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Isolated systems tend to evolve towards equilibrium, a special state that has been 
the focus of many-body research for a century.  Yet much of the richness of the 
world around us arises from conditions far from equilibrium.  Phenomena such as 
turbulence, earthquakes, fracture, and life itself occur only far from equilibrium.  
Subjecting materials to conditions far from equilibrium leads to otherwise 
unattainable properties.  For example, rapid cooling is a key process in 
manufacturing the strongest metallic alloys and toughest plastics.  Processes that 
occur far from equilibrium also create some of the most intricate structures 
known, from snowflakes to the highly organized structures of life. While much is 
understood about systems at or near equilibrium, we are just beginning to uncover 
the basic principles governing systems far from equilibrium.  

 
 
THE IMPORTANCE OF FAR-FROM-EQUILIBRIUM PHENOMENA 
 
We live in a world of evolving structures and patterns. When energy is 
continually supplied to systems with many interacting constituents, the 
outcome generally differs strikingly from the unchanging state that 
characterizes equilibrium. From the molecular processes on the 
nanoscale that form the basis of life to the dynamically changing 
climate on this planet to the clustering of matter within the universe as a 
whole, a myriad of phenomena owe their existence to being not just 
slightly away from equilibrium, but far from it (Fig. 1).  Far-from-
equilibrium conditions also strikingly alter the behavior of ordinary 
fluids and solids.  Dramatic examples occur when fluid flow turns 
turbulent or when solids give way and fracture (Fig. 2).  Both 
turbulence (Falkovich et al. 2001) and fracture (Carlson et al. 1994; 
Freund 1998) generate patterns of amazing complexity that not only 
completely change the materials properties but also redistribute energy 
across a whole hierarchy of nested structures ranging from the 
microscopic to the macroscopic scale.  Far-from-equilibrium processes 
span a similarly immense range of time scales, from electronic 
transitions at the sub-nanosecond scale, to glassy relaxation too slow to 
measure with any technique, to the age of the universe. 
 
Far-from-equilibrium behavior is not confined to special conditions or 
certain types of materials. Instead, it arises across the entire spectrum of 
physics in a host of problems of fundamental interest.  Far-from-
equilibrium phenomena also benefit and plague us in technology and in 
everyday life (Ennis et al. 1994; Marder and Fineberg 1996) (Fig. 2). 

Fig.1. Swarming 
schools of fish, 
swirling storms and 
galaxies (top to 
bottom) are all 
examples of systems 
formed and evolving 
far from equilibrium.  
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Indeed, some of the most complex outcomes of behavior far 
from equilibrium emerge in situations we are familiar with from 
daily experience.  We can see turbulence in cloud patterns as 
well as in a bath tub; we take advantage of glassy behavior in 
nearly all plastics but suffer from it in traffic jams; we exploit 
the breaking-up of a stream of fluid into droplets with fuel 
injection and ink jet printing but also find it in every leaky 
faucet.  The reach of far-from-equilibrium phenomena extends 
even further to many systems of profound 
societal importance.  In the last decade, 
researchers from the condensed-matter physics 
community have begun to tackle far-from-
equilibrium behavior governing the workings of 
systems ranging from the economy to 
ecosystems and the environment (Wu and 
Loucks 1995; Ghashghaie et al. 1996; 
Mantegna and Stanley 2000; Sornette 2003; 
McCauley 2004; Moritz et al. 2005).  
 
Two important themes define the scope of the 
challenge, and they run as persistent motifs 
through a description of the current status of 
physics far from equilibrium.   First, far-from-
equilibrium behavior is ubiquitous. The breadth of phenomena investigated makes the study of 
far-from-equilibrium systems an inherently interdisciplinary field that forges connections 
between the physics community and researchers in biology, chemistry, applied mathematics, 
geology, meteorology and engineering.  Far-from-equilibrium physics is connected intimately to 
both fundamental scientific challenges and cutting-edge materials processing.  Finally, far-from-
equilibrium physics underlies a wide range of phenomena outside the traditional boundaries of 
condensed matter physics, including earthquakes, hurricanes, galaxy formation, and 
consciousness.  As a result, breakthroughs in the area have potential for far-reaching impact. 
 
The second key theme is that far-from-equilibrium behavior is not a simple extension of 
equilibrium or near-equilibrium physics. Instead, it corresponds to qualitatively different types of 
behavior and response, typically associated with crossing some threshold into a new regime.  In 
some specific cases we have been able to unearth the microscopic origins of far-from-
equilibrium phenomena, but we are still lacking the understanding necessary to develop more 
comprehensive frameworks.  Therefore, despite its importance, far-from-equilibrium behavior 
still remains largely uncharted territory. The reasons why far-from-equilibrium phenomena 
often resist understanding are described below. The is followed by a discussion of problems for 
which we have been able to identify robust features, both in experiment and in theory, that can 
serve as starting points for future work. Except for small modifications and for the addition of 
references, this article corresponds to Chapter 5 of the CMMP2010 report released by the 
National Research Council (NRC et al. 2007).  In order to provide entering researchers a starting 
point, we focused primarily on reviews, when available, in selecting the references. Clearly this 

 

Fig.2.  The need to control far-from equilibrium 
behavior. Top: Turbulent airflow produced by 
the wingtips of a small airplane (visualized by 
red smoke). Bottom: Disastrous effect of 
materials fatigue and eventual fracture.  
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glosses over much of the relevant literature.  For a more exhaustive treatment we ask the reader 
to turn to the more specialized reviews in the references.   
 
 
What Condensed Matter Physicists Bring to the Table 
 
Researchers trained in condensed matter physics are well-positioned to spearhead progress in the 
field of far-from-equilibrium behavior. As one of the forefront areas of interdisciplinary research, 
condensed matter physics has long been a focal point for new approaches that bring together 
ideas from physics and other science and engineering disciplines, and that connect basic science 
with applied research.  Condensed matter physics also specializes in developing new theoretical, 
numerical, and experimental tools and techniques for systems of many interacting constituents. 
Experimental techniques that have been especially useful for probing far-from-equilibrium 
behavior include novel imaging tools, spectroscopic and particle tracking methods, and optical 
tweezers.  Many powerful theoretical and numerical techniques for studying the emergent 
behavior of many-particle systems near equilibrium have been generalized to systems far from 
equilibrium; for example, techniques originally developed for studying magnets have been 
extended to the flocking of birds (Toner et al. 2005).  Perhaps the field’s most valuable 
characteristic, however, is its penchant for searching for commonalities in wildly disparate 
systems.  This focus led to the spectacular success of condensed matter physics in realizing that 
the enormous variety of equilibrium phase transitions can be understood in terms of a few classes 
of behavior.  This history motivates researchers to search for similar organizing principles in the 
even vaster array of far-from-equilibrium phenomena.  
 
Far-from-equilibrium behavior is an important component in several of the challenges discussed 
in the CMMP2010 report (NRC et al. 2007).  It underlies many emergent phenomena  in systems 
ranging from the nanoscale  to the macroscale, and it plays an essential role in the physics of 
living systems.  Because many far-from-equilibrium phenomena require energy in order to be 
driven, they are also inevitably implicated in energy consumption and conversion.  In quantum 
computing, the challenge is to prepare qubits in prescribed pure quantum states.  Such systems 
are necessarily far from equilibrium.  Finally, because far-from-equilibrium phenomena are so 
common in everyday life and underlie so many societal concerns, they provide a rich context for 
education and learning, for the next generation of scientists as well as for the general public.  
 
 
HOW DO SYSTEMS REACH THE FAR-FROM-EQUILIBRIUM REGIME 
AND WHAT MAKES FAR-FROM-EQUILIBRIUM PHYSICS DIFFICULT? 
 
One way to keep a system from its natural state of rest and push it into the far-from-equilibrium 
regime is to subject it to continual and sufficiently strong forcing. For example, the energy that 
continually strikes the earth from the sun gives rise to far-from-equilibrium behavior ranging 
from chaotic weather patterns to the staggering diversity of life.  If solar energy were no longer 
supplied, many systems on earth would revert to equilibrium.  Driven systems such as these not 
only give rise to rich and unanticipated phenomena but are also of tremendous importance to 
technological applications.  For example, in molecular or nano-scale electronics, new phenomena 
arise from the response to large electromagnetic fields, currents and mechanical stresses 
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Fig.4. Glasses and foams are 
examples of important materials that 
are generically in states far from 
equilibrium.  Clockwise from top: 
molten glass freezing into a solid, 
Styrofoam, soap foam, high-strength 
light-weight nickel foam. 

(Gaspard 2006).  As one scales the physical dimensions of matter to the nanometer scale, the 
applied fields that drive the system away from its equilibrium state are amplified while the 
scattering that allows relaxation back to equilibrium is suppressed (Huang et al. 2007).  As a 
result, such devices often operate in the far-from-equilibrium regime, unlike conventional 
semiconductor devices at the micron scale, which typically operate much closer to equilibrium.  
On somewhat larger scales, far-from-equilibrium processes such as grinding and milling have 
been key to many industries for a long time, and newer techniques such as 
mechanical alloying of powders are gaining attention for novel materials 
synthesis (Murty and Ranganathan 1998; Suryanarayana 2001). 
 
Conditions far from equilibrium also provide a route for controlling a larger 
variety of patterns and for assembling structures from the nanoscale on up at 
growth rates much faster than would be possible with near-equilibrium 
approaches (Stoldt et al. 1998; Lopes and Jaeger 2001; Rabani et al. 2003).  
Importantly, far-from-equilibrium processes can achieve structural and 
dynamical richness even with the simplest of ingredients, such as the intricate 
dendritic growth realized in snowflakes (Langer 1980) (Fig.3).  
 

Other systems are trapped far from equilibrium because they simply cannot 
relax back to equilibrium even after all driving forces have been removed.  
This happens for many materials vital to our industrial society, including 

glasses (Ediger et al. 1996; Debenedetti and Stillinger 2001), powders 
(Knowlton et al. 1994; Shinbrot and Muzzio 2000), foams 
(Weaire and Hutzler 1999; Banhart 2001) and polymeric 
packaging materials (Auras et al. 2004), which attain their 
properties from being intrinsically caught in far-from-
equilibrium states. These materials exhibit structural properties 

that, under equilibrium conditions, would identify them 
as liquids; yet they can behave like solids (Fig. 4). 
 
Processes that occur far from equilibrium are beginning 
to force us to rethink some of the foundations of 
condensed matter and materials physics.  Yet even 
today, most of our knowledge about how systems with 
many constituent particles behave and evolve is based 

on considerations valid only close to equilibrium.  We 
know much more about systems near equilibrium and have 
developed a powerful formalism, statistical mechanics, to 

predict the emergent, collective behavior of many-
particle systems. This framework has allowed condensed 
matter researchers to understand a large number of 
phases of matter, the origins of many of their properties 
and the nature of transitions between them.  However, 
this framework applies only to situations where a system 
is thermally and mechanically in balance with its 
surroundings, and thus it covers only a small subset of 

Fig.3. Far-
from-equili-
brium growth 
in nature: the 
snowflake 
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the phenomena we observe around us and that we confront in applications.   
 
One conceptual difficulty posed by systems far from equilibrium thus arises from the absence of 
established theoretical frameworks.  By virtue of being far from equilibrium, such systems pose 
numerous challenges. They are typically nonlinear; i.e. their response to perturbation is often not 
proportional to the magnitude of the perturbation, as for systems near equilibrium.  They are 
often disordered; i.e. their structure is typically not crystalline, as equilibrium solids generally 
are.  Finally, they are often non-ergodic; i.e. they do not necessarily explore a large subset of the 
states available to them, as equilibrium systems must.  As a result, even characterizing their 
behavior and structure leads one onto largely unfamiliar ground from the standpoint of most of 
condensed matter physics.  
 
 
Far-From-Equilibrium Materials 
 
Certain classes of materials almost always exist under conditions far from equilibrium.  Many 
materials investigated by soft condensed matter researchers fall into this category, including 
glasses, foams, granular materials and dense colloidal suspensions (Liu and Nagel 2001).  In all 
these examples, the thermal energy supplied by the surroundings is too small to allow the 
systems explore many configurations.  Instead, they are 
trapped in configurations that structurally resemble a liquid 
(they are dense and highly disordered), but are unable to flow 
and thus behave as solids.  This glassy behavior, a hallmark 
of many far-from-equilibrium materials, is observed for 
constituents ranging from molecules in glass-forming liquids 
to grains of sand in dunes. Since these materials cannot relax 
to equilibrium, they typically retain a memory of the 
preparation or processing conditions, a key for many 
technological innovations such as molded plastic parts and 
shape memory polymers (Gunes and Jana 2008).  Transitions 
from far-from-equilibrium glassy states to near-equilibrium 
crystalline states are the basis for chalcogenide glass optical 
disks (Zakery and Elliott 2003) and phase-change memory 
devices (Wuttig and Yamada 2007). 
 
Over the last decade, granular matter has emerged as a key 
prototype of a far-from-equilibrium material (Jaeger et al. 
1996; de Gennes 1999; Kadanoff 1999) (Fig. 5).  In its 
simplest form, granular matter consists of nothing more than 
a large number of non-cohesive, macroscopic hard spheres 
interacting only at contact; yet it exhibits all the 
characteristics of far-from-equilibrium behavior, as discussed 
in the subsequent sections.  Furthermore, several ideas 
developed originally within the context of granular materials have by now been successfully 
“exported” into other areas; for example, the concept of jamming gives insight into glassy 
phenomena (Liu and Nagel 2001).  Similarly, ideas about avalanche statistics in driven 

Fig.5.  Granular materials 
consist of individually solid 
grains, interacting only at 
contact; yet large assemblies of 
such grains exhibit a rich set of 
complex behaviors. Left: 
ripples in a sand dune. Right: 
while fluids mix when stirred, 
granular materials size-
separate. MRI of interior of 
layered granular system, 
showing upward motion of 
large particle (dotted circle) in 
a bed of smaller ones.  
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dissipative systems, investigated early on in sand piles, have been applied to the dynamics of 
traffic (Helbing 2001), earthquakes (Carlson et al. 1994) and friction (Nasuno et al. 1997; Bretz 
et al. 2006), and have been connected to magnetic-flux-bundle motion in superconductors 
(Jaeger and Nagel 1992; Field et al. 1995; Nowak et al. 1997; Olson et al. 1997; Altshuler and 
Johansen 2004; Aranson et al. 2005).  Beyond fundamental research, a large number of industrial 
processes depend on the handling and transport of granular matter, from seeds and fertilizer 
pellets in agriculture to ore and gravel in mining operations to powders and pills in the 
pharmaceutical industry (Ennis et al. 1994; Knowlton et al. 1994; Shinbrot and Muzzio 2000).  
Yet the inherently far-from-equilibrium behavior of these materials is still poorly understood and 
controlled.  For example, in North America, new plants designed for processing granular 
materials initially operate at only about 50-60% of design capacity, while those designed for the 
handling of liquids immediately operate at nearly full efficiency (Merrow 1985; Merrow 1988).  
 
 
Far-From-Equilibrium Processing and Assembly 
 
Many materials processing techniques exploit far-from-equilibrium conditions for the growth 
and manufacture of materials that otherwise could not be fabricated. High-strength alloys are 
often formed by the same rapid dendritic growth that underlies the formation of snowflakes.  
Some of the very strongest materials available are metallic alloy glasses, made by rapid cooling 
into amorphous states far from equilibrium (Inoue 2000; Wang et al. 2004) (Fig. 6).  
Lightweight, strong and tough plastics for car bumpers and aircraft are produced by similar 
processes.  The understanding and control of out-of-equilibrium behavior are also important for 
interface growth processes, for example during the mechanical alloying already mentioned above 
(Murty and Ranganathan 1998; Suryanarayana 2001) or the fabrication of large, defect-free 
crystalline domains for silicon thin film devices by laser-induced melting and solidification 
(Sposili and Im 1996; Hatano et al. 2000). 
 
Far-from-equilibrium processing conditions 
can be used to drive a system towards unique 
final configurations in very efficient and 
speedy ways. On the nanoscale this offers new 
advantages.  For example, certain polymers 
(diblock-copolymers) spontaneously organize 
themselves into extended patterns with repeat 
spacings in the 10-50nm range (Park et al. 
2003; Hawker and Russell 2005).  Such 
feature sizes are difficult to achieve with 
conventional lithographic methods and are 
desirable for applications ranging from drug 
delivery (Allen et al. 1999) to high-density 
magnetic storage (Park et al. 1997; Ross et al. 
1999; Kim et al. 2003; Terris and Thomson 
2005).  Unprocessed, these polymeric structures are often fairly disordered and contain a large 
number of defects. If the systems are sheared, however, the defects can be removed and the 
structures can order over extremely large distances (Chen et al. 1997; Angelescu et al. 2004).  

Fig.6. Far-from-equilibrium processing 
produces some of the highest strength materials 
(glassy metal alloys). 
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An advantage of far-from-equilibrium processing conditions is that small differences in the 
physical or chemical properties of neighboring regions in a material can be amplified; in 
equilibrium, diffusion tends to smooth out such differences.  This property can be exploited to 
aggregate inorganic components, such as metallic, magnetic or semiconducting particles, on 
selective polymer domains, leading to new nanoscale-structured hybrid materials (Lopes and 
Jaeger 2001; Thompson et al. 2001).  Another important area where far-from-equilibrium 
conditions can be used to control morphologies is drying-mediated assembly of nanoparticles.  
Here pathways have been developed for the creation of both densely packed but disordered thin 
film aggregates (Rabani et al. 2003; Sztrum and Rabani 2006; Lee et al. 2007) and highly 
ordered superlattices (Bigioni et al. 2006; Xu et al. 2007). 
 
 
 
 
WHAT DETERMINES THE BEHAVIOR FAR-FROM-EQUILIBRIUM?   
 
In equilibrium, minimization of a free energy determines the preferred state, and the system 
reaches this state independent of the initial conditions. Far from equilibrium, systems typically 
exhibit a very rich set of characteristic behaviors that are not generally described by a 
minimization principle. What physics governs the state a system chooses?  We have made 
considerable progress in a number of specific cases. This section discusses advances in the areas 
of fluids and dynamical systems, and looks at the use of singularities in understanding and 
controlling far-from-equilibrium behavior. 
 
 
Systems with Hydrodynamic Equations of Motion 
 
In many cases, far-from-equilibrium systems exhibit a convenient separation of length and time 
scales.  In order to understand many fluid-flow problems, such as the vortex of a tornado, it is 
not necessary to describe the motions of individual molecules.  Experience with systems at or 
near equilibrium teaches us that it is often fruitful to focus on the long length scale, long time 
scale behavior (Chaikin and Lubensky 1995).  This so-called “hydrodynamic” approach has been 
the basis of success in describing a number of systems far from equilibrium.  Once we know the 
basic differential equations that describe long length and time scale properties we can tackle an 
astounding range of far-from-equilibrium, nonlinear behaviors.  The prototypical example is the 
Navier-Stokes equation for incompressible fluid flow: 
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Like other typical hydrodynamic equations of motion, the Navier-Stokes equation is a nonlinear 
partial differential equation that describes long length and time scale properties and can be used 
to tackle an astounding range of far-from-equilibrium, nonlinear behaviors, including erratic 
fluttering of flags in the wind (Zhang et al. 2000) (Fig. 7), the flapping of a bird’s wing 
(Vandenberghe et al. 2004), and the breaking of water waves on a beach (Lin and Liu 1998).   
The difficulty lies in solving the equation.  Similar descriptions also apply to complex fluids 



8 

under flow, a frontier area that is only beginning to be 
explored (Morozov and van Saarloos 2007; White and Mungal 
2008). Finally, the hydrodynamic approach can be applied to a 
wide range of phenomena not immediately associated with 
fluids, such as collapsing white dwarves (Plewa et al. 2004; 
Fisker et al. 2006), the flocking of birds and other organisms 
(Toner et al. 2005), and the development of single-celled 
amoebae into multicellular organisms (Ben-Jacob et al. 2000).  
Another example is found in semiconductor heterostructures 
in which electron density waves are confined to the sample 
edge. There, when dissipation plays no role, strong electronic 
correlations are predicted (Bettelheim et al. 2006) to produce 
dispersive shock waves that resemble roll clouds in the 
atmosphere (Christie 1989). Many more examples are 
provided by the physical, chemical and biological systems that 
exhibit pattern formation, in which a uniform system develops 
patterns in space and/or time by being driven out of 
equilibrium (Cross and Hohenberg 1993). 
 
The idea that the dynamics of a system with many degrees of freedom can be dominated by the 
interaction of only a few (such as those at long length and time scales) is an important concept 
that motivates the study of simple dynamical models to gain insight into complex phenomena.  
For example, the Lorenz model is a set of nonlinear coupled equations for three variables: 
 

 

dx

dt
= ! y " x( )

dy

dt
= x # " z( ) " y

dz

dt
= xy " $z

 (2)  

 
where σ, ρ and β>0 are adjustable parameters. The Lorenz model was originally developed to 
describe convection rolls in the atmosphere and includes only a few degrees of freedom yet 
successfully capture qualitatively many features of the earth's climate (Palmer 1993). Similar 
approaches are used to gain insight into the origin of the earth's magnetic field (Roberts and 
Glatzmaier 2000), mantle convection (Ogawa 2008), Jupiter's red spot (Marcus 1993), and the 
cycle of solar flares (Low 2001).  
 
The challenges in tackling this class of problems lie in the identification of the few crucial 
degrees of freedom that must be retained and in the complexity of the resulting equations of 
motion.  Much progress has come from a close coupling of analytic theory with large-scale 
computer simulations, informed by experiments.  
 
 

Fig.7.  The transition from 
steady (left) to fluttering 
(right) motion, visualized by 
imaging the fluid flow 
around a filament tied to a 
post (circle at the top). 
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Fig. 8. Far-from-equilibrium behavior often 
involves processes interacting over a large range 
of length (and time) scales, leading to charac-
teristic patterns such as the ones observed in the 
fracture of a glass (left) and in turbulent cloud 
formations (right; over the Canary Islands).  

Turbulence and fracture 
 
Many far-from-equilibrium phenomena pose 
special challenges because they involve a 
multitude of length and time scales that interact 
and thus all become important.  Large-scale 
turbulence is connected directly to flow 
behavior at scales many orders of magnitude 
smaller (Mellor and Yamada 1974; Falkovich 
et al. 2001); macroscopic fracture patterns 
depend intimately on the local configuration of 
molecular bonds in front of the crack tip 
(Marder and Fineberg 1996; Freund 1998).  In 
problems such as turbulence, hydrodynamic 
equations apply but become impossible to 
solve.  Theoretical techniques used in 
condensed matter physics to study equilibrium 
critical phase transitions, such as the 
renormalization group, can be useful here.  
These techniques are designed to understand 
how physics at small length or time scales 
affects behavior at somewhat larger length or time scales, and so on, ultimately leading to an 
understanding of how a wide range of length scales or time scales interact with one another. 
 
We will focus here on turbulence as one of the most common far-from-equilibrium phenomena 
in the environment and in industrial processes.  Turbulence produces complex flow structures 
that modify the transport of momentum, mass and heat, thereby creating a wide variety of both 
wanted and unwanted effects: a means for rapid mixing of reagents in industrial processes but 
also parasitic drag in pipe flow and, on a larger scale, catastrophic weather patterns such as 
hurricanes. Very similar unstable flow structures are produced during the extrusion of polymers 
or pastes through an orifice (Meulenbroek et al. 2003), in flows of complex fluids such as 
polymer solutions (“elastic turbulence”) (Groisman and Steinberg 2000), and in slow 
sedimentation of particles at high concentration in a fluid (Segre et al. 2001).  Thus, the 
mechanisms underlying turbulence appear to be remarkably general.  Ideas from turbulence have 
even been applied to finance (Ghashghaie et al. 1996; Mantegna and Stanley 2000).  Despite the 
ubiquity and importance of turbulence, however, we do not understand how it develops well 
enough to control or prevent it in many cases.  The onset flow rate and the nature of the onset of 
turbulence are still puzzling; turbulence often sets in gradually, in stages, but in many cases, 
including simple pipe flows, turbulence sets in prematurely for reasons that remain vexingly 
elusive (Hof et al. 2003; Faisst and Eckhardt 2004).  Finally, despite much progress during the 
last decade or two, the nature of the fully-turbulent state still poses many open problems (Siggia 
1994; Kadanoff et al. 1995; Lewis and Swinney 1999; Sreenivasan 1999; La Porta et al. 2001; 
Tabeling 2002; Benzi et al. 2008).  In this state, long-lived, large-length-scale coherent structures 
play an important but still poorly understood role.  In the next decade, particle-tracking 
techniques (Ott and Mann 2000; Ouellette et al. 2006) for imaging fluid elements during 
turbulent flow should shed light on many of these longstanding questions. 
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Singularities 
 
In many circumstances, especially under extreme mechanical loading or shearing conditions, 
materials are driven so far from equilibrium that they change their shape irreversibly.  This 
happens every time a liquid splashes and breaks up into droplets, a piece of glass fractures, a 
sheet of paper crumples, or a car crashes.  Such catastrophic events are typically connected with 
deformations or failure modes that act at the smallest possible scales and yet affect the overall 
shape.  Consider a slowly dripping faucet with water 
that is just about to pinch off into a drop.  What sets 
the shape of drop and of the neck by which it hangs 
just before breaking off?  It turns out that, in many 
cases, these shapes are controlled completely and at 
every stage by only one spot along the neck, namely 
where the neck is thinnest (Cohen et al. 1999; Eggers 
and Villermaux 2008).  This type of behavior is scale 
invariant—an image of a neck gives no clue as to the 
overall size of the neck.  In other words, the breaking-
apart into a drop is controlled by a local singularity, in 
this case the divergence of the neck curvature. One 
important recent realization has been that there are 
two classes of singular break-up events: one in which 
the neck shape is universal since it does not remember 
the initial conditions, and one where there is memory 
of the early stages of neck formation and thus no 
universality. An everyday example of the latter one is 
an air bubble breaking off and then rising inside a highly viscous medium such as honey (Doshi 
et al. 2003; Keim et al. 2006).  Similarly, the overall behavior of a crumpled piece of paper is 
determined by small number of local spots, sharp points of very high curvature connected by a 
network of ridges (DiDonna and Witten 2001; Witten 2007).  Such singular spots instantly 
transform an otherwise floppy sheet into a structure that can bear loads and absorb shocks (Fig. 
9).  Similar stress focusing has also been observed at the nanoscale, in crumpled sheets of 
nanoparticles (Lin et al. 2003). 
 
Similar scale invariance occurs at singularities such as those at critical phase transitions in 
equilibrium systems.  Over the last decade, researchers have built upon the conceptual 
foundation of equilibrium phase transitions to identify and tackle far-from-equilibrium materials 
under extreme conditions.  These systems were previously intractable precisely because of their 
singularities; the triumph in the last decade has been to exploit singularities to understand how 
they control the behavior of such systems over a broad range.  Extensions of this approach have 
demonstrated how the unique behavior in the vicinity of a singularity can be used to achieve 
unprecedented levels of processing control, which can be used, for example, to uniformly 
encapsulate live cells prior to transplantation (Fig. 9, right) (Cohen et al. 2001; Wyman et al. 
2007).  The extreme mechanics associated with singularities are likely to become increasingly 
important. They also are prime examples of how, far from equilibrium, the evolution of structure 
and dynamics are often inseparable.   
 

Fig.9. Using singularities to control 
materials’ properties.  Left: crumpling 
a piece of paper stiffens it and allows 
it to absorb shock. Right: entraining 
particles, for encapsulation purposes, 
into the near-singular flow when an 
interface between two fluids (here: oil 
and water) is deformed by extruding 
the oil with a pipette. 
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Robustness as a Design Principle 
 
In the last decade, ideas from engineering and biology have led 
physicists to explore a mechanism of state selection very different 
from equilibrium free energy minimization.  Many far-from-
equilibrium systems have been designed, either by deliberate 
engineering or through evolution and natural selection, to be robust to 
perturbations (Barkai and Leibler 1997; Carlson and Doyle 2002; Gao 
et al. 2003).  For example, cars are now designed with complicated 
internal networks involving many components, backup mechanisms 
and adaptive feedback loops to ensure reliable operation under a wide 
range of environmental conditions.  Likewise, biological networks, 
such as those that enable white blood cells to pursue invading 
bacteria, have evolved to be insensitive to biochemical changes in 
their components (Barkai and Leibler 1997; Alon et al. 1999).  
Recently, researchers have used maximization of robustness as a 
mechanism of state selection in interacting networks (Albert et al. 
2000; Strogatz 2001; Albert and Barabasi 2002; Milo et al. 2002; 
Newman 2003) (Fig. 10).  This opens up a vast array of systems that 
can be studied using the tools of condensed matter physics, ranging 
from circadian clocks (Tyson et al. 2008)to the Internet (Albert and 
Barabasi 2002; Newman 2003)and from our immune systems (Jerne 
1974) to the environment (Proulx et al. 2005).  One interesting 
common feature of systems designed for robustness is that their 
complexity renders them vulnerable to rare, unexpected perturbations 
(Carlson and Doyle 2002). For example, the network of 
interconnected species in the world’s oceans has adapted over millennia to be remarkably stable 
to the vast number of perturbations that can occur.  Yet a small change of acidity in ocean waters 
produced by increased carbon dioxide in the atmosphere may trigger mass extinctions of species 
(Orr et al. 2005; Guinotte and Fabry 2008).  Even far-from-equilibrium systems, such as 
materials under stress, which have not evolved or been specifically designed, can exhibit similar 
vulnerabilities, such as fracture, due to the history of their formation and the complexity of 
interactions among the many atoms or molecules that constitute them. 
 
 
Predictability and Control: What can we learn from fluctuations?  
 
For systems comprised of many particles in or near equilibrium, statistical mechanics tells us that 
fluctuations of observable quantities around their average values tend to be small and to have a 
Gaussian (bell-shaped) distribution.  For systems far from equilibrium, there is no general 
framework such as statistical mechanics, and fluctuations tend to be distributed rather differently. 
The distributions are often broader than simple Gaussian “bell curves”, exhibiting for example 
slower, exponential decays, power-laws or additional peaks, so that catastrophic, but rare, events 
can dominate behavior.  This is the case in avalanches involving sudden magnetic domain 
reorientations or flux bundle motion in superconducting magnets (Jaeger and Nagel 1992; Field 
et al. 1995; Olson et al. 1997; Aranson et al. 2005) (Fig. 11).  Similar fluctuations that include 

Fig. 10.  Examples of 
evolving network 
structures far from 
equilibrium. Top: map 
of interacting yeast 
proteins. Bottom: 
Internet nodes. 
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large, catastrophic events occur in granular materials, as in landslides or mudslides, or during 
earthquakes (Carlson et al. 1994; Jaeger et al. 1996; Bretz et al. 2006).  Turbulence and spatio-
temporal chaos also produce characteristic fluctuations in the measured quantities (Lewis and 
Swinney 1999; Falkovich et al. 2001; La Porta et al. 2001; Ouellette et al. 2006; Benzi et al. 
2008). In sheared granular materials, where stresses propagate along highly branched networks 
of “force chains”, the characteristic distribution of inter-particle contact-force magnitudes around 
their mean can give valuable information about incipient failure, the transition from jammed to 
unjammed behavior, and the nature of the flowing state (Liu et al. 1995; Howell et al. 1999; 
Brujic et al. 2003; Corwin et al. 2005; Majmudar and Behringer 2005; Behringer et al. 2008). 
Quite generally, the spectrum of fluctuations thus can serve as a key signature of far-from-
equilibrium behavior and a powerful tool to analyze the underlying mechanism. 
 

One of the most important questions one can ask about a many-particle system is how it will 
respond to perturbations. For systems in thermal equilibrium, the fluctuation-dissipation theorem 
provides the answer:  we know that if the perturbation is small, the system will respond just as it 
does to naturally occurring fluctuations.  The relationship between correlation and response 
depends on temperature;.  For example, the second law of thermodynamics states that 
fluctuations of any extensive thermodynamic variable X are related to the response of the average 
value of X to its thermodynamic conjugate ! by: 

 X ! X( )
2

= !k
B
T
" X

"#
 (3) 

Thus, temperature measures the size of fluctuations relative to the response, which quantifies 
how hard it is to create a fluctuation.  In other words, one could define temperature by 
 

 k
B
T =

X ! X( )
2

!" X "#
 (4) 

 
 For systems far from equilibrium temperature no longer plays such a role.  However, in analogy 
to the thermal case it is possible, in some cases, to define an effective temperature from the 
relationship between correlation and response. For certain classes of driven dissipative systems, 
such as sheared glasses, foams, or fluidized granular materials such as vibrated or gas-fluidized 

Fig.11.  Large and often catastrophic fluctuations, such as 
avalanches, are characteristic of many systems far from 
equilibrium. Top to bottom: snow avalanche, granular 
avalanche, flux-bundle avalanche in a superconductor. 
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granular beds, there is evidence that the notion of an effective temperature can be useful in 
predicting behavior (Cugliandolo and Kurchan 1993; Cugliandolo et al. 1997; Berthier et al. 
2001; Makse and Kurchan 2002; Ono et al. 2002; Abou and Gallet 2004; Feitosa and Menon 
2004; Ojha et al. 2004; Haxton and Liu 2007).   Important issues are to elucidate the conditions 
under which effective temperatures provide a reasonable description, and extent of the analogy to 
ordinary temperature. 
 
 
Formal Theoretical Developments 
 
One of the great challenges of far-from-equilibrium systems is to develop a theoretical 
framework, akin to equilibrium and near-equilibrium thermodynamics and statistical mechanics, 
for tackling these systems.  In the last decade, there has been substantial progress in generalizing 
thermodynamics and statistical mechanics to far-from-equilibrium systems.  Steady-state 
thermodynamics takes into account the heat that is continually generated in steadily-driven 
systems to generalize the second law of thermodynamics (Oono and Paniconi 1998; Taniguchi 
and Cohen 2008).  Other approaches generalize the concept of entropy to zero-temperature 
systems (Barrat et al. 2001; Blumenfeld and Edwards 2003; Edwards 2004; Henkes et al. 2007), 
while still others generalize the fluctuation-dissipation theorem to far-from-equilibrium systems 
(Falcioni et al. 1990; Ruelle 1999; Crisanti and Ritort 2003; Harada and Sasa 2005; Speck and 
Seifert 2006).  A new thermodynamic result has made it possible to extract equilibrium free 
energy differences from far-from-equilibrium processes (Jarzynski 1997):  the Jarzynski equality 
states that 
 
 exp !"F k

B
T( ) = exp(!W k

B
T  (5) 

 
where !F is the free energy difference between two thermodynamic states A and B, k

B
 is the 

Boltzmann constant, T is the temperature, and W is the work done during a non-equilibrium 
process that takes the system from A to B.  The angular brackets denote an average over all 
realizations of this process.  This equality has been tested experimentally (Liphardt et al. 2002; 
Cohen and Mauzerall 2004) and promises to be an especially useful tool for studying free energy 
differences in biological systems.  Fluctuation theorems have been used to show how 
irreversibility can emerge from underlying reversible dynamics (Evans and Searles 2002; Sevick 
et al. 2008). Due to these developments, the field of nonequilibrium thermodynamics and 
statistical mechanics is gathering additional momentum. 
 
 
Getting (Un-)Stuck: Jammed States and Jamming Transitions 
 
The prototypical example of a jammed state is a glass, a state that has both fluid- and solid-like 
attributes: it has the amorphous structure of a liquid, yet responds to an applied stress like a solid 
(Ediger et al. 1996).  All liquids will form glasses upon cooling if crystallization can be avoided 
(for example, by cooling rapidly enough), and for complex fluids such as polymers, the transition 
to a glass (plastic) is nearly impossible to avoid.  As a liquid is cooled, the time required to reach 
equilibrium, the relaxation time, increases and the response of the system to perturbations turns 
more and more sluggish until it becomes immeasurably slow.  At this point, the system is now 
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called a glass.  The increase of relaxation 
time is continuous but occurs over an 
incredibly narrow range of temperature, so 
that lowering the temperature by 10-20K 
can increase viscosity and relaxation time 
by ten or more orders of magnitude.  
Because the relaxation time exceeds any 
measurable time scale as the glassy state is 
approached, a glass by definition is a 
system far from equilibrium.  
 
Similar glassy states are found not only in 
ordinary liquids, but in many electronic 
systems in the presence of disorder, 
including interacting electron spin systems 
(spin glasses) or systems of interacting 

magnetic flux bundles (vortex glasses) (Edwards and Anderson 1975; Blatter et al. 1994; 
Nattermann and Scheidl 2000; Salamon and Jaime 2001).  They also occur whenever particles of 
any size congregate at sufficiently high concentrations (Liu and Nagel 2001)(Fig. 12).  For 
example, micelles or colloids in dense suspensions (Kegel and van Blaaderen 2000; Weeks et al. 
2000; Trappe et al. 2001; Anderson and Lekkerkerker 2002), lubricants trapped between surfaces 
(Thompson et al. 1992; Hu and Granick 1998), bubbles in foams (Durian et al. 1991; Sollich et 
al. 1997; Gopal and Durian 1999; Weaire and Hutzler 1999; Banhart 2001), and candies in a jar 
(Donev et al. 2004) all get trapped in glassy states.  The onset of glassy behavior is easily 
observed in an hourglass filled with sand: a fluid-like stream of grains falling through the central 
neck is rapidly quenched into a solid-like heap that retains the stream’s amorphous structure but, 
unlike a fluid, supports a finite angle of repose.  
However, once the particles become macroscopic as 
in the case of sand grains, temperature is no longer 
effective in facilitating escape from the glassy state.  
Instead, mechanical fields such as stress or vibration 
can take over this role and unjam the system (Jaeger 
et al. 1996).  The suggestion that temperature and 
stress can act similarly in systems close to the onset 
of rigidity has led to the introduction of a more 
general framework, the concept of jamming (Cates 
et al. 1998; Liu and Nagel 1998; Liu and Nagel 
2001; Trappe et al. 2001; O'Hern et al. 2003).  This 
concept describes the cooperative phenomenon of 
jamming in terms of the interplay of three key 
parameters: random thermal motion, applied forcing, 
and geometrical constraints (Fig. 13). 
 
The idea of a general jamming transition, applying 
to both thermal and non-thermal systems, has put 
the spotlight onto some of the most longstanding 
problems in condensed matter physics, such as the 

Fig.12.  In systems at or near the jamming transition, 
network-like structures are formed dynamically, such 
as chains of particles experiencing high contact 
forces in slowly sheared granular systems (left; 
(Howell et al. 1999)) and strings of particles whose 
motion is correlated in a gas-fluidized granular bed 
(right; (Keys et al. 2007)) .  

Fig.13.  Jamming phase diagram, 
delineating the conditions under 
which a multitude of systems 
become rigid and solid-like. Inside 
the jammed region (green), these 
systems are far from equilibrium. 
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glass transition.  Because the jammed state is out of equilibrium, even the most basic questions 
about any jamming transition remain intensely controversial.  Is there a true thermodynamic 
transition, at which the relaxation time diverges?  Or is there a dynamical transition to the 
jammed state, where the relaxation time diverges with no thermodynamic signature?  Or is there 
no transition at all, so that the relaxation time only truly diverges at zero temperature or 
mechanical driving?  It is because these fundamental questions remain unresolved that the onset 
of glassy behavior is generally considered one of the most intriguing unsolved problems in 
condensed matter physics. 
 
 
 
SUMMARY 
 
Far-from-equilibrium behavior is emerging as one of the major challenges within condensed 
matter physics and beyond.  The importance of making progress in this field is underlined by 
several key facts:  First, far-from-equilibrium behavior is not rare but ubiquitous, occurring from 
the nanometer scale on up, in daily life as well as high-tech applications. Second, it connects 
directly to critical, national needs for the next decade, affecting a large fraction of the 
manufacturing base as well as our economy, climate and environment.  Third, we emphasize that 
far-from-equilibrium behavior cannot be understood simply through small modifications of 
equilibrium physics. Because it differs so strikingly and at the same time represents largely 
uncharted intellectual territory, it provides exciting opportunities for major scientific 
breakthroughs.  
 
The field of far-from-equilibrium physics is vast, and it is unlikely that any one organizing 
principle will work for all far-from-equilibrium systems.  Nonetheless, there is great value in 
identifying classes of systems that might have common underlying physics or that might be 
tackled by common methods.  Recent work within the condensed matter community has set the 
stage for fresh approaches to longstanding problems concerning far-from-equilibrium behavior 
by introducing new model systems, such as granular matter, new unifying paradigms, such as 
jamming, new organizing principles, such as robustness, and new formal approaches, such as 
steady-state thermodynamics.  We are also finding important connections to a wide range of 
other fields, both within and outside physics.  These connections are likely to amplify the impact 
of advances in far-from-equilibrium physics even further.   
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