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Now that we know that every analytic function is locally equal to
a power series, we want to know more about power series
themselves.

. Whereas so far we had a function and found from it the power

series, now we start with a power series and want to know the
properties of the function it defines.

. It turns out that functions defined by power series are very well

behaved.
But to prove the requisite results, we first must more closely
investigate the convergence of power series.
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For every power series Z an(z—2z0)", there must be a number ¢
n=0
so that the power series converges for |z — zg| < ¢ and diverges

for |z — zo| > c. Indeed, if it converges at z;, then it must
converge on the disk |z —zo| < |z1 — 2o/, which rules out any
other shape for the region of convergence.

The number c is called the radius of convergence, and the circle
|z— z0| = c is called the circle of convergence.

There are no general theorems about what happens when

lz—z0| =c.

. And problems in the complex plane can influence the behavior of

functions on the real line.
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2. In particular, if 0 < r < R, then the remainder can be bounded
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n=0
continuous function on the region |z — zo| < R.
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continuous function f(z) := Z an(z—20)" the integral of g(2)f (2)
n=0
over C can be computed term-by-term.
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Differentiability

Theorem. Let the power series Z an(z—1z0)" have circle of
n=0
convergence |z —zo| = R, let C be a contour that is entirely contained

in the interior of the circle of convergence and let g be a function that
is continuous on the interior of the circle of convergence. Then for the
continuous function f(z) := Z an(z—20)" the integral of g(2)f (2)

n=0
over C can be computed term-by-term. That is,
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Theorem. Let the power series Z an(z—1z0)" have circle of
n=0

convergence |z —zo| = Rand let f(z) := Y ay(z—20)" for all z in the
n=0
circle of convergence. Then f is analytic in the circle of convergence.

Moreover, the power series can be differentiated term-by-term. That
is, for all 7 in the circle of convergence we have

(@)=Y nan(z—z0)""
n=1
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Proof. Note that for any closed contour C in the circle of
convergence, we can integrate f term-by-term. Thus
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Theorem. If g(z) Z an(z—z20)" and h(z Z bu(z—20)"
n=0
converge at all points inside a circle |z — zO| < R of nonzero radius

R > 0, then the function f := gh has a power series expansion there,
n

too, and the coefficients of its expansion are ¢, = Z agb,_x.
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Example. Expand into a power series around 0.
cos(z)
¥ooxt a8
Because cos(z) = 1 — 5 + 24" 730 + -+ we can obtain the first few

terms of the expansion by generalizing the division of polynomials.
So we will not get the full expansion. The algorithm will show that
getting the full expansion by straightforward division would be a bit
much to hope for.
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