
 

Abstract

 

The purpose of this tutorial is to provide a quick 
overview of neural networks and to explain how they 
can be used in control systems. We introduce the 
multilayer perceptron neural network and describe 
how it can be used for function approximation. The 
backpropagation algorithm (including its variations) 
is the principal procedure for training multilayer 
perceptrons; it is briefly described here. Care must 
be taken, when training perceptron networks, to en-
sure that they do not overfit the training data and 
then fail to generalize well in new situations. Several 
techniques for improving generalization are dis-
cused. The tutorial also presents several control ar-
chitectures, such as model reference adaptive 
control, model predictive control, and internal model 
control, in which multilayer perceptron neural net-
works can be used as basic building blocks.

 

1. Introduction

 

In this tutorial we want to give a brief introduction 
to neural networks and their application in control 
systems. The field of neural networks covers a very 
broad area. It would be impossible in a short time to 
discuss all types of neural networks. Instead, we will 
concentrate on the most common neural network ar-
chitecture – the multilayer perceptron. We will de-
scribe the basics of this architecture, discuss its 
capabilities and show how it has been used in several 
different control system configurations. (For intro-
ductions to other types of networks, the reader is re-
ferred to [HBD96], [Bish95] and [Hayk99].)

For the purposes of this tutorial we will look at neu-
ral networks as function approximators. As shown in 
Figure 1, we have some unknown function that we 
wish to approximate. We want to adjust the parame-
ters of the network so that it will produce the same 
response as the unknown function, if the same input 
is applied to both systems.

For our applications, the unknown function may cor-
respond to a system we are trying to control, in which 
case the neural network will be the identified plant 
model. The unknown function could also represent 

the inverse of a system we are trying to control, in 
which case the neural network can be used to imple-
ment the controller. At the end of this tutorial we 
will present several control architectures demon-
strating a variety of uses for function approximator 
neural networks.

Figure 1  Neural Network as Function Approximator

In the next section we will present the multilayer 
perceptron neural network, and will demonstrate 
how it can be used as a function approximator.

 

2. Multilayer Perceptron Architecture

 

2.1 Neuron Model

 

The multilayer perceptron neural network is built up 
of simple components. We will begin with a single-in-
put neuron, which we will then extend to multiple in-
puts. We will next stack these neurons together to 
produce layers. Finally, we will cascade the layers to-
gether to form the network.

 

2.1.1 Single-Input Neuron

 

A single-input neuron is shown in Figure 2. The sca-
lar input  is multiplied by the scalar 

 

weight

 

  to 
form , one of the terms that is sent to the summer. 
The other input, , is multiplied by a 

 

bias

 

  and 
then passed to the summer. The summer output , 
often referred to as the 

 

net input

 

, goes into a 

 

transfer 
function

 

 , which produces the scalar neuron output 
. (Some authors use the term “activation function” 
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rather than 

 

transfer function

 

 and “offset” rather 
than 

 

bias

 

.) 

Figure 2  Single-Input Neuron

The neuron output is calculated as

.

Note that

 

 

 

 and are both 

 

adjustable

 

 scalar param-
eters of the neuron. Typically the transfer function is 
chosen by the designer and then the parameters  
and  will be adjusted by some learning rule so that 
the neuron input/output relationship meets some 
specific goal.

The transfer function in Figure 2 may be a linear or 
a nonlinear function of . A particular transfer func-
tion is chosen to satisfy some specification of the 
problem that the neuron is attempting to solve. One 
of the most commonly used functions is the 

 

log-sig-
moid transfer function

 

, which is shown in Figure 3. 

Figure 3  Log-Sigmoid Transfer Function

This transfer function takes the input (which may 
have any value between plus and minus infinity) and 
squashes the output into the range 0 to 1, according 
to the expression:

. (1)

The log-sigmoid transfer function is commonly used 
in multilayer networks that are trained using the 
backpropagation algorithm, in part because this 
function is differentiable.

 

2.1.2 Multiple-Input Neuron

 

Typically, a neuron has more than one input. A neu-
ron with  inputs is shown in Figure 4. The individ-
ual inputs  are each weighted by 
corresponding elements  of the 

 

weight matrix

 

 .

Figure 4  Multiple-Input Neuron

The neuron has a bias , which is summed with the 
weighted inputs to form the net input :

. (2)

This expression can be written in matrix form:

, (3)

where the matrix  for the single neuron case has 
only one row.

Now the neuron output can be written as

. (4)

We have adopted a particular convention in assign-
ing the indices of the elements of the weight matrix. 
The first index indicates the particular neuron desti-
nation for that weight. The second index indicates 
the source of the signal fed to the neuron. Thus, the 
indices in  say that this weight represents the 
connection 

 

to

 

 the first (and only) neuron 

 

from

 

 the 
second source. 

We would like to draw networks with several neu-
rons, each having several inputs. Further, we would 
like to have more than one layer of neurons. You can 
imagine how complex such a network might appear 
if all the lines were drawn. It would take a lot of ink, 
could hardly be read, and the mass of detail might 
obscure the main features. Thus, we will use an 

 

ab-
breviated notation

 

. A multiple-input neuron using 
this notation is shown in Figure 5. 
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Figure 5  Neuron with  Inputs, Abbreviated Nota-
tion

As shown in Figure 5, the input vector

 

 

 

 is repre-
sented by the solid vertical bar at the left. The di-
mensions of  are displayed below the variable as 

, indicating that the input is a single vector of 
 elements. These inputs go to the weight matrix

 

 

 

, which has  columns but only one row in this 
single neuron case. A constant 1 enters the neuron as 
an input and is multiplied by a scalar bias . The net 
input to the transfer function  is , which is the 
sum of the bias

 

 

 

 and the product

 

 

 

. The neuron’s 
output  is a scalar in this case. If we had more than 
one neuron, the network output would be a vector.

Note that the number of inputs to a network is set by 
the external specifications of the problem. If, for in-
stance, you want to design a neural network that is 
to predict kite-flying conditions and the inputs are 
air temperature, wind velocity and humidity, then 
there would be three inputs to the network.

 

2.2. Network Architectures

 

Commonly one neuron, even with many inputs, may 
not be sufficient. We might need five or ten, operat-
ing in parallel, in what we will call a “layer.” This 
concept of a layer is discussed below.

 

2.2.1 A Layer of Neurons

 

A single-

 

layer

 

 network of  neurons is shown in Fig-
ure 6. Note that each of the  inputs is connected to 
each of the neurons and that the weight matrix now 
has  rows.

The layer includes the weight matrix, the summers, 
the bias vector

 

 

 

, the transfer function boxes and the 
output vector . Some authors refer to the inputs as 
another layer, but we will not do that here. 

Each element of the input vector  is connected to 
each neuron through the weight matrix . Each 
neuron has a bias , a summer, a transfer function 

 and an output . Taken together, the outputs form 
the output vector . 

Figure 6  Layer of 

 

S

 

 Neurons

It is common for the number of inputs to a layer to be 
different from the number of neurons (i.e., ). 

You might ask if all the neurons in a layer must have 
the same transfer function. The answer is no; you 
can define a single (composite) layer of neurons hav-
ing different transfer functions by combining two of 
the networks shown above in parallel. Both net-
works would have the same inputs, and each net-
work would create some of the outputs.

The input vector elements enter the network 
through the weight matrix :

. (5)

As noted previously, the row indices of the elements 
of matrix  indicate the destination neuron associ-
ated with that weight, while the column indices indi-
cate the source of the input for that weight. Thus, the 
indices in  say that this weight represents the 
connection 

 

to

 

 the third neuron 

 

from

 

 the second 
source. 

Fortunately, the 

 

S

 

-neuron, 

 

R

 

-input, one-layer net-
work also can be drawn in abbreviated notation, as 
shown in Figure 7.

Here again, the symbols below the variables tell you 
that for this layer,  is a vector of length ,  is an 

 matrix, and  and  are vectors of length . 
As defined previously, the layer includes the weight 
matrix, the summation and multiplication opera-
tions, the bias vector

 

 

 

, the transfer function boxes 
and the output vector.
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Figure 7  Layer of  Neurons, Abbreviated Notation

2.2.2 Multiple Layers of Neurons
Now consider a network with several layers. Each 
layer has its own weight matrix , its own bias vec-
tor , a net input vector  and an output vector . 
We need to introduce some additional notation to dis-
tinguish between these layers. We will use super-

scripts to identify the layers. Specifically, we append 
the number of the layer as a superscript to the names 
for each of these variables. Thus, the weight matrix 
for the first layer is written as , and the weight 
matrix for the second layer is written as . This no-
tation is used in the three-layer network shown in 
Figure 8.

As shown, there are  inputs,  neurons in the first 
layer,  neurons in the second layer, etc. As noted, 
different layers can have different numbers of neu-
rons. 

The outputs of layers one and two are the inputs for 
layers two and three. Thus layer 2 can be viewed as 
a one-layer network with  =  inputs,  neu-
rons, and an  weight matrix . The input to 
layer 2 is , and the output is . 

A layer whose output is the network output is called 
an output layer. The other layers are called hidden 
layers. The network shown in Figure 8 has an output 
layer (layer 3) and two hidden layers (layers 1 and 2). 

Figure 8  Three-Layer Network

3. Approximation Capabilities of Multi-
layer Networks
Two-layer networks, with sigmoid transfer functions 
in the hidden layer and linear transfer functions in 
the output layer, are universal approximators. A 
simple example can demonstrate the power of this 
network for approximation.

Consider the two-layer, 1-2-1 network shown in Fig-
ure 9. For this example the transfer function for the 
first layer is log-sigmoid and the transfer function for 
the second layer is linear. In other words,

 and . (6)
Figure 9  Example Function Approximation Network

Suppose that the nominal values of the weights and 
biases for this network are
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, , , ,

, , .

The network response for these parameters is shown 
in Figure 10, which plots the network output  as 
the input  is varied over the range . 

Notice that the response consists of two steps, one for 
each of the log-sigmoid neurons in the first layer. By 
adjusting the network parameters we can change the 
shape and location of each step, as we will see in the 
following discussion.

The centers of the steps occur where the net input to 
a neuron in the first layer is zero:

, (7)

. (8)

The steepness of each step can be adjusted by chang-
ing the network weights. 

Figure 10  Nominal Response of Network of Figure 9

Figure 11 illustrates the effects of parameter chang-
es on the network response. The nominal response is 
repeated from Figure 10. The other curves corre-
spond to the network response when one parameter 
at a time is varied over the following ranges:

, , , .(9)

Figure 11 (a) shows how the network biases in the 
first (hidden) layer can be used to locate the position 
of the steps. Figure 11 (b) illustrates how the weights 
determine the slope of the steps. The bias in the sec-
ond (output) layer shifts the entire network response 
up or down, as can be seen in Figure 11 (d).

Figure 11  Effect of Parameter Changes on Network 
Response

From this example we can see how flexible the mul-
tilayer network is. It would appear that we could use 
such networks to approximate almost any function, 
if we had a sufficient number of neurons in the hid-
den layer. In fact, it has been shown that two-layer 
networks, with sigmoid transfer functions in the hid-
den layer and linear transfer functions in the output 
layer, can approximate virtually any function of in-
terest to any degree of accuracy, provided sufficiently 
many hidden units are available (see [HoSt89]).

4. Training Multilayer Networks
Now that we know multilayer networks are univer-
sal approximators, the next step is to determine a 
procedure for selecting the network parameters 
(weights and biases) which will best approximate a 
given function. The procedure for selecting the pa-
rameters for a given problem is called training the 
network. In this section we will outline a training 
procedure called backpropagation, which is based on 
gradient descent. (More efficient algorithms than 
gradient descent are often used in neural network 
training. The reader is referred to [HBD96] for dis-
cussions of these other algorithms.)

As we discussed earlier, for multilayer networks the 
output of one layer becomes the input to the follow-
ing layer (see Figure 8). The equations that describe 
this operation are

 for 
, (10)

where  is the number of layers in the network. The 
neurons in the first layer receive external inputs:

, (11)
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which provides the starting point for Eq. (10). The 
outputs of the neurons in the last layer are consid-
ered the network outputs:

. (12)

4.1. Performance Index
The backpropagation algorithm for multilayer net-
works is a gradient descent optimization procedure 
in which we minimize a mean square error perfor-
mance index. The algorithm is provided with a set of 
examples of proper network behavior:

, (13)

where  is an input to the network, and  is the 
corresponding target output. As each input is ap-
plied to the network, the network output is compared 
to the target. The algorithm should adjust the net-
work parameters in order to minimize the sum 
squared error:

. (14)

where  is a vector containing all of network weights 
and biases. If the network has multiple outputs this 
generalizes to

. (15)

Using a stochastic approximation, we will replace 
the sum squared error by the error on the latest tar-
get: 

, (16)

where the expectation of the squared error has been 
replaced by the squared error at iteration . 

The steepest descent algorithm for the approximate 
mean square error is

, (17)

, (18)

where  is the learning rate.

4.2. Chain Rule
For a single-layer linear network these partial deriv-
atives in Eq. (17) and Eq. (18) are conveniently com-
puted, since the error can be written as an explicit 

linear function of the network weights. For the mul-
tilayer network the error is not an explicit function 
of the weights in the hidden layers, therefore these 
derivatives are not computed so easily. 

Because the error is an indirect function of the 
weights in the hidden layers, we will use the chain 
rule of calculus to calculate the derivatives in Eq. 
(17) and Eq. (18):

, (19)

. (20)

The second term in each of these equations can be 
easily computed, since the net input to layer  is an 
explicit function of the weights and bias in that lay-
er:

. (21)

Therefore

, . (22)

If we now define

, (23)

(the sensitivity of  to changes in the ith element of 
the net input at layer ), then Eq. (19) and Eq. (20) 
can be simplified to

, (24)

. (25)

We can now express the approximate steepest de-
scent algorithm as

, (26)

. (27)

In matrix form this becomes:

, (28)
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, (29)

where the individual elements of  are given by Eq. 
(23).

4.3. Backpropagating the Sensitivities
It now remains for us to compute the sensitivities , 
which requires another application of the chain rule. 
It is this process that gives us the term backpropaga-
tion, because it describes a recurrence relationship 
in which the sensitivity at layer  is computed from 
the sensitivity at layer :

, (30)

, (31)

where

. (32)

(See [HDB96], Chapter 11 for a derivation of this re-
sult.)

4.4. Variations of Backpropagation
In some ways it is unfortunate that the algorithm we 
usually refer to as backpropagation, given by Eq. (28) 
and Eq. (29), is in fact simply a steepest descent al-
gorithm. There are many other optimization algo-
rithms that can use the backpropagation procedure, 
in which derivatives are processed from the last lay-
er of the network to the first (as given in Eq. (31)). 
For example, conjugate gradient and quasi-Newton 
algorithms ([Shan90], [Scal85], [Char92]) are gener-
ally more efficient than steepest descent algorithms, 
and yet they can use the same backpropagation pro-
cedure to compute the necessary derivatives. The 
Levenberg-Marquardt algorithm is very efficient for 
training small to medium-size networks, and it uses 
a backpropagation procedure that is very similar to 
the one given by Eq. (31) (see [HaMe94]).

We should emphasize that all of the algorithms that 
we will describe in this chapter use the backpropaga-
tion procedure, in which derivatives are processed 
from the last layer of the network to the first. For 
this reason they could all be called “backpropaga-
tion” algorithms. The differences between the algo-
rithms occur in the way in which the resulting 
derivatives are used to update the weights. 

4.5. Generalization (Interpolation & Extrapo-
lation)

We now know that multilayer networks are univer-
sal approximators, but we have not discussed how to 
select the number of neurons and the number of lay-
ers necessary to achieve an accurate approximation 
in a given problem. We have also not discussed how 
the training data set should be selected. The trick is 
to use enough neurons to capture the complexity of 
the underlying function without having the network 
overfit the training data, in which case it will not 
generalize to new situations. We also need to have 
sufficient training data to adequately represent the 
underlying function.

To illustrate the problems we can have in network 
training, consider the following general example. As-
sume that the training data is generated by the fol-
lowing equation:

, (33)

where  is the system input,  is the underlying 
function we wish to approximate,  is measurement 
noise, and  is the system output (network target). 

Figure 12  Example of Overfitting a) and Good Fit b)
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Figure 12 shows an example of the underlying func-
tion  (thick line), training data target values  
(large circles), network responses for the training in-
puts  (small circles with imbedded crosses), and to-
tal trained network response (thin line). 

In the example shown in Figure 12 a), a large net-
work was trained to minimize squared error (Eq. 
(14)) over the 15 points in the training set. We can 
see that the network response exactly matches the 
target values for each training point. However, the 
total network response has failed to capture the un-
derlying function. There are two major problems. 
First, the network has overfit on the training data. 
The network response is too complex, because the 
network has too many independent parameters (61) 
and they have not been constrained in any way. The 
second problem is that there is no training data for 
values of  greater than 0. Neural networks (and all 
other data-based approximation techniques) cannot 
be expected to extrapolate accurately. If the network 
receives an input which is outside of the range cov-
ered in the training data, then the network response 
will always be suspect.

While there is little we can do to improve the net-
work performance outside the range of the training 
data, we can improve its ability to interpolate be-
tween data points. Improved generalization can be 
obtained through a variety of techniques. In one 
method, called early stopping, we place a portion of 
the training data into a validation data set. The per-
formance of the network on the validation set is mon-
itored during training. During the early stages of 
training the validation error will come down. When 
overfitting begins, the validation error will begin to 
increase, and at this point the training is stopped.

Another technique to improve network generaliza-
tion is called regularization. With this method the 
performance index is modified to include a term 
which penalizes network complexity. The most com-
mon penalty term is the sum of squares of the net-
work weights:

(34)

This performance index forces the weights to be 
small, which produces a smoother network response. 
The trick with this method is to choose the correct 
regularization parameter . If the value is too large, 
then the network response will be too smooth and 
will not accurately approximate the underlying func-
tion. If the value is too small, then the network will 
overfit. There are a number of methods for selecting 
the optimal . One of the most successful is Baye-
sian regularization ([MacK92] and [FoHa97]). Fig-
ure 12 b) shows the network response when the 
network is trained with Bayesian regularization. No-

tice that the network response no longer exactly 
matches the training data points, but the overall net-
work response more closely matches the underlying 
function over the range of the training data.

Even with Bayesian regularization, the network re-
sponse is not accurate outside the range of the train-
ing data. As we mentioned earlier, we cannot expect 
the network to extrapolate accurately. If we want the 
network to respond accurately throughout the range 
[-3, 3], then we need to provide training data 
throughout this range. This can be more problematic 
in multi-input cases, as shown in Figure 13. On the 
top graph we have the underlying function. On the 
bottom graph we have the neural network approxi-
mation. The training inputs were provided over the 
entire range of each input, but only for cases where 
the first input was greater than the second input. We 
can see that the network approximation is good for 
cases within the training set, but is poor for all cases 
where the second input is larger than the first input.

Figure 13  Two-Input Example of Poor Network Ex-
trapolation

A complete discussion of generalization and overfit-
ting is beyond the scope of this tutorial. The interest-
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ed reader is referred to [HDB96], [Hayk99], 
[MacK92] or [FoHa97].

In the next section we will describe how multilayer 
networks can be used in neurocontrol applications.

5. Control System Applications
Neural networks have been applied very successfully 
in the identification and control of dynamic systems. 
The universal approximation capabilities of the mul-
tilayer perceptron have made it a popular choice for 
modeling nonlinear systems and for implementing 
general-purpose nonlinear controllers. In the re-
mainder of this tutorial we will introduce some of the 
more popular neural network architectures for sys-
tem identification and control.

5.1. Fixed Stabilizing Controllers
Fixed stabilizing controllers (see Figure 14) have 
been proposed in [Kawa90], [KrCa90], and [Mill87]. 

This scheme has been applied to the control of robot 
arm trajectory, where a proportional controller with 
gain was used as the stabilizing feedback controller. 
From Figure 14 we can see that the total input that 
enters the plant is the sum of the feedback control 
signal and the feedforward control signal, which is 
calculated from the inverse dynamics model (neural 
network). That model uses the desired trajectory as 
the input and the feedback control as an error signal. 
As the NN training advances, that input will con-
verge to zero. The neural network controller will 
learn to take over from the feedback controller. 

The advantage of this architecture is that we can 
start with a stable system, even though the neural 
network has not been adequately trained. A similar 
(although more complex) control architecture, in 
which stabilizing controllers are used in parallel 
with neural network controllers, is described in 
[SaSl92].

Figure 14  Stabilizing Controller

5.2. Adaptive Inverse Control 
Figure 15 shows a structure for the Model Reference 
Adaptive Inverse Control proposed in [WiWa96]. The 
adaptive algorithm receives the error between the 
plant output and the reference model output. The 
controller parameters are updated to minimize that 
tracking error. The basic model reference adaptive 
control approach can be affected by sensor noise and 
plant disturbances. An alternative which allows can-
cellation of the noise and disturbances includes a 
neural network plant model in parallel with the 
plant. That model will be trained to receive the same 
inputs as the plant and to produce the same output. 
The difference between the outputs will be interpret-
ed as the effect of the noise and disturbances at the 
plant output. That signal will enter an inverse plant 
model to generate a filtered noise and disturbance 
signal that is subtracted from the plant input. The 
idea is to cancel the disturbance and the noise 
present in the plant.

5.3. Nonlinear Internal Model Control
Nonlinear Internal Model Control (NIMC), shown in 
Figure 16, consists of a neural network controller, a 
neural network plant model, and a robustness filter 
with a single tuning parameter [NaHe92]. The neu-
ral network controller is generally trained to repre-
sent the inverse of the plant, if the inverse exists. 
The error between the output of the neural network 
plant model and the measurement of plant output is 
used as the feedback input to the robustness filter, 
which then feeds into the neural network controller.

The NN plant model and the NN controller (if it is an 
inverse plant model) can be trained off-line, using 
data collected from plant operations. The robustness 
filter is a first order filter whose time constant is se-
lected to ensure closed loop stability.
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Figure 15  Adaptive Inverse Control System

Figure 16  Nonlinear Internal Model Control

5.4. Model Predictive Control
Model Predictive Control (MPC), shown in Figure 18, 
optimizes the plant response over a specified time 
horizon [HuSb92]. This architecture requires a neu-
ral network plant model, a neural network control-
ler, a performance function to evaluate system 
responses, and an optimization procedure to select 
the best control input.

The optimization procedure can be computationally 
expensive. It requires a multi-step ahead calcula-
tion, in which the neural network model is used to 
predict the plant response. The neural network con-
troller learns to produce the input selected by the op-
timization process. When training is complete, the 
optimization step can be completely replaced by the 
neural network controller.

5.5. Model Reference Control or Neural 
Adaptive Control

As with other techniques, the Model Reference Adap-
tive Control (MRAC) configuration [NaPa90] uses 
two neural networks: a controller network and a 
model network. (See Figure 17.) The model network 
can be trained off-line using historical plant mea-
surements. The controller is adaptively trained to 
force the plant output to track a reference model out-
put. The model network is used to predict the effect 
of controller changes on plant output, which allows 
the updating of controller parameters.
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Figure 17  Model Reference Adaptive Control

Figure 18  Model Predictive Control

5.6. Adaptive Critic
As shown in Figure 19, the Adaptive Critic controller 
consists of two neural networks [SuBa98]. The first 
network operates as an inverse controller and is 
called the Action or Actor network. The second net-
work, called the Critic Network, predicts the future 
performance of the system. The Critic network is 

trained to optimize future performance. The training 
is performed using reinforcement learning, which is 
an approximation to dynamic programming. There 
have been many variations of the adaptive critic con-
troller proposed in the last few years.

Figure 19  Adaptive Critic 
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5.7. Neural Adaptive Feedback Linearization
The neural adaptive feedback linearization tech-
nique is based on the standard feedback lineariza-
tion controller [SlLi91]. An implementation is shown 
in Figure 20. The feedback linearization technique 
produces a control signal with two components. The 
first component cancels out the nonlinearities in the 
plant, and the second part is a linear state feedback 
controller. The class of nonlinear systems to which 
this technique can be applied is described by the re-
lation [VaVe96]:

, (35)

where 

(36)

contains the system state variables and  is the con-
trol input. To obtain a linear system from the nonlin-
ear system described by Eq. (35), we can use the 
input

, (37)

where  contains the feedback gains and  is the ref-
erence input. 

Substitution of Eq. (37) into Eq. (35) results in the 
linear system

, (38)

whose behavior is completely controlled by the linear 
feedback gains.

We can use neural networks to implement the feed-
back linearization strategy. If we approximate the 
functions  and  using the neural networks  
and , we can rewrite the control signal as

. (39)

We wish the system to follow the reference model 
given by 

. (40)

By substituting Eq. (39) into Eq. (35) we obtain

. (41)

The controller error is defined as

, (42)

and the error differential equation is

(43)

With an appropriate training algorithm, the error 
differential equation will be stable. The error will 
converge to zero “if structural error terms are suffi-
ciently small.” [VaVe96]

There are several variations on the neural adaptive 
feedback linearization controller, including the ap-
proximate models (in particular Model VI) of Naren-
dra [NaBa94].

Figure 20  Neural Adaptive Feedback Linearization

5.8. Stable Direct Adaptive Control
There have been several recent direct adaptive con-
trol techniques which have been designed to guaran-
tee overall system stability ([SaSl92], [Poly96], 
[SpCr98]). The method of [SaSl92] uses Lyapunov 
stability theory in the design of the network learning 
rule, rather than a gradient descent algorithm like 
backpropagation. The controller (see Figure 22) con-
sists of three parts: linear feedback, a nonlinear slid-
ing mode controller and an adaptive neural network 
controller. The total control signal is computed as fol-
lows:

, (44)

where  is the linear feedback control,  is 
the sliding mode control and  is the adaptive 
neural control. The function  allows a smooth 
transition between the sliding and adaptive control-
lers, based on the location of the system state:
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(45)

where the regions might be defined as in Figure 21.

Figure 21  Controller Regions

The sliding mode controller is used to keep the sys-
tem state in a region where the neural network can 
be accurately trained to achieve optimal control. The 
sliding mode controller is turned on (and the neural 
controller is turned off) whenever the system drifts 
outside this region. The combination of controllers 
produces a stable system which adapts to optimize 
performance.

Figure 22  Stable Direct Adaptive Control

It should be noted that this neural controller uses 
the radial basis neural network. The radial basis 
output is a linear function of the network weights, 
which allows faster training and simpler analysis 
than is possible with multilayer networks. It has the 
disadvantage that it may require many neurons if 
the number of network inputs is large. It also re-
quires that the centers and spread of the basis func-
tions be selected before training.

5.9. Limitations and Cautions
Each of the neurocontrol architectures we have dis-
cussed has its own advantages and disadvantages. 
For example, the feedback linearization technique 
can only be applied to systems described by Eq. (35). 
The stable direct adaptive control technique requires 
that the unknown nonlinearities appear in the same 
equation as the control input in a state-space repre-
sentation. The model reference adaptive control 
technique has no guarantee of stability. The adap-
tive inverse control technique requires the existence 
of a stable plant inverse. 

Generally speaking, those techniques which guaran-
tee stability apply to a restricted class of systems. As 
the field of neurocontrol continues to progress, stable 
neurocontrol methods will be developed for wider 
classes of systems. 

One of the key practical problems for many of the 
neurocontrol systems is the generalization issue that 
we discussed earlier - the ability of a network to per-
form well in new situations. For example, the model 
predictive control architecture requires that a neural 
network model of the plant be identified. This plant 
model is a mapping from previous plant inputs and 
outputs to future plant outputs. In order to accurate-
ly model the plant, the network needs to be trained 
with data which covers the entire range of possible 
network inputs. It may be difficult to obtain this da-
ta, since we don’t have direct control over previous 
plant outputs. We can sometimes have independent 
control over the plant inputs, but only indirect con-
trol over the plant outputs (which then become in-
puts to the network). For high-order systems it may 
be difficult to obtain data in which the plant re-
sponse covers all usable portions of the state space. 
In these situations it will be important for the net-
work to be able to detect situations in which the in-
puts fall outside the regions where the network 
received training data.

6. Conclusions
This tutorial has given a brief introduction to the use 
of neural networks in control systems. In the limited 
space it is not possible to discuss all possible ways in 
which neural networks have been applied to control 
system problems. We have selected one type of net-
work, the multilayer perceptron. We have demon-
strated the capabilities of this network for function 
approximation, and have described how it can be 
trained to approximate specific functions. We then 
presented several different control architectures 
which use neural network function approximators as 
basic building blocks.

For those readers interested in finding out more 
about the application of neural networks to control 
problems, we recommend the following references: 
[BaWe96], [HuSb92], [BrHa94], [MiSu90], 
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[WhSo92], [SuDe97], [VaVe96], [WiWa96], [Agar97], 
[WiRu94], [Kerr98].
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