge-
ometry with respect to the main axis. The relative angle can
be set to a default value in between 90 and 140 degrees (e.g.,
to 110 degrees); the default orientation with respect to the
main axis can be set to any fixed angle. With these initial
values, quite good results are achieved without any user in-
teraction.

For an optional sawtooth-like or jittered cutout (R4) the
cutout geometry has to be perturbed, for example, by a dis-
placement mapping technique4. Appropriate kinds of dis-
placement maps are presented shortly in the description of
texture-based cutouts.

Although all the requirements (R1)–(R5) can be directly
mapped to a CSG-based implementation, we have not pur-
sued this approach in more detail. The main problem is
that CSG Boolean operations can be very time-consuming.
Therefore, parameter changes are unlikely to work in real
time and interactive work is not possible. This is a major
drawback because cutout drawings—even if they work al-
most automatically—need some user interaction to adjust
parameters for improved final results. If highly detailed and
jittered cutout geometries or complex exterior objects are
used, CSG operations become particularly time-consuming.
Another issue is rendering time itself. Often a high num-
ber of new primitives is introduced by the re-tesselating
steps required for precise intersections between objects. The
high amount of new primitives could hinder interactive ren-
dering times and might require further object optimization
steps. All these aspects limit the applicability of the CSG
approach for an interactive application. Therefore, we inves-
tigate other approaches that make use of graphics hardware
acceleration and are based on image-space calculations.
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Planar Cutout. A simple image-space approach is based on
the concept of clipping planes and allows for piecewise pla-
nar, convex cutouts according to (R2). Each planar element
of the cutout geometry is identified by a clipping plane. The
exterior object is rendered n times where n is the number of
different planes. In each rendering pass, the respective clip-
ping plane is activated. Afterwards the interior objects are
rendered in a single pass, with clipping planes being deacti-
vated.

The advantages of the clipping-plane based method are
its rather simple implementation and its support by virtu-
ally any graphics hardware. For example, client-defined clip-
ping planes are already available in standard OpenGL 1.0.
A drawback is the increase in rendering costs for multiple
rendering passes—especially for more complex cutouts with
several cutting planes. Another issue is the restriction to slick
cutouts. Jittering boundaries according to (R4) are not pos-
sible. Since no explicit modeling of the cutout surface is im-
plemented, the wall cannot be made visible (R5).

Cutout via Stencil Test. The following screen-space tech-
nique exploits the stencil buffer and stencil test to represent
the cutout geometry. The advantage of this method is the fact
that jittering boundaries are supported. On the other hand,
we restrict ourselves to convex exterior objects. Rappoport
and Spitz21 demonstrate that a related stencil-based approach
can be used to make possible interactive Boolean operators
for CSG.

Our algorithm is similar to implementation of shadow vol-
umes by means of the stencil buffer15. The following exten-
sions are needed for stencil-based cutouts. First, the algo-
rithm has to affect the visibility of objects and thus their z
values. Therefore, a mechanism to adjust depth values has
to be incorporated. Second, the algorithm has to allow for
front and back faces of the exterior convex object because
the line-of-sight (from the camera) may have intersections
with one front and one back face of the exterior object. The
core algorithm is applied twice: once for front and once for
back faces.

The details of the rendering algorithm are as follows. In
the first step, the front face of the exterior object that should
be cut is rendered to the depth buffer; the color buffer is
masked out. Afterwards the front faces of the cutout geome-
try are rendered with the depth test being activated, but with-
out changing the depth buffer entries. A stencil operator in-
creases the stencil value by one each time a fragment passes
the depth test. Similarly, the back faces of the cutout geom-
etry are rendered without changing the depth buffer. This
time the stencil value is decreased when a fragment passes
the depth test. This ensures that pixels of the front face lying
inside the cutout geometry have a stencil value of one. All
other pixels have a stencil value of zero. Note that we have
assumed that the camera is not located inside the cutout ge-
ometry. If the camera is within the cutout geometry, the sten-
cil buffer needs to be initialized to one.

In the next step, the depth buffer is cleared and the back
face of the exterior object is rendered to the depth buffer in
the regions where the stencil value is greater than zero. Like
in the second step, the front faces of the cutout geometry and
then the back faces of the cutout geometry are rendered with
depth test. The stencil value is increased for front faces pass-
ing the depth test and decreased for back faces passing the
depth test. It is now possible to decide for each pixel if only
the back face of the exterior object (stencil value one), both
the back and front faces (stencil value zero) or neither (sten-
cil value two) are visible. For the final step the depth buffer
is cleared and then the back face of the exterior object is
both rendered into depth and color buffers in regions where
the stencil value is one. Afterwards the front face of the ex-
terior object is rendered to depth and color buffers in those
parts of the screen where the stencil value is zero. Finally,
the interior objects are rendered without stencil test.

The advantage of this approach is that complex cutout ge-
ometries are supported. In addition, the number of rendering
passes does not increase with the complexity of the cutout
geometry. Stencil buffer and stencil test are already included
in standard OpenGL 1.2. Therefore, the algorithm is widely
supported by graphics hardware. Unfortunately, the structure
of the exterior object is subject to an important restriction.
The object has to be represented by a single convex surface
without boundaries. The above algorithm makes explicit use
of the fact that (at the most) one front and one back face is cut
by a ray originating from the camera. However, many tech-
nical 3D data sets contain nested surfaces or explicitly rep-
resent all boundaries—both inside and outside. This means
they can have more than just one front and back face inter-
secting the same line of sight. In this case the above algo-
rithm fails because it is no longer guaranteed that all back
faces of the exterior object lie behind the cutout geometry.
Moreover, the cutout walls are not modeled (R5).

Texture-Based Cutout. To overcome the restriction to con-
vex exterior objects we present a new rendering algorithm
that exploits texture mapping to represent the cutout geom-
etry. The implementation requires programmable transform
and lighting, per-fragment operations, and multi-textures.

First, we illustrate the basic idea of our approach by re-
stricting ourselves to a single cutting plane. The scenario is
depicted in Figure 2. Let us consider the required operations
and tests to allow for a cut into a single triangle. The deci-
sion whether a fragment of the triangle lies inside the clipped
half space or in the complement space is based on the signed
Euclidean distance of the fragment from the plane. We de-
fine that fragments with a negative distance d are clipped
and fragments with a positive value d pass. The signed dis-
tances are computed for each vertex and then interpolated
across the triangle to obtain values for each fragment. The
per-vertex distances can either be computed on the CPU or
by a vertex program in the transform and lighting part of the
rendering pipeline. The necessary parameters for the plane
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Figure 2: Planar cutout based on a linearly interpolated
signed distance.
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Figure 3: Jittering cutout. A perturbation function displaces
the original distances to the cutting plane.

equation of the cutout can be provided by passing vertex pro-
gram parameters.

First, the signed distance is stored in a texture coordinate.
Texture coordinates are better suited than color-components
for the following reasons: On most GPUs texture coordinates
are implemented as floating point numbers, they are not re-
stricted to the range [0,1], and they have a much higher accu-
racy. Moreover, texture coordinates can be interpolated in a
perspectively correct manner, i.e., a hyperbolic interpolation
in screen space corresponds to a correct linear interpolation
in object space.

The original signed distance dplane can also be perturbed
to allow for jittering cutouts. The idea is based on displace-
ment mapping techniques4. Figure 3 illustrates the displace-
ment of the signed distance to a cutting plane. The final dis-
tance is computed by fragment operations according to

d = dplane +dperturb . (1)

The perturbation dperturb is stored in a 2D texture and is su-
perimposed onto the original distance. While experimenting
with different kind of perturbation textures we noticed that
fractals, synthetic procedural textures used for clouds and
virtual terrain height fields, and real terrain data produce
good visual effects. In particular, a sawtooth-like boundary
can be realized by a quite simple and memory friendly per-
turbation texture. Just a tiny 2× 2 texture as illustrated in
Figure 4 is needed. Thanks to texture repeat and bilinear tex-
ture interpolation a repeated falloff is generated which leads

texel 0 texel 1

texel 2 texel 3

Figure 4: A tiny 2× 2 example texture used for sawtooth-
shaped boundaries.

to the desired visual effect. Figure 1 (a) shows an example of
a cutout illustration based on this 2×2 perturbation texture.

In the last step a fragment clipping operation has to be ex-
ecuted according to the corresponding distance value. If the
value is below zero the fragment has to be clipped, otherwise
kept. This can either be done through a texkill command or
by setting the alpha value and using the alpha test.

So far only a single perturbed cutout plane is supported.
The above texture-based algorithm can easily be extended to
several cutout planes. A separate texture coordinate is used
for each plane to store the respective signed distance. The
same perturbation is applied to each distance value. An ad-
ditional fragment operation determines the minimal absolute
distance value.

The following approximation can be used to avoid several
texture coordinates and the additional fragment operation.
The minimal absolute distance value can also be computed
per vertex and the according signed distance can be used as
the only texture coordinate. This approximation yields cor-
rect results for most cases. If, however, the three different
vertices of a triangle do not have the same closest plane, in-
accuracies are introduced by interpolating signed distances
that are attached to different planes. The smaller the triangle,
the smaller is the possible error.

We show how the above texture-based cutout can be im-
plemented on a great variety of graphic boards. First, a ver-
tex program is enabled in order to compute the signed dis-
tances to the planes of the cutout geometry. We follow the
above approximation and compute the minimal absolute dis-
tance value on a per-vertex basis. The signed distance to
the closest plane is used as a texture coordinate. To imple-
ment the jittering cuting boundary different approaches can
be used. On the Geforce 3 a texture shader program using
three stages is utilized. In texture stage zero, the perturbation
value is obtained by a lookup in the 2D perturbation texture.
Stage one implements the shift of distance values according
to Eq. 1. This shift is based on a computation of a dot product
between two 3D vectors. The first vector originates from the
RGB values from above perturbation texture. In this texture,
the red channel is set to one, the green channel represents the
value of the height field, the blue channel is set to zero. The
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second vector is given by the texture coordinates for stage
one. On the ATI Radeon 8500 or Radeon 9700 a jittering is
achieved by adding an offset to the texture coordinate of the
current fragment. This offset can be looked up in a jittering
texture.

The presented texture-based cutout algorithm meets the
requirements (R1)–(R4). The geometry of the interior and
exterior objects is not subject to any restrictions. Since the
algorithm can be mapped to graphics hardware, interactive
frame rates are possible even for complex illustrations. The
only drawback is the missing modeling of the cutout walls
(R5).

5. Breakaway Illustrations

In this section, a rendering algorithm that meets the require-
ments for breakaway illustrations is presented. We show how
a computer-based process can fulfill the breakaway-specific
rules (R6) and (R7). The classification of objects as interior
or exterior (R1) is provided by the same mechanism as in the
previous section.

The basic idea is to clip away those parts of the surround-
ing object that would otherwise occlude the interior ob-
jects as seen from the camera’s position. Therefore, this ap-
proach is intrinsically view-dependent and allows for (R7).
The other requirement is that only a single hole is cut into the
exterior object (R6). The convex hull of the interior objects is
used as a basis for breakaway illustrations. Just enough is re-
moved from the outside object to make this convex hull vis-
ible. The convex hull has two advantages. First, it contains
all interior objects. If the convex hull is visible, all interior
objects are visible. Second, the projection of the convex hull
onto the image plane always yields a convex geometry and
cannot contain any holes.

We propose the following algorithm for breakaway illus-
trations. In a preprocessing step, the convex hull of the in-
terior objects is computed, for example, by the Quick Hull
algorithm1. The convex hull is extended into all directions
by some additional spatial offset. In this way, all interior ob-
jects are enclosed with a non-zero minimum distance to the
hull. During the actual rendering process the extended con-
vex hull serves as a virtual clipping object. Only those parts
of surrounding objects that are not in front of the convex hull
are rendered. This is achieved by using the foremost part of
the convex hull as a clipping object. Finally, the interior ob-
jects are displayed.

The crucial point of the algorithm is the clipping at the
foremost surface of the convex hull. A mechanism to clip
away objects in front of an arbitrarily shaped object has to
be employed. We use a clipping algorithm that is very sim-
ilar to one of Diepstraten et al.’s5 techniques for rendering
transparent surfaces. Alternatively, Everitt’s depth-peeling9

could also be used. Both algorithms can be realized on a
GeForce 3.

while rendering test

against clipping area

clear depth/frame buffer

to depth buffer

read depth buffer

clear depth buffer

define clip texture

generate clip texture

containing depth values

    render convex hull

of the extended convex

hull of the clipping object

render exterior objects
 to frame/depth buffer

render interior objects
 to frame/depth buffer

enable clipping

disable clipping

Figure 5: Rendering pipeline for the breakaway technique.

Figure 5 shows the details of the rendering pipeline.
In this case we use the terminology from the standard
OpenGL specification and NVidia-specific extensions for
the GeForce 3.

In the first four boxes, the clipping area in screen space
is determined. First, the depth buffer is initialized with a
depth of zero (which corresponds to the near clipping plane
of the view frustum). Then, the extended convex hull is ren-
dered twice into the depth buffer. The first rendering pass
uses “greater” as logical operation for the depth test, the sec-
ond rendering pass uses the standard “less” depth test. In this
way, the depth buffer contains the depth values of the fore-
most parts of the convex hull. Furthermore, the depth buffer
is still initialized with zero in the areas that are not covered
by the convex hull. In the third box, the depth values are
transferred into a high-resolution 2D texture (a HILO tex-
ture) that will serve as the clip texture. Then the depth buffer
is cleared.

In the fifth box, a texture shader program is enabled to
virtually clip away all fragments that have equal or smaller
depth values than those given by the above clip texture. Es-
sentially, this texture shader program replaces the z value of
a fragment by z−zclip, where zclip represents the depth value
stored in the clip texture. This texture shader program causes
all fragments with z < zclip to be clipped away. For details of
the texture program we refer to 5. Then the exterior object is
rendered into the frame and depth buffers; all parts in front
of the convex hull are clipped away. Finally, the interior ob-
jects are displayed and the texture shader program is reset to
the standard configuration.
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This algorithm can take into account more than one “clus-
ter” of interior objects by computing several corresponding
convex hulls and rendering them into the depth buffer in step
2 of the rendering pipeline. It is also possible to allow for
surrounding objects with boundary surfaces of finite thick-
ness. Here, separate clipping objects have to be defined for
the front and for the back face of the boundary. By choos-
ing a smaller clipping geometry for the back face, we can
imitate the effect of cutting through an object of finite wall
thickness. In this way, requirement (R5) for visible walls can
be met in parts.

6. Implementation and Results

Our implementation of cutaway illustrations is based
on OpenGL and on NVidia-specific extensions for the
GeForce 3. User-interaction and the management of render-
ing contexts in our C++ application are handled by GLUT.

We have implemented several different NPR styles to
demonstrate that our cutaway processes are independent of
the rendering style. Figures 6 (a)–(c) show a cutout illustra-
tion of the same engine block with three different rendering
styles. Additionally a 512×512 shadow map is used to simu-
late shadow casting inside the interior parts. In Figure 6 (a),
we employ silhouette rendering with a toon-shading tech-
nique described by Lake et al.16 Specular lighting is added to
the original diffuse toon-like lighting. The diffuse and specu-
lar terms are used to access a 2D texture containing the final
color. The silhouettes are generated by using a hardware-
based method according to Gooch et al.12 The silhouettes
at cutting boundaries cannot be created by the original ap-
proach because the boundaries are not explicitly modeled as
a triangular mesh. Therefore, the criterion for a silhouette—
an edge connecting a front with a back face—is not valid at
a boundary. This problem can be overcome by using an idea
also described by Gooch et al.12 Figure 6 (b) uses cool/warm
tone shading as described by Gooch et al.11 The shading
model is implemented as a vertex program and provides
per-vertex lighting. Finally, Figure 6 (c) uses a real-time
layered-stroke texture approach described by Freudenberg et
al.10 with per-vertex lighting. Black line silhouettes are ren-
dered according to Gooch et al.12 All example images for
the cutout illustrations are based on a synthetic heightfield
texture to visualize a jittering boundary.

The same toon shading, cool/warm shading, and layered-
stroke techniques are also used in breakaway illustrations of
a curved conduit in Figures 6 (d)–(f). It can be clearly seen
that the different rendering styles produce images of differ-
ent visual qualities. For both cutaway techniques, the toon
and cool/warm shading produce similar, convincing results.
In contrast to these two rendering styles, the stipple images
are—in our opinion—slightly unsatisfactory as they do not
engender a good contrast between interior, exterior, and wall
surfaces.

Table 1 shows performance measurements for both ap-

Table 1: Performance measurements in frames per second.
The test model is illustrated in Figure 6(a)-(c) and contains
145,153 triangles.

render style cutaway viewport size
technique 5122 10242

cool/warm none 6.11 6.10
cool/warm cutout 6.07 5.69
cool/warm breakaway 5.67 3.27

toon shading none 6.12 6.10
toon shading cutout 5.75 5.32
toon shading breakaway 5.52 3.30

stroke textures none 6.07 6.04
stroke textures cutout 5.74 5.32
stroke textures breakaway 4.73 2.81

proaches with the different rendering styles. All tests were
carried out on a Windows XP PC with AMD Athlon
1533Mhz CPU and GeForce 4 Ti 4600. The test scene is
depicted in Figures 6 (a)–(c) and contains 145,113 trian-
gles. Note that in each test silhouette lines are rendered as
well and no special data structures like vertex arrays or dis-
playlists were used in the measurements. We tested both cut-
away techniques with three different rendering styles and on
two different viewport sizes of 5122 and 10242. For compar-
ison, we included the rendering times for each style without
applying cutaway methods. As it can be seen in Table 1, the
cutout technique has not much influence on the final ren-
dering time of any rendering style. At first glance this is
quite suprising as at least three texture stages are needed to
achieve a jittering cutout on the Geforce 3. A possible expla-
nation could be that only very small textures which seem to
fit perfectly into the texture cache are used. Probably, render-
ing performance for this test scene is limited by other factors
such as the vertex pipeline. For the larger viewport size, the
breakaway technique looses nearly half of its original per-
formance. This might be due to the double readback from
depth buffer for the convex hulls of the interior objects and
the usage of large clipping textures which might enforce a
lot of texture cache misses. Cache misses are a probable rea-
son for the overall lower performance of the layered-stroke
texture rendering style because a rather large texture (2562

texels) is used compared to the toon-shading texture (82 tex-
els).

7. Conclusion

In this paper, we have presented a small and effective set
of rules for computer-based renderings of cutaway illustra-
tions. One class of rules leads to cutout drawings, which are
most appropriate for scenes with rather large interior objects.
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The other class of rules is used for breakaway illustrations,
which are suitable for scenes with smaller, densely packed
interior objects. We have presented hardware-based methods
for both cutout and breakaway drawings in order to achieve
interactive frame rates. Even though our rules make possi-
ble a completely automatic generation of quite reasonable
cutaway illustrations, interactivity is still very useful for a
fine adjustment of the initial parameters. An advantage of
our rules is the small number of parameters that effectively
control the visual appearance of the drawings. Finally, cut-
away techniques can be readily combined with existing non-
photorealistic rendering styles, such as silhouette rendering,
cool/warm tone shading, or pen-and-ink illustrations. One
problem that cannot be addressed with our techniques is the
visual appearance of the wall itself. Exploiting the increased
functionality of future GPUs might help to address this prob-
lem.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Cutout and breakaway illustrations with different rendering styles. Image (a) shows a part of an engine block with
toon shading and silhouette rendering, (b) shows the same scene using cool/warm tone shading with black silhouette lines, (c)
illustrates the same scene using layered-stroke textures. Images (d), (e), and (f) show the breakaway technique for the example
of a curved conduit; the same rendering styles are applied as in (a)–(c).
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