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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Introduction

1. Now that we know that every analytic function is locally equal to
a power series, we want to know more about power series
themselves.

2. Whereas so far we had a function and found from it the power
series, now we start with a power series and want to know the
properties of the function it defines.

3. It turns out that functions defined by power series are very well
behaved.

4. But to prove the requisite results, we first must more closely
investigate the convergence of power series.

Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Introduction
1. Now that we know that every analytic function is locally equal to

a power series, we want to know more about power series
themselves.

2. Whereas so far we had a function and found from it the power
series, now we start with a power series and want to know the
properties of the function it defines.

3. It turns out that functions defined by power series are very well
behaved.

4. But to prove the requisite results, we first must more closely
investigate the convergence of power series.
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Theorem.

Suppose the power series
∞

∑
n=0

an(z− z0)n converges at the

point z1 6= z0 and let R := |z1− z0|. Then the power series converges
absolutely for all z with |z− z0|< R.

Recall that absolute convergence meant that
∞

∑
n=0

∣∣an(z− z0)n
∣∣

converges.
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Proof.

Because
∞

∑
n=0

an(z1− z0)n converges, we know that∣∣an(z1− z0)n
∣∣ converges to zero. In particular, there is an M > 0 so

that
∣∣an(z1− z0)n

∣∣< M for all n. Therefore, with q :=
∣∣∣∣ z− z0

z1− z0

∣∣∣∣ < 1

we have
∞

∑
n=N+1

∣∣an(z− z0)n
∣∣ =

∞

∑
n=N+1

∣∣an(z1− z0)n
∣∣ ∣∣∣∣ z− z0

z1− z0

∣∣∣∣n
≤ M

∞

∑
n=N+1

qn = M
qN+1

1−q
→ 0 (N→ ∞)

and hence
∞

∑
n=0

∣∣an(z− z0)n
∣∣ converges.
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Proof. Because
∞

∑
n=0

an(z1− z0)n converges, we know that∣∣an(z1− z0)n
∣∣ converges to zero. In particular, there is an M > 0 so

that
∣∣an(z1− z0)n

∣∣< M for all n. Therefore, with q :=
∣∣∣∣ z− z0

z1− z0

∣∣∣∣ < 1

we have
∞

∑
n=N+1

∣∣an(z− z0)n
∣∣ =

∞

∑
n=N+1

∣∣an(z1− z0)n
∣∣ ∣∣∣∣ z− z0

z1− z0

∣∣∣∣n
≤ M

∞

∑
n=N+1

qn = M
qN+1

1−q
→ 0 (N→ ∞)

and hence
∞

∑
n=0

∣∣an(z− z0)n
∣∣ converges.
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Observations From The Theorem

1. For every power series
∞

∑
n=0

an(z− z0)n, there must be a number c

so that the power series converges for |z− z0|< c and diverges
for |z− z0|> c. Indeed, if it converges at z1, then it must
converge on the disk |z− z0|< |z1− z0|, which rules out any
other shape for the region of convergence.

-

6
ℑ(z)

ℜ(z)

q
z0

qz1q
z
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2. The number c is called the radius of convergence, and the circle
|z− z0|= c is called the circle of convergence.

3. There are no general theorems about what happens when
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

f (x) =
1

1+ x2 =
∞

∑
n=0

(
−x2

)n
Has Radius of Convergence 1

N = 4
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Observations From The Proof

1. Note that in the preceding proof the upper bound for the

remainder
∞

∑
n=N+1

|an(z− z0)n| depends only on the distance from

z to z0. That’s because q =
∣∣∣∣ z− z0

z1− z0

∣∣∣∣ .
2. In particular, if 0 < r < R, then the remainder can be bounded

uniformly for all z so that |z− z0| ≤ r.
3. That, in turn, means that on such sub-disks |z− z0| ≤ r there is a

uniform minimum speed of convergence.
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Observations From The Proof
1. Note that in the preceding proof the upper bound for the

remainder
∞

∑
n=N+1

|an(z− z0)n| depends only on the distance from

z to z0. That’s because q =
∣∣∣∣ z− z0

z1− z0

∣∣∣∣ .
2. In particular, if 0 < r < R, then the remainder can be bounded

uniformly for all z so that |z− z0| ≤ r.

3. That, in turn, means that on such sub-disks |z− z0| ≤ r there is a
uniform minimum speed of convergence.
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Definition.

The power series
∞

∑
n=0

an(z− z0)n is said to converge

uniformly in the region R if and only if for every ε > 0 there is a
natural number Nε so that for all N > Nε and for all z in the region R

we have

∣∣∣∣∣ ∞

∑
n=N

an(z− z0)n

∣∣∣∣∣< ε .

Theorem. Suppose the power series
∞

∑
n=0

an(z− z0)n has circle of

convergence |z− z0|= R and let R1 < R. Then the power series
converges uniformly for all z with |z− z0|< R1.
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Proof.

Let zR be so that R1 < |zR− z0|< R and so that
∞

∑
n=0

an(zR− z0)n

converges. Then
∣∣an(zR− z0)n

∣∣ converges to zero. In particular, there
is an M > 0 so that

∣∣an(zR− z0)n
∣∣< M for all n. Therefore, with

q :=
R1

|zR− z0|
>

∣∣∣∣ z− z0

zR− z0

∣∣∣∣ (note that q < 1) we have for all

|z− z0|< R1
∞

∑
n=N+1

∣∣an(z− z0)n
∣∣ =

∞

∑
n=N+1

∣∣an(zR− z0)n
∣∣ ∣∣∣∣ z− z0

zR− z0

∣∣∣∣n
≤ M

∞

∑
n=N+1

qn = M
qN+1

1−q
→ 0 (N→ ∞)

and hence
∞

∑
n=0

∣∣an(z− z0)n
∣∣ converges uniformly for all |z− z0|< R1.
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Proof. Let zR be so that R1 < |zR− z0|< R and so that
∞

∑
n=0

an(zR− z0)n

converges. Then
∣∣an(zR− z0)n

∣∣ converges to zero. In particular, there
is an M > 0 so that

∣∣an(zR− z0)n
∣∣< M for all n.

Therefore, with

q :=
R1

|zR− z0|
>

∣∣∣∣ z− z0

zR− z0

∣∣∣∣ (note that q < 1) we have for all

|z− z0|< R1
∞

∑
n=N+1

∣∣an(z− z0)n
∣∣ =

∞

∑
n=N+1

∣∣an(zR− z0)n
∣∣ ∣∣∣∣ z− z0

zR− z0

∣∣∣∣n
≤ M

∞

∑
n=N+1

qn = M
qN+1

1−q
→ 0 (N→ ∞)

and hence
∞

∑
n=0

∣∣an(z− z0)n
∣∣ converges uniformly for all |z− z0|< R1.

Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Proof. Let zR be so that R1 < |zR− z0|< R and so that
∞

∑
n=0

an(zR− z0)n

converges. Then
∣∣an(zR− z0)n

∣∣ converges to zero. In particular, there
is an M > 0 so that

∣∣an(zR− z0)n
∣∣< M for all n. Therefore, with

q :=
R1

|zR− z0|

>

∣∣∣∣ z− z0

zR− z0

∣∣∣∣ (note that q < 1) we have for all

|z− z0|< R1
∞

∑
n=N+1

∣∣an(z− z0)n
∣∣ =

∞

∑
n=N+1

∣∣an(zR− z0)n
∣∣ ∣∣∣∣ z− z0

zR− z0

∣∣∣∣n
≤ M

∞

∑
n=N+1

qn = M
qN+1

1−q
→ 0 (N→ ∞)

and hence
∞

∑
n=0

∣∣an(z− z0)n
∣∣ converges uniformly for all |z− z0|< R1.
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Theorem.

Suppose the power series
∞

∑
n=0

an(z− z0)n has circle of

convergence |z− z0|= R. Then f (z) :=
∞

∑
n=0

an(z− z0)n defines a

continuous function on the region |z− z0|< R.
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Proof.

Let z be so that |z− z0|< R (we will prove that f is continuous
at z), let R1 > 0 be so that |z− z0|< R1 < R and let ε > 0. Then there
is a natural number N so that for all z̃ with |z̃− z0|< R1 we have that

∞

∑
n=N+1

|an(z̃− z0)n|< ε

3
. Now, because polynomials are continuous,

there is a δ > 0 so that δ < R1−|z− z0| and so that for all z̃ with

|z̃− z|< δ we have

∣∣∣∣∣ N

∑
n=0

an(z− z0)n−
N

∑
n=0

an(z̃− z0)n

∣∣∣∣∣< ε

3
. Hence for

all z̃ with |z̃− z|< δ we have∣∣f (z)− f (z̃)
∣∣= ∣∣∣∣∣ ∞

∑
n=0

an(z− z0)n−
∞

∑
n=0

an(z̃− z0)n

∣∣∣∣∣
≤

∞

∑
n=N+1

|an(z− z0)n|+

∣∣∣∣∣ N

∑
n=0

an(z− z0)n−
N

∑
n=0

an(z̃− z0)n

∣∣∣∣∣+ ∞

∑
n=N+1

|an(z̃− z0)n|

<
ε

3
+

ε

3
+

ε

3
= ε
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Proof. Let z be so that |z− z0|< R (we will prove that f is continuous
at z), let R1 > 0 be so that |z− z0|< R1 < R and let ε > 0. Then there
is a natural number N so that for all z̃ with |z̃− z0|< R1 we have that

∞

∑
n=N+1

|an(z̃− z0)n|< ε

3
. Now, because polynomials are continuous,

there is a δ > 0 so that δ < R1−|z− z0| and so that for all z̃ with

|z̃− z|< δ we have

∣∣∣∣∣ N

∑
n=0

an(z− z0)n−
N

∑
n=0

an(z̃− z0)n

∣∣∣∣∣< ε

3
. Hence for

all z̃ with |z̃− z|< δ we have∣∣f (z)− f (z̃)
∣∣= ∣∣∣∣∣ ∞

∑
n=0

an(z− z0)n−
∞

∑
n=0

an(z̃− z0)n

∣∣∣∣∣
≤

∞

∑
n=N+1

|an(z− z0)n|

+

∣∣∣∣∣ N

∑
n=0

an(z− z0)n−
N

∑
n=0

an(z̃− z0)n

∣∣∣∣∣+ ∞

∑
n=N+1

|an(z̃− z0)n|

<
ε

3
+

ε

3
+

ε

3
= ε
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Theorem.

Let the power series
∞

∑
n=0

an(z− z0)n have circle of

convergence |z− z0|= R, let C be a contour that is entirely contained
in the interior of the circle of convergence and let g be a function that
is continuous on the interior of the circle of convergence. Then for the

continuous function f (z) :=
∞

∑
n=0

an(z− z0)n the integral of g(z)f (z)

over C can be computed term-by-term. That is,∫
C

g(z)f (z) dz =
∞

∑
n=0

an

∫
C

g(z)(z− z0)n dz.
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Proof.

Let R1 > 0 be so that for all z on C we have |z− z0|< R1 < R
and let ε > 0. Then there is a natural number N so that for all z̃ with

|z̃− z0|< R1 we have that
∞

∑
n=N+1

|an(z̃− z0)n|< ε∫
C |g(w)| d|w|

. Then

∫
C

g(z)f (z) dz =
∫

C
g(z)

∞

∑
n=0

an(z− z0)n dz

=
∫

C
g(z)

(
N

∑
n=0

an(z− z0)n +
∞

∑
n=N+1

an(z− z0)n

)
dz

=
N

∑
n=0

an

∫
C

g(z)(z− z0)n dz+
∫

C
g(z)

∞

∑
n=N+1

an(z− z0)n dz
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Proof. Let R1 > 0 be so that for all z on C we have |z− z0|< R1 < R
and let ε > 0. Then there is a natural number N so that for all z̃ with

|z̃− z0|< R1 we have that
∞

∑
n=N+1

|an(z̃− z0)n|< ε∫
C |g(w)| d|w|

. Then

∫
C

g(z)f (z) dz =
∫

C
g(z)

∞

∑
n=0

an(z− z0)n dz

=
∫

C
g(z)

(
N

∑
n=0

an(z− z0)n +
∞

∑
n=N+1

an(z− z0)n

)
dz

=
N

∑
n=0

an

∫
C

g(z)(z− z0)n dz+
∫

C
g(z)

∞

∑
n=N+1

an(z− z0)n dz
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Now note that∣∣∣∣∣
∫

C
g(z)
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∑
n=N+1

an(z− z0)n dz
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∫

C

∣∣g(z)
∣∣ ∞

∑
n=N+1

|an(z− z0)n| d|z|

≤
∫

C

∣∣g(z)
∣∣ ε∫

C |g(w)| d|w|
d|z|< ε
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Thus, by Morera’s Theorem, f is analytic in the interior of the circle
of convergence(of f ). Thus for all z in the circle of convergence,
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bn(z− z0)n, where

bn =
(f ′)(n)(z0)

n!
=

f (n+1)(z0)
n!

n+1
n+1

= (n+1)
f (n+1)(z0)
(n+1)!

= (n+1)an+1,

which is what was to be proved.
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Proof. Note that for any closed contour C in the circle of
convergence, we can integrate f term-by-term. Thus∫

C
f (z) dz =

∫
C

∞

∑
n=0

an(z− z0)n dz =
∞

∑
n=0

an

∫
C
(z− z0)n dz

=
∞

∑
n=0

an ·0 = 0

Thus, by Morera’s Theorem, f is analytic in the interior of the circle
of convergence(of f ). Thus for all z in the circle of convergence,

f ′(z) =
∞

∑
n=0

bn(z− z0)n

, where

bn =
(f ′)(n)(z0)

n!
=

f (n+1)(z0)
n!

n+1
n+1

= (n+1)
f (n+1)(z0)
(n+1)!

= (n+1)an+1,

which is what was to be proved.
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Theorem.

If the power series
∞

∑
n=0

an(z− z0)n converges to f (z) at all

points inside a circle |z− z0|< R of nonzero radius R > 0, then it is
the Taylor series expansion of the function f about z0.
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Proof.

The power series converges uniformly inside any circle
|z− z0|< R1 < R, so that the power series is analytic there. But that
means that the coefficients of the analytic function

f (z) =
∞

∑
n=0

bn(z− z0)n are obtained via

bn =
1

2πi

∫
C(z0,R1)

f (ξ )
(ξ − z0)n+1 dξ

=
1

2πi

∫
C(z0,R1)

∑
∞
j=0 aj(ξ − z0)j

(ξ − z0)n+1 dξ

=
1

2πi

∫
C(z0,R1)

∞

∑
j=0

aj(ξ − z0)j−n−1 dξ

=
1

2πi

∞

∑
j=0

aj

∫
C(z0,R1)

(ξ − z0)j−n−1 dξ = an

Thus the original power series really is the Taylor series of f . (“Series
are their own Taylor series.”)
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Proof. The power series converges uniformly inside any circle
|z− z0|< R1 < R, so that the power series is analytic there. But that
means that the coefficients of the analytic function

f (z) =
∞

∑
n=0

bn(z− z0)n are obtained via

bn =
1

2πi

∫
C(z0,R1)

f (ξ )
(ξ − z0)n+1 dξ

=
1

2πi

∫
C(z0,R1)

∑
∞
j=0 aj(ξ − z0)j

(ξ − z0)n+1 dξ

=
1

2πi

∫
C(z0,R1)

∞

∑
j=0

aj(ξ − z0)j−n−1 dξ

=
1

2πi

∞

∑
j=0

aj

∫
C(z0,R1)

(ξ − z0)j−n−1 dξ = an

Thus the original power series really is the Taylor series of f . (“Series
are their own Taylor series.”)
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Theorem.

If the doubly infinite series
∞

∑
n=−∞

cn(z− z0)n converges to

f (z) at all points inside an annular domain r < |z− z0|< R with
R > r ≥ 0, then it is the Laurent series expansion of the function f
about z0.

Proof. Let r0 < R0 be so that r < r0 < R0 < R. From the way series

work, the series
∞

∑
n=0

cn(z− z0)n converges uniformly for

0≤ |z− z0|< R0 and the series
0

∑
n=−∞

cn(z− z0)n converges uniformly

for r0 < |z− z0|< ∞. Thus f is analytic for r0 < |z− z0|< R0, and
because we can let r0→ r and R0→ R, f is analytic for
r < |z− z0|< R. Now the same proof as for Taylor series shows that
the expansion must be the Laurent series expansion. (Writing it out
once more is a good exercise.)
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Theorem. If the doubly infinite series
∞

∑
n=−∞

cn(z− z0)n converges to

f (z) at all points inside an annular domain r < |z− z0|< R with
R > r ≥ 0, then it is the Laurent series expansion of the function f
about z0.

Proof. Let r0 < R0 be so that r < r0 < R0 < R. From the way series

work, the series
∞

∑
n=0

cn(z− z0)n converges uniformly for

0≤ |z− z0|< R0

and the series
0

∑
n=−∞

cn(z− z0)n converges uniformly

for r0 < |z− z0|< ∞. Thus f is analytic for r0 < |z− z0|< R0, and
because we can let r0→ r and R0→ R, f is analytic for
r < |z− z0|< R. Now the same proof as for Taylor series shows that
the expansion must be the Laurent series expansion. (Writing it out
once more is a good exercise.)
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Theorem.

Leibniz’ Rule. If g and h are both infinitely differentiable

at z, then (gh)(n)(z) =
n

∑
k=0

(
n
k

)
g(k)(z)h(n−k)(z).

Proof. Induction on n.
Base step, n=0. Trivial (?)

(gh)(0) = gh = g(0)h(0) =
0

∑
k=0

(
n
k

)
g(k)h(n−k)
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Induction step, n→ n+1.

(gh)(n+1)(z) =
d
dz

n

∑
k=0

(
n
k

)
g(k)(z)h(n−k)(z)

=
n

∑
k=0

(
n
k

)(
g(k+1)(z)h(n−k)(z)+g(k)(z)h(n−k+1)(z)

)
=

n

∑
k=0

(
n
k

)
g(k+1)(z)h(n−k)(z)+

n

∑
k=0

(
n
k

)
g(k)(z)h(n−k+1)(z)

=
n+1

∑
j=1

(
n

j−1

)
g(j)(z)h(n+1−j)(z)+

n

∑
k=0

(
n
k

)
g(k)(z)h(n+1−k)(z)

=
(

n
n

)
g(n+1)(z)h(0)(z)+

n

∑
j=1

(
n

j−1

)
g(j)(z)h(n+1−j)(z)

+
n

∑
k=1

(
n
k

)
g(k)(z)h(n+1−k)(z)+

(
n
0

)
g(0)(z)h(n+1)(z)
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Theorem.

If g(z) =
∞

∑
n=0

an(z− z0)n and h(z) =
∞

∑
n=0

bn(z− z0)n

converge at all points inside a circle |z− z0|< R of nonzero radius
R > 0, then the function f := gh has a power series expansion there,

too, and the coefficients of its expansion are cn =
n

∑
k=0

akbn−k.

Proof. By the preceding theorem, f is analytic for |z− z0|< R. Thus,

for |z− z0|< R, f (z) =
∞

∑
n=0

cn(z− z0)n and cn =
f (n)(z0)

n!
. Again by the

preceding theorem,

cn =
f (n)(z0)

n!
=

1
n!

n

∑
j=0

(
n
j

)
g(j)(z0)h(n−j)(z0)

=
1
n!

n

∑
j=0

n!
j!(n− j)!

j!aj(n− j)!bn−j =
n

∑
j=0

ajbn−j
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Theorem. If g(z) =
∞

∑
n=0

an(z− z0)n and h(z) =
∞

∑
n=0

bn(z− z0)n

converge at all points inside a circle |z− z0|< R of nonzero radius
R > 0, then the function f := gh has a power series expansion there,

too, and the coefficients of its expansion are cn =
n

∑
k=0

akbn−k.

Proof.

By the preceding theorem, f is analytic for |z− z0|< R. Thus,

for |z− z0|< R, f (z) =
∞

∑
n=0

cn(z− z0)n and cn =
f (n)(z0)

n!
. Again by the

preceding theorem,

cn =
f (n)(z0)

n!
=

1
n!

n

∑
j=0

(
n
j

)
g(j)(z0)h(n−j)(z0)

=
1
n!

n

∑
j=0

n!
j!(n− j)!

j!aj(n− j)!bn−j =
n

∑
j=0

ajbn−j
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Theorem. If g(z) =
∞

∑
n=0

an(z− z0)n and h(z) =
∞

∑
n=0

bn(z− z0)n

converge at all points inside a circle |z− z0|< R of nonzero radius
R > 0, then the function f := gh has a power series expansion there,

too, and the coefficients of its expansion are cn =
n

∑
k=0

akbn−k.

Proof. By the preceding theorem, f is analytic for |z− z0|< R. Thus,

for |z− z0|< R, f (z) =
∞

∑
n=0

cn(z− z0)n and cn =
f (n)(z0)

n!
. Again by the

preceding theorem,

cn =
f (n)(z0)

n!
=

1
n!

n

∑
j=0

(
n
j

)
g(j)(z0)h(n−j)(z0)

=
1
n!

n

∑
j=0

n!
j!(n− j)!

j!aj(n− j)!bn−j =
n

∑
j=0

ajbn−j
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Example.

Expand
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into a power series around 0.
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(−1)kz2k

=
(

1+ z+
z2

2
+

z3

6
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z4
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+ · · ·

) (
1− z2 + z4− z6 + · · ·

)
= 1+ z+ z2

(
−1+

1
2

)
+ z3

(
−1+

1
6

)
+ z4
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1− 1
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+ · · ·
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Example. Expand
ez

z2 +1
into a power series around 0.

ez

z2 +1
= ez 1

1− (−z2)
=

∞

∑
k=0

1
k!

zk
∞

∑
k=0

(−1)kz2k

=
(

1+ z+
z2

2
+

z3

6
+

z4

24
+ · · ·

) (
1− z2 + z4− z6 + · · ·

)
= 1+ z+ z2

(
−1+

1
2

)
+ z3

(
−1+

1
6

)
+ z4

(
1− 1

2
+

1
24

)

+ · · ·

= 1+ z− 1
2

z2− 5
6

z3 +
13
24

z4 + · · ·
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Example.

Expand
1

cos(z)
into a power series around 0.

Because cos(z) = 1− x2

2
+

x4

24
− x6

720
+ · · · we can obtain the first few

terms of the expansion by generalizing the division of polynomials.
So we will not get the full expansion. The algorithm will show that
getting the full expansion by straightforward division would be a bit
much to hope for.
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Example. Expand
1

cos(z)
into a power series around 0.

Because cos(z) = 1− x2

2
+

x4

24
− x6

720
+ · · · we can obtain the first few

terms of the expansion by generalizing the division of polynomials.

So we will not get the full expansion. The algorithm will show that
getting the full expansion by straightforward division would be a bit
much to hope for.
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Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Analysis of Power Series



logo1

Convergence Continuity Differentiability Uniqueness Multiplication and Division

Example. Expand
1

cos(z)
into a power series around 0.

1 − z2

2 + z4

24 −
z6

720 + · · · 1
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