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Abstract

For sum of independent and identically distributed (i.i.d.) random variables {Xi}n
i=1, the Berry-Esseen theorem

states that

sup
y∈<

∣∣∣∣Pr
{

1
sn

(X1 + X2 + · · ·+ Xn) ≤ y

}
− Φ(y)

∣∣∣∣ ≤ C
ρ

σ3
√

n
,

where σ2 and ρ are respectively the variance and the absolute third moment of the parent distribution, Φ(·) is the
unit normal cumulative distribution function, and C is an absolute constant. In this work, we re-examined the above
inequality by following similar procedure as in [3, Sec.XVI.5, Thm. 1]. Instead of targeting an absolute constant C, we
sought for a sample-size-dependent coefficient Cn such that

∣∣∣∣Pr
[

1
σ
√

n
(X1 + · · ·+ Xn) ≤ y

]
− Φ(y)

∣∣∣∣ ≤ Cn
ρ

σ3
√

n
(1)

hold for every sample size n. Based on the new standpoint, we found that Cn can be made smaller than Shiganov’s
constant 0.7655 when n ≥ 65, and can be decreased by further increasing sample size n. As n approaches infinity, the
Berry-Esseen constant can be asymptotically improved down to 0.7164.

I. Introduction

TH e Berry-Esseen theorem [3, Sec.XVI.5] states that the distribution of the sum of independent and
identically distributed zero-mean random variables {Xi}n

i=1, normalized by its standard deviation,
differ from the unit Gaussian distribution by at most C ρ/(σ2

√
n), where σ2 and ρ are respectively the

variance and the absolute third moment of the parent distribution, and C is a distribution-independent
absolute constant. Specifically, for every y ∈ <,∣∣∣∣Pr

[
1

σ
√

n
(X1 + · · ·+ Xn) ≤ y

]
− Φ(y)

∣∣∣∣ ≤ C
ρ

σ3
√

n
, (2)

where Φ(·) represents the unit Gaussian cumulative distribution function (cdf). The remarkable aspect
of this theorem is that the upper bound depends only on the variance and the absolute third moment,
and therefore, can provide a good probability estimate through the first three moments. A typical
estimate of the absolute constant is three [3, Sec.XVI.5, Thm. 1]. Beek sharpened the constant to
0.7975 in 1972 [1]. Later, Shiganov improved the constant down to 0.7655 [5]. Shiganov’s result is
generally considered to be the best result obtained thus far [4].

In this work, we re-examined inequality (2) by following similar procedure as in [3, Sec.XVI.5,
Thm. 1]. We however took different view during our derivation. Instead of targeting an absolute
constant C, we sought for a sample-size-dependent coefficient Cn such that∣∣∣∣Pr

[
1

σ
√

n
(X1 + · · ·+ Xn) ≤ y

]
− Φ(y)

∣∣∣∣ ≤ Cn
ρ

σ3
√

n
(3)

hold for every sample size n. This was motivated by observing the numerical behavior of the ratio

supy∈<

∣∣∣∣Pr

[
(X1 + · · ·+ Xn)/ (σ

√
n) ≤ y

]
− Φ(y)

∣∣∣∣
ρ/ (σ3

√
n)

(4)



for several examples, and these examples hint that the ratio in (4) is larger for small sample size, and
decreases as sample size increases. It is therefore possible that a tighter bound can be obtained by
replacing C by Cn in inequality (2).

Based on the above standpoint, we found that Cn can be made smaller than Shiganov’s constant
0.7655 when n ≥ 65, and can be decreased by further increasing sample size n. As n approaches
infinity, the Berry-Esseen constant can be asymptotically improved down to 0.7164.

This paper is organized as follows. Section II covers the basic derivation of the Berry-Esseen theorem
based on a filtering function satisfying six pre-specified properties. The selection of a specific filtering
function that can asymptotically refine the Berry-Esseen constant is introduced in Section ??. Also
illustrated in Section ?? is the numerical evaluation of the sample-size dependent Cn. Conclusions are
drawn in Section ??.

It is assumed throughout that Φ(·) denote the unit Gaussian cdf.

II. Berry-Esseen Theorem with sample-size dependent coefficient

In [3], the Berry-Esseen theorem was proved through a properly selected filter

v
T
(x) =

1− cos(Tx)

πTx2
=

2 sin2(Tx/2)

πTx2
.

This filter satisfies the following properties:
P1. (Symmetry) v

T
(x) = v

T
(−x) for every x ∈ <;

P2. (Integrability)
∫∞
−∞ |vT

(x)|dx < ∞ so that its Fourier transform

ω
T
(ζ)

4
=

∫ ∞

−∞
v

T
(x)e−jζxdx

exists.
P3. (Band-limit to T ) ω

T
(ζ) = 0 for |ζ| > T .

P4. (Unity at zero) ω
T
(0) = 1.

P5. (Bound by Unity) |ω
T
(ζ)| ≤ 1,

P6. Function h(u)
4
= πu

∫ ∞

u

v
T

(
t

T

)
dt

T
is independent of T .

P7. (Nonnegativity) v
T
(x) ≥ 0 for every x ∈ <.

We noticed that with a slight modification to its original proof, any filter satisfying the above six
properties can be used to prove the Berry-Esseen Theorem. We begin with the introduction of the
smoothing lemma.

Lemma 1 Fix a filter v
T
(·) satisfying P1–P7. For any cdf H(·) defined on the real line < and any

real number β > 1,

sup
x∈<

|∆T (x)| ≥ (β − 1)

β
η − 2(2β − 1)

Tπ
√

2π
h

(
T
√

2π

β
η

)
,

where function h(·) is defined in P6, η
4
= supx∈< |H(x)− Φ(x)|, and

∆T (t)
4
=

∫ ∞

−∞
[H(t− x)− Φ(t− x)]× v

T
(x)dx.

Proof: The right-continuity of the cdf H(·) and the continuity of the Gaussian unit cdf Φ(·) together
indicate the right-continuity of |H(x)− Φ(x)|, which in turn implies the existence of x0 ∈ < satisfying

either η = |H(x0)− Φ(x0)| or η = lim
x↑x0

|H(x)− Φ(x)| > |H(x0)− Φ(x0)| .
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We then distinguish between three cases:

Case A) η = H(x0)− Φ(x0);

Case B) η = Φ(x0)−H(x0);

Case C) η = lim
x↑x0

|H(x)− Φ(x)| > |H(x0)− Φ(x0)| .

Case A) η = H(x0)− Φ(x0). In this case, we note that for s > 0,

H(x0 + s)− Φ(x0 + s) ≥ H(x0)−
[
Φ(x0) +

s√
2π

]
(5)

= η − s√
2π

, (6)

where (5) follows from supx∈< |Φ′(x)| = 1/
√

2π. Observe that (6) implies

H

(
x0 +

√
2π

β
η − x

)
− Φ

(
x0 +

√
2π

β
η − x

)
≥ η − 1√

2π

(√
2π

β
η − x

)

=
(β − 1)

β
η +

x√
2π

,

for |x| < η
√

2π/β. Together with the fact that H(x)− Φ(x) ≥ −η for all x ∈ <, we obtain

sup
x∈<

|∆T (x)| ≥ ∆T

(
x0 +

√
2π

β
η

)

=

∫ ∞

−∞

[
H

(
x0 +

√
2π

β
η − x

)
− Φ

(
x0 +

√
2π

β
η − x

)]
× v

T
(x)dx

=

∫

[|x|<η
√

2π/β]

[
H

(
x0 +

√
2π

β
η − x

)
− Φ

(
x0 +

√
2π

β
η − x

)]
× v

T
(x)dx

+

∫

[|x|≥η
√

2π/β]

[
H

(
x0 +

√
2π

β
η − x

)
− Φ

(
x0 +

√
2π

β
η − x

)]
× v

T
(x)dx

≥
∫

[|x|<η
√

2π/β]

[
(β − 1)

β
η +

x√
2π

]
× v

T
(x)dx +

∫

[|x|≥η
√

2π/β]
(−η)× v

T
(x)dx

=

∫

[|x|<η
√

2π/β]

(β − 1)

β
η × v

T
(x)dx +

∫

[|x|≥η
√

2π/β]
(−η)× v

T
(x)dx, (7)

where the last equality holds because of (P1) and (P7) of the filtering function v
T
(·).

The quantity of
∫
[|x|≥η

√
2π/β] vT

(x)dx can be derived as follows:

∫

[|x|≥η
√

2π/β]
v

T
(x)dx = 2

∫ ∞

η
√

2π/β

v
T
(x)dx

= 2

∫ ∞

ηT
√

2π/β

v
T

( u

T

) du

T

=
2β

ηTπ
√

2π
h

(
T
√

2π

β
η

)
.
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Continuing from (7),

sup
x∈<

|∆T (x)| ≥ (β − 1)

β
η

[
1− 2β

ηTπ
√

2π
h

(
T
√

2π

β
η

)]

−η ·
[

2β

ηTπ
√

2π
h

(
T
√

2π

β
η

)]

=
(β − 1)

β
η − 2(2β − 1)

Tπ
√

2π
h

(
T
√

2π

β
η

)
.

Case B) η = Φ(x0)−H(x0). Similar to Case A), we first derive for s > 0,

Φ(x0 − s)−H(x0 − s) ≥
[
Φ(x0)− s√

2π

]
−H(x0) = η − s√

2π
,

and then obtain

Φ

(
x0 −

√
2π

β
η − x

)
−H

(
x0 −

√
2π

β
η − x

)
≥ η − 1√

2π

(√
2π

β
η + x

)

=
(β − 1)

β
η − x√

2π
,

for |x| < η
√

2π/β. Together with the fact that H(x)− Φ(x) ≥ −η for all x ∈ <, we obtain

sup
x∈<

|∆T (x)| ≥ −∆T

(
x0 −

√
2π

β
η

)

≥
∫

[|x|<η
√

2π/β]

[
(β − 1)

β
η − x√

2π

]
× v

T
(x)dx

+

∫

[|x|≥η
√

2π/β]
(−η)× v

T
(x)dx

=

∫

[|x|<η
√

2π/β]

(β − 1)

β
η × v

T
(x)dx +

∫

[|x|≥η
√

2π/β]
(−η)× v

T
(x)dx

=
(β − 1)

β
η − 2(2β − 1)

Tπ
√

2π
h

(
T
√

2π

β
η

)
.

Case C) η = limx↑x0 |H(x)− Φ(x)| > |H(x0)− Φ(x0)| ≥ 0. In this case, we observe that for any

0 < δ < η, there exists x′0 such that |H(x′0)− Φ(x′0)| ≥ η − δ
4
= η′. We can then follow the procedure

of the previous two cases to obtain:

sup
x∈<

|∆T (x)| ≥ (β − 1)

β
η′ − 2(2β − 1)

Tπ
√

2π
h

(
T
√

2π

β
η′

)
.

The proof is completed by noting that η′ can be made arbitrarily close to η.
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Lemma 2 For any cumulative distribution function H(·) with zero-mean and unit variance, its char-
acteristic function ϕ

H
(ζ) satisfies that for any β > 1,

η ≤ β

2π(β − 1)

∫ T

−T

∣∣∣ϕH
(ζ)− e−(1/2)ζ2

∣∣∣ dζ

|ζ| +
2β(2β − 1)

Tπ
√

2π(β − 1)
h

(
T
√

2π

β
η

)
,

where η and h(·) are defined in Lemma 1.
Proof: Observe that

∆T (t) =

∫ ∞

−∞
[H(t− x)− Φ(t− x)]× v

T
(x)dx

is nothing but a convolution of v
T
(·) and H(·)− Φ(·). By Fourier inversion theorem [3, Sec.XV.3],

d (∆T (x))

dx
=

1

2π

∫ ∞

−∞
e−jζx

[
ϕ

H
(ζ)− e−(1/2)ζ2

]
ω

T
(ζ)dζ

=
1

2π

∫ T

−T

e−jζx
[
ϕ

H
(ζ)− e−(1/2)ζ2

]
ω

T
(ζ)dζ,

where the second step follows from bandlimit property (P3) of v
T
(·). Integrating with respect to x,

we obtain

∆T (x) =
1

2π

∫ T

−T

e−jζx

[
ϕ

H
(ζ)− e−(1/2)ζ2

]

−jζ
ω

T
(ζ)dζ, (8)
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where no integration constant appears since both sides go to zero as |x| → ∞.1 Accordingly,

sup
x∈<

|∆T (x)| = sup
x∈<

1

2π

∣∣∣∣∣∣

∫ T

−T

e−jζx

[
ϕ

H
(ζ)− e−(1/2)ζ2

]

−jζ
ω

T
(ζ)dζ

∣∣∣∣∣∣

≤ sup
x∈<

1

2π

∫ T

−T

∣∣∣∣∣∣
e−jζx

[
ϕ

H
(ζ)− e−(1/2)ζ2

]

−jζ
ω

T
(ζ)

∣∣∣∣∣∣
dζ

= sup
x∈<

1

2π

∫ T

−T

∣∣∣ϕH
(ζ)− e−(1/2)ζ2

∣∣∣ · |ωT
(ζ)|dζ

|ζ|

≤ sup
x∈<

1

2π

∫ T

−T

∣∣∣ϕH
(ζ)− e−(1/2)ζ2

∣∣∣ dζ

|ζ|

=
1

2π

∫ T

−T

∣∣∣ϕH
(ζ)− e−(1/2)ζ2

∣∣∣ dζ

|ζ| ,

1As

|∆T (x)| ≤
∫ ∞

−∞
|H(x− t)− Φ(x− t)| · |vT (t)|dt and |H(x− t)− Φ(x− t)| · |vT (t)| ≤ 2|vT (t)|,

which is integrable by P2, we obtain from dominated convergence theorem that

lim
|x|→∞

∫ ∞

−∞
|H(x− t)− Φ(x− t)| · |vT (t)|dt =

∫ ∞

−∞
lim

|x|→∞
|H(x− t)− Φ(x− t)| · |vT (t)|dt = 0.

On the other hand, by Taylor’s formula with remainder, we obtain:

ϕH(ζ) = ϕH(0) + ϕ′H(0)ζ +

∫ ζ

0

(ζ − t)ϕ′′H(t)dt = 1 +

∫ ζ

0

(ζ − t)ϕ′′H(t)dt,

and

e−(1/2)ζ2
= 1 +

∫ ζ

0

(ζ − t)(t2 − 1)e−(1/2)t2dt.

Observe that lim|t|↓0[ϕ
′′
H(t)− (t2 − 1)e−(1/2)t2 ] = 0 implies the existence of ε, for a given δ, such that

∣∣∣ϕ′′H(t)− (t2 − 1)e−(1/2)t2
∣∣∣ < ε for |t| < δ.

Hence, by bandlimit property (P3) and bounded-by-unity property (P5) of ωT (·),

∫ ∞

−∞

∣∣∣ϕH(ζ)− e−(1/2)ζ2
∣∣∣

|ζ| |ωT (ζ)|dζ ≤
∫

[|ζ|<δ]

∣∣∣
∫ ζ

0
(ζ − t) ·

[
ϕ′′H(t)− (t2 − 1)e−(1/2)t2

]
dt

∣∣∣
|ζ| dζ

+

∫

[δ≤|ζ|≤T ]

|ϕH(ζ)|+ |e−(1/2)ζ2 |
|ζ| dζ

≤
∫

[−δ<ζ<0]

ε
∫ 0

ζ
(t− ζ)dt

|ζ| dζ +

∫

[0≤ζ<δ]

ε
∫ ζ

0
(ζ − t)dt

|ζ| dζ

+

∫

[δ≤|ζ|≤T ]

2

|ζ|dζ

=
ε

2
δ2 + 4 log

(
T

δ

)
< ∞.

The above inequality then guarantees the vanishing of the right-hand-side of (8) by Riemann-Lebesgue lemma, namely,∫
f(x)eitxdx

|t|→∞−→ 0 for integrable f .
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where the last inequality follows from bounded-by-unity property (P5). Together with

sup
x∈<

|∆T (x)| ≥ (β − 1)

β
η − 2(2β − 1)

Tπ
√

2π
h

(
T
√

2π

β
η

)
,

we finally have

η ≤ β

2π(β − 1)

∫ T

−T

∣∣∣ϕH
(ζ)− e−(1/2)ζ2

∣∣∣ dζ

|ζ| +
2β(2β − 1)

Tπ
√

2π(β − 1)
h

(
T
√

2π

β
η

)
.

Theorem 1 (Berry-Esseen theorem) Let Yn =
∑n

i=1 Xi be sum of i.i.d. random variables, where

n ≥ 3. Denote the mean and variance of Xn by µ and σ2, respectively. Define ρ
4
= E

[|Xn − µ|3] .
Also denote the cdf of (Yn − E[Yn])/(σ

√
n) by Hn(·). Then for all y ∈ < and any β > 1,

|Hn(y)− Φ(y)| ≤ β Bn(β)
(n− 1)√

π
(
2n− 3

√
2
) ρ

σ3
√

n
,

where Bn(β) is the largest positive number u satisfying

(β − 1)πu− 2(2β − 1)h(u) ≤
√

π

4

(
2n− 3

√
2

n− 1

)( √
6π

(
3−√2

)3/2
+

9(
3−√2

)2

1√
n

)
. (9)

Proof: From Lemma 2,

2π(β − 1)

β
η ≤

∫ T

−T

∣∣∣∣ϕn

(
ζ

σ
√

n

)
− e−ζ2/2

∣∣∣∣
dζ

|ζ| +
4(2β − 1)

T
√

2π
h

(
T
√

2π

β
η

)
, (10)

where ϕ(·) is the characteristic function of (Xn − µ). Observe that the integrand satisfies
∣∣∣∣ϕn

(
ζ

σ
√

n

)
− e−ζ2/2

∣∣∣∣

≤ n

∣∣∣∣ϕ
(

ζ

σ
√

n

)
− e−ζ2/(2n)

∣∣∣∣ γn−1, (11)

≤ n

(∣∣∣∣ϕ
(

ζ

σ
√

n

)
−

(
1− ζ2

2n

)∣∣∣∣ +

∣∣∣∣
(

1− ζ2

2n

)
− e−ζ2/(2n)

∣∣∣∣
)

γn−1 (12)

where, from [3, Sec.XVI.5, Eg. (5.5)], the quantity γ in (11) requires that
∣∣∣∣ϕ

(
ζ

σ
√

n

)∣∣∣∣ ≤ γ and
∣∣∣e−ζ2/(2n)

∣∣∣ ≤ γ.

By Eq. (26.5) in [2], we upperbound the first and second terms in the parentheses of (12) respectively
by ∣∣∣∣ϕ

(
ζ

σ
√

n

)
− 1 +

ζ2

2n

∣∣∣∣ ≤
ρ

6σ3n3/2
|ζ|3 and

∣∣∣∣1−
ζ2

2n
− e−ζ2/(2n)

∣∣∣∣ ≤
1

8n2
ζ4.

Continuing the derivation of (12),
∣∣∣∣ϕn

(
ζ

σ
√

n

)
− e−ζ2/2

∣∣∣∣ ≤ n

(
ρ

6σ3n3/2
|ζ|3 +

1

8n2
ζ4

)
γn−1. (13)
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It remains to choose γ that bounds both |ϕ(ζ/(σ
√

n))| and exp{−ζ2/(2n)} from above.
From the elementary property of characteristic functions,

∣∣∣∣ϕ
(

ζ

σ
√

n

)∣∣∣∣ ≤ 1− ζ2

2n
+

ρ

6σ3n3/2
|ζ3|,

if
ζ2

2n
≤ 1. (14)

For those ζ ∈ [−T, T ] (which is exactly the range of integration operation in (10)), we can guarantee
the validity of the condition in (14) by defining

T
4
=

σ3
√

n

ρ

(√
2n− 3

n− 1

)
,

and obtain

ζ2

2n
≤ T 2

2n
=

σ6

2ρ2

(√
2n− 3

n− 1

)2

≤ 1

2

(√
2n− 3

n− 1

)2

≤ 1,

for n ≥ 3. Hence, for |ζ| ≤ T ,

∣∣∣∣ϕ
(

ζ

σ
√

n

)∣∣∣∣ ≤ 1 +

(
− ζ2

2n
+

ρ

6σ3n3/2
|ζ3|

)

≤ exp

{
− ζ2

2n
+

ρ

6σ3n3/2
|ζ3|

}

≤ exp

{
− 1

2n
ζ2 +

ρ

6σ3n3/2
Tζ2

}

= exp

{
−

(
1

2n
− ρT

6σ3n3/2

)
ζ2

}

= exp

{
−(3−√2)

6(n− 1)
ζ2

}
.

We can then choose

γ
4
= exp

{
−(3−√2)

6(n− 1)
ζ2

}
.
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Note that the above selected γ is an upper bound of exp {−ζ2/(2n)} for n ≥ 3/
√

2 ≈ 2.12. By taking
the chosen γ into (13), the integration part in (10) becomes

∫ T

−T

∣∣∣∣ϕn

(
ζ

σ
√

n

)
− e−ζ2/2

∣∣∣∣
dζ

|ζ|

≤
∫ T

−T

n

(
ρ

6σ3n3/2
ζ2 +

1

8n2
|ζ|3

)
· exp

{
−

(
3−√2

)

6
ζ2

}
dζ

≤
∫ ∞

−∞

(
ρ

6σ3
√

n
ζ2 +

1

8n
|ζ|3

)
· exp

{
−

(
3−√2

)

6
ζ2

}
dζ

=
ρ

σ3
√

n

( √
6π

2
(
3−√2

)3/2
+

9

2
(
3−√2

)2

σ3

ρ
√

n

)

≤ ρ

σ3
√

n

( √
6π

2
(
3−√2

)3/2
+

9

2
(
3−√2

)2

1√
n

)

=
1

T

(√
2n− 3

n− 1

)( √
6π

2
(
3−√2

)3/2
+

9

2
(
3−√2

)2

1√
n

)
, (15)

where the last inequality follows from Lyapounov’s inequality, i.e.,

σ = E1/2
[|Xn − µ|2] ≤ E1/3

[|Xn − µ|3] = ρ1/3.

Taking (15) into (10), we finally obtain

2π(β − 1)

β
η ≤ 1

T

(√
2n− 3

n− 1

) ( √
6π

2
(
3−√2

)3/2
+

9

2
(
3−√2

)2

1√
n

)

+
4(2β − 1)

T
√

2π
h

(
T
√

2π

β
η

)
,

or equivalently,

(β − 1)πu− 2(2β − 1)h(u) ≤
√

π(2n− 3
√

2)

4(n− 1)

( √
6π

(
3−√2

)3/2
+

9(
3−√2

)2

1√
n

)
(16)

for u
4
= T

√
2πη/β and β > 1.

Observe that function (β − 1)πu− 2(2β − 1)h(u), by re-formulated it as:

(β − 1)πu− 2(2β − 1)h(u) = πu

(
(β − 1)− 2(2β − 1)

∫ ∞

u

v
T

(
t

T

)
dt

T

)
,

is continuous for u ≥ 0, and equals 0 at u = 0, and goes to ∞ as u → ∞, which guarantees the
existence of positive u satisfying (16).

Inequality (16) thus implies
u ≤ Bn(β),

8



where Bn(β) is defined in the statement of the theorem. The proof is completed by

η = u
β

T
√

2π

≤ Bn(β)
β

T
√

2π

= β Bn(β)
(n− 1)√

π(2n− 3
√

2)

ρ

σ3
√

n
.
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