Radar

an introduction

Università di Pavia

Fabio Dell'Acqua – Gruppo di Telerilevamento

What is a radar?

- RADAR: RAdio Detection And Ranging
- active sensor
 - radiates EM energy
 - receives the backscattered wave from a generic target
 - uses backscattered wave to detect, locate and possibly also analyze a non-cooperating target

Different types of radar/platform

- Ground-based: Air Traffic Control, detection and tracking of targets, ground-based SAR, Ground Penetrating Radar, weather radar
- Airborne: detection and tracking, surface remote sensing, radioaltimetry, weather radar
- Seaborne: target/obstacle detection and tracking
- Spaceborne: Earth Observation

Brief history of RADAR

- The first experiments by Hertz on a hill to prove the existence of EM waves date back to 1886.
- At the beginning of the new century the first experiments to detect the presence of vessels using EM waves were made.
- In the '20s the first prototypes appeared, and radar pulses were used for the remote detection of large objects.
- During the Second World War round radar screen (PPI) appeared.
- In the '60s radar technology became public domain.
- 1978: SEASAT, the first satellite radar for civilian applications.

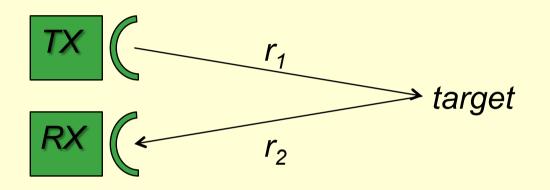
Operation modes

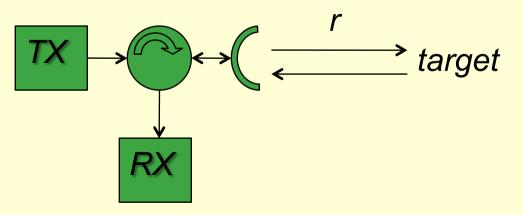
- Pulsed radar:
 - the transmitted wave consists of a pulse
 - both single-antenna and two-antennas configurations possible
 - detection and distance measure possible
- Continuous wave radar (CW):
 - a wave is continuously transmitted
 - a single antenna is not sufficient
 - detection possible
 - distance measure possible if the wave is opportunely modulated

Antenna configuration

• Bistatic:

- Transmitting (TX) antenna + receiving (RX) antenna apart


- Monostatic:
 - a single antenna is both transmitting (TX) and receiving (RX)
 - at any given time the antenna is either TX or RX (or switching)
- In this course we will deal with pulsed monostatic radar, briefly touching on bistatic (ex. interferometry)

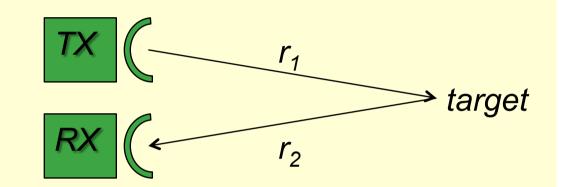


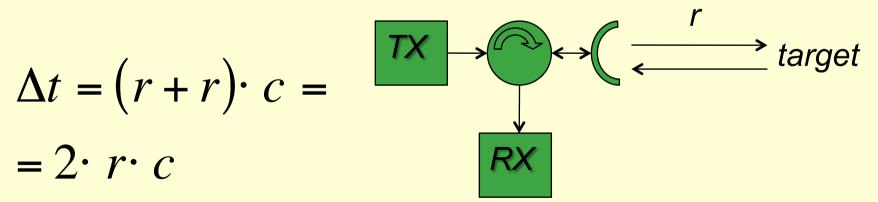
Antenna configuration

• Bistatic:

• Monostatic:

Università di Pavia

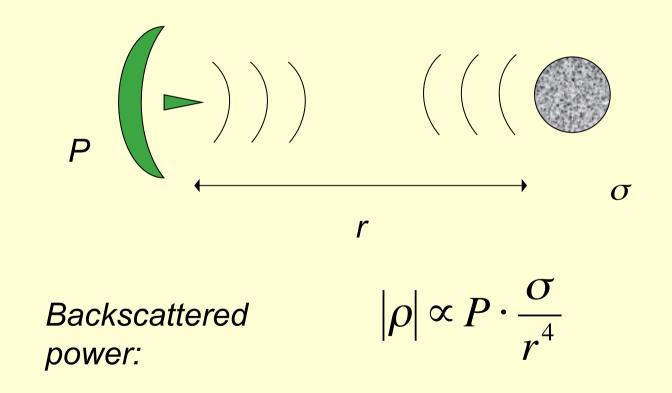

Fabio Dell'Acqua – Gruppo di Telerilevamento


Distance measurement

• Bistatic:

$$\Delta t = (r_1 + r_2) \cdot c$$

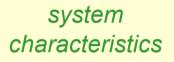
• Monostatic:



Università di Pavia

Intensity measurement

• Classical radar configuration:


Università di Pavia

Fabio Dell'Acqua - Gruppo di Telerilevamento

About intensity: the RADAR equation

$$P_r = \frac{G^2 \lambda^2 P_t \sigma}{(4\pi)^3 R^4}$$

target

characteristics

geometry

- P_r = antenna-received power;
- P_t = antenna-emitted power;
- λ = operational wavelenght;
- σ = "radar cross section" of the observed target
- $R = sensor-target distance (TX \equiv RX)$
- $G = antenna gain (TX \equiv RX)$

Radar bands (IEEE standard)

	Band	Frequency (GHz)	
	HF	0.003 - 0.03	"IEEE Standard Letter Designations
	VHF	0.03 – 0.3	for Radar-Frequency Bands," IEEE Std
	UHF	0.3 - 1	521-2002 (Revision of IEEE Std
	L	1 - 2	521-1984), vol., no., pp.0_1-3, 2003
	S	2 - 4	doi: 10.1109/IEEESTD.2003.94224
	С	4 - 8	URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?
	Х	8 - 12	tp=&arnumber=1160089&isnumber=26011
	Ku	12 - 18	
	K	18 - 27	
	Ka	27 - 40	
	V	40 - 75	
	W	75 - 110	
	mm	110 - 300	

Università di Pavia

Fabio Dell'Acqua – Gruppo di Telerilevamento

Radar bands

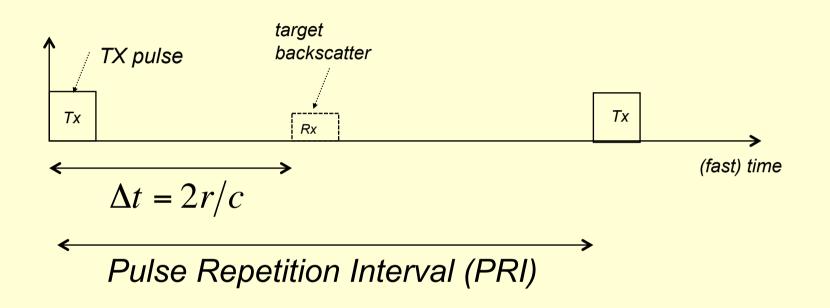
- HF (Short waves):
 - early radar; nowadays used for over-the-horizon (OTH) radar thanks to ionospheric propagation

• VHF, UHF:

- easy to generate great transmitting power \rightarrow long range
- ineffectiveness of stealthing techniques (large radar cross section)
- all-weather
- L-Band
 - Moving Target Indication (MTI)

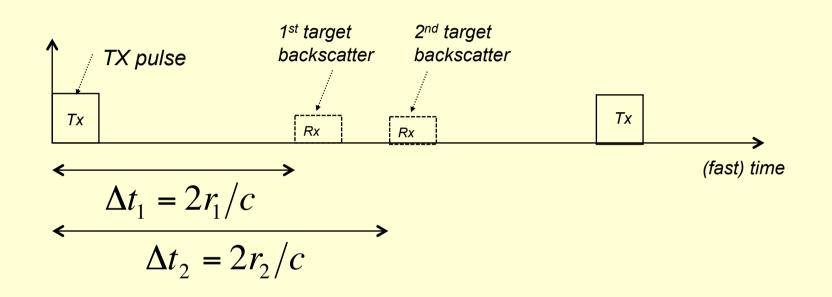
Radar bands

- S-band
 - better angle resolution
 - surveillance radar (long-range) weather radar
 - some attenuation in case of rain
- C-band
 - smaller, lighter devices (wrt S-band)
 - better resolution (wrt S-band)
 - acceptable attenuation in case of rain
 - weather radar
 - spaceborne Earth Observation


Radar bands

- X-band
 - high resolution, small and light devices
 - significant attenuation in case of rain not really all-weather
 - short-range surveillance, Earth Observation
- K bands
 - very high resolution in principle
 - very short range due to rain and path attenuation
 - local surveillance
- mm bands
 - difficult to use due to high attenuation

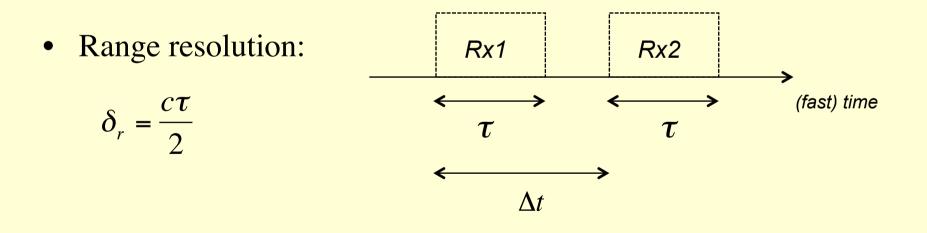
Distance measurement



- Presence of backscatter \rightarrow target detection
- Time-delay of backscatter \rightarrow target (range) location
- Propagation at speed of light $\rightarrow 1\mu s \approx 150 \text{ m}$

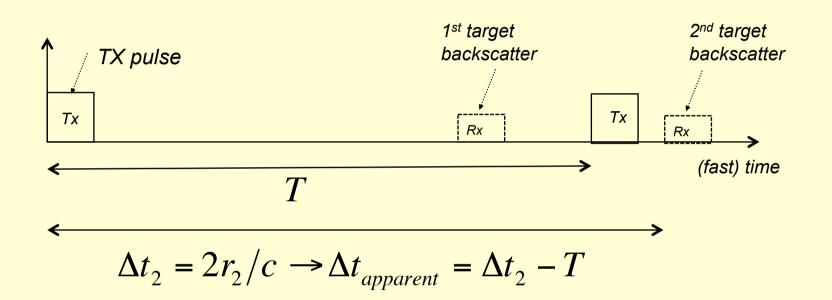
Range resolution

- More than one target may backscatter the EM wave
- Can we tell there are two targets instead of one?

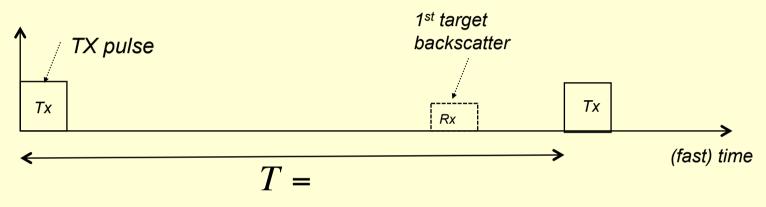


Separate detection

• Separate detection is possible as far as the two Rx pulses do not overlap:


$$\Delta t = \Delta t_2 - \Delta t_1 = \frac{2r_2}{c} - \frac{2r_1}{c} = \frac{2\Delta r}{c} \ge \tau$$

Max non-ambiguous range



• the second target is apparently very close to the radar but actually farther than the *non-ambiguous range!*

Max non-ambiguous range

max non–ambiguous response time

• Maximum range:

$$R_{n-a} = \frac{cT}{2}$$

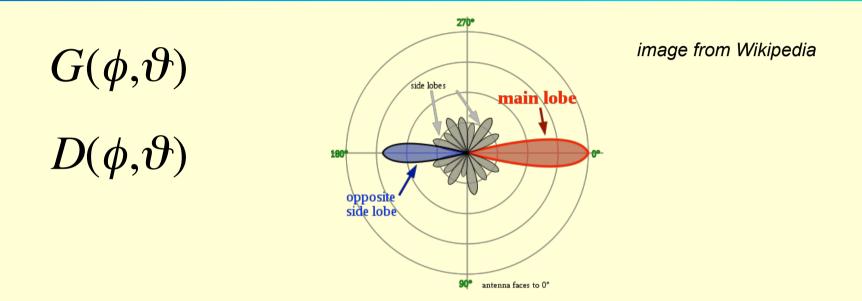
Università di Pavia

Angle resolution

• Recall: antenna directivity (D) and gain (G)

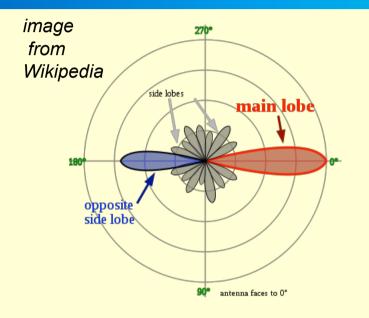
$$D = \frac{\max radiation \text{ int } ensity}{mean radiation \text{ int } ensity} = \frac{\max \frac{P_r}{solidangle}}{\frac{P_{tot}}{4\pi}}$$

 $G = \frac{\max radiation \text{ int } ensity}{mean loss less radiation \text{ int } ensity} = \frac{\max \frac{P_r}{solidangle}}{\frac{P_{tot}}{4\pi}}$


• antenna radiating efficiency, accounting for losses:

$$G(\phi,\vartheta) = \rho_r \cdot D(\phi,\vartheta)$$

Radiation pattern



- Both directivity and gain pattern are defined as functions of azimuth (ϕ) and elevation (ϑ)
- a "main lobe" can generally be pinpointed

Beam aperture

 $\phi_A \approx \lambda / L_{\phi}$: L_{ϕ} antenna azimuth size

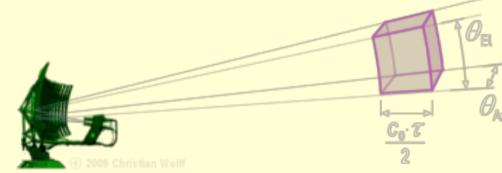
 $\theta_A \approx \lambda / L_{\theta}$: L_{θ} antenna elevation size

• Beam aperture generally defined based on -3 dB radiation intensity with respect to boresight

Effective area

• Equivalent area shown by a receiving antenna:

$$G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi \rho_a A_g}{\lambda^2}$$


- A_e: effective area;
- A_g: geometric area;
- ρ_a : aperture efficiency.

Cell resolution

http://www.radartutorial.eu/01.basics/rb20.en.html

- In the usual assumption, volume resolution determined by:
 - aperture angle θ_{el} , θ_{az} (-3 dB angle) of the antenna beam
 - range resolution $\delta = c\tau/2$

Radar Cross Section (RCS)

$$S = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4}$$

	ISOTROPIC/ RERADIATE POWER		
		/	SPHERICAL SURFACE CENTERED @ RADAR
	R		•
MADAR			

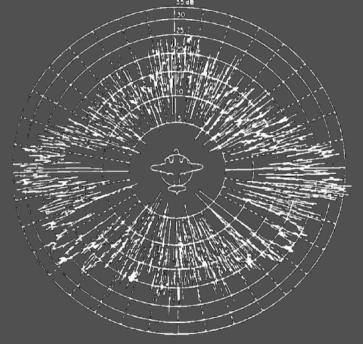
 σ [m²]= RCS: superficie equivalente della sfera che riflette verso il radar la stessa quantità di potenza riflessa dal bersaglio.

- RCS complex to estimate, varying with many factors
- Single, large target:
 - sum of independent small targets
 - each target contribute can be approximated as a response from a basic geometric shape
 - "small" targets never exceed a few λs

RCS for basic geometric shapes

Geometric		Cross- Sectional Area*	Radar Cross Section†	<i></i>	
Shap e	Dimension	(এ)	(<i>σ</i>)		$a = 4\lambda$
Sphere	Radius a	πa^2	ma ²	1	1
Cylinder	$l \times radius a$	2 <i>la</i>	2 mal ²	<u> </u>	4π
	(thin wall, open ende	d)	λ	(for $l = a$)	(for $l = a$)
Flat plate	a × a	a ²	$4\pi a^4$	$4\pi a^2$	64π
Dihedral corner	a, a, a	a²√2	$\frac{\lambda^2}{8\pi a^4}$	$\frac{\overline{\lambda^2}}{8\pi a^2}$	$\frac{128\pi}{\sqrt{2}}$
Square trihedral	a, a, a	$\frac{3a^2}{2}$	$\frac{12 \pi a^4}{\lambda^2}$	$\frac{8\pi a^2}{\lambda^2}$	128 <i>π</i>

Seen at orientation for maximum RCS. Highly accurate only for $a \ge \lambda$.


- Sphere has:
 - minimum RCS
 - λ -independent RCS $(a >> \lambda)$

RCS of a real target

- Very complex to estimate, too many elementary reflectors interacting - usually measured directly
- Example: experimental RCS of B-26 aircraft vs. azimuth angle at 3 GHz http://www.radartutorial.eu/18.explanations/ex09.en.html frequency

From Skolnik, "Radar Handbook"

