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Abstract − According to the realist interpretation, 
measurement is the estimation of numerical relations (or 
ratios) between magnitudes of a quantitative attribute and a 
unit.  The history of scientific measurement, from antiquity 
to the present may be interpreted as revealing a progressive 
deepening in the understanding of this position.  First, the 
concept of ratio was broadened to include ratios between 
incommensurable magnitudes; second, the concept of a 
quantitative attribute was broadened to include non-
extensive quantities; third, quantitative structure and its 
relations to ratios and real numbers were elaborated; and 
finally, the issue of empirically distinguishing between 
quantitative and non-quantitative structures was addressed.  
This interpretation of measurement understands it in a way 
that is continuous with scientific investigation in general, 
i.e., as an attempt to discover independently existing facts. 
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1.  PHILOSOPHY OF MEASUREMENT:  
A REALIST VIEW 

 
The realist philosophy of measurement differs 

from others (e.g., operationist and representationist 
philosophies) in three ways.  First, it distinguishes 
what is measured from how it is measured.  Second, 
it holds that what is measured are attributes of 
things, rather than things themselves.  Third, it 
claims that in measurement, numbers are discovered 
rather than assigned. 

The founder of operationism, P. W. Bridgman [1], 
said that the “concept of length involves as much as 
and nothing more than the set of operations by which 
length is determined” (p.5) viz., the operations used to 
measure length.  That is, he thought that the opera-
tions used to measure something define the thing 
measured.  This view exemplifies an enduring fallacy: 
the failure to distinguish a relation from the terms it 
holds between.  Bridgman thought that just because an 
attribute like length is only known through meas-
urement, it must only exist through measurement, it 
being, he thought vain to distinguish nature as it is 
from nature as it is known.  The fallacy here is that 
unless nature exists independently of being known, 
there would be nothing to know.  Likewise, unless the 
things we measure exist independently of being meas-
ured, there would be nothing there to measure.  Meas-
urement procedures are a means of attempting to find 

something out.  They cannot at the same time consti-
tute what it is that is found out. 

According to S. S. Stevens [2], measurement is 
“the assignment of numerals to objects or events 
according to rule” (p.667; my emphasis).  In stressing 
objects and events, Stevens, like Bridgman before 
him, wanted to avoid reference to the attributes of 
things (their properties and relations).  However, the 
fact that different kinds of measures can be made of 
the same object (say, measures of mass and volume) 
means that measurements are not individuated by the 
objects measured.  The rejection of operationism 
means that they cannot be individuated by the rules or 
measurement operations involved.  All that is left to 
individuate them is attributes.  That is, what makes a 
measurement of, say, mass, different from one of, say, 
volume, must be the kinds of attributes identified 
(i.e., the mass of the object as opposed to its volume, 
where each is understood as a property). 

Bertrand Russell [3] said that measurement is “the 
correlation, with numbers, of entities which are not 
numbers” (p.158; my emphasis).  This is the repre-
sentational view and it is this view of measurement 
that has received the majority of attention over the 
past century.  According to this view, measurement 
depends upon an isomorphism between an empirical 
system and a numerical system.  However, if an em-
pirical system is isomorphic to a numerical system and 
numerical systems are characterised by structure 
alone, then such empirical systems must instantiate 
the relevant numerical system.  Thus, it follows that in 
measurement numbers are not correlated with any-
thing and certainly not correlated with things that are 
not numbers.  Rather, numerical relations between 
attributes are discovered. 

Furthermore, any specification of the structure of 
quantitative attributes that is rich enough to accom-
modate the attributes measured in physics entails that 
ratios of magnitudes of a quantitative attribute have 
the structure of the positive real numbers.  According 
to the realist view, such ratios are the real numbers.  
Taking this philosophical position seriously provides a 
particular specification of what measurement is: 
measurement is the attempt to estimate the ratio 
between two instances of a quantitative attribute, 
the first being the magnitude measured, and the 
second being the unit employed.  According to the 
realist view, one important aim of measurement is to 
identify the first instance (the measured attribute) 
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through attempting to estimate its relation (or ratio) 
with the second instance (the unit).  From this stand-
point, the practice of measurement is continuous with 
scientific investigation generally: it is the attempt to 
find out something.  This implies that measurement is 
continuous with scientific investigation in another way 
as well: the issue of whether an attribute is measurable 
turns on the empirical issue of whether it possesses 
quantitative structure.   This means that measurement 
is not a completely general scientific method, one 
suited to every scientific question.  Instead, measure-
ment is a method tuned to specific scientific questions: 
those involving attributes possessing quantitative 
structure. 

This standpoint provides a perspective on the his-
tory of scientific measurement that displays how the 
understanding of measurement has developed to meet 
challenges within science’s history.  In the remainder 
of this paper, this historical claim is illustrated through 
four episodes: (1) the generalisation in antiquity of the 
ancient concept of measure to that of ratio; (2) the 
generalisation in the middle ages of the concept of 
quantity to include non-extensive (i.e., intensive) 
magnitudes; (3) the axiomatisation of the concept of 
unbounded, continuous quantity at the beginning of 
the twentieth century; and (4) the specification later in 
that century of empirical tests capable of distinguish-
ing quantitative from non-quantitative structures. 
 

2. HISTORY OF MEASUREMENT: A REALIST 
VIEW 

 
2.1  The Generalization of Measure to Ratio.   
The first systematic contribution to the philosophy of 
measurement available to us in the historical record is 
Book V of Euclid’s Elements [4].  It involves a de-
tailed treatment of ratios1.  Ratios are considered by 
first introducing another relation, viz., that of meas-
ure.  The measure of one magnitude, b, relative to 
another, a, is the whole number, n, such that b = na.  
If magnitude a is known and it is also known what a 
multiple of a is, then knowing that b = na (where n is 
a whole number) identifies b explicitly as a quantita-
tive composite of something known.  While this rela-
tion holds between certain pairs of magnitudes of the 
same general kind, it was known not to hold between 
other pairs, such as the lengths of the side and diago-
nal of a square.  In this sense of measure, the set of all 
lengths, for example, lacks a common measure.  Book 
V remedies this by generalizing the concept of meas-
ure to that of ratio. 

That the concept of ratio is a generalisation of 
measure can be seen if for these two relations the 
conditions for sameness of relation are set out in 
parallel.  Let a, b, c and d be any magnitudes of the 
same general kind (say, any specific lengths).  The 
measure of a relative to b is the same as the measure 
                                                           

                                                          

1 The thirteen books of the Elements are said [5] to have 
been compiled by Euclid during the fourth century BC and 
Book V is attributed to Eudoxos of Cnidus (408-355 BC). 

of c relative to d if and only if for any natural numbers 
n, 
 

(i) a = nb if and only if c = nd. 
 
The ratio of a relative to b is the same as the ratio of 
c relative to d if and only if for any natural numbers m 
and n, 

(ii) ma < nb if and only if mc < nd; 
(iii) ma = nb if and only if mc = nd; and 
(iv) ma > nb if and only if mc > nd. 

 
Measure is the special case of ratio when m = 1 

and for some n, ma = nb.   
The importance of sameness of ratio for under-

standing measurement is that it means that a is quanti-
tatively related to b even when there are no natural 
numbers, m and n, such that ma = nb (i.e., when a and 
b are incommensurable).  For even then, for any pair 
of natural numbers, m and n, if ma > nb, the magni-
tude of a relative to b exceeds the numerical ratio, 
n/m, and if ma < nb, then it is exceeded by the nu-
merical relation n/m and, so, the magnitude of a rela-
tive to b is uniquely located within the ordered se-
quence of all numerical ratios, even though it does not 
equal any such ratio.  In modern terms, measuring a in 
units of b estimates this location [6], that is, estimates 
the positive real number r, such that a = rb. 

That this concept of ratio resembles the modern 
concept of real number has not escaped attention [7-
9].  When it is realized that the Euclidean concept of 
number (‘A number is a multitude composed of units’ 
Definition 2, Book VII2) corresponds to the ancient 
concept of measure and that the concept of ratio gen-
eralizes the concept of measure in a way similar to 
that in which the modern concept of real number gen-
eralises that of natural number, it can be seen that the 
concept of ratio and that of real number are practically 
the same concept3.   

That ratios are instances of real numbers is the re-
alist view.  This view has a number of advantages 
over alternatives.  First, it identifies numbers as rela-
tions of a definite kind (i.e., as ratios) and, so, means 
that no special ontological category is needed to ac-
commodate them.  Second, it locates numbers within 
the spatiotemporal world of experience and, so does 
not require a special realm of being (say, a realm of 
abstract entities) outside of space and time for num-
bers to inhabit.  Third, if numbers are spatiotemporally 
located relations, then no special problem attaches to 
explaining our knowledge of them.  We know about 
numbers in the same way that we know about any-
thing, that is, via sensory experience and logic.  Third, 
if numbers are ratios of magnitudes of quantitative 
attributes, then there is no mystery in understanding 
their application in measurement.  Numbers and 

 
2 ([4] p. 277). 
3 This is how Frege [10] and Whitehead & Russell [11] 
understood the real numbers, and it is the view revived by 
Forrest and Armstrong [12] and Michell [13]. 
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truths about numbers are applicable to the empirical 
context of measurement because numbers, as ratios, 
are instantiated within that same context. 

Because of their special concept of number, the 
ancient Greeks could not interpret ratios as of a kind 
with numbers.  However, from a practical point of 
view, the concept of ratio expounded in Book V was 
sufficient to provide an understanding of the place of 
numbers in the practice of measurement; of the sense 
in which incommensurable magnitudes are measur-
able; and what it is that is estimated in measurement.  
This is why this concept was a source of inspiration 
for subsequent quantitative scientists, especially those 
of the fourteenth4 and seventeenth centuries5. 

To understand the definition of ratio given in The 
Elements, viz., that ‘a ratio is a sort of relation in 
respect of size between two magnitudes of the same 
kind’6, it is necessary to know what magnitudes of the 
same kind are.  This requires considering the concept 
of a quantitative attribute in a general way, i.e., in 
abstraction from the objects to which instances of the 
attribute are necessarily tied.   
 
2.1 Generalisation of Quantity. 
Given a quantitative attribute relative to which multi-
ples are identifiable for some range (as, for example, 
humanly manageable multiples of lengths are identifi-
able), the concept of ratio is interpretable.  In the an-
cient world, this was so for the geometric attributes 
and others, such as time.  Furthermore, measurement 
is such an elegant concept that even with attributes 
apparently lacking multiples but capable of increase or 
decrease (like temperature, for example), the tempta-
tion to treat them as quantitative seems irresistible. 

For example, Aristotle thought of temperature as a 
quality7, not a quantity and in his metaphysics the 
categories of quantity and quality were thought of as 
distinct.  Yet he wrote of increase and decrease in 
temperature in quantitative terms8: conceptualising 
them in relation to the proportion of hot or cold parts 
constituting the object involved.  While this might 
explain the fact that mixing volumes of hot and cold 
water results in a liquid of intermediate temperature, it 
does not explain how a liquid could be homogene-
ously tepid, as might result, say, when a cold liquid is 
heated. 
                                                           

                                                          
4 See Molland [14] for a comprehensive examination of the 
concept of ratio in fourteenth century science. 
5 Galileo abandoned his medical studies upon hearing an 
exposition of Book V of The Elements and was writing a 
commentary on it upon his deathbed [15); and ‘… within the 
area of inquiry which Galileo deals with mathematically, 
only a single theory is rigorously applied.  This is the theory 
of proportionality of general magnitudes developed by 
Eudoxos and found in the Fifth Book of Euclid’s Elements’ 
([16] p.236). 
6 [4] (p.114). 
7 See the discussion of the ‘elementary qualities’ of hot and 
cold in Bk. II, Ch. 2 of De Generatione et Corruptione [17]. 
8 See Bk. II, Ch. 7, 334b8-30, De Generatione et Corrup-
tione [17] (pp.521-522). 

When an attribute of an object, such as its length, 
increases, a new part possessing the extra length is 
added to the object involved.  This is extensive addi-
tion.  However, in cases of increase in temperature, 
addition in this extensive sense does not occur.  When 
liquids of different temperatures are combined, as the 
medieval philosopher, John Duns Scotus, noted, the 
volumes add extensively but not the temperatures: 
 

Sometimes a tepid [degree] added to a tepid 
[degree] in diverse subjects does not increase 
[heat]; [but] this is accidental, on account of 
the extension and dispersal of the parts.  If [the 
new tepid degree] were in the same [extended] 
part of a subject with the pre-existing tepid-
ness, then [the subject] would certainly be in-
creased, and be hotter.9   

 
That is, in the case of qualitative increase10, the 

possibility needs to be considered that different de-
grees of the quality can be added together in ways 
other than via addition of spatially extended parts 
possessing those degrees.  This requires thinking of a 
causal process that increases the degree of the qualita-
tive attribute (say, adds to the temperature of a liquid) 
without adding spatially extended parts to the object 
possessing that attribute (in this case, the liquid).   

Scotus’s insight was a major conceptual break-
through, although one still largely unsung.  He saw 
that the fact that an attribute is quantitative concerns 
its internal structure, while the fact that it is extensive 
has to do with its external relations, that is, with how 
humans interact with it.  Had we been constructed 
differently, with radically different sensory-motor 
capacities and forced into a very different range of 
causal interactions with physical objects, the geomet-
ric attributes may well have been experienced by us as 
intensive11, rather than as extensive attributes12.  Sco-
tus’ insight is part of the process of removing features 
relative to the human observer from the understanding 
of the phenomena under investigation.   

This is an inevitable consequence of taking a real-
ist approach to science, one that distinguishes the 
phenomena under investigation from the investiga-
tion of the phenomena.  In measurement, the phe-
nomena under investigation involve quantitative at-
tributes.  Until the scientific revolution, the only way 
that was known whereby the specifically quantitative 

 
9 As quoted in [18] (p.190). 
10 In the Middle Ages, the degrees of a quality, such as 
temperature, were known as the ‘latitudes of a form.’ Lati-
tudo was the Latin translation of the Greek, πλατος (platos), 
which ‘was connected with the terms for tightening and 
relaxing the strings of a lyre’ [19] (p.57).  The length of a 
lyre’s string was analogous to the extent of a quality and its 
tightness to its intensity.   
11 In the Middle Ages, increase and decrease of a quality 
was called the ‘intension and remission of forms’ and, so, 
the qualities themselves became known as ‘intensive magni-
tudes.’ 
12 See [20]. 
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features of such attributes could be investigated was 
via extensive addition.  In order to open up the possi-
bility of including a wider range of attributes in quan-
titative science, it was necessary to decouple the con-
cept of quantity from that of extensive addition.  This 
was the achievement of Duns Scotus and the scientists 
who followed him. 

Medieval scientists recognised that extensive and 
intensive attributes are, alike, quantitative.  This is 
evident in Nicole Oresme’s observation that intensive 
quantities may be imagined by analogy with length: 
 

every intensity which can be acquired succes-
sively ought to be imagined by a straight line 
… For whatever ratio is found to exist between 
intensity and intensity, in relating intensities of 
the same kind, a similar ratio is found to exist 
between line and line and vice versa … There-
fore, the measure of intensities can be fittingly 
imagined as the measure of lines.13  

 
This way of thinking about quantitative attributes 

abstracts them from the specific contexts of their oc-
currence.  As a result, Scotus’ breakthrough created an 
intellectual milieu in which attributes, hitherto thought 
of as qualities, could be hypothesised as quantitative 
without requiring operations of extensive addition.  
This way of thinking flourished in the fourteenth cen-
tury [22] and, in turn, created a climate of thought 
sustaining such Pythagorean sentiments as Galileo’s 
conviction that ‘The book of nature is written in 
mathematical language’14 and the expansion of meas-
urement practices that accompanied the scientific 
revolution of the seventeenth century [24]. 
 
2.2 Unbounded, Continuous Quantity 
Scotus’ insight meant that the fact that some attribute 
does not, in our experience, sustain extensive addition 
is no impediment to entertaining the hypothesis that 
the attribute is quantitative.  Considering such a hy-
pothesis raises two further questions.  First, what is 
the character of quantitative structure?  There is no 
point debating whether some attribute is quantitative, 
if the character of quantitative structure is not under-
stood.  Second, what kinds of evidence distinguish 
quantitative from non-quantitative structure?  If the 
issue of whether some attribute is quantitative is to be 
tested, some idea is required of what evidence is rele-
vant to this question.   

The first question was answered by the mathemati-
cian, Otto Hölder [25]15.  Hölder articulated conditions 
characterising the structure of unbounded, continuous 
quantitative attributes, this structure being the para-
digm for the kinds of attributes measured in physics.  
Call any such attribute Q and let its different levels 
(the specific magnitudes of Q) be designated by a, b, 
c, ….   For any three levels, a, b, and c, of Q, let a + b 
                                                           
13 De Configurationibus I, i, [21] (pp.165-167). 
14 Il Saggiatore, [23] (p.237). 
15 [26 & 27] provide an English translation of Hölder. 

= c if and only if c is entirely composed of discrete 
parts a and b.  According to Hölder, the structure of 
such an attribute is characterised by seven conditions: 
 

1.  Given any two magnitudes, a and b, of Q, one 
and only one of the following is true: 

     (i) a is identical to b (i.e., a = b and b = a); 
    (ii) a is greater than b and b is less than a (i.e., 

a > b & b < a); or 
   (iii) b is greater than a and a is less than b (i.e., 

b > a & a < b). 
2.  For every magnitude, a, of Q, there exists a b 

in Q such that b < a. 
3.  For every pair of magnitudes, a and b, in Q, 

there exists a magnitude, c, in Q such that a 
+ b = c. 

4.  For every pair of magnitudes, a and b, in Q, a 
+ b > a and a + b > b. 

5.  For every pair of magnitudes, a and b, in Q, if 
a < b, then there exists magnitudes, c and d, 
in Q such that a + c = b and d + a = b. 

6.  For every triple of magnitudes, a, b, and c, in 
Q, (a + b) + c = a + (b + c). 

7.  For every pair of classes, φ and ψ, of magni-
tudes of Q, such that 

     (i) each magnitude of Q belongs to one and 
only one of φ and ψ; 

    (ii) neither φ nor ψ is empty; and 
   (iii) every magnitude in φ is less than each 

magnitude in ψ, 
there exists a magnitude x in Q such that for 
every other magnitude, x’, in Q, if x’ < x, 
then x’ ∈ φ and if x’ > x, then x’ ∈ ψ (de-
pending on the particular case, x may belong 
to either class). 
 

Hölder proved that if an attribute has this structure, 
then the system of ratios of its magnitudes is isomor-
phic to the system of positive real numbers and he 
went on to show that with any magnitude as the unit, 
each magnitude is measured by a real number.  This 
made the link between the concepts of quantitative 
structure and ratio (in the sense of Euclid’s Elements) 
explicit. 

From the realist perspective, the significance of 
Hölder’s achievement cannot be underestimated.  It 
brings into the open the character of quantitative struc-
ture.  This means that when a scientist proposes that 
some hitherto unmeasured attribute is measurable, as 
for example psychologists did about a century ago, it 
is clear what is being proposed.  It is then up to the 
scientists involved to put theoretical flesh onto the 
skeletal structure provided by Hölder.  Only when this 
is done is a scientific theory actually proposed. 

In any area of investigation, a scientist is always 
free to hypothesise that an attribute is quantitative.  
However, there is no a priori reason to suppose that 
just any attribute will possess quantitative structure.  
Thus, scientific caution requires that the hypothesis of 
quantitative structure always be evaluated relative to 
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available evidence.  This raises the issue of the kind of 
evidence that is relevant. 

Inspection of Hölder’s conditions reveals that even 
in the case of extensive attributes these conditions are 
not all directly testable.  Some (e.g., condition 6) are; 
but others (e.g., 2 and 7) are not.  How these condi-
tions might be tested for non-extensive attributes be-
comes clear when scientists begin to think about the 
kinds of evidence that might tell against them.  This 
was not a major issue in physical science, in part, 
because physicists restricted themselves to measuring 
attributes that were either extensive or functionally 
related to attributes already accepted as measurable; 
and in part because the Pythagorean vision of reality 
(viz., that all physical attributes must be quantitative) 
informed much of the development of physical sci-
ence.  It was the proposed extension of measurement 
to non-physical science that made the task of distin-
guishing quantitative from non-quantitative structure 
appear to be urgent16. 
 
2.3 Quantitative versus Non-Quantitative 

Structure 
The scientist, Hermann von Helmholtz, was one of the 
first to consider kinds of evidence for testing the hy-
pothesis that attributes are quantitative17. He asked: 
‘what is the objective sense of our expressing relation-
ships between real objects as magnitudes, by using 
denominate numbers; and under what conditions can 
we do this?’18  He distinguished ‘additive’ from ‘non-
additive’ magnitudes, the former being those, such as 
mass, time, and the geometric attributes, relative to 
which operations of extensive addition are identifi-
able, and the latter those where quantitative structure 
is identified via constants in numerical laws, as, for 
example, density is a constant ratio of mass to volume 
for each different kind of substance.   This was the 
distinction that N. R. Campbell [34] popularised as 
‘fundamental’ and ‘derived’ measurement.  From the 
realist viewpoint, neither pair of terms is optimal.  The 
distinction is not really between kinds of magnitudes, 
nor kinds of measurements.  It is one between the 
character of evidence for quantitative structure, viz., 
whether it is direct or indirect. 

In the case of direct evidence, an operation of con-
catenation is found via which distinct magnitudes of 
the attribute can be added extensively.  For example, 
such an operation is easily identified in the case of 
weight when objects are placed on the same pan of a 
beam balance.  Such an operation allows a direct test 
of the associative and commutative properties of addi-
tion.  Of course, one can never directly test any of 

                                                           

                                                          

16 It was Fechner’s psychophysics [28] that elicited the 
strongest opposition [29]. 
17 [30].  According to Heidelberger [29 & 31], Helmholtz 
was critical of Fechner’s psychophysics, although that is not 
clear from Helmholtz’s seminal paper [32]. 
18 The quote is from an English translation of [32], viz., [33] 
(p.75). 

these axioms across the full range of the attribute, or 
all of the axioms even across a limited range.  

From the realist perspective, there will be, in prin-
ciple, indefinitely many different ways in which indi-
rect evidence may be obtained for the hypothesis that 
some attribute is quantitative.  This is because realists 
take nature to be infinitely complex.  However, with 
respect to any proposed way of gaining such evidence, 
the burden of proof is always on those advocating it to 
show that it is capable of distinguishing quantitative 
from non-quantitative structure. 

The logic of one way of gaining indirect evi-
dence became clear when the psychologist, R. D. 
Luce and associates, expounded the theory of 
‘simultaneous conjoint measurement’19.  Again, 
from the realist point of view, this term is subop-
timal because what they were theorising about was 
not so much a method of measurement as a con-
text within which indirect evidence for quantita-
tive structure could be collected simultaneously 
for a number of attributes.  Their proposal also 
reveals the logic of Helmholtz’s ‘non-additive’ 
magnitudes and Campbell’s ‘derived’ measure-
ment.   

At the most general level, this theory is about the 
way in which merely ordinal structure on a product 
set, Y×Z, is diagnostic of quantitative structure intrin-
sic to Y and Z.  The theory proves that order upon Y×Z 
satisfies certain specific conditions (e.g., a potentially 
infinite hierarchy of cancellation conditions20) if and 
only if Y and Z are quantitative in structure and g(Y×Z) 
= f(Y, Z), where g and f are real valued functions and f 
reduces to additivity under some monotonic transfor-
mation. Importantly for the understanding of meas-
urement, the theory applies in contexts where one 
attribute, X, is a non-interactive, monomial function of 
two other attributes, Y and Z, (e.g., when X = Yp.Zq 
(where p and q are positive or negative integers)) 
because then X maps onto Y×Z.  Instances of what 
Campbell called derived measurement are of this form 
(e.g., density = mass1.volume-1).  This means that the 
way in which attributes quantified via derived meas-
urement possess quantitative structure is displayed via 
conjoint measurement21.  Conjoint measurement also 

 
19 The definitive paper is [35], although [36] gives the most 
complete exposition of the theory of conjoint measurement. 
Regarding the issue of empirical tests of quantitative struc-
ture via conjoint measurement, [37] is as important as [35]. 
20 The best known cancellation conditions are single cancel-
lation (sometimes called ‘independence’) and double can-
cellation.  An order, ≤, upon a product set Y×Z satisfies 
single cancellation if and only if (i) for all levels a and b in 
Y and any level x in Z, if ax ≤ bx, then for all levels y of Z, 
ay ≤ by, (where ax, etc. are elements of Y×Z) and (ii) for any 
level a in Y and all levels x and y in Z, if ax ≤ ay, then for all 
levels b in Y, bx ≤ by; and satisfies double cancellation if 
and only if for every three levels, a, b, and c, of Y and every 
three levels, x, y, and z, of Z, if bx ≤ ay and cy ≤ bz, then cx 
≤ az. 
21 Some philosophers, such as Carnap [38], see the relation-
ship between derived measures and attributes already meas-
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has implications for the measurement of non-physical 
attributes, such as psychological ones.  Psychological 
attributes are experienced directly only as ordinal, at 
best, and yet within psychology they are routinely 
presumed to be quantitative and measurable.  The 
theory of conjoint measurement makes the distinction 
between mere order and quantity explicit.   

This theory shows that the question of whether an 
attribute is quantitative is the same as any other scien-
tific question in the sense that it is open to empirical 
investigation and refutation.  From the realist stand-
point, this is the way things have to be.  Hölder’s 
characterisation of quantitative structure shows it to be 
a specific empirical condition in the sense that there is 
no logical necessity that the conditions he specifies 
should obtain with regard to any attribute at all.  The 
theory of conjoint measurement brings out explicitly 
the kind of difference the hypothesis of quantitative 
structure makes. 

 
3.  PHILOSOPHICAL RESUMÉ 

 
Measurement is a process whereby the numerical 

relation between a magnitude of a quantitative attrib-
ute and a unit of the same attribute is estimated using 
some procedure, often a standardised set of operations.  
The realist view of measurement is distinguished from 
other perspectives by the fact that all elements of the 
process are given a naturalistic interpretation and, in 
particular, both the attribute and the numerical rela-
tion are taken to be real features of the empirical con-
text of measurement.  However, neither of these (i.e., 
the realist interpretation of attributes and of numbers) 
is peculiar to the realist view of measurement.  Some 
representationists (e.g., Campbell [34]) understood 
measurement as involving attributes and interpreted 
numbers realistically (Campbell thought of natural 
numbers as properties of aggregates).  The most dis-
tinctive feature of the realist view is that according to 
it measurement is continuous with science generally 
and involves nothing that is logically special or pecu-
liar to it alone. 
 
The idea that measurement is somehow philosophi-
cally different to other aspects of the scientific enter-
prise is still prevalent.  For example, the operationist 
view that other concepts of science are defined by 
measurement operations assigns to measurement 
procedures a logical priority over other scientific con-
cepts and raises the question of how the procedures of 
measurement are themselves to be defined22; and the 
representational view, that measurement involves a 
distinctive relation, that of numerical representation, 
makes measurement appear a strange hybrid of the 

                                                                                         

                                                          

ured (such as that between density and mass and volume) as 
definitional.  Application of the theory of conjoint meas-
urement to derived measurement shows that these relation-
ships are not definitional: they are testable, empirical hy-
potheses (see [36]). 
22 See the critique of operationism in [39]. 

empirical and the conventional and raises the question 
of the apparently ‘unreasonable effectiveness of 
mathematics in the natural sciences’ [40]23.  From the 
realist perspective, measurement is continuous with 
other features of science. 

Measurement can only be based upon the fact that 
the relevant attribute possesses quantitative structure.  
Non-quantitative attributes cannot be measured (which 
is not to say that they cannot be studied scientifically).  
If an attribute is quantitative, then measurement is a 
possibility.  No attribute can be presumed quantitative 
and the scientific assessment that an attribute is quan-
titative must be based upon relevant evidence. The 
hypothesis that some attribute is quantitative, like any 
in science, says that specific empirical conditions 
obtain (e.g., those articulated by Hölder [25]) and it, 
thereby, rules out other possibilities.  The general, 
scientific method of critical inquiry, according to 
which hypotheses are only accepted in science follow-
ing the success of serious attempts to test them, ap-
plies to this hypothesis as much as to any.   

When the hypothesis that an attribute is quantita-
tive is accepted, then along with that hypothesis, as 
part of the same theoretical package, it is accepted that 
different magnitudes of the attribute stand in relations 
of ratio, these relations being instances of real num-
bers.  Thus, according to the realist view, real numbers 
are taken to be located in the empirical context of 
measurement as intrinsic features of that context.  
When scientists set about devising practical, standard-
ised procedures for measuring, it is precisely these real 
numbers (ratios between unknown magnitudes and the 
unit adopted) that the scientists are attempting to iden-
tify.  There is nothing in any of this that makes meas-
urement different in principle to anything else that is 
done in science.  It is, like so many methods used in 
science, a method for trying to find something out.  
The most important factor distinguishing measure-
ment from other methods is the context of its applica-
tion: its context is that of quantitative attributes and 
the ratios that they sustain. 
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