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Abstract

Classification trees are a popular tool in applied statistics because their heuristic
search approach based on impurity reduction is easy to understand and the inter-
pretation of the output is straightforward. However, all standard algorithms suffer
from a major problem: variable selection based on standard impurity measures as
the Gini Index is biased. The bias is such that, e.g., splitting variables with a high
amount of missing values – even if missing completely at random – are artificially
preferred. A new split selection criterion that avoids variable selection bias is in-
troduced. The exact distribution of the maximally selected Gini gain is derived by
means of a combinatorial approach and the resulting p-value is suggested as an
unbiased split selection criterion in recursive partitioning algorithms. The efficiency
of the method is demonstrated in simulation studies and a real data study from
veterinary gynecology in the context of binary classification and continuous pre-
dictor variables with different numbers of missing values. The proposed method is
extendible to categorical and ordinal predictor variables and to other split selection
criteria such as the cross-entropy.
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1 Introduction

In many scientific fields recursive partitioning approaches like classification
and regression trees (Breiman, Friedman, Olshen, and Stone, 1984; Bitten-
court and Clarke, 2004, for an application in agricultural image recognition)
and tree-based methods like emerging patterns (Dong and Li, 1999; Boulesteix
and Tutz, 2006, for an application in microarray analysis) and random forests
(Breiman, 2001; Jong et al., 2005, for an application in bioengineering) have
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become a popular tool for selecting relevant predictor variables even from large
sets of candidates. In such applications, when trees and tree-based methods
are used not only for prediction but also to (pre-)select relevant variables and
thereby reduce the dimensionality of the sample space, it is particularly impor-
tant that the variable selection is reliable and unbiased (cf. Strobl, Boulesteix,
Zeileis, and Hothorn, 2007).

The traditional recursive partitioning approaches CART by Breiman et al.
(1984) and C4.5 by Quinlan (1993) use empirical impurity reduction mea-
sures, such as the Gini gain derived from the Gini Index or the Information
gain, as split selection criteria: the cutpoint and splitting variable that produce
the highest impurity reduction are chosen for the next split. The intuitive ap-
proach of impurity reduction added to the popularity of recursive partitioning
algorithms, and entropy based measures are still the default splitting criteria
in most implementations of classification trees.

However, Breiman et al. (1984) already note that “variable selection is biased
in favor of those variables having more values and thus offering more splits”
(p.42) when the Gini gain is used as splitting criterion. For example, if the
predictor variables are categorical variables of ordinal or nominal scale, vari-
able selection is biased in favor of variables with a higher number of categories,
which is a general problem not limited to the Gini gain (cf. Strobl, 2005). In
addition, variable selection bias can also occur if the splitting variables vary
in their number of missing values, even if the values are missing completely at
random.

This is particularly remarkable since, in general, values missing completely at
random (MCAR) can be discarded without producing a systematic bias in
sample estimates (Little and Rubin, 1986, 2002). However, in the approach
of classification trees even values missing completely at random can strongly
affect the outcome and the evaluation of the variable importance. Again, this
problem is not limited to the Gini gain criterion and affects both binary and
multiway splitting recursive partitioning.

Possible strategies to deal with values missing completely at random (MCAR)
include: (i) “Listwise” or “casewise deletion”, where all observations or cases
with the value of at least one variable missing are deleted. This strategy can
result in a severe reduction of the sample size, if the missing values are spread
over many observations and variables. (ii) “Pairwise deletion” or “available
case” strategy, where only for the variables considered at each step of the
analysis, e.g. for the two variables currently involved in a correlation, the ob-
servations with missing values in these variables are deleted for the current
analysis, but are reconsidered in later analysis of different non-missing vari-
ables. With this strategy different sets of observations might be involved in
different parts of the analysis or model building process. (iii) Various imputa-
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tion methods, like, e.g., the simple “mean imputation” where the mean value
in each variable is substituted to replace missing values. The naive “mean
imputation” approach artificially reduces the variation of values of a variable,
with the extent of the decrease depending on the number of missing values in
each variable, and thus may change the strength of correlations, while more
elaborate “multiple imputation” strategies overcome this problem.

The focus of this paper is to study from a theoretical point of view the variable
selection bias occurring with the widely used Gini gain when missing values are
treated in an available case strategy, as considered in the standard literature on
valiable selection bias (e.g., Kim and Loh, 2001), and to propose an unbiased
alternative splitting criterion based on the Gini gain for the case of continuous
predictors and a binary response. In section 2, we identify and examine three
components of variable selection bias, which are (i) estimation bias of the
empirical Gini Index, (ii) variance of the empirical Gini Index and (iii) multiple
comparison effects in cutpoint selection.

Section 3 presents our selection criterion that is based on the Gini gain and in-
spired by the theory of maximally selected statistics. Our criterion can be seen
as the p-value computed from the distribution of the maximally selected Gini
gain under the null hypothesis of no association between the response and the
considered predictor variable. Our combinatorial method to derive the exact
distribution of the maximally selected Gini gain under the null hypothesis is
described in detail in section 3. The presentation is limited to the case of a
binary response variable, which is the most common case in many applications
such as medical studies, and to continuous predictor variables with different
numbers of missing values. However, using the concepts of Boulesteix (2006a)
and Boulesteix (2006b), our approach could be generalized to unbiased split
selection from categorical and ordinal predictor variables with different num-
bers of categories, and to other entropy based measures.

Results from simulation studies documenting the performance of our split
selection criterion are displayed in section 4. The relevance of our approach is
illustrated by an application to veterinary data in section 5.

The rest of this section introduces the notation: Y denotes the binary response
variable which takes the values Y = 1 and Y = 2, and XT = (X1, . . . , Xq)
denotes the random vector of continuous predictors. We consider a sample
(yi,xi)i=1,...,N of N independent identically distributed observations of Y and
X. The variables X1, . . . , Xq may have different numbers of missing values
in the sample (yi,xi)i=1,...,N . For j = 1, . . . , q, let Nj denote the sample size
obtained if observations with a missing value in variable Xj are eliminated in
an available case or pairwise deletion strategy, where in each step of the recur-
sive partitioning algorithm only the current splitting variable Xj containing
missing values and the completely observed response variable are considered.

3



The following computations are implicitly conditional on these Nj available
observations, of which there are N1j observations with Y = 1 and N2j with
Y = 2.

Using machine learning terminology, Sj, j = 1, . . . , q, denotes the starting set
for variable Xj: Sj holds the Nj observations for which the predictor variable
Xj is not missing. (y(i)j, x(i)j)i=1,...,Nj

denote the observed values of Y and
Xj, where the sample is ordered with respect to the values of Xj (x(1)j ≤
· · · ≤ x(Nj)j). The subsets SLj(i) and SRj(i) are produced by splitting Sj at
a cutpoint between x(i)j and x(i+1)j, such that all observations with a value
of Xj ≤ x(i)j are assigned to SLj(i) and the remaining observations to SRj(i).
These notations as well as the corresponding subset sizes are summarized in
Table 1, where e.g. n2j(i) denotes the number of observations with Y = 2 in
the subset defined by Xj ≤ x(i)j, i.e. by splitting after the i-th observation
in the ordered sample. The function n2j(i) is thus defined as the number of
observations with Y = 2 among the first i observations of variable Xj,

n2j(i) =
i∑

k=1

I{2}(y(k)j), ∀i = 1, . . . , Nj. (1)

where I{2}(·) is the indicator function; n1j(i) is defined in an analogous way.

Table 1
Contingency table obtained by splitting the predictor vari-
able Xj at x(i)j .

SLj(i) SRj(i)

Xj ≤ xj(i) Xj > xj(i) Σ

Y = 1 n1j(i) N1j − n1j(i) N1j

Y = 2 n2j(i) N2j − n2j(i) N2j

Σ NLj = i NRj = Nj − i Nj

For any subsequent split, the new node can be considered as the starting node.
Thus, we are able to restrict the argumentation to the first root node for the
sake of simplicity.

The empirical Gini Index Ĝj of Sj, defined by (Breiman et al., 1984) for the
multi-class case, is a widely used impurity measure. For the considered variable
Xj and in the special case of a binary response Y reduces to

Ĝj = 2
N2j

Nj

(
1− N2j

Nj

)
. (2)

The corresponding empirical Gini Indices in the nodes produced by splitting
at the i-th cutpoint, ĜLj(i) and ĜRj(i), are defined analogously. The empirical
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Gini gain, i.e. the impurity reduction produced by splitting at the i-th cutpoint
of variable Xj, is based on the difference in impurity before and after splitting

∆̂Gj(i) = Ĝj −
(

NLj

Nj

ĜLj(i) +
NRj

Nj

ĜRj(i)

)
(3)

= Ĝj −
(

i

Nj

ĜLj(i) +
Nj − i

Nj

ĜRj(i)

)
.

Obviously, the ’best’ split according to the Gini gain criterion is the split with
the largest Gini gain, i.e. with the largest impurity reduction, and so the most
common approach for binary split and variable selection in classification trees
consists of the following successive steps:

(1) for each variable Xj determine the maximal Gini gain ∆̂G
max

j over all
possible cutpoints, which is defined as

∆̂G
max

j = max
i=1,...,Nj−1

∆̂Gj(i),

(2) select the variable Xj∗ with the largest maximal Gini gain:

j∗ = arg max
j=1,...,q

∆̂G
max

j .

Variable selection bias occurring when the Gini Index is used as a selection
criterion in this so called “greedy search” approach is studied in the next
section.

2 Variable selection bias

In this section, empirical evidence for variable selection bias with the Gini gain
criterion from the literature is briefly recalled. We then provide a comprehen-
sive statistical explanation for variable selection bias in different settings by
identifying three important sources of variable selection bias, namely estima-
tion bias and variance effect and a multiple comparisons effect.

2.1 Empirical evidence for variable selection bias

Several simulation studies have provided empirical evidence for variable selec-
tion bias in different recursive partitioning algorithms (cp., e.g., White and
Liu, 1994; Kononenko, 1995; Loh and Shih, 1997; Dobra and Gehrke, 2001).
We will consider one exemplary study that covers the main aspects of variable
selection bias:
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In their simulation study Kim and Loh (2001) vary both the number of cate-
gories in categorical predictor variables and the number of missing values in
continuous predictor variables in a binary splitting framework to compare the
variable selection performance of the Gini gain to that of other splitting cri-
teria. Their results show variable selection bias towards variables with many
categories and variables with many missing values. However, the authors do
not give a thorough statistical explanation for their findings.

In the next section, we address three important factors that can explain the
selection bias occurring with the Gini gain in the different experimental set-
tings.

2.2 Estimation effects

The first two sources of variable selection bias can be considered as estimation
effects: the classical Gini index used in machine learning can be considered as
an estimator of the true underlying entropy. The bias and the variance of this
estimator tend to induce selection bias.

2.2.1 Bias

From a statistical point of view the empirical Gini Index (Equation (2)) used
in machine learning can be rephrased as

Ĝj = 2p̂j(1− p̂j)

with p̂j denoting the relative class frequency N2j

Nj
of Y = 2.

The relative frequency p̂j is the maximum likelihood estimator, based on Nj

observations as indicated by the index j, of the true class probability p of
Y = 2.

The empirical Gini Index Ĝj here is understood as the plug-in estimator of a
true underlying Gini Index

G = 2p(1− p)

which is a function of the true class probability p.

Since the empirical Gini Index Ĝj is a strictly concave function of the max-
imum likelihood estimator p̂j, we expect from Jensen’s inequality that the
empirical Gini Index Ĝj underestimates the true Gini Index G. Infact, we find
for fixed Nj:
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E(Ĝj) = E

(
2
N2j

Nj

(
1− N2j

Nj

))
, where N2j ∼ B(Nj, p)

= 2p(1− p)− 2
1

Nj

p(1− p)

=
Nj − 1

Nj

G.

Thus, the empirical Gini Index Ĝj underestimates the true Gini Index G by

the factor Nj−1

Nj
, i.e. Ĝj is a negatively biased estimator:

Bias(Ĝj) = −G/Nj,

where the extent of the bias depends on the number of observations Nj that

the estimation is based on. The same principle applies to the Gini Indices ĜLj

and ĜRj obtained for the child nodes created by binary splitting.

We consider the null hypothesis that the considered predictor variable Xj is
uninformative, i.e. that the distribution of the response Y does not depend
on Xj. With respect to the child nodes created by binary splitting this null
hypothesis means that the true class probability in the left node defined by Xj,
denoted by pLj = P (Y = 2|Xj ≤ xj(i)), is equal to the true class probability
in the right node pRj = P (Y = 2|Xj > xj(i)) and thus equal to the overall
class probability p = P (Y = 2).

The expected value of the Gini gain ∆̂Gj (Equation (3)) for fixed NLj and
NRj is then

E(∆̂Gj) = E(Ĝj − NLj

Nj
ĜLj − NRj

Nj
ĜRj)

= G− G
Nj
− NLj

Nj
G +

NLj

Nj

G
NLj

− NRj

Nj
G +

NRj

Nj

G
NRj

= G
Nj

.

Under the null hypothesis of an uninformative predictor variable, the true
Gini gain ∆Gj equals 0. Thus, ∆̂Gj has a positive bias, that increases with
decreasing sample size Nj and is most pronounced for large values of the true
Gini Index G. When the predictor variables Xj, j = 1, . . . , q, have different
sample sizes Nj, this bias leads to a preference of variables with small Nj,
i.e. variables with many missing values. Thus the criterion shows a systematic
bias even if the values are missing completely at random (MCAR).

The result of the derivation of the expected value of the Gini gain corresponds
to that of Dobra and Gehrke (2001) adopted for binary splits. However, the
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authors do not elaborate the interpretation as an estimation bias induced by
the plug-in estimation based on a limited sample size, which we find crucial
for understanding the bias mechanism.

2.2.2 Variance

After some computations (see Appendix), the variance of Ĝj may be written
as

Var(Ĝj) = 4
G

Nj

(
1

2
−G

)
+ O

(
1

N2
j

)
.

The variance of the empirical Gini Index Ĝ again depends on the true Gini
Index G and increases when G moves away from its maximum value 1

2
or

from its minimum value zero and for small sample sizes. The variance of ∆̂Gj

also substantially increases with decreasing Nj (Dobra and Gehrke, 2001).
Therefore, if the predictor variables have different numbers of missing values,
∆̂G

max

j can take more extreme values for variables with many missing values.
This effect on the variance can again lead to a preference of variables with
many missing values.

In this section, we outlined two possible sources of selection bias affecting bi-
nary splitting with categorical or continuous predictor variables with different
numbers of missing values. It can be shown that similar mechanisms apply
in multiway splitting (Strobl, 2005). However, there is another mechanism re-
sponsible for variable selection bias: the effect of multiple comparisons, which
is relevant only if the number of nodes produced in each split is smaller than
the number of distinct observations or categories, as in binary splitting.

2.3 Multiple comparisons in cutpoint selection

The common problem of multiple comparisons refers to an increasing type I
error-rate in multiple testing situations: When multiple statistical tests are
conducted for the same data set, the chance to make a type I error for at least
one of the tests increases with the number of performed tests. In the context
of split selection, a type I error occurs when a variable is selected for splitting
even though it is not informative.

In the case of binary splitting, the number of conducted comparisons for a
given predictor variable increases with the number of possible binary par-
titions, i.e. with the number of possible cutpoints. In continuous predictors
without ties the number of possible cutpoints to be evaluated is Nj − 1. For
categorical and ordinal predictor variables the number of cutpoints depends on
the number of categories. The ‘multiple comparisons effect’ results in a pref-

8



erence of predictor variables with many possible partitions: with few missing
values or few ties (for continuous variables) or many categories (for categorical
and ordinal variables).

This finding is not in contradiction to Dobra and Gehrke (2001), who state
explicitly that variable selection bias for categorical predictor variables was not
due to multiple comparisons, since the authors use the Gini gain for multiway
splits with as many nodes as categories in the predictor rather than for binary
splits, which does not correspond to the standard CART algorithm usually
associated with the Gini criterion and obviously does not induce multiple
testing effects.

The next section gives a summary of all three effects.

2.4 Resume and practical relevance

The simulation results obtained by Kim and Loh (2001) reported in section
2.1 in different settings may be explained by the three partially counteracting
effects outlined in sections 2.2 and 2.3.

In the binary splitting task of Kim and Loh (2001), the bias towards predic-
tor variables with many categories is mainly due to the multiple comparison
effect: variables with more categories have more possible binary partitions to
be evaluated. In contrast, the bias towards variables with many missing values
observed for the metric variables may be explained by the bias and variance
effects: variables with small sample sizes, for which the Gini gain is overes-
timated and has large variance, tend to be favored. In this case the reverse
multiple comparisons effect seems to be outweighed.

In the standard simulation designs in the literature on variables selection bias
all predictor variables are uninformative and thus there is no reason to prefer
variables with more categories or even more missing values. These scenarios are
artificial but necessary to understand the sources of variables selection bias and
to evaluate the split selection criteria. In practice, the number of categories in
categorical variables of nominal and ordinal scales often depends on arbitrary
choices (in particular in the design of questionnaires) and randomly missing
values in categorical and metric variables are common (if, e.g., questions are
skipped by accident in automated data input). In such a scenario a reasonable
split selection criterion should be able to identify relevant variables without
being mislead by the number of categories, that may be related to - but is
not in itself an indicator of - the relevance of the variable, or the number of
missing values, that is inversely related to its information content.

As cited in the introduction, Breiman et al. (1984) noted the multiple com-
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parisons effect evident when categorical predictors vary in their number of
categories. In addition, they claim that their CART approach can deal par-
ticularly well with missing values, because it provides surrogate splits when
predictor values are missing in the test sample. However, for missing predictor
values in the learning sample, the CART algorithm applies an available case
strategy when evaluating the variables in split selection, leading to the bias
outlined above. This went unnoticed by Breiman et al. (1984) though, because
they only spread missing values randomly over all predictor variables, instead
of varying the sample sizes between variables.

In the next section, we suggest an alternative p-value selection criterion based
on the Gini Index that corrects simultaneously for all three types of bias
described above.

3 The distribution of the maximally selected Gini gain

3.1 A p-value based variable and split selection approach

For the case of binary splits, we introduce the p-value from the exact distri-
bution of the maximally selected Gini gain over all possible splits as a new
unbiased splitting criterion. Note that the variable index j will be dropped in
most of this section focusing only on one predictor variable X with sample
size N .

Beside the classification context considered here maximally selected statistics,
e.g. the maximally selected χ2- statistic or maximally selected rank statistics,
have been the subject of a few tens of papers published mainly in the journal
Biometrics in the last decades, headed by Miller and Siegmund (1982). They
are based on the following idea: Suppose one computes an association mea-
sure T (i) (e.g. the Gini gain or the χ2- statistic) for all the i = 1, . . . , N − 1
possible cutpoints of one considered continuous predictor X and selects the
cutpoint yielding the maximal association measure Tmax = max

i=1,...,N−1
T (i). The

distribution of the resulting “maximally selected” association measure Tmax

is different from the distribution of the original association measure. In par-
ticular, the distribution of the maximally selected measure may depend on
the sample size N of X, causing the selection bias observed in the case of
predictors with different numbers of missing values, and has to account for
the deliberate choice of the cutpoint.

Possible penalizations for the choice of the optimal cutpoint in multiple com-
parisons are Bonferroni adjustments, which tend to overpenalize (Benjamini
and Hochberg, 1995; Hawkins, 1997; Loh, 2002, for a review), and the approach
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of maximally selected statistics applied here.

Dobra and Gehrke (2001) on the other hand claim that p-value based criteria
in general reduce the selection bias in classification trees, and derive an ap-
proximation of the distribution of the Gini gain in the case of multiway splits.
Their approach does not aim at providing an unbiased split selection crite-
rion for binary splitting, however, because it does not account for the multiple
comparisons effect in cutpoint selection.

Previous applications of p-values of maximally selected statistics as unbiased
split selection criteria in binary recursive partitioning are Shih and Tsai (2004),
who employ the p-values of exact and approximated distributions of maximally
selected split selection criteria in regression trees, and Shih (2004), who intro-
duces the p-value of the maximally selected χ2-statistic as an unbiased split
selection criterion for classification trees. Shih (2004) explicitly states that for
other criteria, e.g. for entropy criteria like the Gini Index, “the exact methods
are yet to be found” (p. 465).

In the present paper, we accept the challenge posed by Shih (2004) and propose
to correct the variable selection bias occurring with the Gini gain in binary
splitting by using a criterion based on the exact distribution of the maximally
selected Gini gain rather than the Gini gain itself.

In the rest of the paper, F denotes the distribution function of the maximally
selected Gini gain under the null hypothesis of no association between the
predictor and the response, given N1 and N2. We use the notation

F (d) = PH0

(
∆̂G

max ≤ d
)
.

In a nutshell, our variable and split selection approach consists of the following
steps:

(1) Determine ∆̂G
max

j for each of the predictor variables Xj, j = 1, . . . , q,

(2) compute the criterion F
(
∆̂G

max

j

)
(which is equivalent to 1 - the p-value

of ∆̂G
max

j ) for each variable Xj and

(3) select the variable Xj∗ with the largest F
(
∆̂G

max

j

)
. The split of Xj∗

maximizing ∆̂Gj∗(i) is then selected.

The rest of this section presents our method to determine the distribution
function F for one predictor variable X with N non-missing independent and
identically distributed observations.
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3.2 Outline of the method

Our aim is to derive the distribution of the maximally selected Gini gain over
the possible cutpoints of X, i.e. over all the possible partitions {SL,SR} of
the sample, under the null hypothesis of no association between X and Y .
In accordance with section 1 the term (y(i), x(i))i=1,...,N denotes the ordered
sample. The function n2(i) again denotes the number of observations with
Y = 2 among the i first observations (cf. equation (1)).

Obviously, we have n2(0) = 0 and n2(N) = N2. Our approach to derive the
exact distribution function of the maximally selected Gini gain consists of two
independent steps:

(i) First, we show that the maximally selected Gini gain ∆̂G
max

exceeds a
given threshold if and only if the graph (i, n2(i)) crosses the boundaries of
a zone located around the line of equation with slope N2/N and intercept
0. The coordinates of these boundaries are derived in section 3.3.

(ii) The probability that the graph (i, n2(i)) crosses the boundaries under
the null hypothesis of no association between X and Y is computed via
a combinatorial method in the spirit of Koziol (1991), to determine the
distribution of the maximally selected χ2- statistic.

Our two-step approach can be seen as an extension of Koziol’s method. We use
the same combinatorial method, but with new boundaries corresponding to
the Gini gain instead of the χ2- statistic. This approach could be generalized to
other splitting criteria for which a condition of the type of (5) (see section 3.3)
can be formulated. In the rest of this section, we derive the new boundaries
corresponding to the Gini gain (section 3.3) and adapt Koziol’s combinatorial
computation method (section 3.4).

3.3 Definition of the boundaries

The Gini gain ∆̂G(i) obtained by cutting between x(i) and x(i+1) may be
rewritten (cf. again table 1 for the notation) as a quadratic function of n2(i):

∆̂G(i) = Ĝ− i
N

[
2n2(i)

i

(
1− n2(i)

i

)]
− N−i

N

[
2 (N2−n2(i))

N−i

(
1− N2−n2(i)

N−i

)]

= 2N2

N

(
1− N2

N

)
− 2N2

N
+ 2n2(i)2

iN
+ 2 (N2−n2(i))2

N(N−i)

= n2(i)
2( 2

iN
+ 2

N(N−i)
)− n2(i)

4N2

N(N−i)
− 2

N2
2

N2 + 2
N2

2

N(N−i)

= n2(i)
2 2

i(N−i)
− n2(i)

4N2

N(N−i)
+

2iN2
2

N2(N−i)
.
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For d ≥ 0, we have:

∆̂G(i) ≤ d ⇔ n2(i)
2 2

i(N − i)
− n2(i)

4N2

N(N − i)
+

2iN2
2

N2(N − i)
− d ≤ 0 (4)

With the notations

ai = 2
i(N−i)

,

bi = − 4N2

N(N−i)
,

we obtain after simple computations that

∆̂G(i) ≤ d ⇔ n2(i) ∈

−bi −

√
8d

i(N−i)

2ai

,
−bi +

√
8d

i(N−i)

2ai


 . (5)

We want to derive the distribution function of

∆̂G
max

= max
i=1,...,N−1

∆̂G(i)

under the null hypothesis of no association between X and Y , i.e. PH0

(
∆̂G

max ≤ d
)

for any d ≥ 0. We have ∆̂G
max ≤ d if and only if condition (5) holds for all i

in 1, . . . , N − 1, i.e. if and only if the path (i, n2(i)) remains on or above the
graph of the function

lowerd(i) =
−bi −

√
8d

i(N−i)

2ai

and on or under the graph of the function

upperd(i) =
−bi +

√
8d

i(N−i)

2ai

.

A sufficient and necessary condition for ∆̂G
max ≤ d is that the graph (i, n2(i))

does not pass through any point of integer coordinates (i0, j0) with i0 =
1, . . . , N − 1 and

lowerd(i0)− 1 ≤ j0 < lowerd(i0),

or

upperd(i0) < j0 ≤ upperd(i0) + 1.

Let us denote these points as B1, . . . , Bk and their coordinates as (i1, j1), . . . ,
(ik, jk), where B1, . . . , Bk are labeled in order of increasing abscissa and in-
creasing ordinate for each value of the abscissa. The exact computation of the
probability that the graph (i, n2(i)) passes through at least one of the points
B1, . . . , Bk (i.e. that it leaves the boundaries defined above) under the null hy-
pothesis of no association between X and Y is described in the next section.
Exemplary boundaries are displayed in Figure 1.
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Fig. 1. Boundaries as defined in section 3.3 for an example
with N1 = N2 = 50 and d=0.1

3.4 Koziol’s combinatorial approach

Under the null hypothesis of no association between X and Y , all the possi-
ble paths (i, n2(i)) have equal probability 1/

(
N
N2

)
. Thus, the probability that

the path (i, n2(i)) passes through at least one of the points B1, . . . , Bk can
be computed using the combinatorial approach of Koziol (1991). This ap-
proach is based on a Markov representation of n2(i) as the path of a binomial
process with constant probability of success and with unit jumps, conditional
on n2(N) = N2. Let Ps denote the set of the paths from (0, 0) to Bs that
do not pass through points B1, . . . , Bs−1 and bs the number of paths in Ps.
Since the sets Ps, s = 1, . . . , k, are mutually disjoint, bs, s = 1, . . . , k, can be
computed recursively as

b1 =
(

i1
j1

)

bs =
(

is
js

)
−∑s−1

r=1

(
is−ir
js−jr

)
br, s = 2, . . . , k.

The above formula can also be derived by means of simple combinatorial
considerations: The number of paths from (0, 0) to Bs is given by

(
is
js

)
. To

obtain the number of paths from (0, 0) to Bs that do not pass through any of

the B1, . . . , Bs−1, one has to subtract from
(

is
js

)
the sum over r = 1, . . . , s−1 of

the numbers of paths from (0, 0) to Bs that pass through Br but not through
B1, . . . , Br−1. For a given r (r < s), the number of paths from (0, 0) to Br that
do not pass through B1, . . . , Br−1 is br and the number of paths from Br to Bs

is
(

is−ir
js−jr

)
, which gives the product

(
is−ir
js−jr

)
br in the sum in the above formula.

The number of paths from (0, 0) to (N, N2) that pass through Bs, s = 1, . . . , k,
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but not through B1, . . . , Bs−1 is then given as

(
N − is
N2 − js

)
bs.

Since all the possible paths are equally likely under the null hypothesis, the
probability that the graph (i, n2(i)) passes through at least one of the points
B1, . . . , Bk is simply obtained as

PH0(∆̂G
max

> d) =

(
N

N2

)−1 k∑

s=1

(
N − is
N2 − js

)
bs. (6)

It follows

F (d) = PH0

(
∆̂G

max ≤ d
)

= 1−
(

N

N2

)−1 k∑

s=1

(
N − is
N2 − js

)
bs. (7)

We implemented the computation of the boundaries (step (i)) as well as the

result of the combinatorial derivation of F (d) = PH0

(
∆̂G

max ≤ d
)

(step (ii))

in the R system for statistical computing (R Development Core Team, 2006).
The boundaries depicted in Figure 1 are obtained for N1 = N2 = 50 and
d = 0.1.

4 Simulation studies

In this section, simulation studies are conducted to compare the variable se-
lection performance of the p-value criterion derived in section 3 to that of the
standard Gini gain criterion. We consider a binary response variable Y and
5 mutually independent continuous predictor variables X1, X2, X3, X4, X5. In
the whole simulation study, the binary response Y is sampled from a Bernoulli
distribution with probability of success 0.5. The manipulated parameter is the
percentage of missing values in the predictor variable X1, set successively to
0%, 20%, 40%, 60% and 80%. The missing values are sampled completely at
random from variable X1 in each setting. The sample size is set to N = 100.
Three cases are investigated:

• Null case: all the predictor variables X1, X2, X3, X4, X5 are uninformative,
i.e. independent of the response variable.

• Power case I: X1 is informative and X2, X3, X4, X5 are uninformative.
• Power case II: X2 is informative and X1, X3, X4, X5 are uninformative.

For each parameter setting 1000 data sets are generated. For each data set,
variable selection is performed using successively the standard Gini gain and
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Table 2
Null case: Variable selection frequencies. The symbol ◦ in-

dicates a varying number of missing values in the marked
variable with the percentage of missing values displayed in
the left column.

Gini gain p-value criterion

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

◦ ◦
0% 0.20 0.21 0.20 0.20 0.19 0.20 0.21 0.20 0.20 0.19

20% 0.28 0.19 0.18 0.18 0.17 0.18 0.21 0.21 0.21 0.20

40% 0.50 0.14 0.13 0.12 0.12 0.24 0.22 0.21 0.17 0.19

60% 0.67 0.09 0.07 0.07 0.09 0.22 0.20 0.20 0.19 0.21

80% 0.91 0.02 0.03 0.03 0.02 0.23 0.18 0.19 0.20 0.21

our p-value criterion. For both criteria, the obtained relative frequencies of
selection out of the 1000 simulation runs for all variables are given in tables.
Based on the reviewed literature and our theoretical results in section 2, we
expect the Gini gain criterion to be biased towards the predictor variable with
missing values, regardless of its information content.

4.1 Null case

In the null case study, X1, X2, X3, X4, X5 are sampled from the standard nor-
mal distribution

Xj ∼ N (0, 1), for j = 1, . . . , 5.

For each percentage of missing values (MCAR), the obtained frequencies of se-
lection of X1, X2, X3, X4, X5 over the 1000 simulation runs are given in Table 2
for the Gini gain (left) and the p-value criterion (right). Since the predictor
variables are all independent of the response Y , a good criterion is supposed
to select X1, X2, X3, X4 and X5 with equal probability 1

5
.

We find that for the Gini gain criterion the selection frequency of X1 increases
with the amount of missing values, while it decreases for all other variables.
In contrast, the p-value criterion shows almost no variable selection bias.
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4.2 Power case I

In the first power case study, the four uninformative predictor variables X2, X3, X4, X5

are sampled from the standard normal distribution, while the predictor vari-
able X1 is informative now and still contains missing values. X1 is sampled
from

X1|Y = 1 ∼ N (0, 1)

X1|Y = 2 ∼ N (0.5, 1).

(We sampled X1|Y rather than Y |X1 only to be able to control the number
of class 1 and 2 observations in each iteration. The reverse sampling scheme
produces the same effect.)

The manipulated parameter is again the percentage of missing values (MCAR)
in the now informative predictor variable X1, with successively 0%, 20%, 40%,
60% and 80% of the original sample size missing completely at random. All
other predictors contain no missing values. With a sensible selection criterion,
the selection frequency of the informative predictor variable X1 is supposed to
decrease when the number of randomly missing values increases, because the
information contained in the observed values of the variable actually decreases
(cf. Shih, 2004; Shih and Tsai, 2004).

Table 3 summarizes the variable selection frequencies for all variables in the
power case I design with X1 being informative and containing missing values.
We find that for the Gini gain criterion the selection frequency of X1 increases
with its amount of missing values, despite the loss of information content. In
contrast, the p-value criterion selects X1 less often when it has many missing
values. This dependence of the selection frequency on the number of available
cases of the informative predictor variable corresponds to the findings of Shih
(2004) for the p-value of the maximally selected χ2-statistic, and is a desirable
property for a split selection criterion.

If the underlying missing mechanism is known to be missing not at random,
however, the missing mechanism should be modeled accordingly. Otherwise
our approach will behave conservatively and underrate the information content
of the variable.

4.3 Power case II

In the second power case study, the four uninformative predictor variables
X1, X3, X4, X5 are sampled from standard normal distributions, while now X2

17



Table 3
Power case I: Variable selection frequencies. The ◦ sym-

bol indicates a varying number of missing values in the
marked variable with the percentage of missing values dis-
played in the rows of the table. The • symbol indicates that
the marked variable is also an informative predictor.

Gini gain p-value criterion

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

• •
◦ ◦

0% 0.71 0.07 0.08 0.06 0.08 0.71 0.07 0.08 0.06 0.08

20% 0.77 0.06 0.06 0.06 0.06 0.66 0.08 0.08 0.09 0.09

40% 0.79 0.05 0.06 0.05 0.05 0.58 0.12 0.12 0.11 0.09

60% 0.84 0.06 0.03 0.04 0.03 0.45 0.16 0.13 0.14 0.13

80% 0.94 0.01 0.01 0.02 0.01 0.35 0.16 0.17 0.16 0.15

is the informative predictor variable sampled from

X2|Y = 1 ∼ N (0, 1)

X2|Y = 2 ∼ N (0.5, 1).

X1 now is not informative but still contains missing values. The manipulated
variable is again the percentage of missing values (MCAR) in the uninforma-
tive predictor variable X1 with successively 0%, 20%, 40%, 60% and 80% of
the original sample size missing completely at random. The other predictors
contain no missing values. We expect the estimated probability of X1 being
selected as splitting variable to increase with the percentage of missing values
in X1 for the Gini gain, despite the higher information content of X2, but not
for the p-value criterion.

Table 4 summarizes the variable selection frequencies for all variables in the
power case II design. We find again that the selection frequency of X1 indeed
increases with its amount of missing values for the Gini gain criterion, out-
weighing the higher information content of X2. This effect is also depicted in
Figure 2. In contrast, the p-value criterion shows no variable selection bias.
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Table 4
Power case II: Variable selection frequencies. The ◦ symbol
indicates a varying number of missing values in the marked
variable with the percentage of missing values displayed in
the left column. The symbol • indicates that the marked
variable is an informative predictor.

Gini gain p-value criterion

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

• •
◦ ◦

0% 0.07 0.73 0.07 0.07 0.07 0.07 0.73 0.07 0.07 0.07

20% 0.12 0.69 0.07 0.07 0.06 0.07 0.72 0.07 0.07 0.06

40% 0.21 0.64 0.05 0.04 0.06 0.06 0.73 0.07 0.06 0.08

60% 0.42 0.47 0.03 0.03 0.05 0.07 0.73 0.06 0.06 0.09

80% 0.74 0.23 0.01 0.01 0.01 0.08 0.71 0.07 0.07 0.09
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Fig. 2. Power case II: Variable selection frequencies for the
uninformative variable X1 containing missing values (left)
and the informative variable X2 containing no missing values
(right).
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5 Application to veterinary data

5.1 Data set

The data were collected in 2004 at a research farm in the area of Munich,
Germany (Schmaußer, 2005). They contain various measurements recorded
for 51 cows from the week of their first delivery (week 0) until the fourth week
post partum (week 4). The binary response variable of interest takes value
Y = 1 if the cow shows no signs of genital infection or signs of a minor genital
infection only and Y = 2 if it shows signs of a major genital infection or even
puerperal sepsis (childbed fever) and pyometra (uterine suppuration). The
potential predictor variables are measures of body condition, various parame-
ters of the hemogram, milk production, energy consumption and gynecological
indicators that are displayed in Table 5.

The predictor variables vary strongly in their numbers of missing values, e.g.,
between 0 and 50 in week 0 and between 0 and 25 in week 4. Some variables
contain less than three observations for some of the weeks, which is obviously
not a reasonable sample size in a binary classification task. These variables
were excluded from the analysis for the considered week (week 0: USHR,
USHL; week 1: FFS; week 3: FFS).

With this application we want to point out that in practice the Gini gain and
the p-value criterion rank predictor variables substantially differently with
respect to their number of missing values as we have expected from our theo-
retical and simulation results. In addition, we explore the explanatory power
of the variables that would be selected for the first split with each criterion.

For the following exemplary analysis we treat the missing values as if they
were missing completely at random within each variable, even though this
assumption is debatable in this context. As stated above, our approach will
behave conservatively and underrate the information content of the variable
if the true underlying missing mechanism was informative.

The analysis is carried out for each week separately, because the longitudinal
structure is not in focus here.

5.2 Variable selection ranking

The Gini gain criterion and our novel p-value criterion may be used to rank
the variables: the least informative variable is assigned rank 1, and so on.
In this section, the rankings of the predictor variables obtained by the Gini
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Table 5
Potential predictor variables from the cow data set. All

variables are measured on a metric scale but contain strongly
varying numbers of missing values.

body condition BCS body condition score

RFD backfat thickness (mm)

MD muscle thickness (mm)

hemogram FFS free fatty acids (µmol/l)

Caro carotene (µg/l)

Bili bilirubin (µmol/l)

AST aspartate aminotransferase (U/l)

CK creatine kinase (U/l)

AP alkaline phosphatase (U/l)

GLDH glutamate dehydrogenase (U/l)

GGT gamma glutamiltransferase (U/l)

BHB beta hydroxybutyric acid (mmol/l)

IGF1 insulin growth factor 1 (nmol/l)

milk production Milch milk yield (kg)

FettM milk fat (week mean; %)

EiM milk protein (week mean; %)

FEQ fat-protein-ratio

LaktM milk lactose (week mean; %)

FLQ fat-lactose-ratio

HarnM milk carbamide (week mean; mmol/l)

energy consumption TMGes dry matter intake total (kg)

Eauf energy intake (MJ NEL)

EbedM energy requirement (MJ NEL)

EbilM energy balance (MJ NEL)

gynecology UZD cervix diameter (cm)

USHR uterine horn diameter right (cm)

USHL uterine horn diameter left (cm)
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gain criterion and with our p-value criterion are compared. Due to selection
bias of the Gini gain towards variables with many missing values, the two
rankings are expected to diverge substantially. The scatterplots of the two
rankings are displayed in Figure 3 for each week. The number of missing
values is represented by the circumference of the corresponding spot. It can
be observed from the scatterplots that indeed

- the spots deviate noticeably from the bisector,
- the deviation from the bisector is linked to the number of missing values.

Variables with more missing values tend to be ranked higher by the Gini gain
criterion than with our p-value criterion. Considering the results of this and
the previous sections it is thus practically relevant to use the unbiased p-value
criterion instead of the biased Gini gain for variable selection. In classification
trees, the variable ranked highest by the chosen criterion is then selected for
splitting.

5.3 Selected splitting variables

In this section, we examine the variables selected for the first split in each
week with the standard Gini gain and with our p-value criterion. When com-
paring the variables we take into account the number of missing values, and
additionally compute logistic regression models for the binary response and
each selected variable individually. The p-value of the likelihood ratio χ2- test
of logistic regression models does not strictly match with the deterministic
bisection approach of classification trees, but can serve as another indicator of
the explanatory power of the selected variables. The results are summarized
in Table 6.

We find again in Table 6 that the Gini gain criterion systematically prefers
variables with high numbers of missing values. For example, the variable UZD
selected by the Gini gain in week 0 has 39 missing values and only 12 observed
values. It should thus be treated with caution. In contrast, the variables se-
lected by our p-value criterion do not have any or have only few missing values.
Through all weeks the p-values of the logistic regression model (abbreviated
by LRM) are lower for the variables selected by our p-value criterion than for
those selected by the Gini gain criterion in each week. This indicates a higher
explanatory power of the variables selected by our p-value criterion in this
data set.

Moreover, our p-value criterion may be used as a stopping rule when con-
structing a classification tree: We suggest to fix a threshold for the p-value
criterion, e.g. 0.95. The considered node is split only if the criterion value of
the selected variable exceeds this threshold, i.e. if the corresponding p-value
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Fig. 3. Rank obtained with the new p-value criterion vs. rank
obtained with the Gini gain. The circumference of each point
is proportional to number of missing values in the predictor.

is ≤ 0.05. In this example the split with the selected variable would be con-
ducted for weeks 0 through 3 (with the level of significance indicated by the *
and ** symbols); only in week 4 the split does not produce enough impurity
reduction and is omitted if the threshold is fixed at 0.95. If the threshold was
set to .99 the split would be conducted in weeks 0 through 2 (indicated by **).
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Table 6
Variables selected for the first split using the standard Gini
gain (top) and our p-value criterion (bottom). The p-values
from the logistic regression model (LRM) that correspond
to model likelihood ratio tests significant on a 5%-level are
indicated by the * symbol, those significant on a 1%-level by
the ** symbol.

week 0 week 1 week 2 week 3 week 4

Gini gain

selected variable UZD UZD Bili BCS BCS

missing values 39 38 0 23 25

p-value LRM 0.094 0.028* 0.001** 0.305 0.121

p-value criterion

selected variable Bili GLDH Bili Caro USHL

missing values 0 0 0 0 9

p-value LRM 0.007** 0.003** 0.001** 0.207 0.059

criterion value 0.990** 0.999** 0.994** 0.983* 0.927

This way to proceed is compatible with the insignificant results of the logistic
regression models in weeks 3 and 4.

6 Discussion and conclusion

In this paper, we derived the exact distribution of the maximally selected Gini
gain under the null hypothesis of no association between the binary response
variable and a continuous predictor. The resulting p-value can be applied as
a split selection criterion in recursive partitioning algorithms, as well as as an
information measure in 2× 2 tables where the cutpoint is preselected such as
to optimize the separation of the response classes.

Our p-value based approach for split and variable selection avoids all sources of
variable selection bias examined in section 2. The estimation bias and variance
effects as well as the multiple comparisons effects are overcome by consider-
ing the maximally selected Gini gain given the class sizes N1j and N2j. In
simulation and real data studies, our approach has proved to deal effectively
with different amounts of randomly missing values in the predictor variables.
The implementation of our method in the R system for statistical comput-
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ing, that was used in this work, is freely available in the package exactmaxsel
downloadable from www.r-project.org.

Other strategies to cope with randomly missing values in classification tree in-
duction have been proposed in the machine learning literature. Most of them
are imputation methods (see e.g. Quinlan, 1986; Liu et al., 1997, for a compre-
hensive review). Apart from any skepticism against imputation methods our
approach has the advantage that it detects the information drop in informative
variables caused by an increasing number of missing values.

Our p-value based approach may be applied to other common selection criteria
such as the deviance (also called cross-entropy). In future research we are
working on a generalization to categorical and ordinal predictors using the
boundaries defined in Boulesteix (2006a) and Boulesteix (2006b) for use in
classification trees. In this context, our p-value criterion would address the
problem of missing values and the problem of different numbers of categories
simultaneously.

Another advantage of our method is that it is based on the popular Gini
index, with possible extensions to other impurity measures. The easily tangible
impurity measures may attract applied scientists without a strong statistical
background more than classical association test statistics (e.g. in combination
with Bonferroni adjustment for multiple testing) as split selection criteria. Our
criterion can replace the Gini gain criterion in the traditional greedy search
approach of CART, the intuitiveness of which has played a crucial role in
making classification trees understandable and attractive to a broad scientific
community.

Our method is well suited for medium and small data sets like the ones pre-
sented in our simulation and real data studies, because as an exact combi-
natorial approach it is applicable and valid even for small sample sizes. This
is particularly important in recursive partitioning, where the starting sample
size is divided in (at least) two nodes in every split, leading to a rapid de-
crease of the sample size underlying the next split decision. Therefore only an
exact method can guarantee a valid computation of the p-value used as split
selection criterion even in the bottom nodes, that may hold only very small
sample sizes. Of course our method is also applicable to larger samples with
some computational expense: The computation time increases quadratically
with increasing sample size, because the number of binomial coefficients to be
evaluated increases quadratically in N . For N = 100 the computation time
(user cpu time on a 64 bit unix machine) for the exact p-value is in the region
of 0.35 seconds and for N = 1000 in the region of 35 seconds correspondingly.

At this point, our approach is limited to the case of a binary response in order
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to limit the complexity of the exact combinatorial method. An extension of
our approach to more than two classes would be a challenging but interesting
field for further studies. However, the binary case we focus on here is most
common in applications, as e.g. in medical studies, and well suited to illustrate
how unbiased variable selection can be accomplished by means of the exact
p-value of a maximally selected statistic.

Different authors argue along the lines of Kass (1980) and Loh and Shih (1997),
who state that the key to avoiding variable selection bias is to separate the
process of variable selection from that of cutpoint selection. The unbiased al-
gorithms QUEST (Loh and Shih, 1997) and CRUISE (Kim and Loh, 2001) e.g.
employ association test statistics (of the ANOVA F-test for metric predictors
and of the χ2-test for categorical predictors) for variable selection. The split
is selected subsequently using discriminant analysis techniques.

Most recently Hothorn, Hornik, and Zeileis (2006) propose a unifying condi-
tional inference approach that also separates variable selection from cutpoint
selection. Here, p-values from an asymptotic distribution of linear association
test statistics are used for unbiased variable selection; the cutpoint in the
selected variable is then derived within the same framework.

However, we argue that, in order to achieve unbiased variable selection in
classification trees, it is neither necessary to give up the popular impurity
measures, nor to give up the greedy search approach that attracted such a
diverse group of applicants with different statistical background. Giving up the
greedy search approach of the traditional recursive partitioning algorithms for
an advanced statistical modeling approach might, as an unwanted side effect,
result in leaving those applicants with a weaker statistical background behind
- with easy to handle but biased classification trees.

Using a p-value criterion based on the Gini index, we address efficiently the
problem of selection bias but preserve the simplicity of traditional classifica-
tion trees with binary splits. In addition, the p-value can provide a statistically
sound stopping criterion. Our exact procedure is able to handle small sam-
ple sizes, as e.g. in the bottom nodes of a classification tree, more relyably
than asymptotic approaches, but, as all exact procedures, is computationally
intensive for large samples. The p-value criterion can be integrated into any
traditional recursive partitioning algorithm and might thus prove both man-
ageable and useful for applied scientists, as demonstrated in the veterinary
example.
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ellen Futteraufnahme und unter Berücksichtigung verschiedener Melksys-
teme. PhD Thesis, Faculty of Veterinary Medicine, University of Munich
LMU, Munich, Germany.

Shih, Y., 2004. A note on split selection bias in classification trees. Computa-
tional Statistics and Data Analysis 45 (3), 457–466.

28



Shih, Y., Tsai, H., 2004. Variable selection bias in regression trees with con-
stant fits. Computational Statistics and Data Analysis 45 (3), 595–607.

Strobl, C., 2005. Variable selection in classification trees based on imprecise
probabilities. In: Cozman, F., Nau, R., Seidenfeld, T. (Eds.), Proceedings of
the Fourth International Symposium on Imprecise Probabilities and their
Applications, Carnegy Mellon University, Pittsburgh, PA, USA. SIPTA,
Manno, pp. 340–348.

Strobl, C., Boulesteix, A.-L., Zeileis, A., Hothorn, T., 2007. Bias in random
forest variable importance measures: Illustrations, sources and a solution.
BMC Bioinformatics 8:25.

White, A., Liu, W., 1994. Bias in information based measures in decision tree
induction. Machine Learning 15 (3), 321–329.

Appendix

Derivation of the variance of the empirical Gini Index V ar(Ĝj) displayed in
section 2.2. Note that the index j for variable Xj is suppressed in the following.

V ar(Ĝ) = V ar(2p̂(1− p̂))

= 4 V ar(p̂(1− p̂))

V ar(p̂(1− p̂)) = E(p̂2(1− p̂)2)− E(p̂(1− p̂))2

= E(p̂2)− 2E(p̂3) + E(p̂4)− 1
4
E(Ĝ)2

We compute and approximate the four terms successively (e.g., by means of
the moment generating function of the Binomial distribution, cf. Evans et al.
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(1993), p.38), and obtain:

E(p̂2) = 1
N2 E(Z2), where Z ∼ B(N, p)

= p
N

+ p2 − p2

N

= p2 + p(1−p)
N

−2E(p̂3) = −2( 1
N3 E(Z3)), where Z ∼ B(N, p)

= −2(3p2

N
+ p3 − 3p3

N
+ O( 1

N2 ))

= −6p2

N
− 2p3 + 6p3

N
+ O( 1

N2 )

E(p̂4) = 1
N4 E(Z4), where Z ∼ B(N, p)

= 6p3

N
+ p4 − 6p4

N
+ O( 1

N2 )

−1
4
E(Ĝ)2 = −1

4
(N−1)2

N2 G2

= −G2(1
4
− 1

2N
) + O( 1

N2 )

Finally,

V ar(p̂(1− p̂)) = p2 + p(1−p)
N

− 6p2

N
− 2p3 + 6p3

N
+ 6p3

N
+ p4 − 6p4

N
−G2(1

4
− 1

2N
) + O( 1

N2 )

= (p2 − 2p3 + p4)(1− 6
N

) + G
2N
−G2(1

4
− 1

2N
) + O( 1

N2 )

= G2
4

(1− 6
N

) + G
2N
−G2(1

4
− 1

2N
) + O( 1

N2 )

= G2
N

(−6
4

+ 1
2
) + G

2N
+ O( 1

N2 )

= G
N

(1
2
−G) + O( 1

N2 )

V ar(2p̂(1− p̂)) = 4 G
N

(1
2
−G) + O( 1

N2 ).
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