

Abstract

The purpose of this tutorial is to provide a quick
overview of neural networks and to explain how they
can be used in control systems. We introduce the
multilayer perceptron neural network and describe
how it can be used for function approximation. The
backpropagation algorithm (including its variations)
is the principal procedure for training multilayer
perceptrons; it is briefly described here. Care must
be taken, when training perceptron networks, to en-
sure that they do not overfit the training data and
then fail to generalize well in new situations. Several
techniques for improving generalization are dis-
cused. The tutorial also presents several control ar-
chitectures, such as model reference adaptive
control, model predictive control, and internal model
control, in which multilayer perceptron neural net-
works can be used as basic building blocks.

1. Introduction

In this tutorial we want to give a brief introduction
to neural networks and their application in control
systems. The field of neural networks covers a very
broad area. It would be impossible in a short time to
discuss all types of neural networks. Instead, we will
concentrate on the most common neural network ar-
chitecture – the multilayer perceptron. We will de-
scribe the basics of this architecture, discuss its
capabilities and show how it has been used in several
different control system configurations. (For intro-
ductions to other types of networks, the reader is re-
ferred to [HBD96], [Bish95] and [Hayk99].)

For the purposes of this tutorial we will look at neu-
ral networks as function approximators. As shown in
Figure 1, we have some unknown function that we
wish to approximate. We want to adjust the parame-
ters of the network so that it will produce the same
response as the unknown function, if the same input
is applied to both systems.

For our applications, the unknown function may cor-
respond to a system we are trying to control, in which
case the neural network will be the identified plant
model. The unknown function could also represent

the inverse of a system we are trying to control, in
which case the neural network can be used to imple-
ment the controller. At the end of this tutorial we
will present several control architectures demon-
strating a variety of uses for function approximator
neural networks.

Figure 1 Neural Network as Function Approximator

In the next section we will present the multilayer
perceptron neural network, and will demonstrate
how it can be used as a function approximator.

2. Multilayer Perceptron Architecture

2.1 Neuron Model

The multilayer perceptron neural network is built up
of simple components. We will begin with a single-in-
put neuron, which we will then extend to multiple in-
puts. We will next stack these neurons together to
produce layers. Finally, we will cascade the layers to-
gether to form the network.

2.1.1 Single-Input Neuron

A single-input neuron is shown in Figure 2. The sca-
lar input is multiplied by the scalar

weight

 to
form , one of the terms that is sent to the summer.
The other input, , is multiplied by a

bias

 and
then passed to the summer. The summer output ,
often referred to as the

net input

, goes into a

transfer
function

 , which produces the scalar neuron output
. (Some authors use the term “activation function”

Unknown
Function -

+

Output

Predicted
Output

Input

Neural
Network

Error

Adaptation

p w
wp

1 b
n

f
a

Neural Networks for Control

Martin T. Hagan
School of Electrical & Computer Engineering

Oklahoma State University

mhagan@ieee.org

Howard B. Demuth
Electrical Engineering Department

University of Idaho

hdemuth@uidaho.edu

rather than

transfer function

 and “offset” rather
than

bias

.)

Figure 2 Single-Input Neuron

The neuron output is calculated as

.

Note that

 and are both

adjustable

 scalar param-
eters of the neuron. Typically the transfer function is
chosen by the designer and then the parameters
and will be adjusted by some learning rule so that
the neuron input/output relationship meets some
specific goal.

The transfer function in Figure 2 may be a linear or
a nonlinear function of . A particular transfer func-
tion is chosen to satisfy some specification of the
problem that the neuron is attempting to solve. One
of the most commonly used functions is the

log-sig-
moid transfer function

, which is shown in Figure 3.

Figure 3 Log-Sigmoid Transfer Function

This transfer function takes the input (which may
have any value between plus and minus infinity) and
squashes the output into the range 0 to 1, according
to the expression:

. (1)

The log-sigmoid transfer function is commonly used
in multilayer networks that are trained using the
backpropagation algorithm, in part because this
function is differentiable.

2.1.2 Multiple-Input Neuron

Typically, a neuron has more than one input. A neu-
ron with inputs is shown in Figure 4. The individ-
ual inputs are each weighted by
corresponding elements of the

weight matrix

 .

Figure 4 Multiple-Input Neuron

The neuron has a bias , which is summed with the
weighted inputs to form the net input :

. (2)

This expression can be written in matrix form:

, (3)

where the matrix for the single neuron case has
only one row.

Now the neuron output can be written as

. (4)

We have adopted a particular convention in assign-
ing the indices of the elements of the weight matrix.
The first index indicates the particular neuron desti-
nation for that weight. The second index indicates
the source of the signal fed to the neuron. Thus, the
indices in say that this weight represents the
connection

to

 the first (and only) neuron

from

 the
second source.

We would like to draw networks with several neu-
rons, each having several inputs. Further, we would
like to have more than one layer of neurons. You can
imagine how complex such a network might appear
if all the lines were drawn. It would take a lot of ink,
could hardly be read, and the mass of detail might
obscure the main features. Thus, we will use an

ab-
breviated notation

. A multiple-input neuron using
this notation is shown in Figure 5.

a = f (wp + b)

General Neuron

an

Inputs

AA
b

p w

1

AAΣ f

a f wp b+()=

w b

w
b

n

-1

n
0

+1

a = logsig (n)

Log-Sigmoid Transfer Function

a

a
1

1 e n–+
----------------=

R
p1 p2 ... pR,,,

w1 1, w1 2, ... w1 R,,,,
W

Multiple-Input Neuron

p1

an

Inputs

b

p2
p3

pR
w1, R

w1, 1

1

AA
AAΣ

a = f (Wp + b)

AA
AAf

b
n

n w1 1, p1 w1 2, p2
... w1 R, pR b+ + + +=

n Wp b+=

W

a f Wp b+()=

w1 2,

Figure 5 Neuron with Inputs, Abbreviated Nota-
tion

As shown in Figure 5, the input vector

 is repre-
sented by the solid vertical bar at the left. The di-
mensions of are displayed below the variable as

, indicating that the input is a single vector of
 elements. These inputs go to the weight matrix

, which has columns but only one row in this
single neuron case. A constant 1 enters the neuron as
an input and is multiplied by a scalar bias . The net
input to the transfer function is , which is the
sum of the bias

 and the product

. The neuron’s
output is a scalar in this case. If we had more than
one neuron, the network output would be a vector.

Note that the number of inputs to a network is set by
the external specifications of the problem. If, for in-
stance, you want to design a neural network that is
to predict kite-flying conditions and the inputs are
air temperature, wind velocity and humidity, then
there would be three inputs to the network.

2.2. Network Architectures

Commonly one neuron, even with many inputs, may
not be sufficient. We might need five or ten, operat-
ing in parallel, in what we will call a “layer.” This
concept of a layer is discussed below.

2.2.1 A Layer of Neurons

A single-

layer

 network of neurons is shown in Fig-
ure 6. Note that each of the inputs is connected to
each of the neurons and that the weight matrix now
has rows.

The layer includes the weight matrix, the summers,
the bias vector

, the transfer function boxes and the
output vector . Some authors refer to the inputs as
another layer, but we will not do that here.

Each element of the input vector is connected to
each neuron through the weight matrix . Each
neuron has a bias , a summer, a transfer function

 and an output . Taken together, the outputs form
the output vector .

Figure 6 Layer of

S

 Neurons

It is common for the number of inputs to a layer to be
different from the number of neurons (i.e.,).

You might ask if all the neurons in a layer must have
the same transfer function. The answer is no; you
can define a single (composite) layer of neurons hav-
ing different transfer functions by combining two of
the networks shown above in parallel. Both net-
works would have the same inputs, and each net-
work would create some of the outputs.

The input vector elements enter the network
through the weight matrix :

. (5)

As noted previously, the row indices of the elements
of matrix indicate the destination neuron associ-
ated with that weight, while the column indices indi-
cate the source of the input for that weight. Thus, the
indices in say that this weight represents the
connection

to

 the third neuron

from

 the second
source.

Fortunately, the

S

-neuron,

R

-input, one-layer net-
work also can be drawn in abbreviated notation, as
shown in Figure 7.

Here again, the symbols below the variables tell you
that for this layer, is a vector of length , is an

 matrix, and and are vectors of length .
As defined previously, the layer includes the weight
matrix, the summation and multiplication opera-
tions, the bias vector

, the transfer function boxes
and the output vector.

AA
AA
AA

f

Multiple-Input Neuron

a = f (Wp + b)

p a

1

nAW

A
Ab

R x 1
1 x R

1 x 1

1 x 1

1 x 1

Input

R 1

R

p

p
R 1×
R
W R

b
f n

b Wp
a

S
R

S

b
a

p
W

bi
f ai

a

Layer of S Neurons

AAf

p1

a2n2

Inputs

p2

p3

pR

wS, R

w1,1

b2

b1

bS

aSnS

a1n1

1

1

1

AA
AAΣ

AA
AA

Σ

AAΣ

AA
AA

f

AA
AA

f

a = f(Wp + b)

R S≠

W

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

… … …

W

w3 2,

p R W
S R× a b S

b

Figure 7 Layer of Neurons, Abbreviated Notation

2.2.2 Multiple Layers of Neurons
Now consider a network with several layers. Each
layer has its own weight matrix , its own bias vec-
tor , a net input vector and an output vector .
We need to introduce some additional notation to dis-
tinguish between these layers. We will use super-

scripts to identify the layers. Specifically, we append
the number of the layer as a superscript to the names
for each of these variables. Thus, the weight matrix
for the first layer is written as , and the weight
matrix for the second layer is written as . This no-
tation is used in the three-layer network shown in
Figure 8.

As shown, there are inputs, neurons in the first
layer, neurons in the second layer, etc. As noted,
different layers can have different numbers of neu-
rons.

The outputs of layers one and two are the inputs for
layers two and three. Thus layer 2 can be viewed as
a one-layer network with = inputs, neu-
rons, and an weight matrix . The input to
layer 2 is , and the output is .

A layer whose output is the network output is called
an output layer. The other layers are called hidden
layers. The network shown in Figure 8 has an output
layer (layer 3) and two hidden layers (layers 1 and 2).

Figure 8 Three-Layer Network

3. Approximation Capabilities of Multi-
layer Networks
Two-layer networks, with sigmoid transfer functions
in the hidden layer and linear transfer functions in
the output layer, are universal approximators. A
simple example can demonstrate the power of this
network for approximation.

Consider the two-layer, 1-2-1 network shown in Fig-
ure 9. For this example the transfer function for the
first layer is log-sigmoid and the transfer function for
the second layer is linear. In other words,

 and . (6)
Figure 9 Example Function Approximation Network

Suppose that the nominal values of the weights and
biases for this network are

AA
AA
AA

f

Layer of S Neurons

a = f(Wp + b)

p a

1

nAAW

AA
AA

b

R x 1
S x R

S x 1

S x 1

S x 1

Input

R S

S

W
b n a

W1

W2

R S1

S2

R S1 S S2=
S1 S2× W2

a1 a2

First Layer

AA
AA
AA

f 1

AA
AA
AA

f 2

AA
AA
AA

f 3

p a1 a2

AAW1

AA
AA

b1

AAW2

AA
AA

b21 1

n1 n2

a3

n3

1

AAW3

AA
AA

b3

S2 x S1

S2 x 1

S2 x 1

S2 x 1
S3 x S2

S3 x 1

S3 x 1

S3 x 1R x 1
S1 x R

S1 x 1

S1 x 1

S1 x 1

Input

R S1 S2 S3

Second Layer Third Layer

a1 = f 1 (W1p + b1) a2 = f 2 (W2a1 + b2) a3 = f 3 (W3a2 + b3)

a3 = f 3 (W3 f 2 (W2f 1 (W1p + b1) + b2) + b3)

f 1 n() 1

1 e n–+
----------------= f 2 n() n=

p

a1
2n1

2

Input

w1
1,1

a1
1n1

1

w2
1,1

b1
2

b1
1

b2

a2n2

1

1

1

AA
AAΣ

AA
AAΣ AA

AAΣ
w1

2,1 w2
1,2

AA
AA

AA
AA

Log-Sigmoid Layer

AA
AA

Linear Layer

a1 = logsig (W1p + b1) a2 = purelin (W2a1 + b2)

, , , ,

, , .

The network response for these parameters is shown
in Figure 10, which plots the network output as
the input is varied over the range .

Notice that the response consists of two steps, one for
each of the log-sigmoid neurons in the first layer. By
adjusting the network parameters we can change the
shape and location of each step, as we will see in the
following discussion.

The centers of the steps occur where the net input to
a neuron in the first layer is zero:

, (7)

. (8)

The steepness of each step can be adjusted by chang-
ing the network weights.

Figure 10 Nominal Response of Network of Figure 9

Figure 11 illustrates the effects of parameter chang-
es on the network response. The nominal response is
repeated from Figure 10. The other curves corre-
spond to the network response when one parameter
at a time is varied over the following ranges:

, , , .(9)

Figure 11 (a) shows how the network biases in the
first (hidden) layer can be used to locate the position
of the steps. Figure 11 (b) illustrates how the weights
determine the slope of the steps. The bias in the sec-
ond (output) layer shifts the entire network response
up or down, as can be seen in Figure 11 (d).

Figure 11 Effect of Parameter Changes on Network
Response

From this example we can see how flexible the mul-
tilayer network is. It would appear that we could use
such networks to approximate almost any function,
if we had a sufficient number of neurons in the hid-
den layer. In fact, it has been shown that two-layer
networks, with sigmoid transfer functions in the hid-
den layer and linear transfer functions in the output
layer, can approximate virtually any function of in-
terest to any degree of accuracy, provided sufficiently
many hidden units are available (see [HoSt89]).

4. Training Multilayer Networks
Now that we know multilayer networks are univer-
sal approximators, the next step is to determine a
procedure for selecting the network parameters
(weights and biases) which will best approximate a
given function. The procedure for selecting the pa-
rameters for a given problem is called training the
network. In this section we will outline a training
procedure called backpropagation, which is based on
gradient descent. (More efficient algorithms than
gradient descent are often used in neural network
training. The reader is referred to [HBD96] for dis-
cussions of these other algorithms.)

As we discussed earlier, for multilayer networks the
output of one layer becomes the input to the follow-
ing layer (see Figure 8). The equations that describe
this operation are

 for
, (10)

where is the number of layers in the network. The
neurons in the first layer receive external inputs:

, (11)

w1 1,
1 10= w2 1,

1 10= b1
1 10–= b2

1 10=

w1 1,
2 1= w1 2,

2 1= b2 0=

a2

p 2– 2,[]

n1
1 w1 1,

1 p b1
1+ 0= = p

b1
1

w1 1,
1

----------– 10–
10
---------– 1= = =⇒

n2
1 w2 1,

1 p b2
1+ 0= = p

b2
1

w2 1,
1

----------– 10
10
------– 1–= = =⇒

-2 -1 0 1 2
-1

0

1

2

3

p

a2

1– w1 1,
2 1≤ ≤ 1– w1 2,

2 1≤ ≤ 0 b2
1 20≤ ≤ 1– b2 1≤ ≤

-2 -1 0 1 2
-1

0

1

2

3

-2 -1 0 1 2
-1

0

1

2

3

-2 -1 0 1 2
-1

0

1

2

3

-2 -1 0 1 2
-1

0

1

2

3

w1 1,
2

w1 2,
2

b2

b2
1

(a) (b)

(c) (d)

am 1+ f m 1+ Wm 1+ am bm 1++()=

m 0 1 … M 1–, , ,=

M

a0 p=

which provides the starting point for Eq. (10). The
outputs of the neurons in the last layer are consid-
ered the network outputs:

. (12)

4.1. Performance Index
The backpropagation algorithm for multilayer net-
works is a gradient descent optimization procedure
in which we minimize a mean square error perfor-
mance index. The algorithm is provided with a set of
examples of proper network behavior:

, (13)

where is an input to the network, and is the
corresponding target output. As each input is ap-
plied to the network, the network output is compared
to the target. The algorithm should adjust the net-
work parameters in order to minimize the sum
squared error:

. (14)

where is a vector containing all of network weights
and biases. If the network has multiple outputs this
generalizes to

. (15)

Using a stochastic approximation, we will replace
the sum squared error by the error on the latest tar-
get:

, (16)

where the expectation of the squared error has been
replaced by the squared error at iteration .

The steepest descent algorithm for the approximate
mean square error is

, (17)

, (18)

where is the learning rate.

4.2. Chain Rule
For a single-layer linear network these partial deriv-
atives in Eq. (17) and Eq. (18) are conveniently com-
puted, since the error can be written as an explicit

linear function of the network weights. For the mul-
tilayer network the error is not an explicit function
of the weights in the hidden layers, therefore these
derivatives are not computed so easily.

Because the error is an indirect function of the
weights in the hidden layers, we will use the chain
rule of calculus to calculate the derivatives in Eq.
(17) and Eq. (18):

, (19)

. (20)

The second term in each of these equations can be
easily computed, since the net input to layer is an
explicit function of the weights and bias in that lay-
er:

. (21)

Therefore

, . (22)

If we now define

, (23)

(the sensitivity of to changes in the ith element of
the net input at layer), then Eq. (19) and Eq. (20)
can be simplified to

, (24)

. (25)

We can now express the approximate steepest de-
scent algorithm as

, (26)

. (27)

In matrix form this becomes:

, (28)

a aM=

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

pq tq

F x() eq
2

q 1=

Q

∑= tq aq–()2

q 1=

Q

∑=

x

F x() eq
Teq

q 1=

Q

∑= tq aq–()T tq aq–()
q 1=

Q

∑=

F̂ x() t k() a k()–()T t k() a k()–() eT k()e k()= =

k

wi j,
m k 1+() wi j,

m k() α F̂∂
wi j,

m∂
------------–=

bi
m k 1+() bi

m k() α F̂∂
bi

m∂
---------–=

α

F̂∂
wi j,

m∂

F̂∂
ni

m∂

ni
m∂

wi j,
m∂

------------×=

F̂∂
bi

m∂

F̂∂
ni

m∂

ni
m∂

bi
m∂

---------×=

m

ni
m wi j,

m aj
m 1–

j 1=

S
m 1–

∑ bi
m+=

ni
m∂

wi j,
m∂

------------ aj
m 1–=

ni
m∂

bi
m∂

--------- 1=

si
m F̂∂

ni
m∂

---------≡

F̂
m

F̂∂
wi j,

m∂
------------ si

maj
m 1–=

F̂∂
bi

m∂
--------- si

m=

wi j,
m k 1+() wi j,

m k() αsi
maj

m 1––=

bi
m k 1+() bi

m k() αsi
m–=

Wm k 1+() Wm k() αsm am 1–()
T

–=

, (29)

where the individual elements of are given by Eq.
(23).

4.3. Backpropagating the Sensitivities
It now remains for us to compute the sensitivities ,
which requires another application of the chain rule.
It is this process that gives us the term backpropaga-
tion, because it describes a recurrence relationship
in which the sensitivity at layer is computed from
the sensitivity at layer :

, (30)

, (31)

where

. (32)

(See [HDB96], Chapter 11 for a derivation of this re-
sult.)

4.4. Variations of Backpropagation
In some ways it is unfortunate that the algorithm we
usually refer to as backpropagation, given by Eq. (28)
and Eq. (29), is in fact simply a steepest descent al-
gorithm. There are many other optimization algo-
rithms that can use the backpropagation procedure,
in which derivatives are processed from the last lay-
er of the network to the first (as given in Eq. (31)).
For example, conjugate gradient and quasi-Newton
algorithms ([Shan90], [Scal85], [Char92]) are gener-
ally more efficient than steepest descent algorithms,
and yet they can use the same backpropagation pro-
cedure to compute the necessary derivatives. The
Levenberg-Marquardt algorithm is very efficient for
training small to medium-size networks, and it uses
a backpropagation procedure that is very similar to
the one given by Eq. (31) (see [HaMe94]).

We should emphasize that all of the algorithms that
we will describe in this chapter use the backpropaga-
tion procedure, in which derivatives are processed
from the last layer of the network to the first. For
this reason they could all be called “backpropaga-
tion” algorithms. The differences between the algo-
rithms occur in the way in which the resulting
derivatives are used to update the weights.

4.5. Generalization (Interpolation & Extrapo-
lation)

We now know that multilayer networks are univer-
sal approximators, but we have not discussed how to
select the number of neurons and the number of lay-
ers necessary to achieve an accurate approximation
in a given problem. We have also not discussed how
the training data set should be selected. The trick is
to use enough neurons to capture the complexity of
the underlying function without having the network
overfit the training data, in which case it will not
generalize to new situations. We also need to have
sufficient training data to adequately represent the
underlying function.

To illustrate the problems we can have in network
training, consider the following general example. As-
sume that the training data is generated by the fol-
lowing equation:

, (33)

where is the system input, is the underlying
function we wish to approximate, is measurement
noise, and is the system output (network target).

Figure 12 Example of Overfitting a) and Good Fit b)

bm k 1+() bm k() αsm–=

sm

sm

m
m 1+

sM 2Ḟ
M

nM() t a–()–=

sm Ḟ
m

nm() Wm 1+()
T
sm 1+= m M 1– … 2 1, , ,=

Ḟ
m

nm()

f˙
m

n1
m() 0 … 0

0 f˙
m

n2
m() … 0

0 0 … f˙
m

n
S

m
m()

= … … …

tq g pq() eq+=

pq g()
eq

tq

-3 -2 -1 0 1 2 3
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

p

t

a)

-3 -2 -1 0 1 2 3
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

p

t

b)

Figure 12 shows an example of the underlying func-
tion (thick line), training data target values
(large circles), network responses for the training in-
puts (small circles with imbedded crosses), and to-
tal trained network response (thin line).

In the example shown in Figure 12 a), a large net-
work was trained to minimize squared error (Eq.
(14)) over the 15 points in the training set. We can
see that the network response exactly matches the
target values for each training point. However, the
total network response has failed to capture the un-
derlying function. There are two major problems.
First, the network has overfit on the training data.
The network response is too complex, because the
network has too many independent parameters (61)
and they have not been constrained in any way. The
second problem is that there is no training data for
values of greater than 0. Neural networks (and all
other data-based approximation techniques) cannot
be expected to extrapolate accurately. If the network
receives an input which is outside of the range cov-
ered in the training data, then the network response
will always be suspect.

While there is little we can do to improve the net-
work performance outside the range of the training
data, we can improve its ability to interpolate be-
tween data points. Improved generalization can be
obtained through a variety of techniques. In one
method, called early stopping, we place a portion of
the training data into a validation data set. The per-
formance of the network on the validation set is mon-
itored during training. During the early stages of
training the validation error will come down. When
overfitting begins, the validation error will begin to
increase, and at this point the training is stopped.

Another technique to improve network generaliza-
tion is called regularization. With this method the
performance index is modified to include a term
which penalizes network complexity. The most com-
mon penalty term is the sum of squares of the net-
work weights:

(34)

This performance index forces the weights to be
small, which produces a smoother network response.
The trick with this method is to choose the correct
regularization parameter . If the value is too large,
then the network response will be too smooth and
will not accurately approximate the underlying func-
tion. If the value is too small, then the network will
overfit. There are a number of methods for selecting
the optimal . One of the most successful is Baye-
sian regularization ([MacK92] and [FoHa97]). Fig-
ure 12 b) shows the network response when the
network is trained with Bayesian regularization. No-

tice that the network response no longer exactly
matches the training data points, but the overall net-
work response more closely matches the underlying
function over the range of the training data.

Even with Bayesian regularization, the network re-
sponse is not accurate outside the range of the train-
ing data. As we mentioned earlier, we cannot expect
the network to extrapolate accurately. If we want the
network to respond accurately throughout the range
[-3, 3], then we need to provide training data
throughout this range. This can be more problematic
in multi-input cases, as shown in Figure 13. On the
top graph we have the underlying function. On the
bottom graph we have the neural network approxi-
mation. The training inputs were provided over the
entire range of each input, but only for cases where
the first input was greater than the second input. We
can see that the network approximation is good for
cases within the training set, but is poor for all cases
where the second input is larger than the first input.

Figure 13 Two-Input Example of Poor Network Ex-
trapolation

A complete discussion of generalization and overfit-
ting is beyond the scope of this tutorial. The interest-

g() tq

aq

p

F x() eq
Teq

q 1=

Q

∑ ρ wi j,
k()

2
∑+=

ρ

ρ

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3

-6

-4

-2

0

2

4

6

8

x

Peaks

y

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3

-6

-4

-2

0

2

4

6

8

x

NNPeaks

y

ed reader is referred to [HDB96], [Hayk99],
[MacK92] or [FoHa97].

In the next section we will describe how multilayer
networks can be used in neurocontrol applications.

5. Control System Applications
Neural networks have been applied very successfully
in the identification and control of dynamic systems.
The universal approximation capabilities of the mul-
tilayer perceptron have made it a popular choice for
modeling nonlinear systems and for implementing
general-purpose nonlinear controllers. In the re-
mainder of this tutorial we will introduce some of the
more popular neural network architectures for sys-
tem identification and control.

5.1. Fixed Stabilizing Controllers
Fixed stabilizing controllers (see Figure 14) have
been proposed in [Kawa90], [KrCa90], and [Mill87].

This scheme has been applied to the control of robot
arm trajectory, where a proportional controller with
gain was used as the stabilizing feedback controller.
From Figure 14 we can see that the total input that
enters the plant is the sum of the feedback control
signal and the feedforward control signal, which is
calculated from the inverse dynamics model (neural
network). That model uses the desired trajectory as
the input and the feedback control as an error signal.
As the NN training advances, that input will con-
verge to zero. The neural network controller will
learn to take over from the feedback controller.

The advantage of this architecture is that we can
start with a stable system, even though the neural
network has not been adequately trained. A similar
(although more complex) control architecture, in
which stabilizing controllers are used in parallel
with neural network controllers, is described in
[SaSl92].

Figure 14 Stabilizing Controller

5.2. Adaptive Inverse Control
Figure 15 shows a structure for the Model Reference
Adaptive Inverse Control proposed in [WiWa96]. The
adaptive algorithm receives the error between the
plant output and the reference model output. The
controller parameters are updated to minimize that
tracking error. The basic model reference adaptive
control approach can be affected by sensor noise and
plant disturbances. An alternative which allows can-
cellation of the noise and disturbances includes a
neural network plant model in parallel with the
plant. That model will be trained to receive the same
inputs as the plant and to produce the same output.
The difference between the outputs will be interpret-
ed as the effect of the noise and disturbances at the
plant output. That signal will enter an inverse plant
model to generate a filtered noise and disturbance
signal that is subtracted from the plant input. The
idea is to cancel the disturbance and the noise
present in the plant.

5.3. Nonlinear Internal Model Control
Nonlinear Internal Model Control (NIMC), shown in
Figure 16, consists of a neural network controller, a
neural network plant model, and a robustness filter
with a single tuning parameter [NaHe92]. The neu-
ral network controller is generally trained to repre-
sent the inverse of the plant, if the inverse exists.
The error between the output of the neural network
plant model and the measurement of plant output is
used as the feedback input to the robustness filter,
which then feeds into the neural network controller.

The NN plant model and the NN controller (if it is an
inverse plant model) can be trained off-line, using
data collected from plant operations. The robustness
filter is a first order filter whose time constant is se-
lected to ensure closed loop stability.

Plant

NN
Inverse Plant

Model

Adaptation
Algorithm

Stabilizing
Controller

+
+

+

-

Command
Input

Plant
Output

Feedforward
Control

Feedback
Control

Figure 15 Adaptive Inverse Control System

Figure 16 Nonlinear Internal Model Control

5.4. Model Predictive Control
Model Predictive Control (MPC), shown in Figure 18,
optimizes the plant response over a specified time
horizon [HuSb92]. This architecture requires a neu-
ral network plant model, a neural network control-
ler, a performance function to evaluate system
responses, and an optimization procedure to select
the best control input.

The optimization procedure can be computationally
expensive. It requires a multi-step ahead calcula-
tion, in which the neural network model is used to
predict the plant response. The neural network con-
troller learns to produce the input selected by the op-
timization process. When training is complete, the
optimization step can be completely replaced by the
neural network controller.

5.5. Model Reference Control or Neural
Adaptive Control

As with other techniques, the Model Reference Adap-
tive Control (MRAC) configuration [NaPa90] uses
two neural networks: a controller network and a
model network. (See Figure 17.) The model network
can be trained off-line using historical plant mea-
surements. The controller is adaptively trained to
force the plant output to track a reference model out-
put. The model network is used to predict the effect
of controller changes on plant output, which allows
the updating of controller parameters.

Plant

NN
Plant Model

NN
Inverse Plant

Model

Reference
Model

Adaptation
Algorithm

NN
Controller

-

+

+

+

+
-

+

-

Command
Input

Plant Disturbance
Sensor Noise

Plant
Output

Noise &
Disturbance

at Plant Output

Tracking Error

PlantNN
Controller

Robustness
Filter

-

+

+

-

Command
Input

Plant
Output

Predicted
Plant
Output

Control
Input

NN
Plant Model

Figure 17 Model Reference Adaptive Control

Figure 18 Model Predictive Control

5.6. Adaptive Critic
As shown in Figure 19, the Adaptive Critic controller
consists of two neural networks [SuBa98]. The first
network operates as an inverse controller and is
called the Action or Actor network. The second net-
work, called the Critic Network, predicts the future
performance of the system. The Critic network is

trained to optimize future performance. The training
is performed using reinforcement learning, which is
an approximation to dynamic programming. There
have been many variations of the adaptive critic con-
troller proposed in the last few years.

Figure 19 Adaptive Critic

PlantNN
Controller

-

+

+

-

Command
Input

Plant
Output

Model
Error

Control
Input

NN
Plant Model

Reference
Model

Control
Error

PlantNN
Controller

Optimization

Command
Input

Plant
Output

Predicted
Plant
Output

Control
Input

NN
Plant Model

Reference
Model

Optimization Loop

PlantAction Network
(Controller)

Command
Input

Plant
Output

Control
Input

Critic Network
(Optimization)

5.7. Neural Adaptive Feedback Linearization
The neural adaptive feedback linearization tech-
nique is based on the standard feedback lineariza-
tion controller [SlLi91]. An implementation is shown
in Figure 20. The feedback linearization technique
produces a control signal with two components. The
first component cancels out the nonlinearities in the
plant, and the second part is a linear state feedback
controller. The class of nonlinear systems to which
this technique can be applied is described by the re-
lation [VaVe96]:

, (35)

where

(36)

contains the system state variables and is the con-
trol input. To obtain a linear system from the nonlin-
ear system described by Eq. (35), we can use the
input

, (37)

where contains the feedback gains and is the ref-
erence input.

Substitution of Eq. (37) into Eq. (35) results in the
linear system

, (38)

whose behavior is completely controlled by the linear
feedback gains.

We can use neural networks to implement the feed-
back linearization strategy. If we approximate the
functions and using the neural networks
and , we can rewrite the control signal as

. (39)

We wish the system to follow the reference model
given by

. (40)

By substituting Eq. (39) into Eq. (35) we obtain

. (41)

The controller error is defined as

, (42)

and the error differential equation is

(43)

With an appropriate training algorithm, the error
differential equation will be stable. The error will
converge to zero “if structural error terms are suffi-
ciently small.” [VaVe96]

There are several variations on the neural adaptive
feedback linearization controller, including the ap-
proximate models (in particular Model VI) of Naren-
dra [NaBa94].

Figure 20 Neural Adaptive Feedback Linearization

5.8. Stable Direct Adaptive Control
There have been several recent direct adaptive con-
trol techniques which have been designed to guaran-
tee overall system stability ([SaSl92], [Poly96],
[SpCr98]). The method of [SaSl92] uses Lyapunov
stability theory in the design of the network learning
rule, rather than a gradient descent algorithm like
backpropagation. The controller (see Figure 22) con-
sists of three parts: linear feedback, a nonlinear slid-
ing mode controller and an adaptive neural network
controller. The total control signal is computed as fol-
lows:

, (44)

where is the linear feedback control, is
the sliding mode control and is the adaptive
neural control. The function allows a smooth
transition between the sliding and adaptive control-
lers, based on the location of the system state:

xp
n() f xp() g xp()u+=

xp xp ẋp … xp
n 1–()

T
=

u

u
1

g xp()
------------- f xp()– kTxp– r+[]=

k r

xp
n() kTxp– r+=

f g N Nf
N Ng

u
1

N Ng xp()
---------------------- N Nf xp()– kTxp– r+[]=

xm
n() kTxm– r+=

xp
n() f xp()

g xp()
N Ng xp()
---------------------- N Nf xp()– kTxp– r+[]+=

e xp xm–=

e n() kTe– f xp() N Nf xp()–{ }
g xp() N Ng xp()–{ } u

+

+

=

Plant

Reference
Model

Adaptation
for NNf

NNf

-

+

NNg

Adaptation
for NNg

k

-r

e

xp

xm

+-

u t() upd t() 1 m t()–()uad t() m t()usl t()+ +=

upd t() usl t()
uad t()
m t()

(45)

where the regions might be defined as in Figure 21.

Figure 21 Controller Regions

The sliding mode controller is used to keep the sys-
tem state in a region where the neural network can
be accurately trained to achieve optimal control. The
sliding mode controller is turned on (and the neural
controller is turned off) whenever the system drifts
outside this region. The combination of controllers
produces a stable system which adapts to optimize
performance.

Figure 22 Stable Direct Adaptive Control

It should be noted that this neural controller uses
the radial basis neural network. The radial basis
output is a linear function of the network weights,
which allows faster training and simpler analysis
than is possible with multilayer networks. It has the
disadvantage that it may require many neurons if
the number of network inputs is large. It also re-
quires that the centers and spread of the basis func-
tions be selected before training.

5.9. Limitations and Cautions
Each of the neurocontrol architectures we have dis-
cussed has its own advantages and disadvantages.
For example, the feedback linearization technique
can only be applied to systems described by Eq. (35).
The stable direct adaptive control technique requires
that the unknown nonlinearities appear in the same
equation as the control input in a state-space repre-
sentation. The model reference adaptive control
technique has no guarantee of stability. The adap-
tive inverse control technique requires the existence
of a stable plant inverse.

Generally speaking, those techniques which guaran-
tee stability apply to a restricted class of systems. As
the field of neurocontrol continues to progress, stable
neurocontrol methods will be developed for wider
classes of systems.

One of the key practical problems for many of the
neurocontrol systems is the generalization issue that
we discussed earlier - the ability of a network to per-
form well in new situations. For example, the model
predictive control architecture requires that a neural
network model of the plant be identified. This plant
model is a mapping from previous plant inputs and
outputs to future plant outputs. In order to accurate-
ly model the plant, the network needs to be trained
with data which covers the entire range of possible
network inputs. It may be difficult to obtain this da-
ta, since we don’t have direct control over previous
plant outputs. We can sometimes have independent
control over the plant inputs, but only indirect con-
trol over the plant outputs (which then become in-
puts to the network). For high-order systems it may
be difficult to obtain data in which the plant re-
sponse covers all usable portions of the state space.
In these situations it will be important for the net-
work to be able to detect situations in which the in-
puts fall outside the regions where the network
received training data.

6. Conclusions
This tutorial has given a brief introduction to the use
of neural networks in control systems. In the limited
space it is not possible to discuss all possible ways in
which neural networks have been applied to control
system problems. We have selected one type of net-
work, the multilayer perceptron. We have demon-
strated the capabilities of this network for function
approximation, and have described how it can be
trained to approximate specific functions. We then
presented several different control architectures
which use neural network function approximators as
basic building blocks.

For those readers interested in finding out more
about the application of neural networks to control
problems, we recommend the following references:
[BaWe96], [HuSb92], [BrHa94], [MiSu90],

m t() 0= x t() Ad∈
0 m t() 1< < otherwise

m t() 1= x t() Ac∈





Ad

Ac

x

ẋ

Plant

+

x

x

upd

xd

+
Sliding

Linear

Modulate

Neural

+

usl

uad

u

[WhSo92], [SuDe97], [VaVe96], [WiWa96], [Agar97],
[WiRu94], [Kerr98].

7. References
[Agar97] M. Agarwal, “A systematic classification

of neural-network-based control,” IEEE
Control Systems Magazine, vol. 17, no. 2,
pp. 75-93, 1997.

[BaWe96] S.N. Balakrishnan and R.D. Weil, “Neu-
rocontrol: A Literature Survey,” Mathe-
matical Modeling and Computing, vol.
23, pp. 101-117, 1996.

[Bish95] C. Bishop, Neural Networks for Pattern
Recognition, New York: Oxford, 1995.

[BrHa94] M. Brown and C. Harris, Neurofuzzy
Adaptive Modeling and Control, New
Jersey: Prentice-Hall, 1994.

[Char92] C. Charalambous, “Conjugate gradient
algorithm for efficient training of artifi-
cial neural networks,” IEEE Proceed-
ings, vol. 139, no. 3, pp. 301–310, 1992.

[ChWe94] Q. Chen and W.A. Weigand, “Dynamic
Optimization of Nonlinear Processes by
Combining Neural Net Model with UD-
MC,” AIChE Journal, vol. 40, pp. 1488-
1497, 1994.

[FoHa97] F. D. Foresee and M. T. Hagan, “Gauss-
Newton approximation to Bayesian reg-
ularization,” Proceedings of the 1997 In-
ternational Conference on Neural
Networks, Houston, Texas, 1997.

[HBD96] M. Hagan, H. Demuth, and M. Beale,
Neural Network Design, Boston: PWS,
1996.

[HaMe94] M. T. Hagan and M. Menhaj, “Training
feedforward networks with the Mar-
quardt algorithm,” IEEE Transactions
on Neural Networks, vol. 5, no. 6, pp.
989–993, 1994.

[Hayk99] S. Haykin, Neural Networks: A Compre-
hensive Foundation, 2nd Ed., New Jer-
sey: Prentice-Hall, 1999.

[HoSt89] K. M. Hornik, M. Stinchcombe and H.
White, “Multilayer feedforward net-
works are universal approximators,”
Neural Networks, vol. 2, no. 5, pp. 359–
366, 1989.

[HuSb92] K.J. Hunt, D. Sbarbaro, R. Zbikowski
and P.J. Gawthrop, “Neural Networks
for Control System - A Survey,” Automat-
ica, vol. 28, pp. 1083-1112, 1992.

[Kawa90] M. Kawato, “Computational Schemes
and Neural Network Models for Forma-
tion and Control of Multijoint Arm Tra-
jectory,” Neural Networks for Control,
W.T. Miller, R.S. Sutton, and P.J. Wer-
bos, Eds., Boston: MIT Press, pp. 197-
228, 1990.

[Kerr98] T.H. Kerr, “Critique of some neural net-
work architectures and claims for control
and estimation,” IEEE Transactions on
Aerospace and Electronic Systems, vol.
34, no. 2, pp. 406-419, 1998.

[KrCa90] L.G. Kraft and D.P. Campagna, “A Com-
parison between CMAC Neural Network
Control and Two Traditional Control
Systems,” IEEE Control Systems Maga-
zine, vol. 10, no. 2, pp. 36-43, 1990.

[MacK92] D. J. C. MacKay, “A Practical Frame-
work for Backpropagation Networks,”
Neural Computation, vol. 4, pp. 448-472,
1992.

[Mill87] W.T. Miller, “Sensor-Based Control of
Robotic Manipulators Using a General
Learning Algorithm,” IEEE Journal of
Robotics and Automation, vol. 3, no. 2,
pp. 157-165, 1987.

[MiSu90] W.T. Miller, R.S. Sutton, and P.J. Wer-
bos, Eds., Neural Networks for Control,
Cambridge, MA: MIT Press, 1990.

[MuNe92] R. Murray, D. Neumerkel and D. Sbarba-
ro, “Neural Networks for Modeling and
Control of a Non-linear Dynamic Sys-
tem,” Proceedings of the 1992 IEEE In-
ternational Symposium on Intelligent
Control, pp. 404-409, 1992.

[NaHe92] E.P. Nahas, M.A. Henso and D.E. Se-
borg, “Nonlinear Internal Model Control
Strategy for Neural Models,” Computers
and Chemical Engineering, vol. 16, pp.
1039-1057, 1992.

[NaBa94] K.S. Narendra and B. Balakrishnan,
“Improving Transient Response of Adap-
tive Control Systems Using Multiple
Models and Switching,” IEEE Transac-
tions on Automatic Control, vol. 39, no. 9,
pp. 1861-1866, 1994.

[NaPa90] K.S. Narendra, and K. Parthasarathy,
“Identification and Control of Dynamical
Systems Using Neural Networks,” IEEE
Transactions on Neural Networks, vol. 1,
pp. 4-27, 1990.

[Poly96] M.M. Polycarpou, “Stable adaptive neu-
ral control scheme for nonlinear control,”
IEEE Transactions on Automatic Con-
trol, vol. 41, no. 3, pp. 447-451, 1996.

[RiBr93] M. Riedmiller and H. Braun, “A direct
adaptive method for faster backpropaga-
tion learning: The RPROP algorithm,”
Proceedings of the IEEE International
Conference on Neural Networks, San
Francisco: IEEE, 1993.

[SaSl92] R.M. Sanner and J.J.E. Slotine, “Gauss-
ian Networks for Direct Adaptive Con-
trol,” IEEE Transactions on Neural
Networks, vol. 3, pp. 837-863, 1992.

[Scal85] L. E. Scales, Introduction to Non-Linear
Optimization, New York: Springer-Ver-
lag, 1985.

[Shan90] D. F. Shanno, “Recent advances in nu-
merical techniques for large-scale opti-
mization,” in Neural Networks for
Control, Miller, Sutton and Werbos, eds.,
Cambridge, MA: MIT Press, 1990.

[SlLi91] J.-J. E. Slotine and W. Li, Applied Non-
linear Control, New Jersey: Prentice-
Hall, 1991.

[SpCr98] J.C. Spall and J.A. Cristion, “Model-free
control of nonlinear stochastic systems
with discrete-time measurements,”
IEEE Transactions on Automatic Con-
trol, vol. 43, no. 9, pp. 1198-1210, 1998.

[SuBa98] R.S. Sutton, and A.G. Barto, Introduc-
tion to Reinforcement Learning, Cam-
bridge, Mass.: MIT Press, 1998.

[SuDe97] J.A.K. Suykens, B.L.R. De Moor and J.
Vandewalle, “NLq Theory: A Neural
Control Framework with Global Asymp-
totic Stability Criteria,” Neural Net-
works, vol. 10, pp. 615-637, 1997.

[VaVe96] A.J.N. Van Breemen and L.P.J. Veelen-
turf, “Neural Adaptive Feedback Linear-
ization Control,” Journal A, vol. 37, pp.
65-71, 1996.

[WhSo92] D.A. White and D.A. Sofge, Eds., The
Handbook of Intelligent Control, New
York: Van Nostrand Reinhold, 1992.

[WiRu94] B. Widrow, D.E. Rumelhart, and M.A.
Lehr, “Neural networks: Applications in
industry, business and science,” Journal
A, vol. 35, no. 2, pp. 17-27, 1994.

[WiWa96] B. Widrow and E. Walach, Adaptive In-
verse Control, New Jersey: Prentice Hall,
1996.

