
Package ‘randomForest’
October 7, 2015

Title Breiman and Cutler's Random Forests for Classification and
Regression

Version 4.6-12

Date 2015-10-06

Depends R (>= 2.5.0), stats

Suggests RColorBrewer, MASS

Author Fortran original by Leo Breiman and Adele Cutler, R port by
Andy Liaw and Matthew Wiener.

Description Classification and regression based on a forest of trees
using random inputs.

Maintainer Andy Liaw <andy_liaw@merck.com>

License GPL (>= 2)

URL https://www.stat.berkeley.edu/~breiman/RandomForests/

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-10-07 08:38:34

R topics documented:
classCenter . 2
combine . 3
getTree . 4
grow . 5
importance . 6
imports85 . 7
margin . 8
MDSplot . 9
na.roughfix . 10
outlier . 11
partialPlot . 12
plot.randomForest . 14

1

https://www.stat.berkeley.edu/~breiman/RandomForests/

2 classCenter

predict.randomForest . 15
randomForest . 17
rfcv . 21
rfImpute . 23
rfNews . 25
treesize . 25
tuneRF . 26
varImpPlot . 27
varUsed . 28

Index 29

classCenter Prototypes of groups.

Description

Prototypes are ‘representative’ cases of a group of data points, given the similarity matrix among
the points. They are very similar to medoids. The function is named ‘classCenter’ to avoid conflict
with the function prototype in the methods package.

Usage

classCenter(x, label, prox, nNbr = min(table(label))-1)

Arguments

x a matrix or data frame

label group labels of the rows in x

prox the proximity (or similarity) matrix, assumed to be symmetric with 1 on the
diagonal and in [0, 1] off the diagonal (the order of row/column must match that
of x)

nNbr number of nearest neighbors used to find the prototypes.

Details

This version only computes one prototype per class. For each case in x, the nNbr nearest neighors
are found. Then, for each class, the case that has most neighbors of that class is identified. The pro-
totype for that class is then the medoid of these neighbors (coordinate-wise medians for numerical
variables and modes for categorical variables).

This version only computes one prototype per class. In the future more prototypes may be computed
(by removing the ‘neighbors’ used, then iterate).

Value

A data frame containing one prototype in each row.

combine 3

Author(s)

Andy Liaw

See Also

randomForest, MDSplot

Examples

data(iris)
iris.rf <- randomForest(iris[,-5], iris[,5], prox=TRUE)
iris.p <- classCenter(iris[,-5], iris[,5], iris.rf$prox)
plot(iris[,3], iris[,4], pch=21, xlab=names(iris)[3], ylab=names(iris)[4],

bg=c("red", "blue", "green")[as.numeric(factor(iris$Species))],
main="Iris Data with Prototypes")

points(iris.p[,3], iris.p[,4], pch=21, cex=2, bg=c("red", "blue", "green"))

combine Combine Ensembles of Trees

Description

Combine two more more ensembles of trees into one.

Usage

combine(...)

Arguments

... two or more objects of class randomForest, to be combined into one.

Value

An object of class randomForest.

Note

The confusion, err.rate, mse and rsq components (as well as the corresponding components in
the test compnent, if exist) of the combined object will be NULL.

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

randomForest, grow

4 getTree

Examples

data(iris)
rf1 <- randomForest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf2 <- randomForest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf3 <- randomForest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf.all <- combine(rf1, rf2, rf3)
print(rf.all)

getTree Extract a single tree from a forest.

Description

This function extract the structure of a tree from a randomForest object.

Usage

getTree(rfobj, k=1, labelVar=FALSE)

Arguments

rfobj a randomForest object.

k which tree to extract?

labelVar Should better labels be used for splitting variables and predicted class?

Details

For numerical predictors, data with values of the variable less than or equal to the splitting point go
to the left daughter node.

For categorical predictors, the splitting point is represented by an integer, whose binary expansion
gives the identities of the categories that goes to left or right. For example, if a predictor has
four categories, and the split point is 13. The binary expansion of 13 is (1, 0, 1, 1) (because
13 = 1 ∗ 20 + 0 ∗ 21 + 1 ∗ 22 + 1 ∗ 23), so cases with categories 1, 3, or 4 in this predictor get sent
to the left, and the rest to the right.

Value

A matrix (or data frame, if labelVar=TRUE) with six columns and number of rows equal to total
number of nodes in the tree. The six columns are:

left daughter the row where the left daughter node is; 0 if the node is terminal

right daughter the row where the right daughter node is; 0 if the node is terminal

split var which variable was used to split the node; 0 if the node is terminal

split point where the best split is; see Details for categorical predictor

status is the node terminal (-1) or not (1)

prediction the prediction for the node; 0 if the node is not terminal

grow 5

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

randomForest

Examples

data(iris)
Look at the third trees in the forest.
getTree(randomForest(iris[,-5], iris[,5], ntree=10), 3, labelVar=TRUE)

grow Add trees to an ensemble

Description

Add additional trees to an existing ensemble of trees.

Usage

S3 method for class 'randomForest'
grow(x, how.many, ...)

Arguments

x an object of class randomForest, which contains a forest component.

how.many number of trees to add to the randomForest object.

... currently ignored.

Value

An object of class randomForest, containing how.many additional trees.

Note

The confusion, err.rate, mse and rsq components (as well as the corresponding components in
the test compnent, if exist) of the combined object will be NULL.

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

combine, randomForest

6 importance

Examples

data(iris)
iris.rf <- randomForest(Species ~ ., iris, ntree=50, norm.votes=FALSE)
iris.rf <- grow(iris.rf, 50)
print(iris.rf)

importance Extract variable importance measure

Description

This is the extractor function for variable importance measures as produced by randomForest.

Usage

S3 method for class 'randomForest'
importance(x, type=NULL, class=NULL, scale=TRUE, ...)

Arguments

x an object of class randomForest.

type either 1 or 2, specifying the type of importance measure (1=mean decrease in
accuracy, 2=mean decrease in node impurity).

class for classification problem, which class-specific measure to return.

scale For permutation based measures, should the measures be divided their “standard
errors”?

... not used.

Details

Here are the definitions of the variable importance measures. The first measure is computed from
permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is
recorded (error rate for classification, MSE for regression). Then the same is done after permuting
each predictor variable. The difference between the two are then averaged over all trees, and nor-
malized by the standard deviation of the differences. If the standard deviation of the differences is
equal to 0 for a variable, the division is not done (but the average is almost always equal to 0 in that
case).

The second measure is the total decrease in node impurities from splitting on the variable, averaged
over all trees. For classification, the node impurity is measured by the Gini index. For regression, it
is measured by residual sum of squares.

Value

A matrix of importance measure, one row for each predictor variable. The column(s) are different
importance measures.

imports85 7

See Also

randomForest, varImpPlot

Examples

set.seed(4543)
data(mtcars)
mtcars.rf <- randomForest(mpg ~ ., data=mtcars, ntree=1000,

keep.forest=FALSE, importance=TRUE)
importance(mtcars.rf)
importance(mtcars.rf, type=1)

imports85 The Automobile Data

Description

This is the ‘Automobile’ data from the UCI Machine Learning Repository.

Usage

data(imports85)

Format

imports85 is a data frame with 205 cases (rows) and 26 variables (columns). This data set consists
of three types of entities: (a) the specification of an auto in terms of various characteristics, (b)
its assigned insurance risk rating, (c) its normalized losses in use as compared to other cars. The
second rating corresponds to the degree to which the auto is more risky than its price indicates.
Cars are initially assigned a risk factor symbol associated with its price. Then, if it is more risky
(or less), this symbol is adjusted by moving it up (or down) the scale. Actuarians call this process
‘symboling’. A value of +3 indicates that the auto is risky, -3 that it is probably pretty safe.

The third factor is the relative average loss payment per insured vehicle year. This value is normal-
ized for all autos within a particular size classification (two-door small, station wagons, sports/speciality,
etc...), and represents the average loss per car per year.

Author(s)

Andy Liaw

Source

Originally created by Jeffrey C. Schlimmer, from 1985 Model Import Car and Truck Specifica-
tions, 1985 Ward’s Automotive Yearbook, Personal Auto Manuals, Insurance Services Office, and
Insurance Collision Report, Insurance Institute for Highway Safety.

The original data is at http://www.ics.uci.edu/~mlearn/MLSummary.html.

http://www.ics.uci.edu/~mlearn/MLSummary.html

8 margin

References

1985 Model Import Car and Truck Specifications, 1985 Ward’s Automotive Yearbook.

Personal Auto Manuals, Insurance Services Office, 160 Water Street, New York, NY 10038

Insurance Collision Report, Insurance Institute for Highway Safety, Watergate 600, Washington,
DC 20037

See Also

randomForest

Examples

data(imports85)
imp85 <- imports85[,-2] # Too many NAs in normalizedLosses.
imp85 <- imp85[complete.cases(imp85),]
Drop empty levels for factors.
imp85[] <- lapply(imp85, function(x) if (is.factor(x)) x[, drop=TRUE] else x)

stopifnot(require(randomForest))
price.rf <- randomForest(price ~ ., imp85, do.trace=10, ntree=100)
print(price.rf)
numDoors.rf <- randomForest(numOfDoors ~ ., imp85, do.trace=10, ntree=100)
print(numDoors.rf)

margin Margins of randomForest Classifier

Description

Compute or plot the margin of predictions from a randomForest classifier.

Usage

S3 method for class 'randomForest'
margin(x, ...)
Default S3 method:
margin(x, observed, ...)
S3 method for class 'margin'
plot(x, sort=TRUE, ...)

Arguments

x an object of class randomForest, whose type is not regression, or a matrix of
predicted probabilities, one column per class and one row per observation. For
the plot method, x should be an object returned by margin.

observed the true response corresponding to the data in x.
sort Should the data be sorted by their class labels?
... other graphical parameters to be passed to plot.default.

MDSplot 9

Value

For margin, the margin of observations from the randomForest classifier (or whatever classifier
that produced the predicted probability matrix given to margin). The margin of a data point is
defined as the proportion of votes for the correct class minus maximum proportion of votes for the
other classes. Thus under majority votes, positive margin means correct classification, and vice
versa.

Author(s)

Robert Gentlemen, with slight modifications by Andy Liaw

See Also

randomForest

Examples

set.seed(1)
data(iris)
iris.rf <- randomForest(Species ~ ., iris, keep.forest=FALSE)
plot(margin(iris.rf))

MDSplot Multi-dimensional Scaling Plot of Proximity matrix from randomFor-
est

Description

Plot the scaling coordinates of the proximity matrix from randomForest.

Usage

MDSplot(rf, fac, k=2, palette=NULL, pch=20, ...)

Arguments

rf an object of class randomForest that contains the proximity component.

fac a factor that was used as response to train rf.

k number of dimensions for the scaling coordinates.

palette colors to use to distinguish the classes; length must be the equal to the number
of levels.

pch plotting symbols to use.

... other graphical parameters.

Value

The output of cmdscale on 1 - rf$proximity is returned invisibly.

10 na.roughfix

Note

If k > 2, pairs is used to produce the scatterplot matrix of the coordinates.

Author(s)

Robert Gentleman, with slight modifications by Andy Liaw

See Also

randomForest

Examples

set.seed(1)
data(iris)
iris.rf <- randomForest(Species ~ ., iris, proximity=TRUE,

keep.forest=FALSE)
MDSplot(iris.rf, iris$Species)
Using different symbols for the classes:
MDSplot(iris.rf, iris$Species, palette=rep(1, 3), pch=as.numeric(iris$Species))

na.roughfix Rough Imputation of Missing Values

Description

Impute Missing Values by median/mode.

Usage

na.roughfix(object, ...)

Arguments

object a data frame or numeric matrix.

... further arguments special methods could require.

Value

A completed data matrix or data frame. For numeric variables, NAs are replaced with column medi-
ans. For factor variables, NAs are replaced with the most frequent levels (breaking ties at random).
If object contains no NAs, it is returned unaltered.

Note

This is used as a starting point for imputing missing values by random forest.

outlier 11

Author(s)

Andy Liaw

See Also

rfImpute, randomForest.

Examples

data(iris)
iris.na <- iris
set.seed(111)
artificially drop some data values.
for (i in 1:4) iris.na[sample(150, sample(20)), i] <- NA
iris.roughfix <- na.roughfix(iris.na)
iris.narf <- randomForest(Species ~ ., iris.na, na.action=na.roughfix)
print(iris.narf)

outlier Compute outlying measures

Description

Compute outlying measures based on a proximity matrix.

Usage

Default S3 method:
outlier(x, cls=NULL, ...)
S3 method for class 'randomForest'
outlier(x, ...)

Arguments

x a proximity matrix (a square matrix with 1 on the diagonal and values between 0
and 1 in the off-diagonal positions); or an object of class randomForest, whose
type is not regression.

cls the classes the rows in the proximity matrix belong to. If not given, all data are
assumed to come from the same class.

... arguments for other methods.

Value

A numeric vector containing the outlying measures. The outlying measure of a case is computed as
n / sum(squared proximity), normalized by subtracting the median and divided by the MAD, within
each class.

12 partialPlot

See Also

randomForest

Examples

set.seed(1)
iris.rf <- randomForest(iris[,-5], iris[,5], proximity=TRUE)
plot(outlier(iris.rf), type="h",

col=c("red", "green", "blue")[as.numeric(iris$Species)])

partialPlot Partial dependence plot

Description

Partial dependence plot gives a graphical depiction of the marginal effect of a variable on the class
probability (classification) or response (regression).

Usage

S3 method for class 'randomForest'
partialPlot(x, pred.data, x.var, which.class,

w, plot = TRUE, add = FALSE,
n.pt = min(length(unique(pred.data[, xname])), 51),
rug = TRUE, xlab=deparse(substitute(x.var)), ylab="",
main=paste("Partial Dependence on", deparse(substitute(x.var))),
...)

Arguments

x an object of class randomForest, which contains a forest component.
pred.data a data frame used for contructing the plot, usually the training data used to con-

truct the random forest.
x.var name of the variable for which partial dependence is to be examined.
which.class For classification data, the class to focus on (default the first class).
w weights to be used in averaging; if not supplied, mean is not weighted
plot whether the plot should be shown on the graphic device.
add whether to add to existing plot (TRUE).
n.pt if x.var is continuous, the number of points on the grid for evaluating partial

dependence.
rug whether to draw hash marks at the bottom of the plot indicating the deciles of

x.var.
xlab label for the x-axis.
ylab label for the y-axis.
main main title for the plot.
... other graphical parameters to be passed on to plot or lines.

partialPlot 13

Details

The function being plotted is defined as:

f̃(x) =
1

n

n∑
i=1

f(x, xiC),

where x is the variable for which partial dependence is sought, and xiC is the other variables in
the data. The summand is the predicted regression function for regression, and logits (i.e., log of
fraction of votes) for which.class for classification:

f(x) = log pk(x)−
1

K

K∑
j=1

log pj(x),

where K is the number of classes, k is which.class, and pj is the proportion of votes for class j.

Value

A list with two components: x and y, which are the values used in the plot.

Note

The randomForest object must contain the forest component; i.e., created with randomForest(..., keep.forest=TRUE).

This function runs quite slow for large data sets.

Author(s)

Andy Liaw <andy_liaw@merck.com>

References

Friedman, J. (2001). Greedy function approximation: the gradient boosting machine, Ann. of Stat.

See Also

randomForest

Examples

data(iris)
set.seed(543)
iris.rf <- randomForest(Species~., iris)
partialPlot(iris.rf, iris, Petal.Width, "versicolor")

Looping over variables ranked by importance:
data(airquality)
airquality <- na.omit(airquality)
set.seed(131)
ozone.rf <- randomForest(Ozone ~ ., airquality, importance=TRUE)
imp <- importance(ozone.rf)
impvar <- rownames(imp)[order(imp[, 1], decreasing=TRUE)]

14 plot.randomForest

op <- par(mfrow=c(2, 3))
for (i in seq_along(impvar)) {

partialPlot(ozone.rf, airquality, impvar[i], xlab=impvar[i],
main=paste("Partial Dependence on", impvar[i]),
ylim=c(30, 70))

}
par(op)

plot.randomForest Plot method for randomForest objects

Description

Plot the error rates or MSE of a randomForest object

Usage

S3 method for class 'randomForest'
plot(x, type="l", main=deparse(substitute(x)), ...)

Arguments

x an object of class randomForest.

type type of plot.

main main title of the plot.

... other graphical parameters.

Value

Invisibly, the error rates or MSE of the randomForest object. If the object has a non-null test
component, then the returned object is a matrix where the first column is the out-of-bag estimate of
error, and the second column is for the test set.

Note

This function does not work for randomForest objects that have type=unsupervised.

If the x has a non-null test component, then the test set errors are also plotted.

Author(s)

Andy Liaw

See Also

randomForest

predict.randomForest 15

Examples

data(mtcars)
plot(randomForest(mpg ~ ., mtcars, keep.forest=FALSE, ntree=100), log="y")

predict.randomForest predict method for random forest objects

Description

Prediction of test data using random forest.

Usage

S3 method for class 'randomForest'
predict(object, newdata, type="response",
norm.votes=TRUE, predict.all=FALSE, proximity=FALSE, nodes=FALSE,
cutoff, ...)

Arguments

object an object of class randomForest, as that created by the function randomForest.

newdata a data frame or matrix containing new data. (Note: If not given, the out-of-bag
prediction in object is returned.

type one of response, prob. or votes, indicating the type of output: predicted val-
ues, matrix of class probabilities, or matrix of vote counts. class is allowed,
but automatically converted to "response", for backward compatibility.

norm.votes Should the vote counts be normalized (i.e., expressed as fractions)? Ignored if
object$type is regression.

predict.all Should the predictions of all trees be kept?

proximity Should proximity measures be computed? An error is issued if object$type is
regression.

nodes Should the terminal node indicators (an n by ntree matrix) be return? If so, it is
in the “nodes” attribute of the returned object.

cutoff (Classification only) A vector of length equal to number of classes. The ‘win-
ning’ class for an observation is the one with the maximum ratio of proportion of
votes to cutoff. Default is taken from the forest$cutoff component of object
(i.e., the setting used when running randomForest).

... not used currently.

16 predict.randomForest

Value

If object$type is regression, a vector of predicted values is returned. If predict.all=TRUE,
then the returned object is a list of two components: aggregate, which is the vector of predicted
values by the forest, and individual, which is a matrix where each column contains prediction by
a tree in the forest.

If object$type is classification, the object returned depends on the argument type:

response predicted classes (the classes with majority vote).

prob matrix of class probabilities (one column for each class and one row for each
input).

vote matrix of vote counts (one column for each class and one row for each new
input); either in raw counts or in fractions (if norm.votes=TRUE).

If predict.all=TRUE, then the individual component of the returned object is a character matrix
where each column contains the predicted class by a tree in the forest.

If proximity=TRUE, the returned object is a list with two components: pred is the prediction (as
described above) and proximity is the proximitry matrix. An error is issued if object$type is
regression.

If nodes=TRUE, the returned object has a “nodes” attribute, which is an n by ntree matrix, each
column containing the node number that the cases fall in for that tree.

NOTE: If the object inherits from randomForest.formula, then any data with NA are silently
omitted from the prediction. The returned value will contain NA correspondingly in the aggregated
and individual tree predictions (if requested), but not in the proximity or node matrices.

NOTE2: Any ties are broken at random, so if this is undesirable, avoid it by using odd number
ntree in randomForest().

Author(s)

Andy Liaw <andy_liaw@merck.com> and Matthew Wiener <matthew_wiener@merck.com>,
based on original Fortran code by Leo Breiman and Adele Cutler.

References

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

randomForest

Examples

data(iris)
set.seed(111)
ind <- sample(2, nrow(iris), replace = TRUE, prob=c(0.8, 0.2))
iris.rf <- randomForest(Species ~ ., data=iris[ind == 1,])
iris.pred <- predict(iris.rf, iris[ind == 2,])
table(observed = iris[ind==2, "Species"], predicted = iris.pred)
Get prediction for all trees.

randomForest 17

predict(iris.rf, iris[ind == 2,], predict.all=TRUE)
Proximities.
predict(iris.rf, iris[ind == 2,], proximity=TRUE)
Nodes matrix.
str(attr(predict(iris.rf, iris[ind == 2,], nodes=TRUE), "nodes"))

randomForest Classification and Regression with Random Forest

Description

randomForest implements Breiman’s random forest algorithm (based on Breiman and Cutler’s
original Fortran code) for classification and regression. It can also be used in unsupervised mode
for assessing proximities among data points.

Usage

S3 method for class 'formula'
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes = NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

S3 method for class 'randomForest'
print(x, ...)

Arguments

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which randomForest is called from.

subset an index vector indicating which rows should be used. (NOTE: If given, this
argument must be named.)

na.action A function to specify the action to be taken if NAs are found. (NOTE: If given,
this argument must be named.)

x, formula a data frame or a matrix of predictors, or a formula describing the model to be
fitted (for the print method, an randomForest object).

y A response vector. If a factor, classification is assumed, otherwise regression is
assumed. If omitted, randomForest will run in unsupervised mode.

18 randomForest

xtest a data frame or matrix (like x) containing predictors for the test set.

ytest response for the test set.

ntree Number of trees to grow. This should not be set to too small a number, to ensure
that every input row gets predicted at least a few times.

mtry Number of variables randomly sampled as candidates at each split. Note that
the default values are different for classification (sqrt(p) where p is number of
variables in x) and regression (p/3)

replace Should sampling of cases be done with or without replacement?

classwt Priors of the classes. Need not add up to one. Ignored for regression.

cutoff (Classification only) A vector of length equal to number of classes. The ‘win-
ning’ class for an observation is the one with the maximum ratio of proportion
of votes to cutoff. Default is 1/k where k is the number of classes (i.e., majority
vote wins).

strata A (factor) variable that is used for stratified sampling.

sampsize Size(s) of sample to draw. For classification, if sampsize is a vector of the length
the number of strata, then sampling is stratified by strata, and the elements of
sampsize indicate the numbers to be drawn from the strata.

nodesize Minimum size of terminal nodes. Setting this number larger causes smaller trees
to be grown (and thus take less time). Note that the default values are different
for classification (1) and regression (5).

maxnodes Maximum number of terminal nodes trees in the forest can have. If not given,
trees are grown to the maximum possible (subject to limits by nodesize). If set
larger than maximum possible, a warning is issued.

importance Should importance of predictors be assessed?

localImp Should casewise importance measure be computed? (Setting this to TRUE will
override importance.)

nPerm Number of times the OOB data are permuted per tree for assessing variable
importance. Number larger than 1 gives slightly more stable estimate, but not
very effective. Currently only implemented for regression.

proximity Should proximity measure among the rows be calculated?

oob.prox Should proximity be calculated only on “out-of-bag” data?

norm.votes If TRUE (default), the final result of votes are expressed as fractions. If FALSE,
raw vote counts are returned (useful for combining results from different runs).
Ignored for regression.

do.trace If set to TRUE, give a more verbose output as randomForest is run. If set to
some integer, then running output is printed for every do.trace trees.

keep.forest If set to FALSE, the forest will not be retained in the output object. If xtest is
given, defaults to FALSE.

corr.bias perform bias correction for regression? Note: Experimental. Use at your own
risk.

keep.inbag Should an n by ntree matrix be returned that keeps track of which samples are
“in-bag” in which trees (but not how many times, if sampling with replacement)

... optional parameters to be passed to the low level function randomForest.default.

randomForest 19

Value

An object of class randomForest, which is a list with the following components:

call the original call to randomForest

type one of regression, classification, or unsupervised.

predicted the predicted values of the input data based on out-of-bag samples.

importance a matrix with nclass + 2 (for classification) or two (for regression) columns.
For classification, the first nclass columns are the class-specific measures com-
puted as mean descrease in accuracy. The nclass + 1st column is the mean
descrease in accuracy over all classes. The last column is the mean decrease
in Gini index. For Regression, the first column is the mean decrease in accu-
racy and the second the mean decrease in MSE. If importance=FALSE, the last
measure is still returned as a vector.

importanceSD The “standard errors” of the permutation-based importance measure. For classi-
fication, a p by nclass + 1 matrix corresponding to the first nclass + 1
columns of the importance matrix. For regression, a length p vector.

localImp a p by n matrix containing the casewise importance measures, the [i,j] ele-
ment of which is the importance of i-th variable on the j-th case. NULL if
localImp=FALSE.

ntree number of trees grown.

mtry number of predictors sampled for spliting at each node.

forest (a list that contains the entire forest; NULL if randomForest is run in unsuper-
vised mode or if keep.forest=FALSE.

err.rate (classification only) vector error rates of the prediction on the input data, the i-th
element being the (OOB) error rate for all trees up to the i-th.

confusion (classification only) the confusion matrix of the prediction (based on OOB data).

votes (classification only) a matrix with one row for each input data point and one
column for each class, giving the fraction or number of (OOB) ‘votes’ from the
random forest.

oob.times number of times cases are ‘out-of-bag’ (and thus used in computing OOB error
estimate)

proximity if proximity=TRUE when randomForest is called, a matrix of proximity mea-
sures among the input (based on the frequency that pairs of data points are in the
same terminal nodes).

mse (regression only) vector of mean square errors: sum of squared residuals divided
by n.

rsq (regression only) “pseudo R-squared”: 1 - mse / Var(y).

test if test set is given (through the xtest or additionally ytest arguments), this
component is a list which contains the corresponding predicted, err.rate,
confusion, votes (for classification) or predicted, mse and rsq (for regres-
sion) for the test set. If proximity=TRUE, there is also a component, proximity,
which contains the proximity among the test set as well as proximity between
test and training data.

20 randomForest

Note

The forest structure is slightly different between classification and regression. For details on how
the trees are stored, see the help page for getTree.

If xtest is given, prediction of the test set is done “in place” as the trees are grown. If ytest is also
given, and do.trace is set to some positive integer, then for every do.trace trees, the test set error
is printed. Results for the test set is returned in the test component of the resulting randomForest
object. For classification, the votes component (for training or test set data) contain the votes the
cases received for the classes. If norm.votes=TRUE, the fraction is given, which can be taken as
predicted probabilities for the classes.

For large data sets, especially those with large number of variables, calling randomForest via the
formula interface is not advised: There may be too much overhead in handling the formula.

The “local” (or casewise) variable importance is computed as follows: For classification, it is the
increase in percent of times a case is OOB and misclassified when the variable is permuted. For
regression, it is the average increase in squared OOB residuals when the variable is permuted.

Author(s)

Andy Liaw <andy_liaw@merck.com> and Matthew Wiener <matthew_wiener@merck.com>,
based on original Fortran code by Leo Breiman and Adele Cutler.

References

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

Breiman, L (2002), “Manual On Setting Up, Using, And Understanding Random Forests V3.1”,
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf.

See Also

predict.randomForest, varImpPlot

Examples

Classification:
##data(iris)
set.seed(71)
iris.rf <- randomForest(Species ~ ., data=iris, importance=TRUE,

proximity=TRUE)
print(iris.rf)
Look at variable importance:
round(importance(iris.rf), 2)
Do MDS on 1 - proximity:
iris.mds <- cmdscale(1 - iris.rf$proximity, eig=TRUE)
op <- par(pty="s")
pairs(cbind(iris[,1:4], iris.mds$points), cex=0.6, gap=0,

col=c("red", "green", "blue")[as.numeric(iris$Species)],
main="Iris Data: Predictors and MDS of Proximity Based on RandomForest")

par(op)
print(iris.mds$GOF)

https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf

rfcv 21

The `unsupervised' case:
set.seed(17)
iris.urf <- randomForest(iris[, -5])
MDSplot(iris.urf, iris$Species)

stratified sampling: draw 20, 30, and 20 of the species to grow each tree.
(iris.rf2 <- randomForest(iris[1:4], iris$Species,

sampsize=c(20, 30, 20)))

Regression:
data(airquality)
set.seed(131)
ozone.rf <- randomForest(Ozone ~ ., data=airquality, mtry=3,

importance=TRUE, na.action=na.omit)
print(ozone.rf)
Show "importance" of variables: higher value mean more important:
round(importance(ozone.rf), 2)

"x" can be a matrix instead of a data frame:
set.seed(17)
x <- matrix(runif(5e2), 100)
y <- gl(2, 50)
(myrf <- randomForest(x, y))
(predict(myrf, x))

"complicated" formula:
(swiss.rf <- randomForest(sqrt(Fertility) ~ . - Catholic + I(Catholic < 50),

data=swiss))
(predict(swiss.rf, swiss))
Test use of 32-level factor as a predictor:
set.seed(1)
x <- data.frame(x1=gl(53, 10), x2=runif(530), y=rnorm(530))
(rf1 <- randomForest(x[-3], x[[3]], ntree=10))

Grow no more than 4 nodes per tree:
(treesize(randomForest(Species ~ ., data=iris, maxnodes=4, ntree=30)))

test proximity in regression
iris.rrf <- randomForest(iris[-1], iris[[1]], ntree=101, proximity=TRUE, oob.prox=FALSE)
str(iris.rrf$proximity)

rfcv Random Forest Cross-Valdidation for feature selection

Description

This function shows the cross-validated prediction performance of models with sequentially re-
duced number of predictors (ranked by variable importance) via a nested cross-validation proce-
dure.

22 rfcv

Usage

rfcv(trainx, trainy, cv.fold=5, scale="log", step=0.5,
mtry=function(p) max(1, floor(sqrt(p))), recursive=FALSE, ...)

Arguments

trainx matrix or data frame containing columns of predictor variables

trainy vector of response, must have length equal to the number of rows in trainx

cv.fold number of folds in the cross-validation

scale if "log", reduce a fixed proportion (step) of variables at each step, otherwise
reduce step variables at a time

step if log=TRUE, the fraction of variables to remove at each step, else remove this
many variables at a time

mtry a function of number of remaining predictor variables to use as the mtry param-
eter in the randomForest call

recursive whether variable importance is (re-)assessed at each step of variable reduction

... other arguments passed on to randomForest

Value

A list with the following components:

list(n.var=n.var, error.cv=error.cv, predicted=cv.pred)

n.var vector of number of variables used at each step

error.cv corresponding vector of error rates or MSEs at each step

predicted list of n.var components, each containing the predicted values from the cross-
validation

Author(s)

Andy Liaw

References

Svetnik, V., Liaw, A., Tong, C. and Wang, T., “Application of Breiman’s Random Forest to Mod-
eling Structure-Activity Relationships of Pharmaceutical Molecules”, MCS 2004, Roli, F. and
Windeatt, T. (Eds.) pp. 334-343.

See Also

randomForest, importance

rfImpute 23

Examples

set.seed(647)
myiris <- cbind(iris[1:4], matrix(runif(96 * nrow(iris)), nrow(iris), 96))
result <- rfcv(myiris, iris$Species, cv.fold=3)
with(result, plot(n.var, error.cv, log="x", type="o", lwd=2))

The following can take a while to run, so if you really want to try
it, copy and paste the code into R.

Not run:
result <- replicate(5, rfcv(myiris, iris$Species), simplify=FALSE)
error.cv <- sapply(result, "[[", "error.cv")
matplot(result[[1]]$n.var, cbind(rowMeans(error.cv), error.cv), type="l",

lwd=c(2, rep(1, ncol(error.cv))), col=1, lty=1, log="x",
xlab="Number of variables", ylab="CV Error")

End(Not run)

rfImpute Missing Value Imputations by randomForest

Description

Impute missing values in predictor data using proximity from randomForest.

Usage

Default S3 method:
rfImpute(x, y, iter=5, ntree=300, ...)
S3 method for class 'formula'
rfImpute(x, data, ..., subset)

Arguments

x A data frame or matrix of predictors, some containing NAs, or a formula.

y Response vector (NA’s not allowed).

data A data frame containing the predictors and response.

iter Number of iterations to run the imputation.

ntree Number of trees to grow in each iteration of randomForest.

... Other arguments to be passed to randomForest.

subset A logical vector indicating which observations to use.

24 rfImpute

Details

The algorithm starts by imputing NAs using na.roughfix. Then randomForest is called with the
completed data. The proximity matrix from the randomForest is used to update the imputation of
the NAs. For continuous predictors, the imputed value is the weighted average of the non-missing
obervations, where the weights are the proximities. For categorical predictors, the imputed value is
the category with the largest average proximity. This process is iterated iter times.

Note: Imputation has not (yet) been implemented for the unsupervised case. Also, Breiman (2003)
notes that the OOB estimate of error from randomForest tend to be optimistic when run on the data
matrix with imputed values.

Value

A data frame or matrix containing the completed data matrix, where NAs are imputed using proxim-
ity from randomForest. The first column contains the response.

Author(s)

Andy Liaw

References

Leo Breiman (2003). Manual for Setting Up, Using, and Understanding Random Forest V4.0.
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf

See Also

na.roughfix.

Examples

data(iris)
iris.na <- iris
set.seed(111)
artificially drop some data values.
for (i in 1:4) iris.na[sample(150, sample(20)), i] <- NA
set.seed(222)
iris.imputed <- rfImpute(Species ~ ., iris.na)
set.seed(333)
iris.rf <- randomForest(Species ~ ., iris.imputed)
print(iris.rf)

https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf

rfNews 25

rfNews Show the NEWS file

Description

Show the NEWS file of the randomForest package.

Usage

rfNews()

Value

None.

treesize Size of trees in an ensemble

Description

Size of trees (number of nodes) in and ensemble.

Usage

treesize(x, terminal=TRUE)

Arguments

x an object of class randomForest, which contains a forest component.

terminal count terminal nodes only (TRUE) or all nodes (FALSE

Value

A vector containing number of nodes for the trees in the randomForest object.

Note

The randomForest object must contain the forest component; i.e., created with randomForest(..., keep.forest=TRUE).

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

randomForest

26 tuneRF

Examples

data(iris)
iris.rf <- randomForest(Species ~ ., iris)
hist(treesize(iris.rf))

tuneRF Tune randomForest for the optimal mtry parameter

Description

Starting with the default value of mtry, search for the optimal value (with respect to Out-of-Bag
error estimate) of mtry for randomForest.

Usage

tuneRF(x, y, mtryStart, ntreeTry=50, stepFactor=2, improve=0.05,
trace=TRUE, plot=TRUE, doBest=FALSE, ...)

Arguments

x matrix or data frame of predictor variables
y response vector (factor for classification, numeric for regression)
mtryStart starting value of mtry; default is the same as in randomForest

ntreeTry number of trees used at the tuning step
stepFactor at each iteration, mtry is inflated (or deflated) by this value
improve the (relative) improvement in OOB error must be by this much for the search to

continue
trace whether to print the progress of the search
plot whether to plot the OOB error as function of mtry
doBest whether to run a forest using the optimal mtry found
... options to be given to randomForest

Value

If doBest=FALSE (default), it returns a matrix whose first column contains the mtry values searched,
and the second column the corresponding OOB error.

If doBest=TRUE, it returns the randomForest object produced with the optimal mtry.

See Also

randomForest

Examples

data(fgl, package="MASS")
fgl.res <- tuneRF(fgl[,-10], fgl[,10], stepFactor=1.5)

varImpPlot 27

varImpPlot Variable Importance Plot

Description

Dotchart of variable importance as measured by a Random Forest

Usage

varImpPlot(x, sort=TRUE, n.var=min(30, nrow(x$importance)),
type=NULL, class=NULL, scale=TRUE,
main=deparse(substitute(x)), ...)

Arguments

x An object of class randomForest.

sort Should the variables be sorted in decreasing order of importance?

n.var How many variables to show? (Ignored if sort=FALSE.)
type, class, scale

arguments to be passed on to importance

main plot title.

... Other graphical parameters to be passed on to dotchart.

Value

Invisibly, the importance of the variables that were plotted.

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

randomForest, importance

Examples

set.seed(4543)
data(mtcars)
mtcars.rf <- randomForest(mpg ~ ., data=mtcars, ntree=1000, keep.forest=FALSE,

importance=TRUE)
varImpPlot(mtcars.rf)

28 varUsed

varUsed Variables used in a random forest

Description

Find out which predictor variables are actually used in the random forest.

Usage

varUsed(x, by.tree=FALSE, count=TRUE)

Arguments

x An object of class randomForest.

by.tree Should the list of variables used be broken down by trees in the forest?

count Should the frequencies that variables appear in trees be returned?

Value

If count=TRUE and by.tree=FALSE, a integer vector containing frequencies that variables are used
in the forest. If by.tree=TRUE, a matrix is returned, breaking down the counts by tree (each column
corresponding to one tree and each row to a variable).

If count=FALSE and by.tree=TRUE, a list of integer indices is returned giving the variables used in
the trees, else if by.tree=FALSE, a vector of integer indices giving the variables used in the entire
forest.

Author(s)

Andy Liaw

See Also

randomForest

Examples

data(iris)
set.seed(17)
varUsed(randomForest(Species~., iris, ntree=100))

Index

∗Topic NA
na.roughfix, 10

∗Topic classif
classCenter, 2
combine, 3
grow, 5
importance, 6
margin, 8
MDSplot, 9
outlier, 11
partialPlot, 12
plot.randomForest, 14
predict.randomForest, 15
randomForest, 17
rfcv, 21
rfImpute, 23
rfNews, 25
treesize, 25
tuneRF, 26
varImpPlot, 27

∗Topic datasets
imports85, 7

∗Topic regression
combine, 3
grow, 5
importance, 6
partialPlot, 12
plot.randomForest, 14
predict.randomForest, 15
randomForest, 17
rfcv, 21
rfImpute, 23
treesize, 25
varImpPlot, 27

∗Topic tree
getTree, 4
importance, 6
MDSplot, 9
partialPlot, 12

plot.randomForest, 14
randomForest, 17
rfImpute, 23
tuneRF, 26
varImpPlot, 27
varUsed, 28

classCenter, 2
cmdscale, 9
combine, 3, 5

dotchart, 27

getTree, 4, 20
grow, 3, 5

importance, 6, 22, 27
imports85, 7

margin, 8
MDSplot, 3, 9

na.roughfix, 10, 24

outlier, 11

pairs, 10
partialPlot, 12
plot.margin (margin), 8
plot.randomForest, 14
predict.randomForest, 15, 20
print.randomForest (randomForest), 17

randomForest, 3–16, 17, 22–28
rfcv, 21
rfImpute, 11, 23
rfNews, 25

treesize, 25
tuneRF, 26

varImpPlot, 7, 20, 27
varUsed, 28

29

	classCenter
	combine
	getTree
	grow
	importance
	imports85
	margin
	MDSplot
	na.roughfix
	outlier
	partialPlot
	plot.randomForest
	predict.randomForest
	randomForest
	rfcv
	rfImpute
	rfNews
	treesize
	tuneRF
	varImpPlot
	varUsed
	Index

