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SUMMARY

The Opisthokonta are a eukaryotic supergroup
divided in two main lineages: animals and related
protistan taxa, and fungi and their allies [1, 2]. There
is a great diversity of lifestyles and morphologies
among unicellular opisthokonts, from free-living
phagotrophic flagellated bacterivores and filopodi-
ated amoebas to cell-walled osmotrophic parasites
and saprotrophs. However, these characteristics do
not group into monophyletic assemblages, suggest-
ing rampant convergent evolution within Opistho-
konta. To test this hypothesis, we assembled a new
phylogenomic dataset via sequencing 12 new strains
of protists. Phylogenetic relationships among opis-
thokonts revealed independent origins of filopodi-
ated amoebas in two lineages, one related to fungi
and the other to animals. Moreover, we observed
that specialized osmotrophic lifestyles evolved inde-
pendently in fungi and protistan relatives of animals,
indicating convergent evolution. We therefore
analyzed the evolution of two key fungal characters
in Opisthokonta, the flagellum and chitin synthases.
Comparative analyses of the flagellar toolkit showed
a previously unnoticed flagellar apparatus in two
close relatives of animals, the filasterean Ministeria
vibrans and Corallochytrium limacisporum. This im-
plies that at least four different opisthokont lineages
Current Biology 25
secondarily underwent flagellar simplification. Anal-
ysis of the evolutionary history of chitin synthases
revealed significant expansions in both animals
and fungi, and also in the Ichthyosporea and
C. limacisporum, a group of cell-walled animal rela-
tives. This indicates that the last opisthokont
common ancestor had a complex toolkit of chitin
synthases that was differentially retained in extant
lineages. Thus, our data provide evidence for conver-
gent evolution of specialized lifestyles in close rela-
tives of animals and fungi from a generalist ancestor.

RESULTS AND DISCUSSION

Broad Taxonomic Sampling Provides New Phylogenetic
Insights into the Evolution of the Opisthokonta
Previous attempts to solve opisthokont phylogeny swayed be-

tween species-rich datasets with poor deep-node resolution

based on small ribosomal subunit [1–3] and multigene superma-

trices that included few taxa [4–6]. To improve upon our previ-

ously published phylogenomic dataset [6], we therefore sampled

representative species in all described opisthokont lineages (see

Table S1 and Supplemental Experimental Procedures). This

included representatives of nucleariids, choanoflagellates, filas-

tereans, and the twomain lineages of Ichthyosporea (Dermocys-

tidia and Ichthyophonida). In addition, we included two different

strains of the enigmatic Corallochytrium limacisporum, a spher-

ical free-living walled saprotroph found in coral reefs [7]. Origi-

nally classified as a thraustochytrid based on its morphology,
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C. limacisporum has been unstably placed within the Opistho-

konta in all molecular phylogenies to date because of the scarce

molecular data available [8–11]. In order to improve the opistho-

kont outgroup, we also sampled the ancyromonad Nutomonas

longaCCAP 1958/5 [12], which is putatively related to Apusomo-

nadida [11]. Overall, we generated new transcriptomic data for

10 protistan taxa (11 strains in total, highlighted in bold in Fig-

ure 1), plus new genomic data from another strain (Ichthyopho-

nus hoferi). This represents the broadest taxon sampling to

date to infer the opisthokont phylogeny.

To investigate the phylogenetic relationships, we assembled

two datasets comprising a total of 93 single-copy protein do-

mains: one with 83 taxa and 18,218 aligned amino acid positions

(S83), and the other with 70 taxa and 22,313 amino acid positions

(S70). The latter dataset was constructed to maximize alignment

length and tominimize topological artifacts by excluding putative

problematic taxa with long branches (e.g., Microsporidia, Exca-

vata) and high percentages of missing data (e.g., taxa with only

expressed sequence tag data) (see Table S1). Both datasets

were consistent in recovering the backbone of the eukaryotic

phylogeny using both Bayesian inference (BI) (Figures 1 and

S1C) and maximum likelihood (ML) (Figures S1A and S1B; see

Supplemental Experimental Procedures for details).

As sister groups to Opisthokonta, we recovered Apusomona-

dida and Breviatea as recently reported [13], branching as inde-

pendent lineages and not forming a monophyletic group or

clustering with amoebozoans. Interestingly, the topology of

the S83 dataset placed Nutomonas longa (Ancyromonadida)

branching closer to the Excavata and not closely related to the

Apusomonadida and Opisthokonta. This contrasts with previous

analyses [11, 12] but is consistent with recent results based on

multiple markers [14]. Within the Holomycota (which includes

fungi and their protistan relatives), we recovered a clade formed

by Nuclearia sp. and Fonticula alba (Discicristoidea) as the

earliest-branching lineage [15]. This was followed by Rozella al-

lomycis andMicrosporidia [16] and the paraphyletic assemblage

of Chytridiomycota (including Neocallimastigomycota) and Blas-

tocladiomycota [17]. Finally, within the Holozoa we recovered

Filasterea as the sister group to the clade formed by theMetazoa

and Choanoflagellatea, as previously reported [5, 6].

Interestingly, we recovered C. limacisporum as a sister group

to Ichthyosporea (including the two major groups Ichthyopho-

nida and Dermocystida) [18] with both ML and BI methods.

The S83 dataset recovered this position for C. limacisporum

with weak support (56% ML bootstrap support [bs] and 0.8 BI

posterior probability [pp]). However, support for this branch

increased significantly (bs = 80%, pp = 0.84) when the long-

branch taxa were excluded (see Figure 1 and Table S2). The

position of the dermocystid Sphaerothecum destruens as sister

group to the rest of ichthyosporeans was only moderately sup-

ported (S83: bs = 60%, pp = 0.97; S70: bs = 61%, pp = 0.87)

but was consistently recovered in all analyses. Thus, the mono-

phyletic group comprising Ichthyosporea and C. limacisporum

appears to be the earliest-branching lineage in the Holozoa.

We tentatively name this novel group ‘‘Teretosporea,’’ meaning

‘‘rounded spores,’’ through this study.

C. limacisporum is the only known free-living osmotroph in the

Holozoa, whereas the ichthyosporeans thus far described are

known to be associated with animal hosts as parasites or com-
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mensals [18], despite being frequently found in environmental

surveys [3]. The life cycles of C. limacisporum and Ichthyospor-

eans [7, 18] are strikingly similar: both start as a single cell that

grows as a coenocyte until it reaches maturation, when it un-

dergoes schizogony. The dispersive amoeboid or flagellated

progeny (merozoites) settle and close the cycle [18]. Chytrid fungi

showasimilar developmentalmode,withbothcoenocyticgrowth

and amoeboid or flagellated stages [19]. Similarly, fungi also

evolved from phagotrophic ancestors (Discicristoidea, Rozella,

and Aphelida [20]) to become saprotrophs and parasites. More-

over, some Ichthyosporea species (A. parasiticum and I. hoferi)

present a mode of polar growth that clearly resembles fungal hy-

phae [21]. Thus, teretosporeans and fungi present tantalizing sim-

ilarities regarding life style adaptations and morphologies.

The resulting opisthokont tree also confirms the convergent

evolution of filose amoebas, Filasterea within the Holozoa and

Discicristoidea within the Holomycota. Both lineages have

evolved a similar cell morphology comprising long, actin-based

filopodia [22], with some taxa going through an aggregative

multicellular cell stage in their life cycles [23].

Independent Loss of the Flagellum within the
Opisthokonta
A single posterior motile flagellum is a defining character of opis-

thokonts [2]. Our observation that both filose amoebas and

fungal-like lineages evolved in independent branches within

opisthokonts therefore predicts independent loss of the flagel-

lum. To address this hypothesis, we analyzed the evolution of

the flagellar toolkit [24, 25]. The molecules that comprise the fla-

gellum include specialized tubulins (epsilon, delta) [26], the intra-

flagellar transport system (i.e., the IFT-A, IFT-B, and BBSome

complexes [27]), and some motor molecules, mainly specialized

subfamilies of dyneins and kinesins [24, 28] (Figure 2B). Large-

scale genomic analyses have shown that the presence of

these genes in a given genome correlates with the presence of

a flagellum—revealing, in some cases, a previously unseen

flagellar stage [28].

To clarify the evolution of the flagellum, we sought orthologs of

a set of over 60 flagellum-specific proteins [24, 27, 28] in our

taxon sampling (see Supplemental Experimental Procedures

and Table S3). As expected, non-flagellated lineages such as Di-

karya fungi, Discicristoidea, Ichthyophonida, and the filasterean

Capsaspora owczarzaki yielded no significant hits (Figure 2A).

This confirmed the recurrent secondary loss of the flagellum in

at least four opisthokont lineages. In contrast, we found several

proteins corresponding to key flagellar molecular components in

the transcriptome of two taxa assumed not to be flagellated, the

filasterean M. vibrans and the teretosporean C. limacisporum.

M. vibrans was originally described as a filose amoeba sus-

pended in the water column by a stalk attached to the substrate.

The stalk resembled a modified flagellum based on transmission

electron microscopy (TEM) observations, which included struc-

tures resembling, according to the authors, doublet microtu-

bules [2]. Interestingly, we observed the presence of axonemal

dyneins, epsilon tubulin, and IFT-A/B complexes, clearly sug-

gesting the presence of a flagellum in this species. Therefore,

we tested whether the stalk is a modified flagellum by

tubulin immunostaining on the original ATCC 50519 strain (see

Supplemental Experimental Procedures). Confocal microscopy
ll rights reserved
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Figure 1. Phylogeny and Cell Biology of

Opisthokonts

(A) Phylogenetic tree based on the 83-taxa matrix

(see Tables S1 and S2 and Supplemental Experi-

mental Procedures) and inferred by PhyloBayes

under the CAT-Poisson model. Tree topology is

the consensus of two Markov chain Monte Carlo

chains run for 1,500 generations, saving every

ten trees and after a burn-in of 25%. Split

supports are posterior probabilities (pp) and

nonparametricmaximum likelihood (ML) bootstrap

(bs) values obtained from 200 ML replicates using

the LG+I+G model implemented in RAxML. Sup-

port values > 0.95 pp and > 95% bs are indicated

by a bullet (d). The taxa sampled in this study are

indicated in bold. For raw trees, see Figure S1.

(B–E) Light micrographs showing the coenocytic

stage of representative species of the tentatively

named ‘‘Terestosporea’’ (Corallochytrium + Ich-

thyosporea) sequenced in this study, including

Corallochytrium limacisporum (B),Sphaerothecum

destruens (C; arrowhead indicates flagellated

zoospore), Abeoforma whisleri (D), and Ichthyo-

phonus hoferi (E). Scale bar represents 10 mm in

(B)–(D) and 100 mm in (E).
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Figure 2. Multiple Independent Losses of the Flagellar Toolkit and CHS Genes in Opisthokonta

(A) Presence versus absence of key molecular components of the flagellar apparatus and chitin synthases (CHS) in distinct Opisthokonta lineages and taxa.
apresent in oomycetes, Chlorella variabilis, and Paramecium tetraurelia; bpresent in Acanthamoeba castellanii; cpresent in Entamoeba histolytica and Theca-

monas trahens; dpresent in Thalassiosira pseudonana; epresent in the chytrid Batrachochytrium dendrobatidis.

(B) Components of the flagellar apparatus and names of the molecular complexes. Adapted from [24]. See flagellar gene distribution in Table S3.

(C) Main chitin synthase classes and their canonical protein domain architectures (see CHS phylogeny in Figure S2).

Please cite this article in press as: Torruella et al., Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi,
Current Biology (2015), http://dx.doi.org/10.1016/j.cub.2015.07.053
revealed a tubulin protrusion branching from the cell body, which

was specifically stained with a-tubulin (Figure 3A) and acetylated

tubulin antibodies (Figures 3B and S3). Moreover, our own TEM

observations revealed a putative dense basal body and a

flagellar section with nine outer ring structures and central micro-

tubules (Figure 3C). Our transcriptomic data and experimental

analysis thus revealed a flagellar structure in M. vibrans. Conse-

quently, the ancestral filasterean must have had a flagellum,

which was secondarily lost from C. owczarzaki.

The transcriptome of C. limacisporum was found to contain

delta/epsilon tubulins, IFT-A and IFT-B components, and the

retrograde motor kinesin-II (Figure 2A). Although this organism

does possess an ortholog of HEATR2 recently linked to motile

cilia [29], we did not find evidence of flagellar motility compo-

nents, such as cytoplasmic dynein 2 or any of the axonemal

dyneins (heavy, light, and intermediate chains; Table S3).

Consistent with the original description of C. limacisporum [7],

we did not observe a flagellum using light and TEM microscopy,

at least under the culturing conditions employed. Therefore, our

data suggest thatC. limacisporum has a cryptic flagellated stage

in its life cycle, as has been inferred for other eukaryotes (i.e.,

Aureococcus and Ostreococcus) based on their genome se-

quences [28]. Consequently, within the Teretosporea, a flagel-

lated stage would be a feature shared by C. limacisporum and

Dermocystida that was secondarily lost from the Ichthyophonida

(Figure 4). This confirms the recurrent loss of the flagellum in both

filose amoeboid lineages (Discicristoidea and Filasterea) and

specialized osmotrophic lineages (Fungi and Teretosporea).

At Least Four Chitin Synthases in the Last Opisthokonta
Common Ancestor
Given the apparent similarities in the evolution of the Fungi

and Teretosporea, we investigated the evolutionary history of
4 Current Biology 25, 1–7, September 21, 2015 ª2015 Elsevier Ltd A
another feature of fungal evolution, the cell wall. Chitin is a key

biopolymer present in some fungal cell walls and animal cuticles

[30], synthesized by chitin synthases (CHS), a large and complex

multigene family. Several CHS classes have been described in

fungi (classes I/II/III from division I and classes IV/V/VI/VII from

division II) [31], with three ancestral classes known in animals

[32]. Some fungal CHS classes are held as molecular synapo-

morphies of fungi (classes IV/V/VI/VII from division II), as they

have been found exclusively in the genomes of fungi, including

R. allomycis and microsporidian genomes [33]. Moreover, CHS

homologs with uncertain classification have been found in other

eukaryotes, including the oomycete Saprolegnia monoica [34],

diatoms [35], and unicellular holozoans [18, 36].

To investigate which CHS classes are present in Teretosporea

and to clarify their phylogenetic relationships with those in fungi

and animals, we gathered CHS sequences from all eukaryotic

supergroups and built a tree based on the chitin synthase

domain (see Supplemental Experimental Procedures and Fig-

ure S2). This revealed three genes inC. limacisporum that belong

to division II CHS and branch within the clade that comprises

fungal classes IV/V/VII. These sequences consistently present

the canonical functional motifs of fungal sequences (see Table

S4). Interestingly, two of the genes encode an N-terminal myosin

head domain, resembling genes from fungal classes V/VII [36]

(Figure 2C). The myosin head of C. limacisporum CHS is sister

group to fungal V/VII CHS, forming the myosin class XVII [37].

We thus propose that the CHS class IV/V/VII containing amyosin

domain is an ancestral state in the Opisthokonta.

We also found that the Ichthyophonida contain CHS from both

division I and division II clades. Ichthyophonida homologs from

division I form a new clade with various eukaryotic sequences,

including diatoms, choanoflagellates, and amoebozoans (Fig-

ures 2A and S2), revealing it also to be an ancestral class in
ll rights reserved



Figure 3. Confocal and Electron Microscopy of Ministeria vibrans

Flagellum

(A and B) Confocal microscopy showing Ministeria vibrans ATCC 50519

stained with DAPI (blue) and anti-a-tubulin antibody 12G10 (Developmental

Studies Hybridoma Bank) (green) (A) or with DAPI (blue), anti-acetylated-

tubulin antibody T7451 (Sigma) (red), and phalloidin (green) (B). Arrowheads

indicate the flagellar structure. Whereas the flagellar structure is specifically

stained with cilia marker (acetylated tubulin) in (B), the cytoplasmic tubulin

cytoskeleton is stained only with general anti-tubulin antibody in (A).M. vibrans

feeds on bacteria, seen here as DAPI-stained bodies outside the cell. Scale bar

represents 5 mm. See also Figure S3.

(C) TEM micrograph showing a transverse section of the flagellar structure of

M. vibrans. N, nucleus; F, flagellar structure; OM, outer microtubules; CM,

central microtubules. Scale bar represents 200 nm.

Figure 4. Evolution of Lifestyles and Some Cell Features of the

Opisthokonts

Opisthokonta cladogram displaying lifestyle characteristics such as feeding

mode, flagellated stage, CHS repertoire, and developmental mode (see Fig-

ure S4 for wheat germ agglutinin [WGA] staining) and ancestral state recon-

struction of the last opisthokont common ancestor (LOCA). Choanoflagellate

image is adapted from http://www.dayel.com/ (CC BY-SA 3.0).
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the eukaryotes. Ichthyosporean division II CHS homologs

belong to the Metazoan class, which is also present in other uni-

cellular holozoans, apusomonads, and amoebozoans but is

secondarily lost in fungi. Finally, fungal class I/II/III is found in

several bikonts, including oomycetes and chlorophytes, sug-

gesting an ancestral origin and secondary loss from the Holozoa.

In summary, at least four ancestral paralogs of structurally

different CHS (Figure 2C) were found in the last opisthokont

common ancestor (LOCA), and secondary loss appears to

have been common in descendant lineages (Figure 4). The pres-

ence of a complex CHS repertoire in the ancestor of all Opistho-

konta, and the retention of rich CHS repertoires in the cell-walled

lineages, suggests that the presence of chitin in the cell wall was

an ancestral feature and not a fungal synapomorphy [33].

Consistent with this suggestion, Ichthyosporeans encoding a

complex CHS repertoire showed chitin staining in the cell wall

(Figure S4), and therefore only CHS VI class and the diversifica-

tion of CHS IV/V/VII class into paralogous groups could be still

considered fungal molecular synapomorphies.

A New Phylogenetic Framework for the Opisthokonts
By obtaining the transcriptomes of 10 new protist taxa (11

strains), plus the genome of an additional strain (12 strains in

total), we have improved the previously biased representation
, 1–7, September 21, 2015 ª2015 Elsevier Ltd All rights reserved 5
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of genomic information for unicellular Opisthokonta. This

allowed us to reassess the phylogenetic relationships among

the opisthokonts through an unprecedented gene- and taxon-

rich approach. Our dataset, with few missing data (Table S1), in-

cludes representatives from all opisthokont lineages, providing a

stronger phylogenetic framework for internal relationships. Our

phylogenetic analyses reveal a new clade: [Ichthyosporea +

C. limacisporum], which we tentatively call Teretosporea, and

which represents the earliest holozoan divergence (Figure 1).

Our data reveal that convergent evolution explains similarities

in the lifestyles of the Fungi and Teretosporea as well as in Filas-

terea and Discicristoidea (Figure 4). The ancestral LOCA was

most likely a filopodiated and flagellated generalist bacterivore

[38]. Consequently, the specialized osmotrophic feeding mode,

cell wall, and transition from saprotrophic to parasitic lifestyles

in Fungi and Teretosporea occurred independently. This is not

rare in eukaryotes, since similar adaptations are also found in

stramenopiles such as the oomycetes and the thraustochytrids

[39, 40]. However, our data provide the first example of such a

process occurring in a close relative of animals. Through analysis

of secondary loss of the flagellum and differential retention of

ancestral CHS paralogs in opisthokonts, we have also provided

molecular evidence to explain these lifestyle adaptations. There-

fore, this study provides a striking example of convergent

evolution through differential retention of ancestral genomic

characters in the unicellular relatives of animals and fungi.
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