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Abstract. In this paper I intend to outline a method for �nding nonstandard models
of Peano Arithmetic (PA) that satisfy Goodstein's theorem. Goodstein's Theorem is an
interesting result because, though it is expressible completely in the language of number
theory, it is nonetheless independent of the axioms of PA. I begin by rehearsing a proof
of Goodstein's theorem, followed by a proof of its independence, developing the necessary
tools to do so along the way. Finally, using indicator theory, I show how that can classify
the nonstandard models according to Goodstein's Theorem.
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Introduction

This paper was heavily in�uenced by another undergraduate thesis by Justin Miller (see
[13]). In the two semesters leading up to the writing of this paper I studied some very basic set
theory, not so basic model theory, and went through Gödel's incompleteness theorems. One
thing that I became quite interested in after working through the incompleteness theorems
was what undecidable results might look like and the methods used to show that a speci�c
theorem was undecidable or not. In the beginning of the Spring of 2012 semester, my
adviser introduced me to Miller's paper which contains a detailed development of the set
theory necessary to prove Goodstein's theorem and a brief introduction to model theory with
an outline of how one would prove the independence of Goodstein's theorem. As a result
of this, I decided an interesting project might be to expand on Miller's paper, especially
as regards his section on model theory and the independence of Goodstein's theorem, and
to classify the nonstandard models of Peano Arithmetic (PA)�the standard axioms given
for arithmetic�according to whether Goodstein's theorem is true on them (an element that
is not taken up in Miller's paper). Since I spend a lot more time in model theory than
Miller does, I also thought it might be interesting and relevant to rehearse a proof of Gödel's
theorems and some interesting and related results, including a sketch of what nonstandard
models of PA must look like. This latter result seemed like a necessary step for my �nal goal
in the paper, classi�cation of such models. Unfortunately �nding a indicator for models of
Goodstein's theorem that was tractable and didn't involve introducing much more machinery
is beyond the scope of this paper. As such, in the end I say, how given such an indicator
(which I do show is guaranteed) we could classify the nonstandard models.
Thus, in this paper, I begin by rehearsing a proof of Goodstein's theorem, following those

given in [10, 13]. In order to do this I will �rst have to take a quick detour through some basic
set theory.1 My overall intention is to make this paper as accessible as possible, meaning
that I will start with the assumption that the reader only has an intuitive understanding of
logic and some facts concerning the natural numbers and arithmetic. However, because I
will try to start from the most basic level and work my way up I will unfortunately not have
time to develop many interesting side results�though I do develop some, especially within
model theory and I shall allude to them when possible. As always the reader should feel free
to skip the introductory material with which she is already familiar and to only attend as
much time to proofs as is needed for comprehension. In the later sections, any tedium will
hopefully be welcomed as a good thing.

0.1. Incompleteness. It was a long standing problem in mathematics whether it was pos-
sible to axiomatize the rules for arithmetic. If it was possible to do so then in principle any
true statement of arithmetic would be provable from the axioms. Further, because, as it
turns out, we can codify statements of arithmetic in arithmetic, we could reduce the discov-
ery of such proofs (i.e. verifying whether any statement is true or false) to the running of
an algorithm. In 1931, Gödel's showed that Peano Arithmetic was incomplete for �rst-order
logic. What this meant is that any consistent, recursive set of axioms containing the axioms
of PA will be incomplete, i.e. there will be statements that cannot be proven or disproven
from those axioms. As a result, we can �nd multiple models that realize those axioms that
are not elementarily equivalent to each other: they will not realize all the same �rst-order
statements. We call the natural numbers, N, the intended model, and all other models of PA,

1See [12] for an axiomatic development. [11, 18] also contain good introductions to set theory.
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nonstandard models. As it turns out all nonstandard models of PA have the form N+Z ·Q,
though we will have to develop quite a bit of machinery before we can prove that claim.
An initial question for logicians was what kinds of theorems would be independent�i.e.

true for some models of PA, but false on some nonstandard models�and whether any of those
results were of any interest. While some results were known, they were mostly combinatorial
in nature, and thus did not seem very "natural". When Goodstein put forward his theory
it was suspected that that theorem might be such a result, however, it was not until the
development of indicator theory by Paris and Harrington that incompleteness was proven.2

0.2. Goodstein's Theorem. A Goodstein sequence is understood intuitively in the follow-
ing manner. We start with a number m and a base n. The �rst term of a Goodstein sequence
is m. In order to arrive at the next term, we �rst write m in hereditary base-n notation.
In normal base-n notation, we write m as the sum of n to various powers multiplied by
coe�cients less than n, i.e. for some j ∈ N and some set of coe�cients γ0 to γj we can write
m as

m =

j∑
i=0

γin
i = γjn

j + γj−1n
j−1 + . . .+ γ1n+ γ0.

In hereditary base-n notation however, we also write all the exponents in base n notation.
So that in our above example we would write 0 to j in base-n as well. In the case where
j ≤ n this makes no di�erence, but when j > n it does. For example if 63 in base-2 notation
is written as

25 + 24 + 23 + 22 + 21 + 1,

but in hereditary base-2 notation, this would be written as

222+1 + 222 + 221+1 + 221 + 21 + 1.

This is signi�cant because once we have written m in hereditary base-n notation, we then
change all the n's in this notation to (n+ 1)'s, and then subtract one from the result. So for
example to get to the next term after 63 with hereditary base-2 notation would be

333+1 + 333 + 331+1 + 331 + 31 + 1− 1 = 333+1 + 333 + 331+1 + 331 + 31 u 3.05023899 · 1013.

I de�ne Goodstein sequences and Goodstein's theorem formally on page 18. This informal
de�nition should su�ce for now.
Goodstein's theorem is that all such sequences eventually terminate. It is easy to see from

the above why such a result woud be counterintutive, for while the Goodstein sequence for
3 starting with 2 terminates in 6 steps:

m0 = 21 + 1 = 3

m1 = 31 + 1− 1 = 31 = 3

m2 = 41 − 1 = 3

m3 = 3− 1 = 2

m4 = 2− 1 = 1

m5 = 1− 1 = 0,

2See [10].
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Goodstein sequences starting with larger numbers grow much, much quicker. For example
the Goodstein sequence for 4 starting with 2 takes approximately 10121210700 steps to termi-
nate.3 We can, however, brie�y give an intuition for why one might think the sequence does
terminate, even when it gets quite large. For the following let [a]n stand for the base-n number
a. Writing base-n with n < 10 is not di�cult, and it's common practice to begin using the al-
phabet after that to obtain more numbers (as in hexidecimal we use 0, 1, . . . , 8, 9, A, . . . , F ),
but if we are dealing with, for example, a base-500 number, it becomes di�cult to form
a representation we can easily read o�.4 Thus, we might represent a base-500 number as:
[1]500[496]500, where such a number in base-10, would be 1·5001+496·5000 = 500+496 = 996.
Now, to motivate the intuition, consider the Goodstein sequence for 50, 100, 004 starting at
n = 500 (this number was chosen simply because it provides an easy example). We have the
following:

m0 = 200 · 5002 + 200 · 500 + 4 = [200]500[200]500[4]500

m1 = 200 · 5012 + 200 · 501 + 3 = [200]501[200]501[3]501

m2 = 200 · 5022 + 200 · 502 + 2 = [200]502[200]502[2]502

m3 = 200 · 5032 + 200 · 503 + 1 = [200]503[200]503[1]503

m4 = 200 · 5042 + 200 · 504 = [200]504[200]504[0]504

m5 = 200 · 5052 + 199 · 505 + 504 = [200]505[199]505[504]505

...

m508 = 200 · 10082 + 199 · 1008 + 1 = [200]1008[199]1008[1]1008

m509 = 200 · 10092 + 199 · 1009 = [200]1009[199]1009[0]1009

m510 = 200 · 10102 + 198 · 1010 + 1009 = [200]1010[198]1010[1009]1010.

While we might still be skeptical that it can terminate�because, for example, my example
did not take advantage of hereditary base notation (I chose a large enough base)�this should
at least give one the intuition that the sequence may eventually end, since looking at the
base representations, we see that "in some sense" they aren't getting bigger (they are always

3See [13, 1] for more information on this.
4We might start using combination of letters to get higher, for example after Z, comes AA,AB, etc. but

this is just using base-10 plus base-26, which is to say why not stick with base-10 and makes things easy.



6 DAN KAPLAN

getting smaller). The sequence:

[200]500[200]500[4]500

[200]501[200]501[3]501

[200]502[200]502[2]502

[200]503[200]503[1]503

[200]504[200]504[0]504

[200]505[199]505[504]505

...

[200]1008[199]1008[1]1008

[200]1009[199]1009[0]1009

[200]1010[198]1010[1009]1010,

appears as though eventually it will reach, for some n, k ∈ N,
[1]n[1]n[n− 1]n

...

[0]n+k[1]n+k[1]n+k

[0]n+k+1[1]n+k+1[0]n+k+1

[0]n+k+2[0]n+k+2[(n+ k + 2)− 1]n+k+2,

from which point we would be guaranteed to reach zero. As it turns out the proof of
Goodstein's theorem essentially formalizes this intuition in set theory by creating a parallel
sequence to Goodstein's sequence that is strictly decreasing.

0.3. Classi�cation of Nonstandard Models. In closing I should like to outline that it is
possible to classify the nonstandard models of PA by Goodstein's theorem. Accomplishing
this will require going into a bit of detail concerning indicator theory.

0.4. Notation. Before I get started I should say a few words about the notation used in this
paper. The only notational familiarity I assume on the part of the reader is basic sentential
and propositional logic as well as perhaps the basic symbols that comprise arithmetic (+, ·,
etc.). For the most part I de�ne all other notation as it arises. There are several conventions
for which symbols to use for which purpose, and I cannot claim to adhere any one de�nitely.
However, for the most part I use x, y, z, w, u, v as variables (free or quanti�ed), lowercase
a, b, c, d, e to refer to members of a set or model, uppercase A,B,C,D,E, F to refer to sets,
and lowercase Greek letters to refer to functions and sometimes sentences and ordinals. I
use x if I mean to refer to some n-tuple x1, . . . , xn in contexts where referring to certain
components of the n-tuple aren't important. I also use special fonts for any of the above if I
am talking about a speci�c element, set, etc. that deserves to be named or to be referred to
repeatedly. I de�ne other notation as it arises and the context should hopefully make clear
what I am referring to when I do deviate from these conventions.
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Part 1. Goodstein's Theorem

1. Set Theory

To begin, I'll need to walk through some basic set theory that will prove necessary for
proving Goodstein's theorem. I begin with an axiomatic development of Zermelo-Fraenkel
set theory with the axiom of choice (ZFC).

Axiom 1: 5 Existence.

∃x(x = x).

Existence says that there exists sets.
Axiom 2: Extensionality.

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y).

Extensionality says that if two sets include exactly the same elements, then those
sets are equal.

Axiom 3: Foundation:

∀x[∃y(y ∈ x)→ ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))].

Foundation says that every non-empty set has an element which is disjoint with that
set.

Axiom 4: Comprehension. For each formula φ with free variables among x, z, w1, ..., wn,

∀z∀w1, ..., wn∃y∀x(x ∈ y ↔ (x ∈ z ∧ φ)).

Comprehension says that if φ is a property that characterizes some of the elements
x in the set z, then we can �nd a set y which contains exactly those elements.

Axiom 5: Pairing.

∀x∀y∃z(x ∈ z ∧ y ∈ z).

Pairing says for any two sets there is a set which contains both sets as elements.
Along with comprehension we can say that there is a set which contains exactly
those sets as elements.

Axiom 6: Union.

∀F∃A∀Y ∀x((x ∈ Y ∧ Y ∈ F)→ x ∈ A).

Given the previous two axioms, union allows us to understand set union. Union says
that for any set F we can �nd a set which contains the elements of all sets in F , i.e.
the union of the elements of F .

For the next axiom (as well as the axiom of choice), we introduce the following notation
for uniqueness. We let ∃!yφ(y) be short for ∃yφ(y)∧ (∀y∀x(φ(y)∧ φ(x))→ x = y), which is
read as "there exists a unique y, such that φ(y)".

Axiom 7: Replacement. For each formula φ with free variables among x, z, w1, ..., wn,

∀A∀w1, ..., wn[∀x ∈ A∃!yφ→ ∃Y ∀x ∈ A∃y ∈ Y φ].

Replacement essentially says something about the range of a function. To see how this
goes, let f be a function with arguments and values among x, y, w1, . . . , wn, and take
φ to a formula which holds whenever the arguments it takes satisfy f . Replacement

5Detailed explanations of what each axiom "intuitively accomplishes" can be found in [12, 10�.].
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says that if A is the domain of that function f , then we can �nd a set Y which
contains the image of f .

Finally, for the last three axioms, we will need to once again introduce some more notation.
We de�ne `⊂' (subset) as A ⊂ B if ∀x(x ∈ A → x ∈ B). We de�ne `∪' (union) as:
A∪B = {x|x ∈ A∨ x ∈ B}; and `∩' (intersection) as: A∩B = {x|x ∈ A∧ x ∈ B}. We also
introduce set di�erence here `\' as A \ B = {x ∈ A|x 6∈ B}. Finally, we de�ne the successor
function for ordinals as: S(x) := x ∪ {x}.

Axiom 8: In�nity.
∃x(∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x)).

In�nity says that there is a set that is closed under the successor function, meaning
a set which includes the successors of all its elements. Such a set would therefore not
be �nite.

Axiom 9: Power Set.
∀x∃Z∀y(y ⊂ x→ y ∈ Z).

This establishes the existence of the powerset for all sets, which is the set of all subsets
of a set. We normally write P(x) to mean the power set of x, i.e. P(x) := {z|z ⊂ x}.

Axiom 10: Choice.6

∀F (∀H ∈ F¬(H = ∅) ∧ ∀F ∈ F∀G ∈ F (F = G ∨ F ∩G = ∅)
→ ∃S∀F ∈ F∃!s(s ∈ S ∧ s ∈ F )).

The axiom of choice essentially says that if we can partition a set F , then there will
be some set S such that for all elements of F , there will be a unique element shared
by S and F . Informally this means we can pick or choose arbitrary elements out of
set.

1.1. N - The Natural Numbers. Using the machinery developed so far, we can construct
the natural numbers in such a way that `∈' serves as the more familar `<', which orders N.
We do so in the following manner. For 0 ∈ N, let 0 := ∅ and let n + 1 := S(n). The axiom
of in�nity guarantees the existence of a set closed under the successor function S(n), and we
call the smallest such set ω. The following theorem establishes that we are guaranteed its
unique existence.

Theorem 1.1. ∃!X∀Y ((∅ ∈ X ∧∀Z(Z ∈ X → S(Z) ∈ X))∧ (∅ ∈ Y ∧∀Z(Z ∈ Y → S(Z) ∈
Y )))→ (X ⊂ Y ). That is, there is a unique X, such that X contains 0 is closed under S(n),
and for any other set Y , such that Y contains 0 and is closed under S(n), X is a subset of
Y .

Proof. As mentioned above, we are guaranteed the existence of at least one suchX, and so let
X be the set guaranteed to us by Axiom 8, and we de�ne ω :=

⋂
{Y ∈ P(X)|∅ ∈ Y ∧∀Z(Z ∈

Y → S(Z) ∈ Y )}. In other words, we de�ne ω to be the intersecton of all such Y 's that
are a subset of X and that satisfy Axiom 8. What this entails is that if W is a set that
satis�es the in�nity axiom, such that W ∈ {Y ∈ P(X)|∅ ∈ Y ∧ ∀Z(Z ∈ Y → S(Z) ∈ Y )},
then ω ⊂ W . If W is closed under the successor and contains 0, but isn't a member of

6Another (less formal) way of de�ning the axiom of choice is as follows:

∀A∃R(R well-orders A).

These two de�nitions are equivalent. I de�ne what it means for a set to be well-ordered below.
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{Y ∈ P(X)|∅ ∈ Y ∧ ∀Z(Z ∈ Y → S(Z) ∈ Y )}, then it must be larger than all members of
that set. This means we still have that ω ⊂ W . �

We can de�ne the addition function + : N× N→ N recursively as follows. For m,n ∈ N
• n+ 0 = n
• n+ S(m) = S(n+m).

Actually, we can do the same for the multiplication function · : N×N→ N and exponen-
tiation.

• n · 0 = 0
• n · S(m) = (n ·m) +m.

Because the natural numbers we are dealing with are sets, I will delay de�ning exponen-
tiation until we have a better understanding of what is characteristic of these sets.

1.2. Ordinals. Consider the following properties a relation R ⊂ X ×X may have:

(1) ∀x ∈ X((x, x) ∈ R) (re�exivity)
(2) ∀x ∈ X¬((x, x) ∈ R) (antire�exivity)
(3) ∀x, y ∈ X[((x, y) ∈ R ∧ (y, x) ∈ R)→ x = y] (antisymmetry)
(4) ∀x, y, z ∈ X[((x, y) ∈ R ∧ (y, z) ∈ R)→ (x, z) ∈ R] (transitivity)
(5) ∀x, y ∈ X(x = y ∨ (x, y) ∈ R ∨ (y, z) ∈ R) (trichotomy)
(6) ∀x(∃y((y, x) ∈ R) → ∃y((y, x) ∈ R ∧ ∀w((w, x) ∈ R → ((w, y) ∈ R ∨ w = y))))

(discreteness)
(7) ∀x∃z((x, z) ∈ R ∧ ∀w((x,w) ∈ R→ (z, w) ∈ R ∨ z = w) (successor)
(8) ∃x∀y((x, y) ∈ R ∨ x = y) (left bound)
(9) ∀x, y((x, y) ∈ R→ ∃z((x, z) ∈ R ∧ (z, y) ∈ R) (denseness)
(10) ∀x∃y, z((y, x) ∈ R ∧ (x, z) ∈ R) (unboundedness) .

Note that 2 and 4 imply 3, though they are not equivalent. We can write 5 in this form
because 5 together with 2 and 4 get us the stronger trichotomy property, where the ∨ is
understood exclusively. As such, usually 5, 2, and 4 usually appear together. 7 gives us a
way of talking about the successor of an element using only the "language" of the order. An
order is understood to be a binary relation over the elements of a set. Which of the above
properties obtain for that order, will determine what order type it has. 7 says that there
is no greatest element and every element has an immediate successor (i.e. the order is not
dense).

De�nition 1.2. Now, we say that a relation R ⊂ X ×X is a

• total-order on X if R satis�es 1, 3, 4, and 5.
• linear-order on X if R satis�es 2, 4, and 5.

I introduce a few more order types which will be important later on. We say that R is a

• Discrete linear order with �rst element, but not last element (DIS) if R on X satis�es
2, 4, 5, 6, 7, and 8.
• Discrete linear order without endpoints if R on X satis�es 2, 4, 5, 6, 7, and 10.
• Dense linear order (DLO) if R on X satis�es 2, 4, 5, 9, and 10.

N is a DIS; Z is a discrete linear order without endpoints; Q is a DLO. The above are
linear orders as well since they all satisfy 2, 4, and 5.



10 DAN KAPLAN

De�nition 1.3. A relation � on a set α is a well-ordering, and we say α is well-ordered by
≺, if ≺ is a linear ordering and ∀Y ∈ P(α)∃m ∈ Y ∀n ∈ Y (∃x ∈ Y → (m = n ∨m ≺ n);
meaning that all non-empty subsets of α have a smallest element.7

De�nition 1.4. A set α is transitive if and only if ∀x ∈ α(x ⊂ α).

De�nition 1.5. A set α is an ordinal if and only if α is transitive and well ordered by ∈.
Now we prove brie�y that the ordinals are closed under the successor function.

Theorem 1.6. If α is an ordinal, then S(α) = α ∪ {α} is an ordinal.

Proof. Suppose α is an ordinal and let β = S(α). β is transitive, since for all for all x ∈ β
either x = α or x ∈ α. In the �rst case x is a subset of β, and in the second case, x is a
subset of α since α is an ordinal. Thus, β is transitive. Further, β is well-ordered since the
only subsets of β contain a combination of α and subsets of α. Regardless, because α is well
ordered by supposition, β is well-ordered as well. �

Theorem 1.7. Let Φ be a collection of ordinals. There is no function α : N→ Φ, such that
∀i, j ∈ N(i < j → α(j) < α(i)).

Proof. Assume there was, now construct A = {α(i)|i ∈ N}. By the foundation axiom and
the fact that the ordinals are well-ordered by ∈, we can �nd x, such that x ∈ a for each
a ∈ A, and for each a ∈ A, x and a are disjoint. This means we can �nd an x ∈ A such
that x is minimal. Now, let i be such that α(i) = x. By supposition α(S(i)) ∈ A an
α(S(i)) < α(i) = x since i < S(i), but this contradicts how x was chosen. �

Intuitively what this result tells us is that there cannot be an in�nite sequence of decreasing
ordinals, or that any strictly decreasing sequence of ordinals must terminate. This will prove
important for proving Goodstein's Theorem. Next, a few important de�nitions.

De�nition 1.8. For α an ordinal, we say that α is a successor ordinal if and only if there is
some ordinal β such that S(β) = α. Otherwise we say that α is a limit ordinal.

An example of a limit ordinal discussed so far is ω. To see that ω is a limit ordinal, assume
it is not. Then ω = S(δ) for some δ. Because ω is an ordinal, δ ∈ ω. Further, because ω is
de�ned so that it is closed under the successor function, §(δ) ∈ ω. This means that ω ∈ ω,
a contradiction. That sets cannot contain themselves is a result of the axiom of foundation.
We can �nd other limit ordinals as well. For example, because ω is an ordinal, its successor

must be an ordinal as well. Thus by the in�nity axiom, we can �nd a smallest set which
contains ω, ω + 1, ω + 2, . . ., which we call ω + ω or ω · 2. Likewise, if we take the sequence
ω, ω · 2, ω · 3, . . ., we can �nd the limit ordinal ω · ω or ω2. Similarly, we can �nd ωω and so
on.

De�nition 1.9. Cardinal numbers are used to measure the size of sets. The natural numbers
1, 2, 3, . . . are all cardinal numbers, and we say that any set has cardinality n for some n ∈ N
just in case there is a bijection from the ordinal n to that set.
We also de�ne trans�nite cardinal numbers, which correspond to the ordinals ω, ω1, . . .. It

is convention when speaking of cardinality to use ℵ0,ℵ1,ℵ2, . . . to refer to the cardinality of
ω0, ω1, ω2, . . . respectively. Now, we denote ω0 to be ω and ωn+1 to be the smallest ordinal
with cardinality greater than ℵn.

7An alternate formulation is to say that � well-orders α if and only if � is total and that every non-empty
subset of α has a �-least element.
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Note: ω1 is the smallest ordinal which contains all countable ordinals. I do not prove the
existence of these ordinals. Further because of space limits, the only trans�nite cardinal that
we will concern ourselves with is ℵ0. While we will at later points talk of 2ℵ0 , but we do not
take any stand in this paper on whether 2ℵ0 = ℵ1 (i.e. the continuum hypothesis). In fact,
we only introduce cardinals here because of their relevance generally and their use later on.
Now, we move onto trans�nite recursion.

1.3. Trans�nite induction and recursion. First we introduce some notation and de�ni-
tions.

De�nition 1.10. Given a nonempty set X which is well-ordered by <, and Y ∈ X, we call
the set I(Y ) = {x ∈ X|x < Y } an initial segment of X. In the case when I(Y ) 6= X,then
we say it is a proper initial segment.

Theorem 1.11 (Trans�nite induction). Let A be well-ordered and B ⊂ A such that for all
x ∈ A, I(x) ⊂ B → x ∈ B. It follows that A = B.

Trans�nite induction allows us a way to do proof by induction. Since if what is charac-
teristic of B is that ∀x ∈ Bφ(x), for some formula φ, then if we can show A = B, it will
follow that ∀x ∈ Aφ(x). This allows us to prove something about all the elements of a set.
Trans�nite recursion below allows and establishes a way for us to make recursive de�nitions
of sets.
Note that we do not need to include a requirement for a base case in our theorem. This

is because if B = ∅, then B will fail since I(S(∅)) = ∅ ⊂ B, but S(∅) 6∈ B.
Proof. Suppose not. Then let x ∈ A \ B be least element. We are guaranteed such an x
since A is well-ordered. Now, I(x) ⊂ B since all y ∈ A, such that y < x are also in B. Thus
x ∈ B, which is a contradiction. �

De�nition 1.12. 8 Let f be a function such that f : A → B, we say that f ∩ (C × B) is
the restriction of f to C, written fdC.
A proof by trans�nite induction is similar to a normal proof by induction as encountered in

number theory except that we must also add a case for limit ordinals. For example, suppose
we wish to show that ∀xφ(x) for some property φ. A proof by trans�nite induction proceeds
as follows:

Base case: In the base case we must prove that φ(0) holds.
Successor Case: In the successor case we assume for some ordinal α that φ(β) for all
β ≤ α. Then we must show that φ(α + 1).

Limit case: For the limit case we assume that φ(β) holds for all β < κ, where κ is a
limit ordinal. Then we must show that φ(κ).

I demonstrate a proof using this method in the proof of trans�nite recursion. First a brief bit
of notation to make that proof more accessible. De�ne V and O informally in the following
way:

De�nition 1.13.

V = {x|x = x}
and

O = {x|x is an ordinal}.
8It is convention to use � for restriction, but we reserve the use of this symbol for a model theoretic notion.
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Technically these are not well de�ned in set theory as they are too large. But we lose
no rigor if we should instead think of expressions involving them as being abbreviations for
longer expressions. So for example x ∈ O should just be thought of as an abbreviation for
the formula with one free variable that says x is an ordinal (see de�nition above). Likewise,
we should think of O∩ y as {x ∈ y|x is an ordinal }. The reason we introduce this notation
is that it allows us to prove trans�nite recursion in a much simpler way. That there is a
function g : O→ V just means that there is a set of ordered pairs {(x, y)|x is an ordinal }. It
is of course much simpler if we use this notation. A more rigorous formulation of trans�nite
recursion is presented in the note below.9

Theorem 1.14 (Trans�nite recursion). If f : V → V, then there is a unique function
g : O→ V such that ∀α(g(α) = f(gdα)].

Proof. I will prove uniqueness �rst. Suppose the theorem holds for functions g1 and g2. We
prove ∀x(g1(x) = g2(x)) (i.e. uniqueness) by trans�nite induction (this also gives us an
excellent opportunity to demonstrate trans�nite induction). We get the base case as follows

g1(0) = f(g1d0)

= f(g1 ∩ ∅ ×V)

= f(∅ ×V)

= f(g2cap(∅ ×V)

= g2(0).

9A more rigorous version, which I shall not prove here, would go as follows:

Theorem (Trans�nite recursion (robust version)). Given a formula f(x, y, w), we explicitly de�ne a formula
g(v, y) such that

(1.1) ∀x∃!yf(x, y, w)→ (∀x∃!yg(x, y) ∧ ∀x∃y∃z(g(x, z) ∧ f(y, z) ∧ y = gdx)).

Further for any formula g′(v, y) which also satis�es 1.1, we have the following, which essentially says that g
is unique (we could combine these two statements, but it would be quite unwieldy. No rigor is lost by doing
it this way). For brevity, let G be the sentence which says that g′(v, y) satis�ed 1.1 if we replace all the
instances of g in 1.1 with g′.

(1.2) (∀x∃!yf(x, y, w) ∧G)→ ∀x∀y(g(x, y)↔ g′(x, y)).

This says exactly what we said in the �rst theorem in a more rigorous form. I do not prove this version
here, however a proof (and more details concerning this formulation) can be found in [12, pp.25-27]. The
informal version presented here is also taken from [12].
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Now, for the successor case, assume that g1(β) = g2(β) for all β < α, and let S(β) = α.
Again, we have that

g1(α) = f(g1dα)

= f(g1 ∩ (α×V))

= f(g1 ∩ (S(β)×V))

= f(g1 ∩ ((β ∪ {β})×V))

= f(g1 ∩ [(β ×V) ∪ ({β} ×V)])

= f([g1 ∩ (β ×V)] ∪ [g1 ∩ ({β} ×V]))

= f([g2 ∩ (β ×V)] ∪ [g2 ∩ ({β} ×V]))

= f(g2 ∩ S(β)×V)

= f(g2 ∩ (α×V))

= g2(α).

The limit case follows even faster, since if we assume it holds for all α < κ, where κ is a limit
ordinal, then since κ =

⋃
α<κ α, we have our result. The details go as follows

g1(κ) = f(g1dκ)

= f(g1 ∩ ((∪α<κα)×V))

= f(g1 ∩ (∪α<κα×V))

= f(∪α<κg1 ∩ (α×V))

= f(∪α<κg2 ∩ (α×V))

= f(g2 ∩ ((∪α<κα)×V))

= f(g2dκ)

= g2(κ).

Thus, we have uniqueness.
Now, we must establish the existence of g. Let us call g a γ-approximation if and only if

g holds for all α < γ, i.e.
∀α < γ(g(α) = f(gdα).

Now we show by trans�nite induction10 that there is γ-approximation for each γ. The base
case follows vacuously since we can �nd g0 such that g0(∅) = f(gd∅).
For the successor case, let γ = α+ 1 be a successor ordinal and suppose that there is a β-

approximation for all β < γ. Now, de�ne gγ such that for each β < α, gγ(β) = f(gdβ), where
g is a β-approximation, and �nally let gγ(α) = f(gγdα). The limit case follow similarly.
Therefore, let g be de�ned such that g(γ) takes the value of g′(γ) where g′ is a γ + 1-

approximation. We are guaranteed that g is unique by the above. �

Now, trans�nite recursion allows us to de�ne a function recursively for all ordinals. We do
so by again specifying a base, a successor case, and �nally a limit case. We de�ne it in this
way in order to guarantee that such a function exists uniquely. Next, we introduce ordinal
addition, multiplication, and exponentiation, which we de�ne recursively. The de�nitions

10This particular proof using trans�nite induction is rather simple. I have included it in full detail just
to provide another illustration of trans�nite induction.
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are similar to those we introduced in section 1.1. The major di�erence is that we de�ne
them for all ordinals and not just the natural numbers.

De�nition 1.15. We de�ne ordinal addition for the ordinal α as follows (we must de�ne a
new function for each ordinal)

• α + 0 = α
• α + S(β) = S(α = β)
• For γ a limit ordinal, α + γ =

⋃
µ<γ α + µ.

De�nition 1.16. We de�ne ordinal multiplication for the ordinal α as follows (we must
de�ne a new function for each ordinal)

• α · 0 = 0
• α · 1 = α
• α · S(β) = (α · β) + β
• For γ a limit ordinal, α · γ =

⋃
µ<γ α · µ.

De�nition 1.17. We de�ne ordinal exponentiation for the ordinal α as the function exp(α, β).
For convenience we write this as αβ.

• α0 = 1
• αS(β) = (αβ) · β
• For γ a limit ordinal, αγ =

⋃
µ<γ α

µ.

I have chosen to write these de�nitions more informally because our main goal in working
through set theory is to prove Goodstein's theorem. As such, a rigorous working out of the
de�nitions of these functions is not necessary.Similarly we do not prove the uniqueness of
these functions. Because of how they are de�ned uniqueness follows almost immediately by
trans�nite recursion.11

Theorem 1.18 (Ordinal Addition). There is a unique function + as speci�ed in de�nition
1.15.

Theorem 1.19 (Ordinal Multiplication). There is a unique function · as speci�ed in de�-
nition 1.16.

Theorem 1.20 (Ordinal Exponentiation). There is a unique function exp(a, b) = ab as
speci�ed in de�nition 1.17.

1.3.1. Normal Form. The following is extremely important for Goodstein's theorem. Essen-
tially it lets us say that there is a unique base-n representation for every number.

Theorem 1.21. For all ordinals α, β > 1, we can �nd unique ordinals γ0 > γ1 > · · · > γn
and 0 < µ0, µ1, . . . , µn < α such that

β = αγ0µ0 + αγ1µ1 + · · ·+ αγnµn.

Proof. Fix α. If β < α then β = α0β, and if β = α then β = α1 · 1, thus assume that α < β.
By induction, assume the theorem holds for all ordinals less than β. Let γ be minimal such

that αγ > β. I claim γ must be a successor ordinal. To see this, assume not. It follows then
that αγ =

⋃
δ<γ α

δ. Note that αδ ≤ β whenever δ < γ, thus
⋃
δ<γ α

δ < β, a contradiction.

11See [12, 13] for worked out proofs of the uniqueness of these functions.
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Thus let γ be the successor of γ0. Note that α
γ0 ≤ β, and because the successor is unique,

γ0 will be unique here.
Now, let µ be minimal such that αγ0µ > β. By the exact same argument used above,

µ must be a successor ordinal and thus let µ0 be its unique predecessor. Note again that
αγ0µ0 < β. Finally, I claim we can �nd a unique β1 such that αγ0µ0 + β1 = β. This follows
from the fact that additional is well-de�ned, meaning that for �xed ordinals a, b, there is
exactly one solution to the equation a+ x = b. Thus, we can �nd a unique β1. Since β1 < β
it must have a unique representation by our hypothesis, and so we are done. �

The above notation for β we call the normal form of β with respect to base α. Another
form, called the Cantor Normal Form is similar to the above, except that we also express
γ0, . . . , γn in normal form with respect to base α and carry on this process inde�nitely (i.e.
since each γn will have µ0, . . . , µn, we also write each µn in normal form with respect to base
α, and so on). The following theorem formalizes this.

Theorem 1.22 (Cantor Normal Form). Given an ordinal Γ with α, β ∈ Γ, we can �nd
by Theorem unique ordinals γ0 > γ1 > · · · > γn and 0 < µ0, µ1, . . . , µn < α such that
β = αγ0µ0 + αγ1µ1 + · · ·+ αγnµn.. Next, we de�ne the Cantor normal form function CNF :
Γ× Γ→ Ψ for some ordinal Ψ such that

CNF (β, α) =
n∑
i=0

αCNF (γi,α)µi.

Note that if β < α then it follows that CNF (β, α) = β.
Every ordinal has a unique cantor normal form representation.

Proof. Follows from theorem 1.22. �

The Cantor normal form is what allows us to prove Goodstein's theorem, since the cantor
normal form allows us to uniquely express ordinals in hereditary base notation.

1.4. Predecessor Sequences. Before we turn to a proof of Goodstein's sequence, we must
introduce one more thing: predecessor sequences. Though while we are at it, there are
several important related idea that we can introduce here and which will be necessary for
the independence proof below.
To begin, we let ε0 be the smallest ordinal such that ε0 = ωε0 , i.e.

ε0 = ωω
ω
..
.

where ω has ω iterated exponents. It is the limit ordinal of the sequence ω, ωω, ωω
ω
, ωω

ωω

, . . ..
It is not di�cult to prove the existence of ε0 given the above de�nitions, but we do not do

so here.

De�nition 1.23. We de�ne the predecessor operator, for α < ε0, {α} : ω → ε0 recursively
such that

{0}(n) = 0

{α + 1}(n) = α

{ωδ+1(α + 1)}(n) = ωδ+1α + ωδn, and

{ωδ(α + 1)}(n) = ωδα + ω{δ}(n).(δ limit)
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De�nition 1.24. We de�ne the Goodstein predecessor operator, for α < ε0, 〈α〉 : ω → ε0
recursively such that

〈0〉(n) = 0

〈α + 1〉(n) = α, and

〈ωδ(α + 1)〉(n) = ωδα + ω〈δ〉(n)n+ 〈ω〈δ〉(n)〉(n).

For convenience we understand {α}(n1, n2, . . . , nk) to mean {· · · {{α}(n1)}(n2) · · · }(nk),
and similarly for 〈α〉(n1, n2, · · · , nk), which is how we de�ne predecessor and Goodstein
predecessor sequences. What is important about predecessor operators is that they give us
a way of creating decreasing sequences that are de�ned even for limit ordinals. In both cases
the predecessor operators are simply the inverse of the successor except in the limit cases, in
which case we must "jump" down below the limit ordinal. We claim that both predecessor
operators are well-de�ned. Since it is obvious for the base case and successor ordinals, we
shall show that the predecessor operator is well-de�ned for limit ordinals (the proof is similar
for the Goodstein operator).
Suppose κ is a limit ordinal. By theorem 1.22, κ has a unique normal form representation

with respect to the base ω. Write κ in this form, i.e.

κ = ωγnµn + ωγn−1µn−1 + · · ·+ ω1µ1 + ω0µ0.

With γn > γn−1 > · · · > γ0. Now, let m be minimal such that µm 6= 0. Note that if µ0 6= 0,
then ω0µ0 is non-zero, but less than ω, which would mean that κ is a successor ordinal, thus
assume m > 0. We can therefore drop all the terms of the above representation that have 0
as a co-e�cient. Thus, we rewrite κ as

κ = ωγnµn + ωγn−1µn−1 + · · ·+ ωγm + µm.

Now, we factor out ωγm and we have

κ = ωγm
(
ωγn−γmµn + · · ·ωγm−γmµm

)
= ωγm

(
ωγn−γmµn + · · ·ω0µm

)
= ωγm

(
ωγn−γmµn + · · ·+ µm

)
= ωγm

(
(ωγn−γmµn + · · ·+ µm − 1) + 1

)
.

We can rewrite it in this form because µm must be a successor ordinal (otherwise µm 6< ω).
It therefore follows that we can rewrite all limit ordinals as ωδ(α+1), and so the predecessor
operators are well-de�ned. As an example, suppose that κ = ωω + ω2, then we rewrite as
follows:

κ = ω2(ωω + 1)

= ω2 · ωω + ω2

= ω2·ω + ω2

= ωω + ω2.

We introduce two more pieces of notation before going on to prove several theorems which
will prove imporant later on.
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De�nition 1.25. Given two ordinals α, β ∈ ε0, we say α n-supercedes, written as α →
n
β,

if we can �nd n1, n2, . . . , nk ≤ n, such that {α}(n1, n2, . . . , nk) = β. As a special case, if we
have that n = n1 = n2 = · · · = nk, then we say that α n-succeeds β, written α⇒

n
β.

De�nition 1.26. We say that a set A ⊂ N is α-large i�

• if α = 1, then |A| ≥ 2, otherwise
• {ai ∈ A|A \ {ai} is {α}(ai)-large } is 1-large.

This de�nition gives us a notion of set-size based on the predecessor operator. In order
to see if A is α-large, we must see if there are at least two elements ai ∈ A, such that
A \ {ai} is {α}(ai)-large. For example, if we let A = (a0, a1, a2, . . . , ak), then A \ {a0} is
{α}(a0)-large if and only if A \ {a0, a1} is {α}(a0, a1)-large, which holds if and only if . . .
A\{a0, . . . , ak−2} is {α}(a0, . . . , ak−2)-large, which holds if and only if {α}(a0, . . . , ak−2) = 2,
since A\{a0, . . . , ak−2} has only two elements: ak−1 and ak. The following theorem establishes
an equivalent de�nition based on this.

Theorem 1.27. A = {a1, a2, . . . , ak} is α-large if and only if {α}(a1, a2, . . . , ak) = 0.

Proof. Follows from induction on α. For the base case let α = 1. A is α-large if and only if
|A| ≥ 2. Let A = a0, a1, . . .. Then by de�nition {α}(a0, a1, . . .) = 0
Now, assume it holds for all β < α. By de�nition A is α-large if and only if the following

term is 1-large:
B = {ai ∈ A|A \ {ai} is {alpha}(ai)-large}

This is equivalent to saying that if and only if |B| ≥ 2. Let B = a0, a1, . . .. By de�-
nition this means for each a0 ∈ B, that A \ {a0} is {α}(a0)-large. By supposition then
{{α}(a0)}(a1, . . . , ak) = 0, thus

{α}(a0, . . . ak) = 0.

�

Theorem 1.28. Suppose β →
n
α and 0 < n ≤ n1 < n2 < · · · < nk, then {β}(n1, . . . , nk) ≥

{α}(n1, . . . , nk).

Proof. Proof is by induction on β. For the base case β = 0, we note that β →
n
α implies that

α = 0, from which the result is trivial.
Therefore, assume the theorem holds for all γ < β. Now suppose β →

n
α. It fol-

lows that β →
n1

α since n1 ≥ n. Likewise, we have α →
n1

{α}(n1) and β →
n1

{β}(n1) by

de�nition. We therefore have that {β}(n1) →
n1

{α}(n1). Recall that this just says that

{{β}(n1)}(n2, . . . , nk) = {α}(n1). Thus, by assumption, we get

{{β}(n1)}(n2, . . . , nk) ≥ {{α}(n1)}(n2, . . . , nk),

which is equivalent to
{β}(n1, . . . , nk) ≥ {α}(n1, . . . , nk).

�

Theorem 1.29. For all α < ε0 and j, k, n ∈ N, 〈α〉(n, n + 1, . . . , n + k) →
j
{α}(n, n +

1, . . . , n+ k).
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Proof. If α = 0 or α = γ + 1, then we have our result immediately by de�nition. If α =
ωγ+1(β+ 1), then {α}(j) = ωγ+1 +ωγj and 〈α〉(j) = {α}(j) + 〈ωγ〉(j), from which the result
follows. Finally, we consider the limit case where α = ωδ(β + 1), with δ a limit ordinal.
Assume that the theorem holds for all µ < α. Follows that 〈δ〉(j) →

j
{δ}(j), and it follows

from this that ω〈δ〉(j) →
j
ω{δ}(j). Now, we calculate

〈α〉(j) = ωδβ + ω〈δ〉(j)j + 〈ω〈δ〉(j)〉(j)
→
j
ωδβ + ω〈δ〉(j)

→
j
ωδβ + ω{δ}(j)

= {α}(j).
Thus, we have our result:

〈α〉(j)→
j
{α}(j).

�

2. Goodstein's Theorem

Now, we turn to the proof of Goodstein's theorem. Formally, we can de�ne Goodstein
sequences in the following manner. First, we note that we can write each m ∈ N, m has a
unique normal representation in base n. That is to say that we can �nd unique µ0, ..., µk < n
and γ0 < γ1 < ... < γk < ω such that

(2.1) m =
k∑
i=0

nγiµi.

Next we de�ne fm,n(x) : ω + 1→ ε0 by

(2.2) fm,n(x) =
k∑
i=0

µix
fγi,n(x).

fm,n replaces each n in the cantor normal form representation of n with x, which is a necessary
component of building Goodstein sequences. For example, say that we have written in 728
(which is 36 − 1) in hereditary base 3 notation as follows:

728 = 2 · 331+2 + 2 · 331+1 + 2 · 331 + 2 · 32·30 + 2 · 31·30 + 2 · 30.

Now, say we want to replace all the 3's in that representation with 4's. We do so as follows:

f728,3(4) = 2 · 441+2 + 2 · 441+1 + 2 · 441 + 2 · 42·40 + 2 · 41·40 + 2 · 40.

This is the �rst step in de�ning a Goodstein sequence, which we now de�ne formally.

De�nition 2.1. First, let Gn : ω → ω, be such that Gn(m) = fm,n(n + 1) − 1. We de�ne
the Goodstein sequence for m beginning with n recursively, letting mk(n) represent the kth
term of the sequence, with

m0(n) = m,

mi+1 = Gn+i(mi(n)).
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Theorem 2.2 (Goodstein's Theorem).

∀m,n ∈ ω∃k ∈ ω(mk(n) = 0).

As I described in the introduction Goodstein's theorem is essentially proven by formalizing
the intuition that a certain representation of Goodstein sequences don't really decrease. The
way we formalize this is to create a parallel sequence of ordinals to any Goodstein sequence
which is actually strictly decreasing, and by Theorem 1.7, therefore terminate. In order to
prove Goodstein's theorem, we will need to prove two brief lemmas. The following notation
will prove helpful in that respect. De�ne on : ω → ε0 such that on(m) = fm,n(ω); in other
words on(m) replaces n in the base-n representation of m with ω.

Lemma 2.3. For m,n ∈ ω with n > 1, if α = on+1(m), then on+1(m− 1) = 〈α〉(n).

Proof. We proceed by induction. First we note that since we are dealing with ordinals, we
let (m − 1) := 0, when m = 0. Now, for the base case let m = 0. We have our result since
α = on+1(0) = 0, and thus 〈α〉(n) = 0 = on+1(0).
Next, for the inductive step assume that our lemma holds for all m′ < m and m > 0. We

may express m as m =
∑k

i=0 ai(n + 1)fi,n+1(n+1). First we consider the case when a0 > 0.

Applying de�nitions yields on+1(m−1)
∑k

i=1 aiω
fi,n+1(ω)+(a0−1) = 〈on+1(m)〉(n) = 〈α〉(n).,

which is the result we want.
Now, we consider the case where a0 = 0. Let be j be minimal, such that aj 6= 0 and
∀x < j(ax = 0). In this case, we have

m− 1 =

(
k∑

i=j+1

ai(n+ 1)fi,n+1(n+1)

)
+(

(n+ 1)fj,n+1(n+1)(aj − 1) + (n+ 1)fj,n+1(n+1)−1n+ ((n+ 1)fj,n+1(n+1)−1 − 1)

)
(2.3)

Applying on+1 to the above yields

on+1(m− 1) =

(
k∑

i=j+1

aiω
fi,n+1(n+1)

)
+(

ωfj,n+1(n+1)(aj − 1) + on+1((n+ 1)fj,n+1(n+1)−1n) + on+1((n+ 1)fj,n+1(n+1)−1 − 1)

)
(2.4)

By our inductive hypothesis, we have that on + 1(fj,n+1(n + 1)− 1) = 〈fj,n+1(ω)〉(n) and
that on+1((n + 1)fj,n+1(n−1)−1 − 1) = 〈ωfj,n+1(ω)−1〉(n) = 〈ω〈fj,n+1(ω)〉(n)〉(n). We therefore
calculate
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〈α〉(n) = 〈on+1(m)〉(n)

= 〈fm,n+1(ω)〉(n)

=

〈
k∑
i=j

ωfi,n+1(ω)ai

〉
(n)

Because taking the predecessor only a�ects the smallest term, i.e. the term whose ω compo-
nent is the smallest, taking the predecessor of the above is equivalent to taking the prede-
cessor of the smallest term. I detail this above when de�ning predecessor sequences. Now,
we calculate further, therefore, that〈

k∑
i=j

ωfi,n+1(ω)ai

〉
(n) =

k∑
i=j+1

ωfi,n+1(ω)ai + 〈ωfj,n+1(ω)aj〉(n)

=
k∑

i=j+1

ωfi,n+1(ω)ai + ωfj,n+1(ω)(aj − 1) + ω〈fj,n+1(ω)〉(n)n+ 〈ω〈fj,n+1(ω)〉(n)〉(n)

= on+1(m− 1).

Thus, on+1(m− 1) = 〈α〉(n). �

Lemma 2.4. If n > 1 then 〈on(m)〉(n) = on+1(Gn(m)).

Proof. By straight calculation using the previous result, we �nd

on+1(Gn(m)) = on+1(fm,n(n+ 1)− 1)

= 〈on+1(fm,n(n+ 1))〉(n)

= 〈on(m)〉(n).

�

Now, we turn to Goodstein's theorem.

Proof. Using our previous result, we can construct a parallel sequence to any given Goodstein
sequence, which we claim has the property of being strictly decreasing. Call this sequence
γn and de�ne it as follows

γ0 = on(m0(n)), and

γi+1 = on+i+1(mi+1(n)).

In order to demonstrate how this works, I shall create the parallel sequence for a Goodstein
sequence we know to terminate fairly quickly: 3 starting with two. In the left column I have
rewritten the Goodstein sequence and the right I write the parallel sequence:

m0 = 3 = 21 + 1

m1 = 3 = 31 + 1− 1 = 31

m2 = 3 = 41 − 1

m3 = 2 = 3− 1

m4 = 1 = 2− 1

m5 = 0 = 1− 1
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γ0 = o2(m0) = ω1 + 1

γ1 = o3(m1) = ω1

γ2 = o4(m2) = ω0 · 3 = 3

γ3 = o5(m3) = 2

γ4 = o6(m4) = 1

γ5 = o7(m5) = 0.

As we can see, the ω-representation, like the base representation isn't really getting bigger,
and there is a similarity in form between how the ω sequence decreases and the base sequence
in the introduction decreased. The follow calculations show γn to be strictly decreasing:

γi+1 = on+i+1(mi+1(n))

= on+i+1(gn+1(mi(n)))

= 〈on+i(mi(N))〉(n+ i)

= 〈〈on+i−1(mi−1(n))〉(n+ i− 1)〉(n+ i)

...

= 〈〈on(m0(n))〉(n)〉(n+ 1, . . . , n+ i)

= 〈on(m0(n))〉(n)(n, n+ 1, . . . , n+ i) = 〈γ0〉(n, n+ 1, . . . , n+ i),

which is strictly decreasing. Because γn is strictly decreasing, we have from Theorem 1.7,
that it must eventually terminate. Let k be minimal, therefore, such that γk = 0. Thus,
have γk = on+k(mk(n)) = 0. By de�nition then, mk = 0, and so we have our result. �
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Part 2. Independence of Goodstein's Theorem

Now that we have shown Goodstein's Theorem is a true theorem of the natural numbers,
we shall show that it is independent of PA, meaning that it is not provable from the axioms
of Peano Arithmetic (which we spell out in detail below). To begin we shall have to develop
some background in model theory, recursion theory, and �nally indicator theory. Along the
way I intend to give a thorough proof of Gödel's incompleteness theorem, because, after all,
Goodstein's theorem is the topic of this paper precisely because it is an interesting example
of an independent result.

3. Background Model Theory

Before we can jump into incompleteness we shall need to introduce some basic results
from model theory. In particular I will need to motivate enough machinery to make plau-
sible completeness, compactness, Löwenheim-Skolem theorem, and the �o�s-Vaught Test.12

Model theory is commonly characterized as "universal algebra plus logic", though Wilfrid
Hodges13 has suggested that "algebraic geometry minus �elds" might be a more accurate
characterization. At any rate, the point of these metaphors is that model theory is con-
cerned with studying classes of mathematical structures (or models), meaning that it is not
so much concerned with particular truths of a mathematical structure, so much as what
makes that structure the structure it is in relation to other structures. What is distinctive
about �elds, rings, graphs, etc. rather than waht is distinctive about this particular �eld.
A better way of putting all this might be to say that model theory studies any structure
describable by �rst-order logic. What Gödel's incompleteness theorem says is that the �rst-
order theory of arithmetic does not pick out a unique structure up to elementary equivalence
(a notion we de�ne below).
In Model theory, there are three fundamental objects of study: languages, theories, and

models. A language is literally the symbols we use to give meaning to sentences. All
languages, therefore, include all the symbols of �rst order logic, plus some nonlogical symbols.
Using a language we may de�ne a theory (using those symbols naturally). Finally we say
that a model, which is an interpretation of a language and a universe, is a model of a theory if
that theory is true on that model. For the most part, we can be somewhat ambiguous about
these three objects, as group theorests often do when talking of say Zn (it refers to groups
that are isomorphic even if these groups don't involve arithemetic modulo n); however, in
laying out the foundations we should be quite formal. Usually it is �ne to be ambiguous
about a language in model theory since we can say more or less the same things in di�erent
languages.
Now for some formal de�nitions. Since we will be discussing Peano Arithmetic, I will

motivate the following de�nitions with the corresponding language, theory, and so on.

De�nition 3.1. A �rst order language L has the following set of symbols:

(1) A set of m-ary function symbols for each m > 0
(2) A set of constant symbols
(3) A set of m-ary relation symbols for each m > 0
(4) A binary relation symbol for equality: ≡

12Most of the results here are taken from [11], though [7, 6, 18] also contain excellent in-depth explorations
of model theory.

13See [7, 6].
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(5) A countably in�nite list of variable symbols: x0, x1, . . . , xn, . . . for all n ∈ ω
(6) The logical connectives: ¬,∧,∨,→,↔ and the quanti�ers: ∀,∃.
(7) Parentheses: ( and ).

We call 1-3 the non-logical symbols of a language, L nl, since they will vary from language
to language and the rest of the symbols the logical symbols of a language which do not vary.

So the language of arithmetic, which we specify with LA has two binary function symbols:
+ and ·, one binary relation symbol <, and two constant symbols 0, 1.

De�nition 3.2. We call TmL the set of terms of a �rst order language L , which we de�ne
as follows:

(1) xn ∈ TmL for each n ∈ ω
(2) c ∈ TmL for each constant symbol c of L
(3) For eachm-ary function symbol F of L and t1, . . . , tm ∈ TmL , F (t1, . . . , tm) ∈ TmL .

Keeping as our example LA, the terms of this language, TmLA
, include all the variables

and constants in our language, and are furthermore closed under the functions of the lan-
guage. So 0, 1 ∈ TmLA

, and also 1 + 1, (1 + 1) + 1, ((1 + 1) + 1) + 1, . . . ∈ TmLA
, and so

on.

De�nition 3.3. We call FmL the set of formulas of a �rst order language L , which we
de�ne as follows:

(1) S ∈ FmL for each atomic sentence S, where we understand the atomic sentences of
L to be expressions of the form: Rt1 . . . tm for all m-ary relation symbols R in L ,
m ∈ ω, and t1, . . . , tm ∈ TmL

(2) for each φ, ψ ∈ FmL ,
• ¬φ ∈ FmL

• φ ∧ ψ ∈ FmL

• φ ∨ ψ ∈ FmL

• φ→ ψ ∈ FmL

• φ↔ ψ ∈ FmL

(3) for each φ ∈ FmL and n ∈ ω: ∀xnφ, ∃xnφ ∈ FmL .

De�nition 3.4. The set of sentences ofL , SnL is the set: {φ ∈ FmL |φ has no free variables}.

Now, we turn to one of the most important de�nitions of model theory, the de�nition of
a model.

De�nition 3.5. A model for a structure of a �rst order language L is a pair A = (A, I) such
that A is the universe of the structure and I is a function mapping the non-logical symbols
of the language, L nl, to their interpretation in the universe. Building up recursively, we set
the atomic for formulas φ ∈ FmL , I(φ) = φA, and so on for relations and constant symbols.
It is common practice to use Fraktur to refer to structures and to leave out I explicitly. Thus
we might specify the model of a discrete linear order with one endpoint as S = (ω,<, s, 0),
or the model of arithmetic as A = (N,+, ·, <, 0, 1). It is unnecessary to specify exactly what
I is in these cases because we assume that we interpret them in the normal way. The main
point of a model is therefore to connect the syntactic notions describable in a language with
the semantic notions (i.e. notions of truth) that we actually encounter in mathematical
structures.
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As such, in the model of a discrete linear order with one endpoint S, the language in
question would have the following nonlogical symbols: L nl

S = {<S, sS, 0S}, i.e. it would
have one binary relation symbol <S, one unary function symbol sS and one constant 0S. We
understand its terms then as repeated applications of the successor function to 0S and the
variables. We interpret then 0S as 0, and then likewise 1 would be the interpretation sS(0S)
and so on.
We adopt the following notation for making clear interpretations, leaving it out where the

interpretation of a model is obvious. Given an L structure A, we de�ne the interpretation
of a closed term tAA as follows:

(1) If t is a constant symbol of L then tAA = cAA .
(2) if t = F (t1, . . . , tm) for some m, then tAA = FA((tAA1 , . . . , tAAm )

It will rarely be necessary to be this formal when talking about interpretations of a model,
but we do so in de�ning some of these basic ideas.
Of course this is not the only model that could be interpreted on that language. We might

specify the following model: P = {A,<, s, 0}, where A = 0, 1, 2, 3, 4, and then we interpret 0S
as 0, sS(0S) as 1, and so on, except we also interpret 0 as s(4), i.e. sS(sS(sS(sS(sS(0S))))).
On this model we would not have the same statements true. As such, we introduce the
following notation for talking about truth.
For any model A and a sentence S, we say that S is true on A or A satis�es S as A � S.

For atomic sentences A � S just in case S holds, and we understand truth for nonatomic
sentences (S∧T , S∨T , . . .) in the normal way. Further, for a formula F , we write A � F just
in case A � φ(a1, . . . , an) for all a1, . . . , an ∈ A the universe of A. The following de�nition
establishes what I have just said informally.

De�nition 3.6. Given an L -structure A, we de�ne the truth-value of the interpretation of
a sentence θ ∈ SnL , i.e. θAA , so that θAA ∈ {T, F} (i.e. the set of truth values, true and
false) recursively as follows

(1) if θ is Rt1, . . . , tm for closed terms t1, . . . , tm and relation R, then θAA = T if and only
if RA(tAA1 , . . . , tAAm ) holds.

(2) if θ is t1 ≡ t2, then θ
AA = T if and only if tAA1 = tAA2 .

(3) if θ = ¬φ then θAA = T if and only if φAA = F .
(4) if θ = (φ∧ ψ) then θAA = T if and only if φAA = ψAA = T , and likewise for the other

sentential connections: ∨,→, etc.
(5) if θ = ∀xφ then θAA = T if and only if φAA(x) = T for all a ∈ A; and if θ = ∃xφ then

θAA = T if and only if φAA(x) = T ofr some a ∈ A.

Truth value is de�ned then exactly as we would expect. A sentence is true just in case it
holds on the model. Now with this in mind, we can de�ne the double turn style � formally.
We write A � θ if and only if θAA = T and A 6� θ if and only if θAA = F .
Note: this still leaves room for independence because while on any particular structure all

�rst-order sentences will either be true or false, it does not follow that any set of recursive
axioms can specify all of those sentences. More on this in the following sections.

We also introduce the following notation. If Σ is a set of sentences and θ a sentence, then
we write Σ � θ to mean that on any model in which Σ holds, θ holds as well.
Now, we will introduce two relations between structures.
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De�nition 3.7. Let L1,L2 be �rst order languages such that L1 ⊂ L2. Let A be a L1-
structure and B be a L2-structure. If A,B have the same universe and interpret L nl in the
same way then we say that A is the reduct of B to L1 or that B is the expansion of A to
L2, written A = B � L1.

Once again let LA be the language of arithmetic, and now let LO be the language of
the order, which has as its only nonlogical symbol the relation <. Now, LA ⊂ LO, and so
(N, <) = (N, 0, 1,+, ·, <) � LO.
Finally, we introduce the single-turn style ` which we use to indicate that a set of formulas

proves a formula. For the following de�nition let Λ be the set of tautologies and logical truths
of �rst order logic. In general, we will appeal to more rules, but for formal purposes we say
that our only inference rule is modus-ponens (MP), i.e. ψ if φ and φ→ ψ.

De�nition 3.8. Let Γ ⊂ FmL . A deduction from Γ is a �nite set sequences φ1, . . . , φn of
formulas such that for each i ≤ n, φi ∈ Λ ∪ Γ or there are j, k < i, such that φk = φj → φi
(i.e. MP). We say the formula φ is deducible from Γ if and only if there is a deduction
φ1, . . . , φn, φ. We write this as Γ ` φ.

3.1. Theory and Model Equivalence. In this section we will need to de�ne two important
ideas. Equivalence between theories (de�ned below) and equivalence between models. First
some preliminary de�nitions.

De�nition 3.9. Let Σ ⊂ SnL . We de�ne the set of consequences of Σ as

CnL (Σ) = {S ∈ SnL |Σ � S}.

For example, on the theory of a discrete linear order with lower bound S, if Σ = {0 <
1, 1 < 2, 2 < 3,∀x, y, z((x < y ∧ y < z)→ x < z)}, then 0 < 2, 0 < 3, 1 < 3 ∈ CnL , because
these sentences are all consequences of the sentences in Σ. The following de�nition gives us
a way of talking about all the models that satisfy some set of sentences. For example, 0 < 1
is satis�ed by both the theory of a discrete linear order with lower bound and the theory of
arithmetic.

De�nition 3.10. Let Σ ⊂ SnL again. We de�ne the class of models of Σ as

ModL (Σ) = {L -structures A|A � Σ}.

De�nition 3.11. A theory of L is a set of sentence T such that T = CnL (Σ) for some
Σ ⊂ SnL . In this case we call Σ the set of axioms of T .

De�nition 3.12. A theory T is said to be complete if and only if T has a model and for all
S ∈ SnL either S ∈ T or ¬S ∈ T .

Naturally, we will want a way of reading a theory o� from a model, which the following
de�nition captures.

De�nition 3.13. Let A be a L -structure. The theory of A is

Th(A) = {S ∈ SnL |A � S.}

The following establishes what it means for two models to have the same theories.

De�nition 3.14. Let A,B be L -structures. We say A and B are elementarily equivalent,
written A ≡ B if and only if Th(A) = Th(B).



26 DAN KAPLAN

While elementary equivalence is an important idea in model theory, elementarily equiv-
alent models are not necessarily isomorphic. For example, the models of a theory may
have di�erent cardinality. The following established what it means for two models to be
isomorphic.

De�nition 3.15. Let A,B be L -structures. We say A and B are isomorphic, written
A ∼= B, if and only if there is a bijection h : A→ B, where A is the universe of A and B is
the universe of B, and the following are true of h:

(1) h(cA) = cB, for all constant symbols c ∈ L . We understand cA to be the interpreta-
tion of c in A; we follow a similar convention below for functions and relations

(2) h(FA(a1, . . . , am)) = FB(h(a1), . . . , h(am)) for all m-ary function symbols F ∈ L
and all a1, . . . , am ∈ A

(3) A � RA(a1, . . . , am) if and only if B � RB(h(a1), . . . , h(am)) for all m-ary relation
symbols F ∈ L and all a1, . . . , am ∈ A.

Elementary equivalence is meant to express the fact that two models say the same things
in �rst order logic; isomorphism is meant to express the fact that two models have the exact
same structure. One famous and counter-intuitive (to those unfamiliar with model theory)
example is that while the theory of the order on Q: (Q, <) 6∼= (R, <), Th((Q, <)) ≡ Th((R, <
)). The reason for this is that what distinguishes R and Q (besides their cardinality) is that
in the reals, all non-empty subsets have a supremum that is also in the reals; however, this
is not a fact we can express using �rst order logic and the relation symbol `<'.

3.2. Important theorems in model theory. The following is a short list of important
theorems in model theory. I do not supply a proof since it is not essential for our purposes.

Theorem 3.16 (Completeness). Let Γ ⊂ FmL and φ ∈ FmL . Then Γ � φ if and only if
Γ ` φ, and Γ is consistent if and only if it is satis�able.

The gist of completeness is that any consistent set of formulas will have a model. That
is to say that the syntactic notion of ` corresponds with the semantic notion of �. The
following are two interesting results of this theorem. Compactness says that any consistent
set of formulas has a model if and only if every �nite subset of that that set has a model.
Löwenheim-Skolem Theorem says that if a theory has a model of in�nite cardinality, it has
a model of every in�nite cardinality.

Theorem 3.17 (Compactness). Let Γ ⊂ SnL

(1) For any Γ ∈ FmL , Γ � φ if and only if Γ0 � φ for some �nite Γ0 ⊂ Γ.
(2) Γ has a model if and only if every �nite Γ0 ⊂ Γ has one.

Theorem 3.18 (Löwenheim-Skolem Theorem). Let κ = |L | and assume that Γ ⊂ SnL has
a model. Then Γ has a model A with |A| ≤ κ.

De�nition 3.19. We say a theory T is κ-categorical, for some cardinal κ, if and only if T
has exactly one model of cardinality κ up to isomorphism.

Theorem 3.20 (�o�s-Vaught Test). Let T be a theory of L such that T has no �nite models
and κ a cardinal, such that |L | ≤ κ and let T be κ-categorical. It follows then that T is
complete.
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4. Background recursion theory

I will have to be even briefer in my treatment of recursion theory.14 We include recursion
theory in order to make formal what we mean when we say that a function or relation is
recursive. The original hope in de�ning axioms of arithmetic was that we could recursively
de�ne axioms that would deductively entail all truths of arithmetic. Gödel's theorems, which
I get to later, show that such a recursive set of axioms cannot exist.

De�nition 4.1. The class of partial recursive functions, C , is the smallest class of functions
f : Nk → N, k ≥ 1, such that

(1) C contains the zero functon, i.e. 0(x) = 0.
(2) C contains the successor function, i.e. S(x) = x+ 1 for all x ∈ N.
(3) C contains the projection functions, i.e. for each 1 ≤ i ≤ n ∈ N, P n

i (x1, . . . , xn) = xi.
(4) C is closed under function composition, i.e. for each f(x), g(x) ∈ C , f(g(x)) ∈ C .
(5) C is closed under primitive recursion, meaning if f(x), g(x, y, z) ∈ C then h(x, y) ∈ C

such that h is de�ned by:
• h(x, 0) = f(x)

• h(x, y + 1) =

{
g(x, y, h(x, y))

unde�ned, if h(x, y) unde�ned

(6) C is closed under minimalization, i.e. if g(x, y) ∈ C , then so is

h(x) =

{
min{y|g(x, y) = 0}
unde�ned if there is no such y.

We de�ne also the class of primitive recursive functions, PR, such that PR satis�es 1, 2,
3, 4, 5. I therefore follows that PR ⊂ C .

The following functions are in PR (and thus C ):

• x+ y
• x · y
• xy
• x− 1, with x− 1 = 0 if x ≤ 1
• x− y, with x− y = 0 if y ≥ x
• min(x, y) and max(x, y).

The following de�nition simpli�es checking if a set or functon is recursive.

De�nition 4.2. For a set S ⊂ Nk is recusrive if and only if its characteristic function is
recursive, where its characteristic function is de�ned as follows:

CF(x) =

{
1 if x ∈ S
0 if x 6∈ S.

Theorem 4.3 (Church-Turing Thesis). A function is f is in C if and only if there is an
algorithm for computing f in �nite time.

There is no proof the Church-Turing thesis as the rather informal statement of it would
suggest. It was put forward initially as a conjecture saying that any function is computable

14The information on recursion theory was taken primarily from [11, 3]. [8] contains a very brief intro-
duction to recursion theory, which was helpful in deciding which material was relevant for inclusion here.
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only if it can be computed by a Turing machine. Nonetheless it is largely accepted as true
since it succinctly captures what we have in mind when we think of computability/recursion,
is equivalent with some other notions of computability, and has no counterexamples.. While
it is less formal than we might wish, we can use it to justify our intuitons that a function is
recursive, and of course we can delve deeper into what such an algorithm might look like, as
the proof demands.

5. Peano Arithmetic

With that basic model theory out of the way, I now turn to the theory of Peano Arith-
metic. Since we have the foundations laid out, we can become a bit more relaxed concerning
notation. The follow axiomatization is the most commonly given axiomatization of PA (and
also the most intuitive).15 Nonetheless, alternative axiomatizations exist, which I address
brie�y at the end of this section.

PA1: Associativity (+): ∀x, y, z((x+ y) + z = x+ (y + z))
PA2: Commutivity (+): ∀x, y(x+ y = y + x)
PA3: Associativity (·): ∀x, y, z((x · y) · z = x · (y · z))
PA4: Commutivity (·): ∀x, y(x · y = y · x)
PA5: Distribution: ∀x, y, z(x · (y + z) = x · y + x · z)
PA6: Identity (+): ∀x((x+ 0 = x) ∧ (x · 0 = 0))
PA7: Identity (·): ∀x(x · 1 = x)
PA8: Transitivity (<): ∀x, y, z((x < y ∧ y < z)→ x < z)
PA9: Antire�exivity (<): ∀x¬(x < x)
PA10: Trichotomy (<): ∀x, y(x < y ∨ x = y ∨ y < x)
PA11: Respect of the order (+): ∀x, y, z(x < y → x+ y < y + z)
PA12: Respect of the order (·): ∀x, y, z((0 < z ∧ x < y)→ x · y < y · z)
PA13: Subtraction: ∀x, y(x < y → ∃z(x+ z = y))
PA14: Discreteness (<): 0 < 1 ∧ ∀x(0 < x→ 1 ≤ x)
PA15: Foundation: ∀x(0 ≤ x)

We call these �rst 15 axioms PA−. In the next section I will show that the PA1-PA15
(plus the induction schema; see below) are insu�cient for picking out the intended model of
arithemetic, N. If, however, we add the following second-order axiom we can show that any
model of that theory can be reduced to PA. We shall not make much use of this stronger
theory, though it is worth mentioning. Let us call the previous 15 axioms plus the following
second-order induction axiom PA+:

PA16+: Induction: ∀X(0 ∈ X ∧ ∀x(x ∈ X → x+ 1 ∈ X)→ ∀y(y ∈ X))

Intutively, what this axiom says is that the only elements in our model are 0 and those
elements which can be "reached" by repeated application of the successor function to 0, i.e.
all and only N. Another way of putting this point is to say that all the elements of this second-
order theory are exactly those elements contained in the set X which only contains 0 and is
closed under the successor. We can exclude nonstandard models because any nonstandard
model will still have {0} as a subset. This axioms says that all elements of our model must
be reachable via a �nite number of applications of the successor on {0}, and this will not
hold in nonstandard models.

15For a more in-depth development of these axioms see [18, 8].
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We call this axiom second-order because we have to quantify over sets in order to express
it. The disadvantage of second-order logic, unfortunately is that many basic results in
model theory and proof theory fail to hold. Theorem 3.17 fails, for example. Hence we
continue to work in the �rst-order theory of PA. On this note, one might think that the
above axioms can be simpli�ed. While alternative axiomatizaton schemes do exist that
are simpler, it is necessary to include multiplication as well as addition because we cannot
de�ne multiplication from addition or the successor. While we de�ne, for example x + y as
S(· · · (S(x)) · · · ), we would need to include such a de�nition for every such y, which is to
say we would need to quantify over formulas�something that cannot be done in �rst-order
logic.
Instead, we include an induction scheme to get us PA. Essentially for each formula, we

incude the following axiom, and PA is taken to mean PA1-PA15, all the induction schema
for formulas of language. Because all the formulas are built out of symbols in our language,
we can include the following class of formulas in our axioms:

PA16φ: ∀x((φ(x, 0) ∧ ∀y(φ(x, y)→ φ(x, y + 1)))→ ∀z(φ(x, z)))

is the axiom of induction for the formula φ(x, y).

5.1. Alternative Schema. Another way one might axiomatize PA is as follows:

PA'1: ∀x¬(x+ 1 = 0)
PA'2: ∀x, y(x+ 1 = y + 1→ x = y)
PA'3: ∀x(x+ 0 = 0)
PA'4: ∀x, y(x+ (y + 1) = (x+ y) + 1)
PA'5: ∀x(x · 0 = 0)
PA'6: ∀x, y(x · (y + 1) = x · y + x)
PA'7φ: ∀x((φ(x, 0) ∧ ∀y(φ(x, y)→ φ(x, y + 1)))→ ∀z(φ(x, z))).

To see that they are equivalent, we would need only to show that the above 16 axioms
follow from these 6. It is not proven here, since the �rst axiomatization schema is more
convenient. The reader may consult [18, 115f.] for a proof of several of them.

6. Gödel's Theorems

6.1. ∆0,Σ1, and Π1 Formulas. The following allow us to de�ne classes of formulas based
upon the amount of quanti�ers they have

De�nition 6.1. If a formula, in which the free variable is x has either of the following forms

• ∃y(y ≤ x ∧ φ(x, y)), or
• ∀y(y ≤ x→ φ(x, y))

then we say that the quanti�er is bounded in this formula. Essentially, to check if a formula
if this form is true, we need only check values of y up to n, and so we can determine the truth
of such a formula in a �nite number of steps. For clarity, we write formulas with bounded
variables as follows and treat them as equivalent to the above:

• ∃y ≤ xφ(x, y)), or
• ∀y ≤ xφ(x, y)).

De�nition 6.2. A formula is called ∆0, or with bounded quanti�ers, if all of its quanti�ers
are bounded. We call a formula Σ1 if it has the form ∃xφ, where φ is ∆0. Likewise, we call
a formula Π1 if it has the form ∀xφ where φ is ∆0. Further, for n > 1, we say a formula is
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Σn+1 if it has the form ∃xφ, where φ is Πn; and we say it is Πn+1 if it has the form ∀xφ,
where φ is Σn.
Therefore, n tells us that there are n unbounded quanti�ers in front of the formula, which

are alternatively ∃ and ∀. Σ formulas start with ∃; Π formulas start with ∀. As an example,
if we have ∃x∃yf(x), where f(x) is ∆0, that formula would be equivalent to a Σ1 since we
may rewrite it as ∃z∃x ≤ z∃y ≤ zf(x).
From here we can de�ne classes of formulas. We can speak of the ∆0, Σn, Πn classes of

formulas to refer to the set of all formulas of that form. Further, we say that a set of formulas
is ∆n if it is equivalent to both a Σn and Πn set of formulas.

The following de�nition will prove useful in the next section.

De�nition 6.3. Let f : Nk → N be a total function and T an LA theory extending PA. We
say that a function f or set S ⊂ Nk is represented in T if and only if there is a φ(x, y) ∈ FmLA

such that for each n ∈ N
• T ` ∃!yφ(n, y)
• if f(n) = d, then T ` φ(n, d)

Similarly, for S:

• if s ∈ S then T ` φ(s)
• if s 6∈ S, then T ` ¬φ(s).

We say that f or S is Σn-represented in T just in case φ is equivalent to a Σn formula.
Likewise, we say that s or f is Πn-represented in T just in case φ is equivalent to a Πn

formula.
What representation does is gives us a way of either reducing a function to a formula. For

example, say that f is the function for addition by 2, i.e. f(x) = x + 2. Then φ represents
f just in case for all x, T ` φ(x, x+ 2), meaning φ says f(x) = x+ 2.
Likewise we say a set is represented just in case there is a formula that picks out that set,

i.e. is only true for members of that set. A rather mundane example might go as follows.
S = {0, 1, 2, 3} and φ(x) = x = 0∨ x = 1∨ x = 2∨ x = 3. In this case whenever x ∈ S then
T ` φ(x), and whenever x 6∈ S, T ` ¬φ(x).

Theorem 6.4. All recursive sets S ⊂ Nk are Σ1-represented in PA.

Proof. See [18, 8, 3]. �

Corollary 6.5. All recursive functions f : Nk → N are Σ1-represented in PA.

Proof. Let Sf be the set of ordered pairs (x, y) such that (x, y) ∈ Sf just in case f(x) = y.
Then our result follows immediately from the previous theorem. �

6.2. Gödel Coding. Gödel coding gives us a way of associating each formula, in an injective
manner, with its code, so that each formula has a unique code. Since formulas of LA are
just strings of symbols, namely: , ( ) ¬ ∨ ∧ ∀ = 0 1 ≤ + · x1 x2 · · · . We associate with each
symbol a unique integer, ns, from the list 0, 1, 2, 3, 4, · · · , where b represents the number of
unique symbols. There are many di�erent Gödel codes, what is important is that each code
be a recursive, injection σ → _σ^, where _σ^ is understood to be the Gödel code for σ. See
the appendix for two worked out examples of Gödel coding. As it turns out, how exactly
one de�nes a code is relatively unimportant. Brie�y, however, here are two examples of how
one might construct such codes:
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Example 6.6. One example (taken from Poizat) is to map the symbols: ( ) ¬ ∨ ∧ ∀ = 0
1 ≤ + · x1 x2 · · · , in order with the integers, starting with 0. We let the Gödel code of a
sentence be the number

pa0+1
1 · · · pan+1

n

Where pi is the ith prime number. In a sentence with n symbols we represent the ith symbol
with pai+1

i , where ai is the integer that corresponds to that symbol. Because each unique
sentence will pick out a unique prime decomposition of some natural number, we can see that
we can uniquely represent any sentence in this manner. Moving from sentences to formulas
requires introducing some more theory, but is still possible.

Example 6.7. Another example using a similar technique of such a coding (taken from [8])
is to send the string s0s1s2 · · · sk to the integer

_s0s1s2 · · · sk^ =
k∑
i=0

bi · (nsi + 1).

We do so by associating with each letter of the alphabet a number 0, 1, 2, . . . , 25, and where
b is the number of symbols in our alphabet plus one. Once again, we are guaranteed that
each unique string maps to a unique number.

Further, if we understand a proof simply as a �nite string of sentences, then we can simply
add a new symbol between sentences and produce codes for proofs. We now demonstrate
the power of such codes in the following famous result.

Theorem 6.8 (Tarski's Theorem). Let LA be our language �xM � PA as our LA structure.
There is no formula V (x), such that V is satis�ed on M in exactly those cases in which x
is the code of a true sentence of a model of arithmetic M .

Proof. Assume by way of contradiction that there is a such a V (x). Let LA be our language
�x M as our LA structure. Let A be the set of codes of formulas whose only free variable is
x. Now, we de�ne φ : A × N → N such that φ(n,m) yields the code obtained by replacing
x in the formula that corresponds to n with the number m. φ is recursive, and therefore by
corollary 6.5 has a Σ1-representation.
Now, we note that the following formula has only one free variable, x: ¬V (φ(x, x)),

which by supposition holds in exactly those cases in which φ(x, x) is not the code of a true
sentence of M . Because it has only one free variable its code is in A. Let n0 be the code,
therefore, for ¬V (φ(x, x)). It follow then that M � V (φ(n0, n0))↔ ¬V (φ(n0, n0)), which is
a contradiction. That is, if V (φ(n0, n0)) is true, then ¬V (φn0, n0) is true, and if V (φn0, n0)
is false, then ¬V (φ(n0, n0)) is false. Thus we have our result. �

Tarski's theorem essentially says that "this sentence is false" is a sentence that, though it
appears we have the machinery for talking about it in LA, doing so leads to contradiction.
The result being that we cannot speak of the truth of sentences of arithmetic from within
arithmetic. Another important take away is that it is often not important exactly how one
de�nes a Gödel code. The speci�cs of a code rarely come into play in a theorem. Tarski's
theorem also introduces another important method that we will need to prove Gödel's in-
completeness theorems: diagonalization.

Theorem 6.9 (Diagonalization Theorem). Given any LA-theory T that Σ1 - represents all
recursive functions and φ(x), a formula with one free variable, we can �nd a sentence S such
that T ` S ↔ φ(_S^). If φ is a Π1 formula, then S may taken as equivalent to a Π1 formula.
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Proof. De�ne d(x) as follows

d(x) =

{
_∀y(y = x→ σ(y))^ if x = _σ(x)^, for some LA formula

0 otherwise.

Now, let ψ(x) = ∀z(d(x) = z → φ(x)), and let S be the sentence

∀y(y = _φ(x)^→ φ(y)).

Now, I claim that T ` S ↔ ψ(_ψ(x)^). Which the following calculations show to be true

T ` S ↔ S

T ` ∀z(d(_φ(x)^) = z → φ(z))↔ ∀z(d(_φ(x)^) = z → φ(z))

T ` ∀y(_φ(x)^ = y → ∀z(d(_φ(x)^) = z → φ(y))↔ ∀z(d(_φ(x)^) = z → φ(z))

T ` ∀y(_φ(x)^ = y → ∀z(d(y) = z → φ(y))↔ ∀z(d(_φ(x)^) = z → φ(z))

T ` ∀y(_φ(x)^ = y → φ(y)↔ ∀z(d(_φ(x)^ = z → φ(z))

T ` S ↔ ∀z(d(_φ(x)^ = z → φ(z))(a)

T ` S ↔ ψ(_ψ(x)^).

Now, because _S^ = d(_φ(x)^) it follows that T ` ∀z(d(_φ(x)^) = z ↔ z = _S^. From (a) it
therefore follows that

T ` S ↔ ∀z(z = _S^→ φ(z)),

and thus,

T ` S ↔ φ(_S^).

Finally, if φ(x) is Π1, then ψ is, since excluding φ(x), ψ(x) is ∆0, and likewise for S, since
we can just as easily rewrite S as ψ(_ψ(x)^). �

Intuitively, what this says is that we can �nd, for any formula, a sentence that says "I
am true precisely when the code of me is true for that formula". Initially, we might think
�nding such a sentence will be impossible since any attempt to de�ne it initially will mean a
change to its code and then we will have to go back and forth. d says that we can play this
game without running into trouble. In Tarski's theorem, the sentence we looked for said "I
am true precisely when my code corresponds to a false sentence," which is why we ran into
trouble. An interesting result of diagonalization is that for sentences such at φ, we have that
T ` φ(_θ^) → φ(_φ(_θ^)^. The signi�cance of this will become clear in the proof of Gödel's
second theorem. Now, we move onto Gödel's proofs.

6.3. Gödel's Incompleteness Theorems.

Theorem 6.10 (Gödel's First Incompleteness Theorem). Let T be a consistent recursively
axiomatized LA-theory extending PA. Then there is a Π1 sentence τ such that neither T ` τ
nor T ` ¬τ .

Lemma 6.11. Let T be a recursive set of Gödel codes of LA sentences such that all Σ1 and
Π1 sentences that PA proves are contained in T and if _σ^ ∈ T , then _¬σ^ 6∈ T (T is simply
consistent). T is incomplete meaning that there is a Π1 sentence such that neither its code
or the code of its negation are in T .



CLASSIFICATION OF MODELS OF PA BY GOODSTEIN'S THEOREM 33

Proof. Because T is recursive, there is a Σ1 formula θ(x), such that for all n ∈ N, n ∈ T ↔
PA ` θ(n), and n 6∈ T ↔ PA ` ¬θ(n). Now, we use 6.9 to �nd a sentence S such that
PA ` S ↔ ¬θ(_S^), but then if _S^ ∈ T , then PA ` S by supposition and so PA ` ¬θ(_S^),
which means _S^ 6∈ T , i.e. a contradiction. Similarly, if we suppose _S^ 6∈ T , then _¬S^ ∈ T
and so PA ` ¬S, thus PA ` θ(_S^) and so _S^ ∈ T . Thus, _S^ 6∈ T and _¬S^ 6∈ T . �

The reader will note a striking similarity between the proof of this method and Tarski's
theorem. This is precisely how proofs utilizing diagonalization go. Now we are prepared to
prove Gödel's theorem.

Proof. Let A = {_σ^|σ is a LA sentence, Π1 or Σ1, and T ` σ}. By the above lemma then,
we can �nd a Π1 sentence S such that _S^ 6∈ A and _¬S^ 6∈ A. Thus, T 6` S and T 6` ¬S. �

Now, we move onto Gödel's second theorem. His second theorem shall not prove all that
important for our purposes, but since we have developed all the machinery needed to prove
it, we do so here. It essentially says that su�ciently complex �rst-order theories cannot
prove their own consistency.

De�nition 6.12. We say that an LA formula θ(x) with one free variable is a provability
predicate for T , an extension of PA, if for all sentences σ, τ of LA

(1) if T ` σ, then T ` θ(_σ^)
(2) T ` θ(_σ → τ ^)→ (θ(_σ^)→ θ(_τ ^))
(3) T ` θ(_σ^)→ θ(_θ(_σ^)^).

Theorem 6.13 (Gödel's Second Incompleteness Theorem). Let T be a consistent LA-theory
extending PA. T cannot prove its own consistency. That is, for some provability predicate θ
and some contradictory statement σ (0 6= 0 works for this) it is not the case that T ` ¬θ(_σ^).
Thus we must show T 6` ¬θ(_σ^).

Proof. ¬θ(x) is a formula with one free variable, thus by the Diagonalization theorem we have
that there exists some sentence S such that T ` S ↔ ¬θ(_S^). If T ` S then T ` ¬θ(_S^),
i.e. T 6` S, thus T 6` S since if it does it doesn't and if it doesn't it doesn't. Now, because
σ is a contradiction, we have that T ` σ → S, and thus T ` θ(_σ → S^) by 1. It therefore
follows that T ` θ(_σ^)→ θ(_S^) by 2, which is equivalent to T ` ¬θ(_S^)→ ¬θ(_σ^), and so
we have T ` S → ¬θ(_σ^).
Now, observe that T ` S ↔ ¬θ(_S^) is equivalent to T ` θ(_S^) ↔ ¬S. We have from 1

therefore that
T ` θ(_θ(_S^)→ ¬S^),

and so from 2 and the above

T ` θ(_θ(_S^)^)→ θ(_¬S^).

Now, we have T ` θ(_S^) → θ(_θ(_S^)^) from 3, and from this and the above we have
T ` θ(_S^)→ θ(_¬S^). Since T ` θ(_S^)→ θ(_S^), it follows that

T ` θ(_S^)→ θ(_S ∧ ¬S^).

Since S ∧ ¬S is a contradiction it is equivalent to our σ, thus T ` θ(_S^)→ θ(_σ^), which is
equivalent to T ` ¬θ(_σ^) → ¬ ` θ(_S^). Recall that T ` S ↔ ¬θ(_S^), thus T ` ¬θ(_σ^) →
S.
We therefore have T ` S → ¬θ(_σ^) and T ` ¬θ(_σ^)→ S and thus

T ` S ↔ ¬θ(_σ^).
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Since T 6` S, we therefore have that
T 6` ¬θ(_σ^).

�

7. Consequences of incompleteness

Theorem 7.1. Let M � PA and I be a proper initial segment of M , with the properties
that:16

• x < y ∈ I → x ∈ I, and
• I is closed under the successor function

If a ∈ M and φ(x, a) is a LA formula, such that M � φ(b, a) for all b ∈ I, then there is a
c > I such that M � ∀x ≤ c(φ(x, a)).

Proof. Suppose not. It follows then that we can de�ne I in the following way. I = {x ∈
M |M � φ(x, a)}. Because models of PA are closed under the successor function we have
that M � φ(0, a)∧∀x(φ(x, a)→ φ(x+ 1, a)), thus M � ∀xφ(x, a), which means that I = M ,
which contradicts our assumption. �

What this theorem says essentially is that we cannot recursively specify a subset of a
nonstandard model. If we suppose we can, by for example saying that a certain formula
holds only for members of that initial segment, then it's a consequence that it also holds for
elements greater than that initial segment, which is a contradiction.

7.1. Nonstandard models of PA. We say that all nonstandard models are end-extensions
of N, and thus that N is an initial segment of all nonstandard models. This follows from the
fact that all models of PA must contain 0 and must be closed under the successor function.
Thus N is an initial segment of all models of PA. What distinguishes the nonstandard
models of PA is the end-extensions of N. As it turns out nonstandard models may have
nonstandard initial segments as well, i.e. initial segments that aren't N. In fact, there is
a famous theorem, Friedman's Theorem,17 which says that all nonstandard models of PA
will have a proper initial segment to which they are isomorphic, though we will not develop
the machinery to prove it here. We adopt the following notation for initial segments/end
extensions. We write that I ⊂e M , just incase I is an initial segment of M and (thus) M is
an end extension of I.

Theorem 7.2. Let T be a recursively axiomatized extension of PA. T has 2ℵ0 complete
extensions.

Proof. By Gödel's �rst incompleteness theorem, there is a Π1 sentence τ such that neither
T ` τ nor T ` ¬τ . Thus, T + τ and T +¬τ are both consistent, and so each is an extension
of T . In fact, even if we add τ to T , we will still be able to �nd another Π1 sentence τ1,
such that neither T ∪{τ} ` τ nor T ∪{τ} ` ¬τ . Nevertheless, each model will either satisfy
τ or it will not. Let us enumerate the independent Π1 sentences that we are guaranteed
as τ1, τ2, τ3, . . .. Now, we can specify a model according to which of these Π1 sentences it
satis�es. Following Cantor's diagonal argument, let us represent each model M with with
an in�nite binary sequence (b1, b2, b3 . . .) where bn = 0 if M 6� τn and bn = 1 if M � τn.

16Typically, we de�ne such I's as proper cuts, but we do not appeal to this idea often enough to warrant
introducing another term.

17[8] contains a formal statement and proof of Friedman's theorem.
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Now suppose that there are countably many models of PA. Then we ought to be able to
create a correspondence between our in�nite binary sequences and N. So therefore we can
enumerate our binary sequences as follows

s1 = (0, 0, 0, 0, 0, 0, . . .)

s2 = (0, 1, 0, 1, 0, 1, . . .)

s3 = (0, 0, 1, 1, 0, 0, . . .)

s4 = (1, 1, 1, 1, 1, 1, . . .)

...

where we associate each natural number n with the sequence sn. Now, we let sbnm be the
nth term of the mth sequence. In the above, for example sb11 = 0, and sb22 = 1 and so on.
Now, we de�ne a sequence s0 = (b1, b2, b3, . . .) in the following way. We let bn 6= sbnn , i.e. if
sbnn = 0, then bn = 1, and if sbnn = 1, then bn = 0. It follows then that s0 is not a sequence in
our list, precisely because we have de�ned it to be di�erent from every other element in the
list, because it varies from each element in at least one place. In other words, for arbitrary
m, s0 6= sm because we have de�ned s0 such that sbm0 6= sbmm , and so they must be di�erent
sequences. This contradicts our supposition that there are countably many models of PA.
Thus there are 2ℵ0 countable nonelementary-equivalent models. �

Further, by completeness, each of the above theories have a model, and thus there are
2ℵ0 countable nonelementarily-equivalent extensions of PA. By Theorem 3.18 there are
nonelementarily equivalent models of all cardinalities. An interesting question that remains
is what a countable nonstandard model would look like, especially since there are 2ℵ0 of
them.

Theorem 7.3. The order type of countable models of PA is N + Z ·Q.

Proof. PA �< is the reduct of the theory of arithmetic to the theory of the order. Recall
above at de�nition 1.2, where various order types are de�ned. PA �< is a discrete linear
order with �rst, but not last element; PA realizes Th(DIS). Brie�y,

• 2 is PA9.
• 4 is PA8.
• 5 is PA10
• 6 follows from PA11, PA14.
• 7 follows from PA11, PA14.
• 8 follows from PA15

While such a claim seems trivial, there are alternative axiomatization schemes for which this
claim is not as obvious.
Now, I claim that Th(DIS) has models of the form N + Z · A, where A orders the copies

of Z that are placed after N. This picture looks like

−→
N

(
· · · · · · ←→

Z
· · · ←→

Z
· · · · · ·

)
︸ ︷︷ ︸

copies of Z ordered by A
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If A is empty, then we just get N. If A is a single element, then we get N + Z, etc. I claim
such a model satis�es Th(DIS) since N and Z are both discrete linear orders, there is no
right endpoint, and only N is bounded on the left. Thus, N + Z · A satis�es Th(DIS).
Now, my claim is that if we are looking at a model of PA, then A must be a dense linear

order. A satis�es 2, 4, and 5 (in de�nition 1.2). Thus we must only prove that A realizes 9
and 10, i.e. that A is dense and unbounded.
Suppose then we have a nonstandard model of PA,M . That A has more than one element

is given by the following. Suppose, by way of contradiction, that A has only one element:
Z0, and that a is nonstandard (i.e. a > N). a + a then must also be nonstandard and by
supposition in Z0. But because a+ a and a are both in Z0 the distance between them must
be �nite. This means that (a + a) − a = b, for some b ∈ N, but then a = b, which is a
contradiction since b is not nonstandard. Thus, A is at least not bounded on the right.
To see that it is also not bounded on the left, we de�ne [a/b] to be the integer component

of a divided by b. That is, [a/b] = c, just in case a = b · c+ d, for some d < b, which we can
make sense of from the axioms of PA. Thus, let us suppose again, by way of contradiction,
that A is bounded on the left. Call the smallest element of A, Z0. Now, let c = [a/2] for
nonstandard a ∈ Z0. Either c is nonstandard or it is not. If c ∈ N, then we have that either
2 · c = a or 2 · c+ 1 = a, but since 2, c, 1 ∈ N, a must also be in N, which is a contradiction.
Likewise, suppose c is nonstandard. Because we have that either 2 · c = a or 2 · c+ 1 = a, it
follows from PA12 that c < a, meaning that c ∈ Z0. Now, we rewrite c as c+ c, but by our
above proof then a 6∈ Z0, which is a contradiction. Thus A is not bounded on the left. Thus
A satis�es 10 (unboundedness).
To see that A is dense, we use a similar argument. Suppose that A is not dense. It follows

then, that for all Zn ∈ A, Zn has an immediate successor Zn+1. Now, suppose that Zb is the
immediate successor of Za and that a ∈ Za and b ∈ Zb are nonstandard. Without loss of
generality, suppose a < b, and let c = b− a. Now, let [c/2] = d, i.e. d · 2 = c or d · 2 + 1 = c
(we can ignore this second disjunct henceforth, when doing so results in no loss of rigor).
Because c = b− a, we have a+ c = b, and it follows that

a+ 2 · d = b.

Now, either a+ d ∈ Za or a+ d ∈ Zb. In the �rst case we have that (a+ d)− a = f for some
f ∈ N, but then 2 · f ∈ N, and thus a + 2 · d ∈ Za, which is a contradiction. The second
case follows similarly (instead, we notice that a = b− 2 · d). Thus A must be dense, and so
A must realize Th(DLO).
Therefore, we conclude that nonstandards models of PA are ordered by N + Z ·Q. �

Theorem 7.4 (Tennenbaum's Theorem). Let M � PA be nonstandard. Then M is not
recursive. In fact if M ∼= (N,+, ·, <, n1, n2), then neither + nor · is recursive.

Proof. See [8, 153]. �

Unfortunately a formal proof of this requires developing more machinery than I have room
for in this paper. What's important to note though is that while nonstandard models exists,
it is extremely di�cult to specify them because + and · are not computable on them. In fact,
we have an extremely weird picture in that in the past two theorems we have established
that there is a continuum of nonstandard models, the order that they must have, but yet we
cannot recursively specify any of them in �rst-order logic.
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8. Indicator Theory

Next we move onto indicators which will prove central both for proving the independence
of Goodstein's theorem and for classi�cation.

De�nition 8.1. LetM � PA be nonstandard and T a LA theory, and let Y : M ×M →M
be de�nable in M . We call Y an indicator for T , if whenever a, b ∈ M , Y (a, b) > N if and
only if ∃I ⊂e M such that a ∈ I < b (meaning a ∈ I and ∀x ∈ I(x < b)) and I � T .

Intuitively Y (a, b) is an indicator for some property that initial segments of models of
PA may have if and only if whenever Y (a, b) is nonstandard, there is some initial segment I
between a and b, such that I has that property. We de�ne this by saying that I satis�ed some
formula. We may on occasion relax and say that something is an indicator for a function, or
a set of sentences, or a theory, but we should just take this as shorthand for some sentence
that represents this function, set of sentences (i.e. the conjunction of the sentences), or that
the initial segments satis�es some theory, and so on. In the following example I discuss the
indicator of a function, for example. I am explicit in what the corresponding formula would
look like, but we need not be so explicit in every case.

Example 8.2. Y (a, b) = b−a is an indicator for the successor function, or to be more formal,
it is an indicator for the sentence which says that our universe is closed under the successor
and every element save 0 is a successor. That is, φ = ∀x(x = 0 ∨ ∃y(s(y) = x)). Suppose
Y (a, b, ) > N. It follows that a < b, S(a) < b, S(S(a)) < b, · · · . Choose I = {x ∈M |x < a+n
for some n ∈ N}.

See [8] for more (easy) examples involving indicators.

De�nition 8.3. We say an indicator is well-behaved for LA theory Q in models of PA if

(1) Y (x, y) = z is a Σ1 LA formula with only the free variables x,y,z
(2) PA ` ∀x, y∃!zY (x, y) = z
(3) PA ` ∀x, yY (x, y) ≤ y
(4) PA ` ∀x, y, x′, y′((x′ ≤ x ∧ y ≤ y′)→ Y (x, y, ) ≤ Y (x′, y′))
(5) for any nonstandard model M and for a, b ∈M , (Y a, b) ≥ N if and only if there is a

I ⊂e M such that a ∈ I < b and I � Q.

8.1. All recursive LA-theories have well-behaved indicators. With these de�nitions,
we now introduce the most important theorem in this section. As a quick warning, I should
say that as with any mathematical subject time and space only make it possible to delve so
deep. In particular, in this section certain aspects of my proof I will not be able to cover,
particularly as they pertain to satisfaction. While we have proven above that we cannot talk
about truth within PA satisfaction gives us a weaker notion of truth that we can talk about
with the language of arithmetic. As I said, I avoid going into detail here and where there
are gaps in my proof I will point the reader to places in the literature.

Theorem 8.4. Any consistent recursively axiomatized LA theory T extending PA has a
well-behaved indicator, Y (x, y) for T in models of PA.

Before I begin I should say the proof will have the following sort of structure. First, it
su�ces to show that there exists Y , such that M � PA with a, b ∈ M and Y (a, b) > N if
and only if there is I ⊂e M with a ∈ I < b and I � T , such that Y is well-behaved. My
central claim will be that the following functions as such an indicator. First de�ne Ψ(x, y, z)
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to hold just in case x is the Gödel number of a proof from T +PA of a formula whose Gödel
number is y. Note that z can be a 0-tuple, in which case Ψ can be treated as having only
two free variables. It follows then that x is the Gödel number of a proof of a formula whose
Gödel number is y only if PA ` ∃zΨ(x, y, z), otherwise PA ` ¬∃zΨ(x, y, z). Finally, we will
need to introduce two ideas very brie�y from satisfaction: form∆0 and Sat∆0 . I will not be
able to give an indepth treatment of these formulas, meaning that I cannot give a rigorous
proof of their existence nor can I give a very formal de�nition of what they would look like.
Intuitively they mean the following:

• form∆0(_x^) holds whenever x is a ∆0 formula.
• Sat∆0(_φ(x)^, [a]) holds whenever φ is a ∆0 formula such that PA ` φ(a).

To see how we can de�ne these formulas, we �x a Gödel code and note that we can recur-
sively enumerate all ∆0 formulas of our language by complexity on the formula. Here [x] is
understood to be the Gödel code of the sequence formed by x. We can actually de�ne both
of these formulas for Πn and Σn formulas, but we don't here. The reason that their existence
might be questionable is that the �rst says that we can recursively de�ne the set of all Gödel
numbers of ∆0 formulas. The second seems even more questionable in that it says we can
recursively de�ne the set of all Gödel numbers of ∆0 formulas, such that PA proves them.
As I say, I do not have the time or space to justify the existence of either or to show what
they look like. The reader can �nd such information in [8, 104�.].
Now, I put forward what I claim is an indicator for arbitrary T :

Y (a, b) = max{c ≤ b|∀x < c, y < c, d < c, z < c

([
Ψ(x, y, z) ∧ y =_∀v0∃v1φd(v0, v1)^ ∧ form∆0(d)

](8.1)

→
[
∀u ≤ a ∃v ≤ b Sat∆0(d, [u, v])

])
}.

Where _φd(x, y)^ = d, i.e. φd(x) is the formula whose Gödel code is d. Essentially what this
equation says is the following. Whenever x is the Gödel number of a proof from T + PA
of some Π2 formula, ∀v0∃v1d, PA proves the corresponding bounded formula, where a and
b supply the bounds for v0, v1 respectively; then Y (a, b) will be nonstandard just in case x,
_d^, and _∀v0∃v1φd(v0, v1)^ are all less than b in all cases. d are taken to be sentences from
the arbitrary theory T under consideration.
Intuitively this indicator says something about the complexity of formulas with relation

to a theory extending PA. It says that however constrained we are with respect to formulas
we can represent with a Gödel code, we must also be constrained with respect to valid proofs
of those formulas. That c > N means that we can consider all the formulas of the language
which have proofs from our theory T extending PA. With this rather bulky Y picked out,
we now move onto the proof where we must show that it is in fact an indicator for T and
that it is well-behaved.

Proof. Suppose M � PA with a, b ∈M , Y (a, b) as in equation 8.1 and that Y (a, b) > N. We
must show that Y (a, b) satis�es (1) - (5) of de�nition 8.3.
(1) That x, y, z are the only free variables in the formula Y (x, y) = z follows from our

choice of Y . Now we must show that Y (a, b) = c is Σ1. Notice how Y (a, b) = c is the
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conjunction of the following three formulas:

c ≤ b(8.2)

∀x < c, y < c, d < c, z < c

([
Ψ(x, y, z) ∧ y = _∀v0∃v1d^ ∧ form∆0(d)

](8.3)

→
[
∀u ≤ a∃v ≤ bSat∆0(d, [u, v])

])
[
¬∀x < c, y < c, d < c, z < c+ 1

([
Ψ(x, y, z) ∧ y = _∀v0∃v1d^ ∧ form∆0(d)

](8.4)

→
[
∀u ≤ a∃v ≤ bSat∆0(d, [u, v])

])]
∨ c+ 1 > b.

Brie�y, 8.2 says that c ≤ b which is a stipulation of our Y , 8.3 says that c is as de�ned, and
8.4 says that either c+ 1 > b (disqualifying it by de�nition) or that c+ 1 does not work for
our de�nition; i.e. 8.4 says that c is maximal. It follows therefore that Y (a, b) = c is a Σ1

formula.
(2). We have just shown that Y (a, b) = c is a Σ1-formula, so c does exist in each case since

Y (a, b) = c is a well-formed Σ − 1-formula. Uniqueness follows, since if we had c1, c2 such
that Y (a, b) = c1 and Y (a, b) = c2, but c1 6= c2, then either c1 is the maximum, in which
case ¬(Y (a, b) = c2), or c2 is the maximum, in which case ¬(Y (a, b) = c2).
(3) follows from how we have de�ned Y (a, b). That is, we have de�ned Y (a, b) = c such

that it is always the case that c ≤ b.
(4). For arbitrary a, a′, b, b′ ∈ M suppose that a′ ≤ a and b ≤ b′. We must show that

Y (a, b) = c ≤ Y (a′, b′) = c′. Now, since b serves as a bound for c, we have that

Y (a, b) ≤ Y (a, b′).

For the same reason Y (a′, b) ≥ Y (a, b). Thus it follows that

Y (a′, b′) ≥ Y (a, b),

and so we are done.
(5) Let M � PA with a, b ∈ M , and suppose Y (a, b) > N. We must show that there is

an I ⊂e M with a ∈ I < b such that I � T . Unfortunately proving 5 requires an extensive
survey of the results of satisfaction, for which we do not have the space. A formal proof can
be found in [8, 201�.]. �

Now, we demonstrate a proof that a formula is a indicator for models of PA. First we
must de�ne ωc, such that ω0 = ω, and ωα+1 = ωωα . ωc is well-de�ned for c ∈M � PA since
all c ∈M , save 0, are the successor of some number; however, it is impossible to recursively
specify how it will act for nonstandard c, since by Tennenbaum's theorem multiplication
and addition (and by extension the successor function) are not computable in nonstandard
models. Nevertheless, we can see that it is recursively de�nable on the standard model via
the following de�nition.
De�ne dc such that:

• d0 = 1
• da+1 = dda
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dc is recursive since we can �nd a representation f(x, y, z), such that M � f(d, a, v) if and
only if v = da.

Theorem 8.5. Y (a, b) = max{c ∈M |[a, b] is ωc-large} is an indicator for models of PA.

Proof. Suppose thatM � PA, a, b ∈M , I ⊂e M , a ∈ I < b with I � PA. We must show that
Y (a, b) > N. Suppose that Y (a, b) 6> N. Thus, there is some n ∈ N such that Y (a, b) = n.

Thus, [a, b] is α = ωω
. .
.
ω

(iterated n times)-large. Thus {α}(a, a + 1, . . . , b − 1, b) = 0. It
therefore follows that the sequence {α}(a), {α}(a, a+1), . . . {α}(a, a+1, . . . , b−1), {α}(a, a+
1, . . . , b − 1, b) = 0 is �nite. It follows, therefore, that the cardinality of [a, b] is in N. Thus
a+ j = b for some j ∈ N. But because I � PA, it must follow that b ∈ I, a contradiction.
For the other direction, suppose Y (a, b) > N, and now we must show that there is some

initial segment I ⊂e M such that a ∈ I < b and I � PA. Suppose not. It therefore follows
that all proper initial segments of I ⊂e M , which realize PA and which contain a must
also contain b. That is, the following is something that holds of all initial segments I ⊂e M
(regardless of whether they contain a or are proper):

I � a ∈ I → b ∈ I.
Now of course, that is not yet a �rst-order statement. However, we can take a ∈ I to be
short for the statement which says that a exists (and simiilarly for b ∈ I). These statements
would be de�ned with respect to the model M , of which I is an initial segment. It is again
di�cult to specify how this would go for nonstandard elements, but certainly for standard
elements, we can write say that 2, for example is an element of our model, by saying that
∃x(1+1 = x). Now, if all initial segments say it though (including the intended model), then
not only is it provable from PA, but b− a = d is a statement which we can likewise express
in all such initial segments (again, including the intended model). It therefore follows that
b − a is not nonstandard. By the above then, Y (a, b) cannot be nonstandard either, which
contradicts our assumption. It follows then that we must be able to �nd I ⊂e M , such that
I � PA and a ∈ I < b. �

In fact, this indicator is well-behaved, though I do not prove this here. In de�nition 8.3,
1 and 2 are straightforward. We have just shown 5. 3 and 4 take some work, but should be
plausible.

9. Independence Proof

Theorem 9.1 (Independence of Goodstein's Theorem). N � ∀m∃k(mk = 0), but PA 6`
∀m∃k(mk = 0).

That N � ∀m∃k(mk = 0) was the result of the �rst part of this paper. Thus we must show
that we cannot prove Goodstein's theorem from PA. In order to do this, we must develop
the following two lemmas.

Lemma 9.2. We can �nd M � PA and nonstandard c ∈M such that

M � ¬∃y([1, y] is ωc-large).

Proof. K � PA be nonstandard. Let Y be as in theorem 8.5. Now, because Y (a, b) is well-
behaved we choose nonstandard a, b ∈ K such that Y (a, b) > N and Y (a, b) < a−1. Because,
by Theorem 8.5, Y (a, b) is an indicator for PA, this entails that there exists I ⊂e K such
that a ∈ I < b. Call this I, M .
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We can choose such a K and a, b ∈ K in the following manner. First we note that
∀a∀c∃b([a, b] is ωc-large) is independent of PA (see [9, 10, 15]). Since it is independent of
PA we can �nd nonstandard models on which it is true and on which it is false. Thus let K
be such that K � ∀a∀c∃b([a, b] is ωc-large). Next we choose a, c ∈ K such that a−1 > c > N.
We are guaranteed a b then such that Y (a, b) < a− 1.
such that a − 1 > Y (a, b) > N, by taking nonstandard c ∈ K and a such that c < a.

Now if assume we cannot. If particular then, regardless of our choice of K and a, b ∈ K, we
cannot have that both Y (a, b) > N and Y (a, b) < a− 1. Therefore, assume that
Now, suppose that M 6� ¬∃y([1, y] is ωc-large). Let [1, d] be ωc-large. Recall, however,

that c < a−1. It follows then that that there is an initial segment I ⊂M , such that I � PA
and 1 ∈ I < d. But this is a contradiction for we can �nd [d/n], n ∈ I, which would mean
that [d/n]· 6∈ I, meaning that I is not closed under multiplication, and thus I cannot be a
model of PA. Thus we have our result. �

The reader may notice something strange about our last result and wonder whether we
really found a contradiction in our supposition or if this merely exposes a larger contradiction
hidden elsewhere. The weird feeling is that it seems like we ought to be able to make the
same argument with b, and if not, why not? As it turns out, what this really reveals is
something about initial segments. Recall from Theorem 7.3 that nonstandard models of PA
have the order type N + Z ·Q. What we have revealed is that initial segments that pick out
models of PA must be Dedekind cuts, in that we can always �nd more and more "larger"
(in terms of the DLO that orders the copies of Z) copies of Z.

Lemma 9.3. Let b0, b1, b2, . . . be the Goodstein sequence for m starting at n and let k be
minimal such that bk = 0. It follows that [n− 1, n+ k] is on(m)-large.

Proof. To begin consider the corresponding sequence of ordinals as in Goodstein's theorem
above. That is, let

on(m) = on(b0) = α

on+1(b1) = 〈α〉(n)

on+2(b2) = 〈α〉(n, n+ 1)

...

on+k(bk) = on+k(0) = 0 = 〈α〉(n, n+ 1, . . . , n+ k).

Now, it follows from Theorem 1.29 that

〈α〉(n, n+ 1, . . . , n+ k)→
j
{α}(n, n+ 1, . . . , n+ k),

and it follows from this and Theorem 1.28 that

〈α〉(n, n+ 1, . . . , n+ k) ≥ {α}(n, n+ 1, . . . , n+ k).

Thus, [n− 1, n+ k] is α-large if {α}(n− 1, . . . , n+ k) = 0, but this precisely what we have
just shown. It therefore follows that [n− 1, n+ k] is on(m)-large.

�

Now, we turn to the independence proof for Goodstein's theorem.
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Proof. Suppose, by way of contradiction, PA ` ∀m∃k(mk = 0). Now, let us �nd M and c

as dictated by Lemma 9.2. In M , let d = 22.
. .
2

(with c iterated exponents). We can de�ne
this with respect to ωc, i.e. let d = fωc,ω(2). If we take d to be written in hereditary base-2
notation, then this is equivalent to saying that o2(d) = ωc. Now, by hypothesis, we have
that there exists k ∈M such that dk = 0. Let k be minimal; it follows from Lemma 9.3 that
[1, 2 + k] is o2(d)-large, and thus ωc-large. This is to say that

M � ∃y([1, y] is ωc-large),

namely, (2 + k), but this contradicts Lemma 9.2. It therefore follows that

PA 6` ∀m∃k(mk = 0),

i.e. Goodstein's theorem is independent of PA. �
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Conclusion

Thus far, we have gone through some introductory set theory in order to show that Good-
stein's theorem is in fact true on some models of PA, in particular the intended model, N.
From there we went into more depth, exploring model theory and looking at Gödel's incom-
pleteness proofs, before returning to a proof of the independence of Goodstein's theorem
from PA. In the section on indicator theory, we developed some results, which are useful for
showing that we can in fact �nd an indicator for models that realize Goodstein's theorem.
In closing, I'd like to say a few words about concerning how it is possible therefore to classify
the nonstandard models of PA by Goodstein's theorem. Unfortunately, specifying an exact
indicator for Goodstein's theorem will be beyond the scope of this paper.

Classi�cation. First we note that by Theorem 8.1 any recursive LA theory has a well-
behaved indicator for initial segments satisfying T in PA. It follows then, that we can
classify the nonstandard models of PA using such an indicator. That is, let ModLA

(PA)
be the class of all countable models of PA, let G be the theory of Goodstein's theorem, i.e.
CnLA

(∀m∃k(mk = 0). ModLA
(G) is the class of all models of PA A such that A � G.

Theorem 9.4. G, the theory of Goodstein's theorem, is a recursive LA theory.

Proof. Recall again that Goodstein's theorem says ∀m∃k(mk = 0). It su�ces to show that
fg(m) = ∃k(mk = 0) is recursive. fg is Σ1, and so we are done. That we can construct a
Turing machine to �nd after how many steps any particular Goodstein sequence terminates
is su�cient for this purpose. �

It follows from this previous result and Theorem 8.4 that Goodstein's theorem has a well-
behaved indicator YG(a, b).We therefore de�ne ModLA

(G) as the class of models ModLA
(G) =

{M ∈ ModLA
(PA)|M is an initial segment of some model of PA such that YG(a, b) > N if

and only if M � G and a ∈M < b.}.
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