
_ V9.11.75

 Technical Notes

National CR16C Family On-Chip Emulation

 iSYSTEM, February 2012 1/24

Contents
Contents ... 1
1 Introduction ... 2
2 Emulation options .. 3

2.1 Hardware Options .. 3
2.2 Initialization Sequence .. 4
2.3 JTAG Scan Speed .. 6

3 CPU Setup ... 7
3.1 General Options ... 7
3.2 Debugging Options .. 8
3.3 Advanced Options ... 9

4 FLASH programming .. 10
5 Real-Time Memory Access ... 10
6 Access Breakpoints ... 10
7 On-Chip Trace ... 12

7.1 SC14480 On–Chip Trace ... 12
7.1.1 Trace Trigger/ Qualifier Configuration ... 13

7.2 Nexus On-Chip Trace .. 13
7.2.1 Trace Trigger Configuration .. 14
7.2.2 Trace Qualifier Configuration ... 15
7.2.3 Examples ... 16

8 On-Chip Profiler .. 21
9 Getting Started ... 23
10 Troubleshooting ... 23

 iSYSTEM, February 2012 2/24

1 Introduction

The CR16C family debugging is based on the JTAG Serial Debug Interface (SDI+), which is an on-chip debug

interface, compliant to the Nexus 5001 Forum Standard. It implements all basic functions to allow application

development and testing with the chip already installed in the final target application.

Debug Features

The CR16C Emulation System features:

 Up to six hardware breakpoints (depending on the CPU)

 Unlimited software breakpoints, including in the internal FLASH

 Access breakpoints

 Real-time access

 Fast flash programming

 On-Chip Trace

 iSYSTEM, February 2012 3/24

2 Emulation options

2.1 Hardware Options

CR16 Emulation options, Hardware pane

Debug I/O levels

The development system can be configured in a way that the debug JTAG signals are driven at 3.3V, 5V or

target voltage level (Vref).

When 'Vref' Debug I/O level is selected, a voltage applied to the belonging reference voltage pin on the target

debug connector is used as a reference voltage for voltage follower, which powers buffers, driving the debug

JTAG signals. The user must ensure that the target power supply is connected to the Vref pin on the target JTAG

connector and that it is switched on before the debug session is started. If these two conditions are not meet, it is

highly probably that the initial debug connection will fail already. However in some cases it may succeed but

then the system will behave abnormal.

This field is grayed in case of CR16C JOWI Debug system, where the debug I/O level is fixed by the iCARD.

Hot Attach

The JTAG module supports the Hot Attach function. This is a function, which enables the emulator to be

connected to a working target device and have all debug functions available.

The procedure for Hot Attach:

1. The target application should be running.

2. Hot Attach should be selected in the software.

3. A download should be performed, but without the JTAG cable connected. The emulator will be initialized

and the ATTACH status will be shown.

4. Connect the JTAG cable.

 iSYSTEM, February 2012 4/24

5. Select the Attach option in the Debug menu. When this option is selected, the emulator tries to communicate

through JTAG. If it is successful, it shows the STOP or RUNNING status. At this point, all debug functions

are available.

6. When the debugging is finished, the CPU should be set to running and Detach selected from the Debug

menu. The status shown is ATTACH. Now the JTAG cable can be safely removed.

Note: Hot Attach function cannot be used for any flash programming or code download!

2.2 Initialization Sequence

Before the flash programming or download can take place, the user must ensure that the memory is accessible.

This is very important since there are many applications using memory resources (e.g. external RAM, external

flash), which are not accessible after the CPU reset. In that case, the debugger must execute after the CPU reset a

so called initialization sequence, which configures necessary CPU chip selects and then the download or flash

programming can actually take place. The user must set up the initialization sequence based on his application.

The initialization sequence can be set up in two ways:

1. Set up the initialization sequence by adding necessary register writes directly in the Initialization page

within winIDEA.

2. winIDEA accepts initialization sequence as a text file with .ini extension. The file must be written

according to the syntax specified in the appendix in the hardware user’s guide.

Excerpt from EVB55.ini file for the SC14480:

S CLK_FREQ_TRIM_REG W 0x0

 iSYSTEM, February 2012 5/24

The advantage of the second method is that you can simply distribute your .ini file among different workspaces

and users. Additionally, you can easily comment out some line while debugging the initialization sequence itself.

There is also a third method, which can be used too but it’s not highly recommended for the start up. The user

can initialize the CPU by executing part of the code in the target ROM for X seconds by using 'Reset and run for

X sec' option.

 iSYSTEM, February 2012 6/24

2.3 JTAG Scan Speed

JTAG Scan Speed definition

Scan speed

The JTAG chain scanning speed can be set to:

 Slow - long delays are introduced in the JTAG scanning to support the slowest devices. JTAG clock

frequency varying from 1 kHz to 2000 kHz can be set.

 Fast – the JTAG chain is scanned with no delays.

 Other scan speeds are no supported on CR16. They are automatically forced to Slow if selected.

In general, Fast mode should be tried for best performance. However, if it fails, try Slow mode at different scan

frequencies until you find a working setting.

Use – Scan Speed during Initialization

On some systems, slower scan speed must be used during initialization, during which the CPU clock is raised

(PLL engaged) and then higher scan speeds can be used in operation. In such case, this option and the

appropriate scan speed must be selected.

 iSYSTEM, February 2012 7/24

3 CPU Setup

3.1 General Options

General options dialog

Stop CPU Activities When Stopped

When the option is checked, all internal peripherals like timers and counters are stopped when the application is

stopped. Otherwise, timers and counters remain running while the program is stopped. Usually, when the option

is checked, the emulation system behaves more consistently while stepping through the program. While being

aware of the consequences, it is up to the user whether the option is checked or not.

For instance, it’s is recommend that a timer, which generates interrupts, is stopped when the application is

stopped. Otherwise, the CPU would first service all pending interrupts (generated by the timer while the

application was stopped) after the application is resumed. Such behaviour is far away from the actual behaviour

of the target application.

Cache Downloaded Code only (do not load to target)

When this option is checked, the download files will not propagate to the target using standard debug download

but the Target download files will.

In cases, where the application is previously programmed in the target or it's programmed through the flash

programming dialog, the user may uncheck 'Load code' in the 'Properties' dialog when specifying the debug

download file(s). By doing so, the debugger loads only the necessary debug information for high level

debugging while it doesn't load any code. However, debug functionalities like ETM and Nexus trace will not

work then since an exact code image of the executed code is required as a prerequisite for the correct trace

program flow reconstruction. This applies also for the call stack on some CPU platforms. In such applications,

'Load code' option should remain checked and 'Cache downloaded code only (do not load to target)' option

checked instead. This will yield in debug information and code image loaded to the debugger but no memory

writes will propagate to the target, which otherwise normally load the code to the target.

 iSYSTEM, February 2012 8/24

3.2 Debugging Options

Debugging options dialog

Execution breakpoints

Hardware Breakpoints

Hardware breakpoints are breakpoints that are already provided by the CPU. The number of hardware

breakpoints is limited. The advantage is that they function anywhere in the CPU space, which is not the case for

software breakpoints, which normally cannot be used in the FLASH memory, non-writeable memory (ROM) or

self-modifying code. If the option 'Use hardware breakpoints' is selected, only hardware breakpoints are used for

execution breakpoints.

Note that the debugger, when executing source step debug command, uses one breakpoint. Hence, when all

available hardware breakpoints are used as execution breakpoints, the debugger may fail to execute debug step.

The debugger offers 'Reserve one breakpoint for high-level debugging' option in the Debug/Debug

Options/Debugging' tab to circumvent this. By default this option is checked and the user can uncheck it

anytime.

Software Breakpoints

Available hardware breakpoints often prove to be insufficient. Then the debugger can use unlimited software

breakpoints to work around this limitation. Note that the debugger features unlimited software breakpoints in the

internal flash too.

When a software breakpoint is being used, the program first attempts to modify the source code by placing a

break instruction into the code. If setting software breakpoint fails, a hardware breakpoint is used instead.

Using flash software breakpoints

A flash device has a limited number of programming cycles. Belonging flash sector is erased and programmed

every time when a software breakpoint is set or removed. The debugger sets breakpoints hidden from the user

also when a source step is executed. In worst case, a flash may become worn out due to intense and long lasting

debugging using flash software breakpoints.

Reset Method

The debugger can reset the CPU through the CPU reset line or through the debug JTAG interface. This setting is

not available for CR16C JOWI Debug system.

 iSYSTEM, February 2012 9/24

CPU Clock

CPU oscillator clock must be set here in order for the debugger to synchronize its SDI+ debug JTAG interface

with the CPU. This setting applies for CR16C JOWI Debug system only.

3.3 Advanced Options

Advanced BDM Emulation Options (CR16C and CR16C JOWI)

Override startup register values

This option overrides the default program counter reset value with the value set.

Breakpoints

This setting is available only for CPUs with on-chip trace.

On-chip debug resources on CPUs featuring on-chip Nexus Trace allow configuration of either 6 execution and

2 access breakpoints or 6 execution breakpoints and 2 trace trigger events.

SC14480 CPU doesn’t have a Nexus trace and offers 6 execution and 2 access breakpoints.

UBR

CR16C CPUs with Nexus trace have a dedicated Nexus register UBR which is used for OTM (Ownership Trace

Messaging) trace. An address written in this field is written in the Nexus UBR register through the debug

interface. After UBR is programmed, any write from the application to the programmed address yields the

belonging OTM message in the trace window. For example, if 0xFFFD00 is written to the UBR, any write to the

address 0xFFFD00 in the application, yields OTM record in the trace window.

Program Internal FLASH

When the ‘Use Internal Monitor’ option (not available for all CPUs) is checked, flash programming is performed

through fast flash monitor, which is loaded and run in the internal CPU RAM hidden from the user. It’s

recommended to have this option checked unless there are problems with the flash programming. A complete

flash programming is performed over the JTAG interface when the option is unchecked.

When the ‘Entire device’ option is checked in the ‘Erase before download’ field, the user can opt between two

options. A complete flash module is erased when ‘Use module erase’ is selected and when ‘Use page erase’ is

selected only blocks where the code is going to be programmed during debug download are erased.

 iSYSTEM, February 2012 10/24

Erase before download

Options in the ‘Erase before download’ field define, which parts of the internal CPU flash are erased before the

debug download.

Besides a standard flash module, where code and data are normally stored, some CPUs have additional blocks,

which are part of flash too. They are named Program Information Block 1 and Data Information Block and can

be erased on demand if the belonging option in the ‘Erase before download’ field is checked. They are not erased

when the ‘Entire device’ is checked only.

If none of these options is selected, the data will be programmed during the debug download without prior erase.

4 FLASH programming

The internal CPU FLASH is programmed through standard debug download. The debugger recognizes which

code from the download file fits in the internal CPU FLASH. All necessary FLASH programming settings are

done in the ‘CPU Setup/Advanced’ dialog.

Standard FLASH setup dialog is required only for programming external flash devices.

5 Real-Time Memory Access

With this type of CPUs, real-time memory access is available. Watch window’s Rt.Watch panes can be

configured to inspect memory with minimum intrusion while the application is running.. Optionally, memory

and SFR windows can be configured to use real-time access as well.

It is known that the CPU internal debug module stalls few CPU cycles for every debug memory access request.

Depending on the application and amount and type of expressions in the Rt. Watch pane, the target application

may run differently when real-time access is used.

Please refer to the Software User's Guide for more information on Real-Time watches use.

6 Access Breakpoints

Four independent breakpoint modules are available and can be accessed through SDI+. Each module has two

breakpoint registers, which enable the following functions: breakpoint A, breakpoint B, breakpoint A or

breakpoint B, area (from A to B) and breakpoint A then B. For each breakpoint the access method can be

selected (execution, data read, data write, data read or write). The software automatically uses 3 breakpoint

modules as execution breakpoints (i.e. 5 user breakpoints and one reserved for debugging), the fourth breakpoint

module is used as an access breakpoint module with data read, data write and data read or write access types.

Breakpoint combination

Several breakpoint combinations are possible: breakpoint A, breakpoint B, breakpoint A or breakpoint B, area

(from A to B) and breakpoint A then B. For each breakpoint the access method can be selected (execution, data

read, data write, data read or write).

Address

The address of the access breakpoint should be entered here.

Entire Object

If a breakpoint area is defined, the entire object can be set to be in the area.

 iSYSTEM, February 2012 11/24

Access Type

The Access Type for the Access breakpoint is defined here. The access can be disabled, read only, write only or

read/write.

Hardware Breakpoints menu, CR16C

When Breakpoints Occur

A beep can be issued and/or a message displayed indicating that an access breakpoint has occurred.

Wizard…

Use Wizard in case of problems understanding and configuring the access breakpoints dialog. It helps setting a

simple a breakpoint on data access or code execution.

 iSYSTEM, February 2012 12/24

7 On-Chip Trace

All CR16 CPUs featuring on-chip trace have Nexus trace except for the SC14480 CPU, which has no trace port.

SC14480 has trace buffer already on the silicon (on-chip), which is read through the standard debug JTAG

interface.

7.1 SC14480 On–Chip Trace

The on-chip Trace controller is able to trace discontinuous program counter values (jumps, calls), data read and

write operations and Events, like change of Bus Grant, entry or exit of the trace region, or change of an external

signals. All event traces contain timing information using a 32-bit counter, which is clocked with the CPU clock.

All trace information is written in a cyclic buffer in internal, non shared RAM. The size of the trace buffer is

scalable in sizes 0, 1, 2, 4 or 8kByte. The remaining part of the non-shared memory can be used by the

application. Selected trace buffer always resides at the end of the non-shared RAM. The user should pay

attention that the application does not use nor write any data into the non-shared ram reserved for the trace

buffer.

Program and data trace messages are not ordered in time. Since the data trace has precedence over the program

trace, a number of data messages is recorded before the actual instruction (block of instructions between two

branches, or sync) is recorded that caused the data accesses. No reordering is done by the debugger since it

would be highly speculative and cannot be guaranteed to be valid, unless the messages would contain a time-

stamp. Unfortunately, time stamps are not realized in the SC14480 Trace implementation, except for the Events.

SC14480 Trace Trigger/Qualifier dialog

 iSYSTEM, February 2012 13/24

7.1.1 Trace Trigger/ Qualifier Configuration

Mode

In Single shot mode, the trace stops recording when the buffer becomes full. When in Continuous mode, it

records until the trace or the CPU is stopped.

Buffer Size

Trace buffer resides in the non-shared RAM and is shared with the application. The user should select buffer size

considering the trace and application requirements.

Qualifier

For the instruction trace use, check the Enable Instruction Trace option and check the Enable Data Trace option

for the data trace use.

Additionally, with the trace start and length registers, the user can define two independent address areas (Range

0 and 1), where instruction and data trace will be active. When the address of an instruction fetch, a data read or

write cycle is outside these area’s, no trace record will be written. When neither Range0 nor Range1 is selected,

all instruction fetches and data accesses are recorded.

Two address ranges are defined by

specifying a start and end address. The

address must always be a multiply of

1kByte. If other value is entered, a rounding

to 1kByte boundary is performed hidden to

the user.

A qualfier can be also a logical combination

of ranges and/or two CPU port pins, P2[2]

and P2[5].

Record Events

Event trace records are generated when one or more Events change from polarity. Refer to the CPU User Manual

for more details on specific Events description.

7.2 Nexus On-Chip Trace

Note: Not all CR16C CPUs feature Nexus On-Chip Trace. For details please check the CPU specifications.

For tracking the sequence of program instructions, the Nexus port broadcasts to the external hardware only

information related to instructions that cause a change to the normal sequential execution of instructions. With

knowledge of the source code, which is programmed in the CPU flash, the debugger can reconstruct the path of

execution through many instructions from the recorded change-of-flow information.

On-Chip Nexus Trace features (iTRACE PRO):

 Compliant with Nexus standard

 External trace buffer

 Instruction, Data and OTM Trace

 Profiler

 Time Stamps

 AUX inputs

 iSYSTEM, February 2012 14/24

7.2.1 Trace Trigger Configuration

On-Chip Trace Trigger menu, CR16C

Trigger on

The trigger on combination is set here: condition A, condition B, condition A or condition B, area (from A to B)

and condition A then B. For each condition the access method can be selected (execution, data read, data write,

data read or write).

Address

The address of the trigger condition should be entered here.

Entire Object

If a trigger area is defined, the entire object can be set to be in the area.

Access Type

The Access Type for the trigger is defined here. The access can be disabled, read only, write only or read/write.

Time Stamp

Determines the time stamp clock.

Note: Trace recording is synchronized with CPU cycles no matter what the time stamp setting is. The time stamp

is a recording of an independent timer on the trace board.

 iSYSTEM, February 2012 15/24

Buffer Size

Specifies the size of the trace buffer size is used. Usually the minimum size suffices. The maximum size uses the

full trace buffer, which takes longer to upload.

Note that the samples are compressed by the hardware and therefore different quantities of data can be recorded

with the same buffer size setting, depending on the data recorded.

7.2.2 Trace Qualifier Configuration

All CR16C Nexus trace implementations feature Program and OTM trace while only few feature data trace too.

On-Chip Trace Qualifier menu, CR16C

The On-chip Trace Qualifier configuration is designed according to Nexus standards. One half of the available

debug watchpoints and watch ranges can be used for Trace, i.e. 8 watchpoints on 16-watchpoint devices and 4

watchpoints on 8-watchpoint devices.

Nexus trace port has a limited bandwidth and yields overflows as soon as there are more trace messages waiting

to be sent out to the trace port than the internal trace FIFO can process on time. This happens more frequently

with the data trace where almost no compression is possible between the data access and the data message. The

solution is to use qualifiers, which limit the amount of information to be trace. 8 watchpoints are available and

allow configuring up 8 single address events or up to 4 address ranges. Each watchpoint can be also used as a

trace start and stop condition (TCC0-3), which can be further used for TCB0 and TCB1 trace control.

 iSYSTEM, February 2012 16/24

Watchpoint configuration of the CR16C On-Chip Trace

For more information, please consult the CPU manual.

7.2.3 Examples

Example 1

Click the Hardware Configuration button in the Trace window toolbar.

Record everything is the default setting – once activated, the trace will immediately start recording all activity

on the Nexus port.

Nexus will record the CPU execution (instructions) until the CPU is stopped by either the user or the program

itself in case of any problems in the application. From the history, any problem originating from the code or the

target can be filtered out.

Select the ‘Record everything’ mode in the ‘Trigger List’ dialog. Set buffer size to maximum to achieve the best

results and check the ‘Continuous mode’ option.

 iSYSTEM, February 2012 17/24

Before the program is set to run or while it is running already, activate trace recording via ‘Trace begin’ tool bar

or shortcut key. The trace stops recording when the program execution is stopped. After the trace stops

recording, the collected information is analyzed and displayed.

Example 2

Nexus trace will trigger on a function Type_Simple execution and record instructions.

Use trigger/qualifier allows finer configuration of the trace. Create a new trigger, then click the Configure…

button.

Select the ‘Use trigger/qualifier’ mode in the ‘Trigger List’ dialog and configure a new trigger called ‘Example

2’.

Configure the trigger by invoking the ‘Trace’ dialog using the ‘Configure’ button.

 iSYSTEM, February 2012 18/24

Set the Trace to Trigger on condition A and define the trigger to point to the Type_Simple address using the

symbol browser invoked with the ‘Address…’ button. Define the Access to ‘Execute’.

After the trace is being activated, Nexus starts recording after the Type_Simple is executed. After the iTRACE

buffer is fulfilled, the results are displayed.

 iSYSTEM, February 2012 19/24

Example 3

Nexus trace will trigger on data write to the variable iCounter and record instructions.

Select the ‘Use trigger/qualifier’ mode in the ‘Trigger List’ dialog and configure a new trigger.

Configure the trigger by invoking the ‘Trace’ dialog using the ‘Configure’ button.

 iSYSTEM, February 2012 20/24

Set the Trace to Trigger on condition A and define the trigger to point to the iCounter address using the symbol

browser invoked with the ‘Address…’ button. Define the Access to ‘Write’.

After the trace is being activated, Nexus starts recording after the iCounter is being written to. After the

iTRACE buffer is fulfilled, the results are displayed.

 iSYSTEM, February 2012 21/24

8 On-Chip Profiler

The CR16C On-Chip Profiler is invoked by the Hardware/Tools menu. Since this is a special on-chip feature of

newer CR16C devices, it can not be shown in the regular Trace/Coverage/Profiler window.

Note: Only some CR16C CPUs provide on-chip profiler.

CR16C Profiler

Entry

Defines the address of region entry

Exit

Defines the address of region exit

Entire Function

If checked, the region Entry is set to the specified function entry point and the region Exit is set to function exit

point.

Time

Shows the time spent in the region.

Count

Shows the number of entries in the region.

 iSYSTEM, February 2012 22/24

Average

Shows the average region execution time.

Min

Shows the minimum region execution time.

Max

Shows the maximum region execution time.

Total

Shows the total session run time.

Start after reset

If checked, the profiler is started automatically after the CPU is released from reset.

Restart before running

If checked, the profiler is restarted prior to any advancement of the execution point (run, step…)

1 cycle=

Defines the duration of one system clock cycle. If set to zero, the number of recorded system clocks is displayed.

Notes:

1) Profiler counts function entries. It's also possible that this sequence occurs:

1. entry

2. exit

3. entry

In this case, the hit count is 2, but the total time is given only for the first hit 1-2. Average is calculated

total/count, so if statistics are read while a hit is 'active' the average divider is off by one.

2) Average time also depends on the executed code. Onchip profiler has a counter which starts counting when

the CPU executes function entry address (e.g. Type_Arrays) and it ends when it executes function exit address

(e.g. Type_Arrays_Exit). If an interrupt occurs during this function then the length of the interrupt function is

included in the function time. If interrupts occur with very low frequency, the measured times are more likely to

be accurate.

 iSYSTEM, February 2012 23/24

9 Getting Started

1) Connect the system

2) Make sure that the target debug connector pinout matches with the one requested by a debug tool. If it

doesn't, make some adaptation to comply with the standard connector otherwise the target or the debug

tool may be damaged.

3) Power up the emulator and then power up the target.

4) Execute debug reset

5) The CPU should stop on location to which the reset vector points

6) Open memory window at internal CPU RAM location and check whether you are able to modify its

content.

7) If you passed all 6 steps successfully, the debugger is operational and you may proceed to download the

code in the internal CPU flash.

8) Check ‘Entire device’ option in the ‘Erase before download' section and ‘Use module erase’ option in

the ‘Program internal FLASH’ section in the 'CPU Setup/Advanced' tab.

9) Specify the download file(s) in the 'Debug/Files for download/Download files' tab.

10) Execute Debug download, which should download the code in the internal CPU flash.

10 Troubleshooting

 Make sure that the power supply is applied to the target BDM connector when ‘Vref’ is selected for Debug

I/O levels in the Hardware/Emulator Options/Hardware tab, otherwise emulation fails or may behave

unpredictably.

 Try ‘Slow’ JTAG Scan speed if the debugger cannot connect to the CPU.

 When performing any kind of checksum, remove all software breakpoints since they may impact the

checksum result.

 iSYSTEM, February 2012 24/24

Notes:

Disclaimer: iSYSTEM assumes no responsibility for any errors which may appear in this document, reserves the

right to change devices or specifications detailed herein at any time without notice, and does not make any

commitment to update the information herein.

 iSYSTEM. All rights reserved.

