The Analysis of Power Series

Bernd Schröder

Introduction

Introduction

1. Now that we know that every analytic function is locally equal to a power series, we want to know more about power series themselves.

Introduction

1. Now that we know that every analytic function is locally equal to a power series, we want to know more about power series themselves.
2. Whereas so far we had a function and found from it the power series, now we start with a power series and want to know the properties of the function it defines.

Introduction

1. Now that we know that every analytic function is locally equal to a power series, we want to know more about power series themselves.
2. Whereas so far we had a function and found from it the power series, now we start with a power series and want to know the properties of the function it defines.
3. It turns out that functions defined by power series are very well behaved.

Introduction

1. Now that we know that every analytic function is locally equal to a power series, we want to know more about power series themselves.
2. Whereas so far we had a function and found from it the power series, now we start with a power series and want to know the properties of the function it defines.
3. It turns out that functions defined by power series are very well behaved.
4. But to prove the requisite results, we first must more closely investigate the convergence of power series.

Theorem.

Theorem. Suppose the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges at the point $z_{1} \neq z_{0}$ and let $R:=\left|z_{1}-z_{0}\right|$.

Theorem. Suppose the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges at the point $z_{1} \neq z_{0}$ and let $R:=\left|z_{1}-z_{0}\right|$. Then the power series converges absolutely for all z with $\left|z-z_{0}\right|<R$.

Theorem. Suppose the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges at the point $z_{1} \neq z_{0}$ and let $R:=\left|z_{1}-z_{0}\right|$. Then the power series converges absolutely for all z with $\left|z-z_{0}\right|<R$.

Recall that absolute convergence meant that $\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ converges.

Proof.

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero.

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n.

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so
that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|$

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ we have

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|
$$

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ we have

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n}
$$

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ we have

$$
\begin{aligned}
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| & =\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n} \\
& \leq M \sum_{n=N+1}^{\infty} q^{n}
\end{aligned}
$$

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ we have

$$
\begin{aligned}
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| & =\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n} \\
& \leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q}
\end{aligned}
$$

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ we have

$$
\begin{aligned}
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| & =\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n} \\
& \leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q} \rightarrow 0 \quad(N \rightarrow \infty)
\end{aligned}
$$

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ we have

$$
\begin{aligned}
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| & =\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n} \\
& \leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q} \rightarrow 0 \quad(N \rightarrow \infty)
\end{aligned}
$$

and hence $\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ converges.

Proof. Because $\sum_{n=0}^{\infty} a_{n}\left(z_{1}-z_{0}\right)^{n}$ converges, we know that
$\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|<1$ we have

$$
\begin{aligned}
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| & =\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n} \\
& \leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q} \rightarrow 0 \quad(N \rightarrow \infty)
\end{aligned}
$$

and hence $\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ converges.

Observations From The Theorem

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.
2. The number c is called the radius of convergence

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.
2. The number c is called the radius of convergence, and the circle $\left|z-z_{0}\right|=c$ is called the circle of convergence.

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.
2. The number c is called the radius of convergence, and the circle $\left|z-z_{0}\right|=c$ is called the circle of convergence.
3. There are no general theorems about what happens when

$$
\left|z-z_{0}\right|=c .
$$

Observations From The Theorem

1. For every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there must be a number c so that the power series converges for $\left|z-z_{0}\right|<c$ and diverges for $\left|z-z_{0}\right|>c$. Indeed, if it converges at z_{1}, then it must converge on the disk $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$, which rules out any other shape for the region of convergence.
2. The number c is called the radius of convergence, and the circle $\left|z-z_{0}\right|=c$ is called the circle of convergence.
3. There are no general theorems about what happens when $\left|z-z_{0}\right|=c$.
4. And problems in the complex plane can influence the behavior of functions on the real line.

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

$f(x)=\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$ Has Radius of Convergence 1

Observations From The Proof

Observations From The Proof

1. Note that in the preceding proof the upper bound for the remainder $\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ depends only on the distance from z to z_{0}.

Observations From The Proof

1. Note that in the preceding proof the upper bound for the

$$
\text { remainder } \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| \text { depends only on the distance from }
$$

z to z_{0}. That's because $q=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|$.

Observations From The Proof

1. Note that in the preceding proof the upper bound for the remainder $\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ depends only on the distance from
z to z_{0}. That's because $q=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|$.
2. In particular, if $0<r<R$, then the remainder can be bounded uniformly for all z so that $\left|z-z_{0}\right| \leq r$.

Observations From The Proof

1. Note that in the preceding proof the upper bound for the remainder $\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ depends only on the distance from
z to z_{0}. That's because $q=\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|$.
2. In particular, if $0<r<R$, then the remainder can be bounded uniformly for all z so that $\left|z-z_{0}\right| \leq r$.
3. That, in turn, means that on such sub-disks $\left|z-z_{0}\right| \leq r$ there is a uniform minimum speed of convergence.

Definition.

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only if

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only if for every $\varepsilon>0$

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only iffor every $\varepsilon>0$ there is a natural number N_{ε}

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only iffor every $\varepsilon>0$ there is a natural number N_{ε} so that for all $N>N_{\varepsilon}$

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only iffor every $\varepsilon>0$ there is a natural number N_{ε} so that for all $N>N_{\varepsilon}$ and for all z in the region R

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only iffor every $\varepsilon>0$ there is a natural number N_{ε} so that for all $N>N_{\varepsilon}$ and for all z in the region R we have $\left|\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right|<\varepsilon$.

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only iffor every $\varepsilon>0$ there is a natural number N_{ε} so that for all $N>N_{\varepsilon}$ and for all z in the region R we have $\left|\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right|<\varepsilon$.

Theorem.

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only iffor every $\varepsilon>0$ there is a natural number N_{ε} so that for all $N>N_{\varepsilon}$ and for all z in the region R we have $\left|\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right|<\varepsilon$.
Theorem. Suppose the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ has circle of convergence $\left|z-z_{0}\right|=R$ and let $R_{1}<R$.

Definition. The power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is said to converge uniformly in the region R if and only iffor every $\varepsilon>0$ there is a natural number N_{ε} so that for all $N>N_{\varepsilon}$ and for all z in the region R we have $\left|\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right|<\varepsilon$.
Theorem. Suppose the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ has circle of convergence $\left|z-z_{0}\right|=R$ and let $R_{1}<R$. Then the power series converges uniformly for all z with $\left|z-z_{0}\right|<R_{1}$.

Proof.

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero.

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n.

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with
$q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with
$q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with
$q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|$ (note that $q<1$)

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with
$q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|$ (note that $q<1$) we have for all $\left|z-z_{0}\right|<R_{1}$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|$ (note that $q<1$) we have for all $\left|z-z_{0}\right|<R_{1}$

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|
$$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|$ (note that $q<1$) we have for all $\left|z-z_{0}\right|<R_{1}$

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|^{n}
$$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with $q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|$ (note that $q<1$) we have for all $\left|z-z_{0}\right|<R_{1}$

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|^{n}
$$

$$
\leq M \sum_{n=N+1}^{\infty} q^{n}
$$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with

$$
q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right| \text { (note that } q<1 \text {) we have for all }
$$

$$
\left|z-z_{0}\right|<R_{1}
$$

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|^{n}
$$

$$
\leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q}
$$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with

$$
q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right| \text { (note that } q<1 \text {) we have for all }
$$

$$
\left|z-z_{0}\right|<R_{1}
$$

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|=\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|^{n}
$$

$$
\leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q} \rightarrow 0 \quad(N \rightarrow \infty)
$$

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with

$$
\begin{aligned}
& q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right| \text { (note that } q<1 \text {) we have for all } \\
& \left|z-z_{0}\right|<R_{1} \\
& \begin{aligned}
\sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| & =\sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|^{n} \\
& \leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q} \rightarrow 0 \quad(N \rightarrow \infty)
\end{aligned}
\end{aligned}
$$

and hence $\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ converges uniformly for all $\left|z-z_{0}\right|<R_{1}$.

Proof. Let z_{R} be so that $R_{1}<\left|z_{R}-z_{0}\right|<R$ and so that $\sum_{n=0}^{\infty} a_{n}\left(z_{R}-z_{0}\right)^{n}$ converges. Then $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|$ converges to zero. In particular, there is an $M>0$ so that $\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|<M$ for all n. Therefore, with

$$
\begin{aligned}
& q:=\frac{R_{1}}{\left|z_{R}-z_{0}\right|}>\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right| \text { (note that } q<1 \text {) we have for all } \\
& \left|z-z_{0}\right|<R_{1} \\
& \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|
\end{aligned} \begin{aligned}
& \sum_{n=N+1}^{\infty}\left|a_{n}\left(z_{R}-z_{0}\right)^{n}\right|\left|\frac{z-z_{0}}{z_{R}-z_{0}}\right|^{n} \\
& \leq M \sum_{n=N+1}^{\infty} q^{n}=M \frac{q^{N+1}}{1-q} \rightarrow 0 \quad(N \rightarrow \infty)
\end{aligned}
$$

and hence $\sum_{n=0}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|$ converges uniformly for all $\left|z-z_{0}\right|<R_{1}$.

Theorem.

Theorem. Suppose the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ has circle of
convergence $\left|z-z_{0}\right|=R$.

Theorem. Suppose the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ has circle of convergence $\left|z-z_{0}\right|=R$. Then $f(z):=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ defines a continuous function on the region $\left|z-z_{0}\right|<R$.

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof (Visualization).

Proof.

Proof. Let z be so that $\left|z-z_{0}\right|<R$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous

 at z)
Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous

 at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$.Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$.

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$.

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
|f(z)-f(\tilde{z})|
$$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have
$|f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
\begin{aligned}
& |f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad \leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|
\end{aligned}
$$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
\begin{aligned}
& |f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad \leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|+\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|
\end{aligned}
$$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
\begin{aligned}
& |f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad \leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|+\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|+\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|
\end{aligned}
$$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
\begin{aligned}
& |f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad \leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|+\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|+\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad<\frac{\varepsilon}{3}
\end{aligned}
$$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
\begin{aligned}
& |f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad \leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|+\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|+\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}
\end{aligned}
$$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have
$|f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|$
$\leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|+\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|+\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|$ $<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
\begin{aligned}
& |f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad \leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|+\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|+\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

Proof. Let z be so that $\left|z-z_{0}\right|<R$ (we will prove that f is continuous at z), let $R_{1}>0$ be so that $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Now, because polynomials are continuous, there is a $\delta>0$ so that $\delta<R_{1}-\left|z-z_{0}\right|$ and so that for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have $\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$. Hence for all \tilde{z} with $|\tilde{z}-z|<\delta$ we have

$$
\begin{aligned}
& |f(z)-f(\tilde{z})|=\left|\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{\infty} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad \leq \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right|+\left|\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}-\sum_{n=0}^{N} a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|+\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right| \\
& \quad<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

Theorem.

Theorem. Let the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have circle of convergence $\left|z-z_{0}\right|=R$, let C be a contour that is entirely contained in the interior of the circle of convergence and let g be a function that is continuous on the interior of the circle of convergence.

Theorem. Let the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have circle of convergence $\left|z-z_{0}\right|=R$, let C be a contour that is entirely contained in the interior of the circle of convergence and let g be a function that is continuous on the interior of the circle of convergence. Then for the continuous function $f(z):=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ the integral of $g(z) f(z)$ over C can be computed term-by-term.

Theorem. Let the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have circle of convergence $\left|z-z_{0}\right|=R$, let C be a contour that is entirely contained in the interior of the circle of convergence and let g be a function that is continuous on the interior of the circle of convergence. Then for the continuous function $f(z):=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ the integral of $g(z) f(z)$ over C can be computed term-by-term. That is,

$$
\int_{C} g(z) f(z) d z=\sum_{n=0}^{\infty} a_{n} \int_{C} g(z)\left(z-z_{0}\right)^{n} d z
$$

Visualization.

Visualization.

Visualization.

Visualization.

Visualization.

Visualization.

Visualization.

Visualization.

Visualization.

Visualization.

Visualization.

Proof.

Proof. Let $R_{1}>0$ be so that for all z on C we have $\left|z-z_{0}\right|<R_{1}<R$

Proof. Let $R_{1}>0$ be so that for all z on C we have $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$.

Proof. Let $R_{1}>0$ be so that for all z on C we have $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{\int_{C}|g(w)| d|w|}$.

Proof. Let $R_{1}>0$ be so that for all z on C we have $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{\int_{C}|g(w)| d|w|}$. Then $\int_{C} g(z) f(z) d z$

Proof. Let $R_{1}>0$ be so that for all z on C we have $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{\int_{C}|g(w)| d|w|}$. Then $\int_{C} g(z) f(z) d z=\int_{C} g(z) \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z$

Proof. Let $R_{1}>0$ be so that for all z on C we have $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{\int_{C}|g(w)| d|w|}$. Then $\int_{C} g(z) f(z) d z=\int_{C} g(z) \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z$
$=\int_{C} g(z)\left(\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right) d z$

Proof. Let $R_{1}>0$ be so that for all z on C we have $\left|z-z_{0}\right|<R_{1}<R$ and let $\varepsilon>0$. Then there is a natural number N so that for all \tilde{z} with $\left|\tilde{z}-z_{0}\right|<R_{1}$ we have that $\sum_{n=N+1}^{\infty}\left|a_{n}\left(\tilde{z}-z_{0}\right)^{n}\right|<\frac{\varepsilon}{\int_{C}|g(w)| d|w|}$. Then $\int_{C} g(z) f(z) d z=\int_{C} g(z) \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z$
$=\int_{C} g(z)\left(\sum_{n=0}^{N} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n}\right) d z$
$=\sum_{n=0}^{N} a_{n} \int_{C} g(z)\left(z-z_{0}\right)^{n} d z+\int_{C} g(z) \sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z$

Proof.

Proof. Now note that

$$
\left|\int_{C} g(z) \sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z\right|
$$

Proof. Now note that

$$
\left|\int_{C} g(z) \sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z\right| \leq \int_{C}|g(z)| \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| d|z|
$$

Proof. Now note that

$$
\begin{aligned}
\left|\int_{C} g(z) \sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z\right| & \leq \int_{C}|g(z)| \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| d|z| \\
& \leq \int_{C}|g(z)| \frac{\varepsilon}{\int_{C}|g(w)| d|w|} d|z|
\end{aligned}
$$

Proof. Now note that

$$
\begin{aligned}
\left|\int_{C} g(z) \sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z\right| & \leq \int_{C}|g(z)| \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| d|z| \\
& \leq \int_{C}|g(z)| \frac{\varepsilon}{\int_{C}|g(w)| d|w|} d|z|<\varepsilon
\end{aligned}
$$

Proof. Now note that

$$
\begin{aligned}
\left|\int_{C} g(z) \sum_{n=N+1}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z\right| & \leq \int_{C}|g(z)| \sum_{n=N+1}^{\infty}\left|a_{n}\left(z-z_{0}\right)^{n}\right| d|z| \\
& \leq \int_{C}|g(z)| \frac{\varepsilon}{\int_{C}|g(w)| d|w|} d|z|<\varepsilon
\end{aligned}
$$

Theorem.

Theorem. Let the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have circle of
convergence $\left|z-z_{0}\right|=R$ and $\operatorname{let} f(z):=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for all z in the circle of convergence.

Theorem. Let the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have circle of
convergence $\left|z-z_{0}\right|=R$ and let $f(z):=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for all z in the circle of convergence. Then f is analytic in the circle of convergence.

Theorem. Let the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have circle of convergence $\left|z-z_{0}\right|=R$ and let $f(z):=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for all z in the circle of convergence. Then f is analytic in the circle of convergence. Moreover, the power series can be differentiated term-by-term.

Theorem. Let the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ have circle of convergence $\left|z-z_{0}\right|=R$ and let $f(z):=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ for all z in the circle of convergence. Then f is analytic in the circle of convergence. Moreover, the power series can be differentiated term-by-term. That is, for all z in the circle of convergence we have
$f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}$

Proof.

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term.

Proof. Note that for any closed contour C in the circle of

 convergence, we can integrate f term-by-term. Thus$$
\int_{C} f(z) d z
$$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\int_{C} f(z) d z=\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z
$$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\int_{C} f(z) d z=\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z
$$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0
\end{aligned}
$$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f).

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f). Thus for all z in the circle of convergence, $f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence(of f). Thus for all z in the circle of convergence,
$f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$, where
$b_{n}=\frac{\left(f^{\prime}\right)^{(n)}\left(z_{0}\right)}{n!}$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f). Thus for all z in the circle of convergence,
$f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$, where
$b_{n}=\frac{\left(f^{\prime}\right)^{(n)}\left(z_{0}\right)}{n!}=\frac{f^{(n+1)}\left(z_{0}\right)}{n!}$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f). Thus for all z in the circle of convergence,
$f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$, where
$b_{n}=\frac{\left(f^{\prime}\right)^{(n)}\left(z_{0}\right)}{n!}=\frac{f^{(n+1)}\left(z_{0}\right)}{n!} \frac{n+1}{n+1}$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f). Thus for all z in the circle of convergence,
$f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$, where
$b_{n}=\frac{\left(f^{\prime}\right)^{(n)}\left(z_{0}\right)}{n!}=\frac{f^{(n+1)}\left(z_{0}\right)}{n!} \frac{n+1}{n+1}=(n+1) \frac{f^{(n+1)}\left(z_{0}\right)}{(n+1)!}$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f). Thus for all z in the circle of convergence,
$f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$, where
$b_{n}=\frac{\left(f^{\prime}\right)^{(n)}\left(z_{0}\right)}{n!}=\frac{f^{(n+1)}\left(z_{0}\right)}{n!} \frac{n+1}{n+1}=(n+1) \frac{f^{(n+1)}\left(z_{0}\right)}{(n+1)!}=(n+1) a_{n+1}$

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f). Thus for all z in the circle of convergence,
$f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$, where
$b_{n}=\frac{\left(f^{\prime}\right)^{(n)}\left(z_{0}\right)}{n!}=\frac{f^{(n+1)}\left(z_{0}\right)}{n!} \frac{n+1}{n+1}=(n+1) \frac{f^{(n+1)}\left(z_{0}\right)}{(n+1)!}=(n+1) a_{n+1}$,
which is what was to be proved.

Proof. Note that for any closed contour C in the circle of convergence, we can integrate f term-by-term. Thus

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z \\
& =\sum_{n=0}^{\infty} a_{n} \cdot 0=0
\end{aligned}
$$

Thus, by Morera's Theorem, f is analytic in the interior of the circle of convergence (of f). Thus for all z in the circle of convergence,
$f^{\prime}(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$, where
$b_{n}=\frac{\left(f^{\prime}\right)^{(n)}\left(z_{0}\right)}{n!}=\frac{f^{(n+1)}\left(z_{0}\right)}{n!} \frac{n+1}{n+1}=(n+1) \frac{f^{(n+1)}\left(z_{0}\right)}{(n+1)!}=(n+1) a_{n+1}$,
which is what was to be proved.

Theorem.

Theorem. If the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges to $f(z)$ at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then it is the Taylor series expansion of the function f about z_{0}.

Proof.

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$

Proof. The power series converges uniformly inside any circle

 $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there.Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
b_{n}=\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi
$$

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
\begin{aligned}
b_{n} & =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{\sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j+1}}{\left(\xi-z_{0}\right)^{n+1}} d \xi
\end{aligned}
$$

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
\begin{aligned}
b_{n} & =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{\sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j}}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j-n-1} d \xi
\end{aligned}
$$

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
\begin{aligned}
b_{n} & =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{\sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j}}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j-n-1} d \xi \\
& =\frac{1}{2 \pi i} \sum_{j=0}^{\infty} a_{j} \int_{C\left(z_{0}, R_{1}\right)}\left(\xi-z_{0}\right)^{j-n-1} d \xi
\end{aligned}
$$

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
\begin{aligned}
b_{n} & =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{\sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j}}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j-n-1} d \xi \\
& =\frac{1}{2 \pi i} \sum_{j=0}^{\infty} a_{j} \int_{C\left(z_{0}, R_{1}\right)}\left(\xi-z_{0}\right)^{j-n-1} d \xi=a_{n}
\end{aligned}
$$

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
\begin{aligned}
b_{n} & =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{\sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j}}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j-n-1} d \xi \\
& =\frac{1}{2 \pi i} \sum_{j=0}^{\infty} a_{j} \int_{C\left(z_{0}, R_{1}\right)}\left(\xi-z_{0}\right)^{j-n-1} d \xi=a_{n}
\end{aligned}
$$

Thus the original power series really is the Taylor series of f.

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
\begin{aligned}
b_{n} & =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{\sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j}}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j-n-1} d \xi \\
& =\frac{1}{2 \pi i} \sum_{j=0}^{\infty} a_{j} \int_{C\left(z_{0}, R_{1}\right)}\left(\xi-z_{0}\right)^{j-n-1} d \xi=a_{n}
\end{aligned}
$$

Thus the original power series really is the Taylor series of f. ("Series are their own Tavlor series ")

Proof. The power series converges uniformly inside any circle $\left|z-z_{0}\right|<R_{1}<R$, so that the power series is analytic there. But that means that the coefficients of the analytic function
$f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ are obtained via

$$
\begin{aligned}
b_{n} & =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \frac{\sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j}}{\left(\xi-z_{0}\right)^{n+1}} d \xi \\
& =\frac{1}{2 \pi i} \int_{C\left(z_{0}, R_{1}\right)} \sum_{j=0}^{\infty} a_{j}\left(\xi-z_{0}\right)^{j-n-1} d \xi \\
& =\frac{1}{2 \pi i} \sum_{j=0}^{\infty} a_{j} \int_{C\left(z_{0}, R_{1}\right)}\left(\xi-z_{0}\right)^{j-n-1} d \xi=a_{n}
\end{aligned}
$$

Thus the original power series really is the Taylor series of f. ("Series are their own Tavlor series ")

Theorem.

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to $f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to $f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof.

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to $f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$.

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to $f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $0 \leq\left|z-z_{0}\right|<R_{0}$

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to
$f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for
$0 \leq\left|z-z_{0}\right|<R_{0}$ and the series $\sum_{n=-\infty}^{0} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $r_{0}<\left|z-z_{0}\right|<\infty$.

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to
$f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for
$0 \leq\left|z-z_{0}\right|<R_{0}$ and the series $\sum_{n=-\infty}^{0} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $r_{0}<\left|z-z_{0}\right|<\infty$. Thus f is analytic for $r_{0}<\left|z-z_{0}\right|<R_{0}$

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to
$f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for
$0 \leq\left|z-z_{0}\right|<R_{0}$ and the series $\sum_{n=-\infty}^{0} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $r_{0}<\left|z-z_{0}\right|<\infty$. Thus f is analytic for $r_{0}<\left|z-z_{0}\right|<R_{0}$, and because we can let $r_{0} \rightarrow r$ and $R_{0} \rightarrow R$

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to
$f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for
$0 \leq\left|z-z_{0}\right|<R_{0}$ and the series $\sum_{n=-\infty}^{0} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $r_{0}<\left|z-z_{0}\right|<\infty$. Thus f is analytic for $r_{0}<\left|z-z_{0}\right|<R_{0}$, and because we can let $r_{0} \rightarrow r$ and $R_{0} \rightarrow R, f$ is analytic for $r<\left|z-z_{0}\right|<R$.

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to
$f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for
$0 \leq\left|z-z_{0}\right|<R_{0}$ and the series $\sum_{n=-\infty}^{0} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $r_{0}<\left|z-z_{0}\right|<\infty$. Thus f is analytic for $r_{0}<\left|z-z_{0}\right|<R_{0}$, and because we can let $r_{0} \rightarrow r$ and $R_{0} \rightarrow R, f$ is analytic for $r<\left|z-z_{0}\right|<R$. Now the same proof as for Taylor series shows that the expansion must be the Laurent series expansion.

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to
$f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for
$0 \leq\left|z-z_{0}\right|<R_{0}$ and the series $\sum_{n=-\infty}^{0} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $r_{0}<\left|z-z_{0}\right|<\infty$. Thus f is analytic for $r_{0}<\left|z-z_{0}\right|<R_{0}$, and because we can let $r_{0} \rightarrow r$ and $R_{0} \rightarrow R, f$ is analytic for $r<\left|z-z_{0}\right|<R$. Now the same proof as for Taylor series shows that the expansion must be the Laurent series expansion. (Writing it out once more is a good exercise.)

Theorem. If the doubly infinite series $\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges to
$f(z)$ at all points inside an annular domain $r<\left|z-z_{0}\right|<R$ with $R>r \geq 0$, then it is the Laurent series expansion of the function f about z_{0}.

Proof. Let $r_{0}<R_{0}$ be so that $r<r_{0}<R_{0}<R$. From the way series work, the series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for
$0 \leq\left|z-z_{0}\right|<R_{0}$ and the series $\sum_{n=-\infty}^{0} c_{n}\left(z-z_{0}\right)^{n}$ converges uniformly for $r_{0}<\left|z-z_{0}\right|<\infty$. Thus f is analytic for $r_{0}<\left|z-z_{0}\right|<R_{0}$, and because we can let $r_{0} \rightarrow r$ and $R_{0} \rightarrow R, f$ is analytic for $r<\left|z-z_{0}\right|<R$. Now the same proof as for Taylor series shows that the expansion must be the Laurent series expansion. (Writing it out once more is a good exercise.)

Theorem.

Theorem. Leibniz' Rule.

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof.

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.
Base step, $\mathbf{n}=0$.

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.
Base step, $\mathbf{n}=\mathbf{0}$. Trivial

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.
Base step, $\mathbf{n}=\mathbf{0}$. Trivial (?)

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.
Base step, $\mathbf{n}=\mathbf{0}$. Trivial (?)
$(g h)^{(0)}$

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.
Base step, $\mathbf{n}=\mathbf{0}$. Trivial (?)
$(g h)^{(0)}=g h$

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.
Base step, $\mathbf{n}=\mathbf{0}$. Trivial (?)
$(g h)^{(0)}=g h=g^{(0)} h^{(0)}$

Theorem. Leibniz' Rule. If g and h are both infinitely differentiable at z, then $(g h)^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$.

Proof. Induction on n.
Base step, $\mathbf{n}=\mathbf{0}$. Trivial (?)
$(g h)^{(0)}=g h=g^{(0)} h^{(0)}=\sum_{k=0}^{0}\binom{n}{k} g^{(k)} h^{(n-k)}$

Induction step, $n \rightarrow n+1$.

Induction step, $n \rightarrow n+1$.

$(g h)^{(n+1)}(z)$

Induction step, $n \rightarrow n+1$.
$(g h)^{(n+1)}(z)=\frac{d}{d z} \sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)$

Induction step, $n \rightarrow n+1$.

$$
\begin{aligned}
(g h)^{(n+1)}(z) & =\frac{d}{d z} \sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(g^{(k+1)}(z) h^{(n-k)}(z)+g^{(k)}(z) h^{(n-k+1)}(z)\right)
\end{aligned}
$$

Induction step, $n \rightarrow n+1$.

$$
\begin{aligned}
(g h)^{(n+1)}(z) & =\frac{d}{d z} \sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(g^{(k+1)}(z) h^{(n-k)}(z)+g^{(k)}(z) h^{(n-k+1)}(z)\right) \\
& =\sum_{k=0}^{n}\binom{n}{k} g^{(k+1)}(z) h^{(n-k)}(z)+\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k+1)}(z)
\end{aligned}
$$

Induction step, $n \rightarrow n+1$.

$$
\begin{aligned}
(g h)^{(n+1)}(z) & =\frac{d}{d z} \sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(g^{(k+1)}(z) h^{(n-k)}(z)+g^{(k)}(z) h^{(n-k+1)}(z)\right) \\
& =\sum_{k=0}^{n}\binom{n}{k} g^{(k+1)}(z) h^{(n-k)}(z)+\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k+1)}(z) \\
& =\sum_{j=1}^{n+1}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z)+\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)
\end{aligned}
$$

Induction step, $n \rightarrow n+1$.

$$
\begin{aligned}
(g h)^{(n+1)}(z)= & \frac{d}{d z} \sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z) \\
= & \sum_{k=0}^{n}\binom{n}{k}\left(g^{(k+1)}(z) h^{(n-k)}(z)+g^{(k)}(z) h^{(n-k+1)}(z)\right) \\
= & \sum_{k=0}^{n}\binom{n}{k} g^{(k+1)}(z) h^{(n-k)}(z)+\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k+1)}(z) \\
= & \sum_{j=1}^{n+1}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z)+\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z) \\
= & \binom{n}{n} g^{(n+1)}(z) h^{(0)}(z)+\sum_{j=1}^{n}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\sum_{k=1}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)+\binom{n}{0} g^{(0)}(z) h^{(n+1)}(z)
\end{aligned}
$$

$$
\begin{aligned}
(g h)^{(n+1)}(z)= & \binom{n}{n} g^{(n+1)}(z) h^{(0)}(z)+\sum_{j=1}^{n}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\sum_{k=1}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)+\binom{n}{0} g^{(0)}(z) h^{(n+1)}(z)
\end{aligned}
$$

$$
\begin{aligned}
(g h)^{(n+1)}(z)= & \binom{n}{n} g^{(n+1)}(z) h^{(0)}(z)+\sum_{j=1}^{n}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\sum_{k=1}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)+\binom{n}{0} g^{(0)}(z) h^{(n+1)}(z) \\
= & \binom{n+1}{n+1} g^{(n+1)}(z) h^{(0)}(z)
\end{aligned}
$$

$$
\begin{aligned}
(g h)^{(n+1)}(z)= & \binom{n}{n} g^{(n+1)}(z) h^{(0)}(z)+\sum_{j=1}^{n}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\sum_{k=1}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)+\binom{n}{0} g^{(0)}(z) h^{(n+1)}(z) \\
= & \binom{n+1}{n+1} g^{(n+1)}(z) h^{(0)}(z) \\
& +\sum_{j=1}^{n}\left(\binom{n}{j-1}+\binom{n}{j}\right) g^{(j)}(z) h^{(n+1-j)}(z)
\end{aligned}
$$

$$
\begin{aligned}
(g h)^{(n+1)}(z)= & \binom{n}{n} g^{(n+1)}(z) h^{(0)}(z)+\sum_{j=1}^{n}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\sum_{k=1}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)+\binom{n}{0} g^{(0)}(z) h^{(n+1)}(z) \\
= & \binom{n+1}{n+1} g^{(n+1)}(z) h^{(0)}(z) \\
& +\sum_{j=1}^{n}\left(\binom{n}{j-1}+\binom{n}{j}\right) g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\binom{n+1}{0} g^{(0)}(z) h^{(n+1)}(z)
\end{aligned}
$$

$$
\begin{aligned}
(g h)^{(n+1)}(z)= & \binom{n}{n} g^{(n+1)}(z) h^{(0)}(z)+\sum_{j=1}^{n}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\sum_{k=1}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)+\binom{n}{0} g^{(0)}(z) h^{(n+1)}(z) \\
= & \binom{n+1}{n+1} g^{(n+1)}(z) h^{(0)}(z) \\
& +\sum_{j=1}^{n}\left(\binom{n}{j-1}+\binom{n}{j}\right) g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\binom{n+1}{0} g^{(0)}(z) h^{(n+1)}(z) \\
= & \sum_{j=0}^{n+1}\binom{n+1}{j} g^{(j)}(z) h^{(n+1-j)}(z)
\end{aligned}
$$

$$
\begin{aligned}
(g h)^{(n+1)}(z)= & \binom{n}{n} g^{(n+1)}(z) h^{(0)}(z)+\sum_{j=1}^{n}\binom{n}{j-1} g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\sum_{k=1}^{n}\binom{n}{k} g^{(k)}(z) h^{(n+1-k)}(z)+\binom{n}{0} g^{(0)}(z) h^{(n+1)}(z) \\
= & \binom{n+1}{n+1} g^{(n+1)}(z) h^{(0)}(z) \\
& +\sum_{j=1}^{n}\left(\binom{n}{j-1}+\binom{n}{j}\right) g^{(j)}(z) h^{(n+1-j)}(z) \\
& +\binom{n+1}{0} g^{(0)}(z) h^{(n+1)}(z) \\
= & \sum_{j=0}^{n+1}\binom{n+1}{j} g^{(j)}(z) h^{(n+1-j)}(z)
\end{aligned}
$$

Theorem.

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$ converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof.

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$.

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus,
for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$.

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$. Again by the preceding theorem,

$$
c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$. Again by the preceding theorem,

$$
c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j} g^{(j)}\left(z_{0}\right) h^{(n-j)}\left(z_{0}\right)
$$

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$. Again by the preceding theorem,

$$
\begin{aligned}
c_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j} g^{(j)}\left(z_{0}\right) h^{(n-j)}\left(z_{0}\right) \\
& =\frac{1}{n!} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!}
\end{aligned}
$$

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$. Again by the preceding theorem,

$$
\begin{aligned}
c_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j} g^{(j)}\left(z_{0}\right) h^{(n-j)}\left(z_{0}\right) \\
& =\frac{1}{n!} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} j!a_{j}
\end{aligned}
$$

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$. Again by the preceding theorem,

$$
\begin{aligned}
c_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j} g^{(j)}\left(z_{0}\right) h^{(n-j)}\left(z_{0}\right) \\
& =\frac{1}{n!} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} j!a_{j}(n-j)!b_{n-j}
\end{aligned}
$$

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$. Again by the preceding theorem,

$$
\begin{aligned}
c_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j} g^{(j)}\left(z_{0}\right) h^{(n-j)}\left(z_{0}\right) \\
& =\frac{1}{n!} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} j!a_{j}(n-j)!b_{n-j}=\sum_{j=0}^{n} a_{j} b_{n-j}
\end{aligned}
$$

Theorem. If $g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $h(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}$
converge at all points inside a circle $\left|z-z_{0}\right|<R$ of nonzero radius $R>0$, then the function $f:=$ gh has a power series expansion there, too, and the coefficients of its expansion are $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.
Proof. By the preceding theorem, f is analytic for $\left|z-z_{0}\right|<R$. Thus, for $\left|z-z_{0}\right|<R, f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ and $c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$. Again by the preceding theorem,

$$
\begin{aligned}
c_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j} g^{(j)}\left(z_{0}\right) h^{(n-j)}\left(z_{0}\right) \\
& =\frac{1}{n!} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} j!a_{j}(n-j)!b_{n-j}=\sum_{j=0}^{n} a_{j} b_{n-j}
\end{aligned}
$$

Example.

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 . $\frac{e^{z}}{z^{2}+1}$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .
 $$
\frac{e^{z}}{z^{2}+1}=e^{z} \frac{1}{1-\left(-z^{2}\right)}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\frac{e^{z}}{z^{2}+1}=e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right)
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0.

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)+\cdots
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)+\cdots \\
& =1
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)+\cdots \\
& =1+z
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)+\cdots \\
& =1+z-\frac{1}{2} z^{2}
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)+\cdots \\
& =1+z-\frac{1}{2} z^{2}-\frac{5}{6} z^{3}
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)+\cdots \\
& =1+z-\frac{1}{2} z^{2}-\frac{5}{6} z^{3}+\frac{13}{24} z^{4}
\end{aligned}
$$

Example. Expand $\frac{e^{z}}{z^{2}+1}$ into a power series around 0 .

$$
\begin{aligned}
\frac{e^{z}}{z^{2}+1} & =e^{z} \frac{1}{1-\left(-z^{2}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \sum_{k=0}^{\infty}(-1)^{k} z^{2 k} \\
& =\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}+\cdots\right)\left(1-z^{2}+z^{4}-z^{6}+\cdots\right) \\
& =1+z+z^{2}\left(-1+\frac{1}{2}\right)+z^{3}\left(-1+\frac{1}{6}\right)+z^{4}\left(1-\frac{1}{2}+\frac{1}{24}\right)+\cdots \\
& =1+z-\frac{1}{2} z^{2}-\frac{5}{6} z^{3}+\frac{13}{24} z^{4}+\cdots
\end{aligned}
$$

Example.

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .
Because $\cos (z)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .
Because $\cos (z)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots$ we can obtain the first few terms of the expansion by generalizing the division of polynomials.

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .
Because $\cos (z)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots$ we can obtain the first few terms of the expansion by generalizing the division of polynomials. So we will not get the full expansion.

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .
Because $\cos (z)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots$ we can obtain the first few terms of the expansion by generalizing the division of polynomials. So we will not get the full expansion. The algorithm will show that getting the full expansion by straightforward division would be a bit much to hope for.

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
1 - \frac { z ^ { 2 } } { 2 } + \frac { z ^ { 4 } } { 2 4 } - \frac { z ^ { 6 } } { 7 2 0 } + \cdots \longdiv { 1 }
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
1 - \frac { z ^ { 2 } } { 2 } + \frac { z ^ { 4 } } { 2 4 } - \frac { z ^ { 6 } } { 7 2 0 } + \cdots \longdiv { 1 }
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{gathered}
(-) \frac { z ^ { 2 } } { 2 } + \frac { z ^ { 4 } } { 2 4 } - \frac { z ^ { 6 } } { 7 2 0 } + \cdots \longdiv { 1 }
\end{gathered}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .
1

$1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots$| 1 |
| :---: |
| $(-)$ |
| 1 |$-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots \begin{array}{|cccccc}
1 \\
(-) & \begin{array}{r}
1 \\
1
\end{array}-\frac{z^{2}}{2} & +\frac{z^{4}}{24} & - & \frac{z^{6}}{720} & +\cdots \\
\frac{z^{2}}{2} & -\frac{z^{4}}{24} & +\frac{z^{6}}{720} & +\cdots
\end{array}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots \begin{array}{|lllll}
1 & +\frac{z^{2}}{2} \\
(-) & \begin{array}{l}
1 \\
1
\end{array}-\frac{z^{2}}{2}+\frac{z^{4}}{24} & -\frac{z^{6}}{720} & +\cdots \\
\frac{z^{2}}{2} & -\frac{z^{4}}{24} & +\frac{z^{6}}{720} & +\cdots
\end{array}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{z^{2}}{2} \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots \sqrt{1} \\
& \text { (-) } \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots}{\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots} \\
& (-) \quad \frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{z^{6}}{48}+\cdots
\end{aligned}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{z^{2}}{2} \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots 1 \\
& \text { (-) } \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots}{\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots} \\
& (-) \quad \frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{z^{6}}{48}+\cdots
\end{aligned}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{z^{2}}{2} \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots 1 \\
& \text { (-) } \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{700}+\cdots}{\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots} \\
& (-) \frac{\frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{\frac{7}{}^{6}}{48}+\cdots}{\frac{5 z^{4}}{24}-\frac{76^{6}}{360}+\cdots}
\end{aligned}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{z^{2}}{2}+\frac{5 z^{4}}{24} \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots \sqrt{1} \\
& \text { (-) } \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots}{\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots} \\
& (-) \frac{\frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{z^{6}}{48}+\cdots}{\frac{5 z^{4}}{24}-\frac{7 z^{6}}{360}+\cdots}
\end{aligned}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{z^{2}}{2}+\frac{5 z^{4}}{24} \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots 1 \\
& \text { (-) } \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots}{\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots} \\
& (-) \frac{\frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{\frac{7}{}^{6}}{48}+\cdots}{\frac{5 z^{4}}{24}-\frac{76^{6}}{36^{6}}+\cdots} \\
& \text { (-) } \\
& \frac{5 z^{4}}{24}-\frac{5 z^{6}}{48}+\cdots
\end{aligned}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{3}{2}+\frac{\text { yin }}{2} \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots \sqrt{1} \\
& (-) \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}}{+\cdots} \begin{array}{l}
\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots
\end{array} \\
& (-) \frac{\frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{z^{6}}{48}+\cdots}{\frac{5 z^{4}}{24}-\frac{7 z^{6}}{360}+\cdots} \\
& (-) \quad \frac{5 z^{4}}{24}-\frac{5 z^{6}}{48}+\cdots
\end{aligned}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{z^{2}}{2}+\frac{5 z^{4}}{24} \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots \sqrt{1} \\
& (-) \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}}{+\cdots} \begin{array}{l}
\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots
\end{array} \\
& (-) \frac{\frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{z^{6}}{48}+\cdots}{\frac{5 z^{4}}{24}-\frac{7 z^{6}}{360}+\cdots} \\
& \text { (-) } \\
& \frac{\frac{5 z^{4}}{24}-\frac{5 z^{6}}{48}+\cdots}{\frac{61 z^{6}}{720}+\cdots}
\end{aligned}
$$

Example. Expand $\frac{1}{\cos (z)}$ into a power series around 0 .

$$
\begin{aligned}
& 1+\frac{z^{2}}{2}+\frac{55^{4}}{24}+\frac{611^{6}}{720}+\cdots \\
& 1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots 1 \\
& \text { (-) } \frac{1-\frac{z^{2}}{2}+\frac{z^{4}}{24}-\frac{z^{6}}{720}+\cdots}{\frac{z^{2}}{2}-\frac{z^{4}}{24}+\frac{z^{6}}{720}+\cdots} \\
& (-) \frac{\frac{z^{2}}{2}-\frac{z^{4}}{4}+\frac{\frac{z}{}^{6}}{48}+\cdots}{\frac{5 z^{4}}{24}-\frac{7 z^{6}}{360}+\cdots} \\
& \text { (-) } \\
& \frac{\frac{5 z^{4}}{24}-\frac{5 z^{6}}{48}+\cdots}{\frac{61 z^{6}}{720}+\cdots}
\end{aligned}
$$

Graphical Double Check (Polynomial: Red, $1 / \cos (x)$: Blue)

Graphical Double Check (Polynomial: Red, $1 / \cos (x)$: Blue)

Graphical Double Check (Polynomial: Red, $1 / \cos (x)$: Blue)

Graphical Double Check (Polynomial: Red, $1 / \cos (x)$: Blue)

Graphical Double Check (Polynomial: Red, $1 / \cos (x)$: Blue)

YEAH!

