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A computationally efficient molecular dynamics method for estimating the rates of rare events that occur by activated processes 
is described. The system is constrained at “bottleneck” regions on a general many-body reaction coordinate in order to generate 
a biased configurational distribution. Suitable reweighting of this biased distribution, along with correct momentum distribution 
sampling, provides a new ensemble, the constrained-reaction-coordinate-dynamics ensemble, with which to study rare events of 
this type. Applications to chemical reaction rates are made. 

Many dynamical systems spend the overwhelming majority of their time in certain well-defined phase space 
regions, with transitions between these stable regions typically occurring by infrequent activated events of short 
duration. Diffusion in solids and chemical reactions are well-known examples. 

By simulation it is difficult to determine properties that depend on such rare events. A computationally ef- 
ficient way to estimate the transition rate is to choose initial system states localized at the hypersurface that 
separates the stable regions. This idea was introduced to treat gas-phase chemical reactions [ 1,2] and later 
applied to condensed-phase rate processes [3-51. This Letter addresses the question of the computation of 
activated processes described by a general configurational nonlinear many-body reaction coordinate, and gives 
a method useful for their molecular dynamics simulation. This new method provides an independent alter- 
native to the commonly applied umbrella sampling techniques [ 61. 

We suppose that the activated process is described by the reaction coordinate e(r), where r= (6, r2. . . . . rN) 
represents the 3N Cartesian coordinates of the system composed of N atoms with masses m, (i= 1, . . . . N). This 
could be, e.g., an angle in an isomerization [ 71, an unstable asymmetric stretch in an atom or charge-transfer 
reaction [ 8 1, or a many-body coordinate involving Coulomb interaction energies in an electron or proton trans- 
fer reaction [ 91. The study of diffusion in solids also entails the use of many-body reaction coordinates [ lo]. 

The quantities of interest are ensemble averages of static or time-dependent dynamical variables containing 
a delta function that localizes the system initially at a prescribed value of t(r), We show how such averages 
can be computed and we apply these general results to produce a computable formula for rate constants. 

We wish to calculate the quantity (O(r,p”) 6(C;(r) - cf’ ) ), where O(r,p’) is any observable, r’ is some nu- 
merical value of the reaction coordinate l(r), and ( ) is the canonical ensemble average. We make the stan- 
dard assumption [ 11,121 that the N atoms form A4 molecules through intramolecular forces and/or L rigid 
constraints U,(r)=0 (i=l, . . . . L). In such a circumstance one normally introduces a set of independent gen- 
eralized coordinates q and conjugate momentap” such that r= r( q), and the statistical mechanics is formulated 
in terms of these variables. However, it has been shown [ 11,12 ] that one may equivalently carry out statistical 
mechanical computations in terms of the original Cartesian coordinates. In this circumstance, the probability 
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associated with the ensemble of interest in the full coordinate and momentum space is 

P(r,p”)6(5(r)-r’)drcipr=Q-‘expI-BH(r,pr) 6(<(r)-r’) ,fi S(gi) 6(pl-@)drdp’, (1) 

where H(r, p”) = KS V is the system Hamiltonian in Cartesian coordinates with K the kinetic energy, and Q 
is the partition function. The canonical variables (r, p’) are in one to one correspondence with new canonical 
variables (& [, u, py, ps, p”), and $, is a function of the unconstrained coordinates (#, <) and their associated 
momenta (p” p<) such that p”-@=Z-lck (The last equation is derived in the appendix of ref. [ 121 and Z 
is defined below. ) 

For our purposes it is convenient to rewrite this probability as 

P(r,p’)S(S(r)-r’)drdp’=P(r)6(r(r)-5’)P(p’lr)drdpr, 

where the configurational probability is 

(2) 

(3) 

and 

P(p’Yr) dp’= lZl-“2 exp(-BK) ,Ij, SPY-@,) dp’ (4) 

is the conditional probability density of the momenta given the configuration. The total potential energy is 
V(u), and (ZI is the determinant of the LX L matrix Z with elements 

Z ,,,,, = ,i, m;’ (W,lar,)* chmi) . (5) 

The factors involving 12 I in eqs. (3 ) and (4) arise [ 11,121 from performing the momentum integration in 
the ensemble average. Q, is the configurational partition function. The meaning of the matrix Z, which has 
been discussed by several authors [ 131, has its origin in the fact that imposing ai =O for all times also re- 
quires that the velocities 6,(r) vanish at all times. 

The molecular constraints above were introduced for convenience to correspond to conventional practice 
[ 11,121 for describing molecules in simulations; they need not be present. We now introduce the constraint 
on the reaction coordinate that is fundamental to our method. We construct an ensemble by constraining the 
reaction coordinate at r’( & r) = el, &r, 3) = 0), along with the previous L molecular constraints - we term this 
the S-constrained ensemble. The probability associated with the r-constrained ensemble can be written as the 
product of the configurational probability 

P<,(r) dr=Qp’ IZI ‘I2 ew[-W(r)l6(5(r)-r’) fj &ail dr, (6) ,=I 
and a biased conditional probability for the momenta, which is not needed in the subsequent discussion. In 
eq. (6) ]Z]“’ arises from performing the momentum integration, and the (L+ 1) x (L+ I) matrix Z has a 
structure analogous to that of 2 (cf. eq. (5) ) but is generated by the set of variables (& a) instead of u alone. 
Qc is the configurational partition function in this constrained ensemble. 

At this stage, we can take the essential step. Recall that what is required is to calculate averages in ensemble 
(2) in which <is restricted to the value e,, but is not constrained (which requires the additional condition & 0). 
However, we wish to express such averages in terms of the r-constrained ensemble designed to frequently pro- 
duce rare events. To this end, we now define the following ensemble, using eqs. (4) and (6), 

PC...n.r(r,pl’) drdp’=PC(r) P(p’lr) drdp’. (7) 
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We call this the constrained-reaction-coordinate-dynamics (CRCD) ensemble #I. It is straightforward to sam- 
ple from the configurational distribution (6). It is also not difficult to sample from the conditional momentum 
distribution (4). With no molecular constraints it is the product of Maxwell distributions; techniques have 
also been given [ 141 for sampling from this distribution when molecular constraints are present. 

In the CRCD ensemble, the conditional momentum distribution is that appropriate to the system when 5 
is restricted but not constrained. In contrast the configurational distribution is that appropriate to the <-con- 
strained simulation and is thus distorted from the desired ~-restricted distribution (compare eqs. (3) and (6) )_ 
The correction factor required for the CRCD ensemble to reproduce the proper averages in the restricted en- 
semble is easily obtained by comparing eqs. (7) and (2), and using the quantity D= (21 / I Z( . In this way we 
find our major result 

(Wr,p”) &4Yr)-5’)> = (D-'W~,P'))~~.~ 
<S(t(r)-<‘) > (D-"2)et,M ’ (8) 

where ( )r’.M denotes an average over the CRCD ensemble. The factor D-1/2 serves to remove the bias gen- 
erated by the constrained molecular dynamics trajectory. The quantity D I’* has a clear geometrical interpre- 
tation: it is the length, with an inverse mass metric, of the component of the vector a</& orthogonal to the 
space spanned by the molecular constraint vectors aa,/&. That is, 

o=(ay/ar),(i-~(L)).(ag/ar), 

where the scalar product of two vectors a and b is given by a-b= CT=, my ’ uib,, and 

(9) 

.FL)= i (aa,,,lar)(z-l),,,(aa,/ar) , 
1w.11 = I 

(10) 

is the projector onto the subspace of molecular constraints. This result follows from a straightforward expansion 
of lZ1 about the elements of the first row. 

In eq. (8 ) the quantity (6( r(r) - r’) > =P(P) appears, where P( r’) is the probability density of c’. This is 
indirectly obtained from the CRCD ensemble, by first calculating its logarithmic derivative in this ensemble 
and then integrating. To this end, we define the reversible work or mean potential W( C’) associated with the 
reaction coordinate by 

WCC)= --B-l ln[P(C')IPJ , 

where P, is the uniform density of c. The mean force F(e) defined by 

F(<‘) = -dW(e’)ldel , 

is easily obtained by introducing the coordinate transformation r-(4, c, 
of generalized coordinates. We find 

F(t) = 
<(ar/a&.[-av/ar+p-I aln(]J( lz(‘/2)lar]s(c<r>-~)) 

(45(r)-4’)> 
3 

(11) 

(12) 
u) =u, where q is a convenient set 

(13) 

where 1 JI is the Jacobian determinant 1 JI = 1 &/au ) . A direct application of eq. (8) can be used to calculate 
F(c) in the CRCD ensemble. The probability density P(c) can then be obtained by integration of this force. 

A few general comments about this result can be made. The average force is obtained from the average of 
a microscopic variable consisting of two terms: the first is simply the generalized force on & - aF’/a<, while 
the second represents the apparent force that arises from the non-inertial (centrifugal, etc.) character of the 

Pi Since the CRCD ensemble refers to rare events which occur “once in a blue mcd’, we feel that an appropriate alternate title would 
be “blue moon ensemble”. 
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Lj variable_ Eqs. (8) and ( 13) considerably simplify in the special case where the reaction coordinate is the 
magnitude of the internuclear separation between two particles. An example is the association reaction between 
two ions in a polar solvent consisting of N rigid diatomic molecules [ 151. The reaction coordinate constraint 
has the form r(r+, r_)= Ir, -r_ 1 -<‘=O, with I+ and r_ the two ion coordinates. A direct calculation of D 
gives the constant value D=p-‘, where ,u is the ion pair reduced mass. The apparent force contribution to eq. 
(13) is also simple to compute and reduces to the known [ 161 expression Z/j??, the generalized force term 
has been directly computed from constrained molecular dynamics [ 15 ] and dominates the apparent force for 
the ion association problem. 

The CRCD ensemble also provides a method to compute time correlation functions. What is required is to 
take an average over an ensemble of initial conditions of dynamical segments evolved by following the complete 
time evolution after release of the constraint 5 (cf. fig. 1). Hence, we may write 

where o( r, p’) is another arbitrary phase space function. 
This general approach may now be directly applied to the calculation of the rate constant of a chemical re- 

action. We suppose that the transition state for the reaction lies at r(r) = c” and define reactants as those sys- 
tem states with r(r) > r+, so the reactant species observable is the step function O(c(r) -<‘). If this process 
is activated a time scale separation exists between the chemical relaxation process and other internal degrees 
of freedom of the system, and the rate constant is given by the plateau value of k(t) defined by [4,17] 

k(t)={~~(5(r)-T#)8(4(r(t))-~f))l{e(5(r)-4f)>. (15) 

The t+O+ limit of k(t) is the transition state theory rate constant [4,18] 

(16) 

which assumes that there is no recrossing of the transition state surface before product is formed. The time- 
dependent transmission coefficient x(t) is defined as the ratio x(t) =k( t)/krST, and measures the deviation 
from k’rsT arising from any recrossings. 

In the general case positions and velocities are not independent and the expectation value in eq. ( 16 ) does 
not factor. Carrying out the integration over momenta using t= (&$/h-) * (f/m), one finds 

(17) 

which provides an interesting relation for krsT as the expectation value of the length of the orthogonal com- 

Fig. I. Schematic representation of the sampling method. The 
bald line represents the dynamical evolution in phase space with 
the constraint c(r) =c, while the broken light line represents the 
natural evolution of the system. The crossing paints of the two 
trajectories (open circles) are the initial conditions of our sam- 
pling (see text). Note that they do not represent real crossings 
since these points correspond to identical states in configuration 
space but different momentum states. The interruptions of the 
broken light line indicate that the “crossings” of the two trajec- 
tories are very rare events. The initial configurations selected by 
this procedure (open circles) must be weighted by the factor 
D -“* to obtain the correct sampling (see eq. ( 14) ). The dynam- 
ics represented by the light line in the vicinity ofthe crossing points 
gives the correct dynamical information needed to apply eq. ( 14). 
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ponent of the vector de/& introduced earlier (cf. eq. (9) ). 
We now turn to the computation of these quantities in the CRCD ensemble. A direct application of eq. (8) 

yields for kTST 

kTsT=(2~8)-“2(0~“2)~~‘;IPR(r#) ] (18) 

where PR (r’ ) is the probability of being at <+, normalized by the reactant density ( 0(5(r) -e+ ) >. Eq. ( 18) 
has the standard form (k TST=(2~P~,ff)-“ZPR(r#)) butwith {0-1/2)~ +a+, playing the role of the square root 
of the reaction coordinate effective mass. 

Similarly eq. ( 14), together with eqs. ( 15) and ( 16), may be used to compute the transmission coefficient 
as 

~(t)=k(t)lk~~~=(D-~‘*~~(~(~(f))-5~))~c,~/(D-~’~~~(~)>~~,~. (19) 

These results place the general problem of the calculation of the rates of rare events on a firm footing. In 
the CRCD ensemble generated in the simulation the “rare” events are no longer rare and the time scale of the 
relevant dynamics is short. (For suitably low barrier reactions, direct simulation methods can be applied to 
study reactions without selecting transition-state initial conditions [ 191.) Moreover, a complete, computa- 
tionaily efficient algorithm for the rate constant has been given, regardless of the nature of the configurational 
reaction coordinate. In this context it is now possible to address questions such as the molecular dynamics 
simulation of the electron transfer problem which involves a complex highly nonlinear full many-body reaction 
coordinate [ 9 1. 
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