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Introduction: science and religion 
Do religious beliefs influence present-day mathematics and science? The connection of 
mathematics to religion in Western thought can be readily explained to anyone with some 
rudimentary knowledge of Western philosophy. The very word mathematics derives from 
mathesiz meaning learning. Hence, “mathematics” means, by derivation, the science of 
learning.1 Anyone who has read Plato is aware of the thesis that “all learning is 
recollection”—recollection  of eternal ideas of the soul, its innate knowledge and 
memories of its previous lives, which is forgotten since birth.2  From Plato to Proclus, 
mathematics was regarded as particularly suited to learning, since, it was believed, 
mathematics incorporated eternal truths, and these eternal truths sympathetically moved 
the eternal soul. (This is the basic principle of sympathetic magic: that “like moves like”.) 
Anyone who knows something of Western philosophy should be familiar with these 
ideas, considering Whitehead’s characterization of Western philosophy as a series of 
footnotes to Plato. 

However, it is somewhat more difficult to understand how this connection of religion and 
mathematics evolved subsequently, through the aql-i-kalam (Islamic rational theology) 
on the one side, and the attack on it by al Ghazali3 on the other. The attempt by Aquinas 
and the schoolmen to appropriate reason, through Christian rational theology, during the 
Crusades, takes us deeper into this nexus between theology and mathematics.4 It is at this 
time that mathematics was reinterpreted in the West. The original meaning of 
mathematics as the “science of learning” or a means of sympathetically moving the soul 
was lost. In the West, mathematics now came to mean  “a means of compelling 
argument”. Such a “universal” means of compelling argument was then exactly what was 
needed by the church for its agenda of grabbing Arab wealth, after the strategy of 
conversion by force, which had worked in Europe, failed with the military failure of the 
later Crusades. To enable the use of reason as a weapon against Islam (a purpose for 
which the present pope, Benedict, still uses it5), the philosophy of mathematics had to be 
Christianized, and  the heretical doctrine of the soul implicit in the “Neoplatonic” 
understanding of mathematics had to be eliminated.  The post-Crusade understanding of 
mathematics in Europe  is best understood as an adaptation of Islamic rational theology to 
suit post-Nicene Christian theology. 

This Christianization of the philosophy of mathematics was accompanied by the 
successful attempts to fabricate history on a large scale during the Crusades. These 
attempts to make  the origins of mathematics theologically correct led to concoctions 
such as Euclid.6 The name “Euclid” is not mentioned in Greek texts of the Elements, 
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which acknowledge other authors, such as Theon, father of Hypatia. The origin of 
“Euclid” in Latin texts from the 12th c. could well derive from a translation howler at 
Toledo—“uclides” meant “key to geometry” in Arabic.  The key “evidence”7 for this 
“Euclid” is an obviously forged passage in a late rendering of Proclus’ Commentary, 
which otherwise speaks anonymously of “the author of the Elements”, and propagates a 
contrary Neoplatonist philosophy declared heretical and cursed by the church.  The issue 
has been further complexified by the later-day incorporation of this fabricated history into 
the studies on the foundations of geometry by  Hilbert and even Russell, which studies 
culminated in the present-day philosophy of  formal mathematics or formalism.8 

Against this background, my attempt has been to “de-theologise” mathematics, to get rid 
of this theology in what ought to be a secular science.

Time as the interface between science and religion

To understand this attempt to construct a new mathematics and a new science, we need to 
go a bit deeper into the question of time.  

Since formalism disconnects mathematics from the empirical, it rests entirely upon 
metaphysical beliefs about logic. A deeper aspect of this cross-connection between 
religion and science is the way logic depends upon the nature of time.9 Further, The 
Eleven Pictures of Time10 brought out how time beliefs are fundamental to (a) various 
religions, (b) to value systems and (c) to science. The attempt to control human behaviour 
on a large-scale, by transforming value systems, led also to the transformation of time 
beliefs in religion. Through the religious predilection of people like Newton, these time 
beliefs have become central to science, as I have explained elsewhere.  

My earlier book Time: Towards a Consistent Theory11 had already pointed out what was 
wrong with the understanding of time in present-day physics, purely from a physics 
perspective.  Correcting that understanding of time leads not only to a new type of 
equations for physics (functional differential equations), but also to a new sort of logic: 
quasi truth-functional logic. In that book, I showed that the resulting quasi truth-
functional logic is a quantum logic, thus enabling the derivation, from first principles, of 
the key postulates of quantum mechanics. So the difficulty in understanding quantum 
mechanics is primarily due to the excess baggage of theology in science. 

The new insight about the time as the interface between religion and science also 
explained how those erroneous beliefs about time (and the purported universality of 
logic) had arisen in the first place, and why these errors are so sticky and hard to correct 
today, even in a subject like physics. 

However, unlike the simplistic old tale of the war between science and religion, this new 
thesis of harmony-discord-remarriage between science and religion demands knowledge 
of both science and also of various religions. This seems  a difficult demand to place even 
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on knowledgeable specialists of either kind, so it is difficult to socially legitimate such 
truths, and most people still remain trapped in the earlier simplistic account, which places 
no strain on any faculty. 

The new account of the origin of the calculus

Nevertheless, once one sees the connection between science and religion in this new way, 
it provides an entire new perspective. The science-religion relationship, as seen from this 
new perspective, naturally cropped up in my next book on the Cultural Foundations of  
Mathematics. One of my objectives here was to explain that Newton’s deep and 
suppressed12 religious beliefs had influenced not only his physics but also his 
understanding of calculus. 

Contrary to the attempt in the West to glorify itself by attributing the calculus to Newton 
and Leibniz, the fact is that the calculus developed in India, over a thousand years, in 
response to the clear economic need of monsoon-driven agriculture. Just as “Arabic 
numerals” and related Indian algorithms were imported in Europe by Florentine 
merchants,  the calculus was imported in Europe due to the clear economic need of an 
economy driven by overseas trade, and the difficulties of (and specific to) European 
navigation. 

However, the calculus had developed in Indian under one set of cultural circumstance, 
and a specific understanding of mathematics, which contrasted with the religious 
understanding of mathematics then (or now) prevalent in Europe. Hence, Europe had so 
much difficulty in absorbing the calculus imported from India, just as it had difficulty in 
absorbing “Arabic numerals” and related algorithms (“algorismus”) from India. 

This process of cultural absorption of a foreign technique was misrepresented by Western 
historians as a processes of invention de novo. During the Inquisition, and the related 
religious intolerance in the rest of Europe, it was understandably a common practice 
among European scholars to deny any theologically-incorrect origin of their ideas, since 
that threatened life or livelihood. Thus, Mercator’s sources are unknown just because he 
was arrested by the Inquisition,  and his life threatened, while Newton’s religious 
predilections, as is now known,  nearly got him thrown out of his lucrative job, like his 
predecessor, for theological deviance.  

Subsequent racist and colonial historians exploited this transformation of history during 
Crusades and Inquisition.  It should be recalled that, in the 15th c., popes had promulgated 
a “doctrine of Christian Discovery” according to which a piece of land belonged to the 
first Christian to sight it. Hence it was claimed that Vasco da Gama “discovered” India, 
and, on that basis, ownership of India was assigned to the king of Portugal. Likewise, it 
was claimed that Columbus “discovered” America, and ownership was assigned to the 
king of Spain! As observed by the US Supreme Court, while granting legal sanctity to 
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this doctrine of Christian discovery, this doctrine was also accepted by Protestant kings of 
countries like England (from whom US inherited its laws).  The genocide in the 
Americas, where the atrocities far exceeded anything that Hitler did, was directly 
instigated by these moral and legal doctrine linking Christian discovery to ownership.

Racist historians, therefore, exploited these legal and moral principles, to set up what 
might be called the “doctrine of independent Christian rediscovery”.  The concocted 
history of science which developed during the Crusades, and which had assigned all 
scientific knowledge before the Crusades to the theologically correct Greeks, was taken 
one step further: all knowledge after the Crusades was asserted to have been either 
developed or “independently (re)discovered” by Christians, such as Copernicus, 
Mercator, Clavius, Tycho Brahe, Kepler, Newton, etc.  Colonialism (and the racism 
accompanied it)  globalised this European account of mathematics and its history.

Because the post-Crusade European understanding of mathematics (and its concocted 
history) was so deeply influenced by theology, the absorption of the Indian calculus in 
Europe, and its adaptation to Western theology proved a difficult task. My contention is 
that mathematics is, today, a difficult subject to understand just because the complexities 
of theology have got intertwined with the straightforward secular understanding of 
mathematics that prevailed elsewhere.

This naturally suggests various remedial courses of action. However, practical action 
along those lines must be preceded by understanding, and understanding this new account 
requires knowledge of the differences between the  different philosophies of 
mathematics, such as Neoplatonic, Indian and formal mathematics. As stated earlier, this 
already seems a difficult demand to place on either mathematicians or philosophers in 
India. And no Indian philosopher, as far as I know, has so far worked also on the 
interface of Islamic and Christian theology. 

Catuskoti: the end of the road for Western philosophy (and 
formalism)

Therefore, at the 31st Indian Social Science Congress in Mumbai, last year, I tried a 
different tack to make things clearer. To bring out the intrusion of religious beliefs into 
science, I asked people to imagine what mathematics would be like if it proceeded on 
Buddhist principles. I believe this point did get across to some people, though others 
presumably viewed it with the eurocentric prejudices that our education system inculcates 
in them. 

The key claim is this: formal mathematics crumbles if it is interrogated from a Buddhist 
perspective. 

Technically speaking, there are two key aspects to this proposal. The first is catuskoti or 
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the logic of four alternatives. (This is not a multi-valued logic, as in Haldane’s 
interpretation of Jain syadavada, rather it is a quasi truth-functional logic.13) Although 
commonly associated with Nagarjuna, one finds catuskoti being used by the Buddha in 
the Brahmajala Sutta. Now catuskoti is clearly incompatible with two-valued logic; 
present-day formal mathematics, however, is premised on the belief that two-valued logic 
is universal. Most theorems of present-day formal mathematics would fail if one used 
catuskoti in place of 2-valued logic. 

Given this obvious cultural variation in logic, there is no secular way to justify the 
metaphysical belief system on which current formal mathematics is based. (I am not 
taking into consideration the sort of “secular” justification conversationally advanced by 
Nitin Nitsure, that “they are willing to pay for it, therefore formal mathematics must be 
worth doing”. It is undeniable that Western cultural influences have been promoted by 
bribing people, or groups of people, since the days of Macaulay, for a handful of 
Britishers could hardly have ruled India without numerous Indian collaborators.)  

The empirically manifest (pratyaksa) is undoubtedly secular. But note that one cannot 
appeal to empirical experience to support the current use of 2-valued logic in formal 
mathematics. Thus, formal mathematics prides itself on being entirely metaphysical, it 
prides itself on excluding the empirical on the strange but convenient belief that only 
metaphysical processes (of a certain culturally biased sort) can grasp certainty—and 
certainty (or necessary truth) is purportedly the hallmark of formal mathematics and its 
ritual of theorem-proving. Therefore, the use of 2-valued logic in formal mathematics 
cannot be defended on empirical grounds which are regarded as weaker14 than 
mathematical theorems based on deduction using 2-valued logic. But if one did try to do 
so, one would have to take into account that quantum logic being quasi truth-functional, 
on my theory, catuskoti could well turn out to be empirically more viable. One does not 
really have to depend only on quantum logic or Buddhist logic; the proliferation of logics 
in pre-Buddhist Indian tradition15 is proof that  mundane empirical considerations do not 
lead to a unique logic. On the other hand, regarding the purported uniqueness or 
universality of logic, we have nothing better to go by than the empty assurances of 
Western theologians and philosophers.

I should add parenthetically that I call this logic 2-valued and not “Aristotelian” because 
the text on logic attributed to Aristotle is a very late text. This Arabic text comes from 
centuries after the Baghdad House of Wisdom where Indian Nyaya texts probably 
travelled. Given the wide-ranging debates in India, it is understandable why there was a 
compelling social need  to develop various complex syllogisms in India. There was no 
such social need in Greece. The Aristotelian syllogism is certainly not found in 
Alexandria, where it was the Stoic syllogism which was used, so the attribution of this 
text on logic to Aristotle is excessively doubtful, and probably arises from the “bazaar 
effect” in the Baghdad book bazaar, or the dishonesty with which the market promotes 
sales.  I mention this because Buddhist scholars can easily grasp the difficulty of debating 
with two different systems of logic as was done by Naiyayikas and Buddhists in India, 
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even down to the time of Udyotkara. A similar thing would happen to the propositions of 
mathematics, if the underlying logic were changed. 

This entire argument has been around for about a decade now:16 the slogan formulation is 
that “deduction is less certain than induction” and that the reverse belief is supported only 
by the tyrannical imposition of Western metaphysics.   Noticeably, there has been no 
answer,  although this argument destroys the core of Western philosophy (and the 
philosophy of science), along with the present-day philosophy of mathematics. The 
absence of a response suggests that it is time to jettison these beliefs. The roots of much 
of this philosophy is anchored, like the history of fictions like “Euclid”,  in the post-
Crusade rational theology of Aquinas and the schoolmen, so the world will be a better 
place if we discard it, like Augustine’s views of time, and move on.  I have heard some 
quibbles, but it is a weak understanding of philosophy which thinks that this massive 
structure of Western philosophy can be saved merely through quibbles. Let us, then, 
leave them to muddle along with their incoherent and untenable beliefs, and their 
meaningless ritual of theorem proving (so long as they are not asking for state funding, or 
trying to manipulate it).   

Sunyavada and representability

The second aspect of my proposal on Buddhist mathematics is sunyavada proper.  My 
book, Cultural Foundations of Mathematics17 has a chapter on sunyavada vs formalism in 
the context of number representations in the algorismus, calculus, and computers. This 
emphasizes the differences between a realistic philosophy like sunyavada and an 
idealistic one like Platonism. Of course, this again regrettably makes demands on the 
reader to know about the history of numbers, the present-day philosophy of calculus, and 
the relation of formalist philosophy to the present-day theory of computation, but I am 
now trying to minimize these demands.

On the other hand, during a subsequent discussion on this aspect of the book18 the 
possibility emerged that it was possible to avoid all the practical (or theoretical) aspects 
of this new approach to mathematics, and get bogged down into details of exactly how 
one ought to interpret what Nagarjuna said, or did not say. Since sabda pramana (or 
authoritative testimony, such as scriptural testimony) is not (or ought not to be) part of 
Buddhist thought, this is infertile territory.  Hence, I have used  the terminology of 
“zeroism”.  I still believe this was what Nagarjuna had in mind, but I will not refer to the 
Mulamadhyamakakarika  for I would like to emphasize that it does not matter whether or 
not there is textual support; treat zeroism as a separate, new philosophy if you like.  What 
I am claiming about zeroism is, in my opinion,  entailed by Buddhist thought, but again it 
does not matter whether or not that is so, since I am promoting it not for that reason, but 
for its immediate practical value. 
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Nevertheless, let me explain the connection with Buddhist thought. The basic point is that 
any representation of anything real always discards or ignores a certain “non-
representable” part. (One might say colloquially that every representation is 
“approximate”, except that one does not know what is “exact”.) The understanding, 
therefore, is that sunya does not  simply mean emptiness or void,  sunya refers to the non-
representable part which is ignored or zeroed in a representation.  The meaningful 
statement that every representation leaves out some  non-representable elements, should 
not be converted into the meaningless statement that everything is void. 

Paticca samuppada and the problem of identity

This understanding of sunya or zeroism relates directly to another key notion: paticca  
samuppada (conditioned coorigination).  Once more, let me emphasize that, just as I 
arrived at quasi truth-functional logic first, and noticed the connection with catuskoti 
later, likewise, I arrived at this notion of time and physical time evolution first, purely 
through an analysis of time in physics, and noticed the similarity with paticca  
samuppada later. Therefore, also I support this notion of time primarily for its practical 
value. From the practical perspective of present-day physics this notion of time involves 
history dependence19 + spontaneity.20   It would take too long to explain here this notion 
or its relation to paticca samuppada (but I have explained it in the two books cited 
earlier, and in various other articles).  The key point to note is the regrettable frequency 
with which this notion of time is confounded with a doctrine of flux, or occasionalism, 
somewhat like Marxism is confounded with Gandhism by its critics.

An immediate  consequence  of  paticca  samuppada is  anatmavada  (no-soul-ism).  The 
present is not caused by the past; it is only conditioned by the past. Therefore, the present 
is  not implicit in the past (as it would be, for example, on the Samkhya-Yoga view21). 
Knowledge  of  the  past  is  not implicit  in  the  present  (as  it  would  be  on  Newtonian 
physics), and knowledge of the entire past is inadequate to determine the future. On the 
other hand, it is manifest (pratyaksa) that nothing stays constant for two instants. And 
the inference is  not clear that beneath all this “surface” change, a human being has an 
eternally  constant  part—the  soul.  Our  immediate  concern  with  the  soul  relates  to 
representation: if the soul—this supposedly constant part of a human being—exists, it is 
legitimate to represent events, as in everyday language, as this or that  happening to a 
single individual.  If  the “soul” (in the above sense, as the constant part of a human 
being) does not exist, this everyday representation is no longer valid. It is a mere figure of 
speech with no underlying reality.  So, this understanding of time directly leads to the 
problem of representation: how to represent something across time, when nothing about it 
stays constant? 

Note that the issue of atman in the Upanishads is exactly this.22 To be sure, there we are 
connecting  two individuals  across  cycles  of  the  cosmos  which  last  for  an  enormous 
duration. But this duration is really of no consequence as Nietzsche23 eloquently pointed 
out, for one has no awareness of it. And the problem of representation is exactly the same 
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whether we consider it across cycles of the cosmos, or across the diastema between two 
instants. I think this is a very important aspect of the Buddha’s notion of time. 

Representing a changing entity

Since there is nothing “essential”, such as the soul, which stays constant across time, 
even across two instants,  what we commonly speak of as one human being, identified by 
one name from birth to death, is actually a procession of individuals who differ from each 
other so “slightly” that we do not care to or are not able to represent the difference.   

I do not intend here to plumb the depths of this deep problem (though I have attempted to 
do so elsewhere). Certainly every Buddhist scholar is familiar with the example of the 
seed. The seed is not the cause of the plant since the seed in the granary is manifestly 
different from the seed in the ground (which is bloated up).  What I wish to talk about is 
the mundane way in which the problem is resolved in everyday life. How do people 
manage to confound the seed in the granary with the seed in the ground, even though the 
two are manifestly different?  That such confusion is widespread is evident from the 
empirical existence of patriarchal societies, where the seed (from the father) is regarded 
as the prime cause of the origin of the child, and the mother (or the earth) is regarded as 
merely a passive carrier. 

The point is that this confusion regarding causes arises due to imprecise representation 
which entails confusion regarding the identity of the seed. I suggest that the two seeds are 
confounded because people use a representation of the seed, in which the  detailed 
differences between the seed in the granary and the seed in the ground, even though 
manifest, are neglected as “inessential”. To reiterate, such representations are 
fundamental to the mundane notion of identity across time. Although a person changes 
from moment to moment, and the child is manifestly different from the adult who is 
manifestly different from the aged adult, at the mundane level, and in everyday language, 
all these changes are represented as changes which happen to a single individual. In this 
method of representation, the manifest differences in this individual, who supposedly 
stays constant across time, are ignored or zeroed as somehow inessential to the “true” 
identity of the individual. Our problem, then, is to understand this mundane method of 
representation when we no longer believe in any such “true” or “constant” identity of the 
individual across time. 

We can discern two kinds of positions here. It is one thing to say that given this 
multiplicity of entities and the paucity of names, as a matter of convenience we adopt the 
convention of assigning a single name to entities which differ only “slightly” from each 
other.  This is the realist position. It is another thing to say that there really is a single 
entity. That is the idealist position. The idealist position is critical to religious beliefs, for 
the notion of one soul which survives after death is based on this position. The realist 
grants the practical usefulness of incomplete representations or simplifications or 
abstractions; the idealist asserts that these abstractions really exist out there. 
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Representing real numbers and supertasks

A similar strategy of representation is used in mathematics. Many things can and have 
been written about the representation of mathematical or other knowledge in the brain.  I 
prefer to avoid this area, since such claims are rarely directly verifiable or testable, even 
if we take the brain apart! However, the representation of numbers on a computer is 
something definite, hence simple and easy to understand; practices here are well known, 
and theories about this are easy to test. For the purposes of number representation on a 
computer, it does not matter very much what sort of theory of computation we have: 
whether we are looking at a traditional computer, or a parallel computer or a quantum 
computer. Obviously enough, the exact architecture of the computer is even more 
irrelevant. But before going on to number representations on a computer, let us first 
consider the mundane representation of numbers. 

Consider, therefore, the number labelled  or the number symbolically labelled 
2 .  This symbolic representation is an abstraction which does not specify the 

number. To specify the number one must list out its complete decimal expansion. Since 
the decimal expansion neither terminates, nor recurs, the process of completely listing out 
the decimal expansion never terminates. Listing out the complete decimal expansion is a 
supertask—an infinite series of tasks that cannot be performed in any finite time. 
Certainly, it would be a reasonable thing to say that an expansion which lists out the first 
billion digits is likely to be adequate for all practical purposes. This statement is not even 
required to be timelessly or eternally valid. In future, if some practical purpose were to 
arise for which we needed the first trillion digits, instead, we could work out those, for 
we have a process to extract square roots.

However, the idealist is not happy with this situation. He wants to make statements that 
are eternally valid, and he assumes that it is possible to do so.  Therefore, he regards the 
process of specifying only a billion or a trillion digits as erroneous.  He has no specific 
practical task in mind for which he regards this as erroneous. But, in his “mind’s eye”, he 
sees that this process still leaves out an infinity of unspecified decimal digits. Thus, there 
are an infinity of numbers which could possibly be confounded with the number we have 
in mind,  and which we have specified only to a billion digits, for what is a billion 
compared to infinity? The idealist wants to assert that that there really is a single number
 or a single number 2 , which can be uniquely specified. 

The problem is, as we have stated, that such specification requires an infinite process or a 
supertask. Though this supertask cannot be avoided, it can be hidden. This is the strategy 
adopted in present-day formal mathematics: such supertasks are hidden underneath set 
theory. This set theory is the typical starting point of a math text, and the confusion 
begins right here: “a set is a collection of objects” is a common piece of nonsense found 
also in the current NCERT school texts.24 This is rather like beginning a course on 
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theology by saying, “Grant me a woolly idea of God and everything else will follow.” Of 
course it is easy to make the promise that this woolly idea of God would be clarified in 
more advanced courses, after a decade. (By that time the person is so deeply drawn into 
this way of thinking that he finds it difficult to abandon, even if disillusioned!)

It is quite impossible to teach the high abstractions of axiomatic set theory to a school 
child  What the student learns through such mathematics is to accept a confused bunch of 
rules purely on fear of authority, and the hope of clarification at some future date. Even 
most mathematicians do not learn axiomatic set theory. So they remain deficient even 
from within a purely formalist perspective. Thus, one such mathematician writing a 
school text proposed to avoid the circularity in the common “definition” of a set by 
declaring a set to be a primitive undefined notion! Obviously, this gentleman had no idea 
of what a set is, in formal set theory, nor what is a “primitive undefined notion”, and he 
simply equated these two unknowns!   What a contrast from Proclus’ idea of mathematics 
as the science of learning!

The point of referring to a computer should now be clear: a computer makes manifest the 
impossibility of performing supertasks. We are not here referring to the axiom of choice 
or any such fancy transfinite induction principle. We are here referring to a simple 
process of specifying a real number.  A formal real number cannot be specified without 
appeal to set theory (or supertasks of some sort). It is therefore impossible for a formal 
real number to be represented on a computer.  Formalists, therefore, declare the computer 
representation to be forever erroneous!  Nevertheless, the fact is that computer 
representations of real numbers are adequate for absolutely all practical tasks today, 
without any exception.  Therefore, declaring the computer to be forever erroneous 
reflects only the religious attitude that mathematics is perfect truth, and that this perfect 
truth can only be grasped metaphysically, for something is wrong with anything real or 
actually realizable. However, note that that while the Neoplatonic attitude had its merits, 
that is now made completely barren and devoid of all meaning in formalism. which just 
manipulates meaningless symbols according to an opaque grammar of supertasks. 

Contrast this convoluted formalist attitude with the simplicity of the description of 
2 in the sulba sutra: 

2≈11
3
 1

3.4
 1

3.4 .34

with the added qualification savisesa, meaning “this much and something more”. The 
something more does not create any problems from the point of view of any practical 
applications. We do not have perfection here, but we do have practical value. (Note also 
that in speaking of 2 we are referring to something definite and empirical here, such 
as the diagonal of a square, which we can see, and whose length we can measure, both of 
which are illegal according to present-day mathematics.)

10



Zeroism

The point of zeroism is to recognize the legitimacy of this process. We do not need 
formal reals for any practical purpose, and can never use them in practice: real real 
numbers are good enough and those are all we have in practice. The sole question is how 
to represent them. We can certainly use a symbol such as 2 with the understanding 
that it is ambiguous—like the name of a person which can refer to that person as a child, 
or a youth or an old man. Where this ambiguity creates a practical problem, we can 
resolve it by moving on to a better description of the person (such as “so-and-so at age 2 
years and 3 months”).  Likewise, the exact value used for 2 might vary with the 
context, but this causes no confusion, any more than names cause confusion in everyday 
life. 

As a realistic philosophy, zeroism accepts the impossibility of representing things 
exactly, as being in the nature of the world (and the nature of time).  Any representation 
of any real entity must necessarily neglect some aspect of that entity, which neglected 
aspect is treated as inconsequential for the purpose at hand. 

For many commercial and engineering problems, one usually needs only a fixed 
precision. In this kind of situation, of fixed-prevision arithmetic, such an incomplete 
representation corresponds to the usual practice of rounding, as in a commercial 
transaction, where neither party has adequate change. 

Coming now to the actual practice of how numbers are represented on a computer, the 
IEEE standard 752 is the one used for floating point numbers. The exact details of this 
standard are not relevant here, and I have explained them in detail elsewhere in my 
elementary computer courses. The interesting point to note is that these floating-point 
numbers do not obey the stock “laws” of arithmetic: particularly important is the failure 
of the associative “law” for addition [(a+b) + c = a + (b+c)], as also for multiplication. 
For the technically informed, this happens because a mantissa-exponent notation is used 
to represent the numbers, and the addition of the numbers requires equalization of the 
exponent. Since binary representation is used for numbers, equalization of the exponent 
requires bit shifting of the mantissa. If the difference of exponents is too large, this causes 
the mantissa to be bit-shifted to nothing.

Thus, it is possible to find an e different from zero such that -1 + (1 + e) = 0 while (-1+1) 
+ e = e. For the stock IEEE floating point standard, we can take e = 0.0000001 or any 
smaller number. For double or higher precision arithmetic, this number has to be even 
smaller. 

However, the failure of the associative “law” for floating points numbers does not mean 
that these numbers are criminals who violate laws! The key point is that it is the 
grandiose notion of associative “law” which is now to be regarded as erroneous—a useful 
simplification, but one that is not exactly valid, and admits an infinity of exceptions to the 
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rule. The rule has to be applied with intelligence, as in everyday language, and not 
mechanically as in formalism. Therefore, no algebraic structure such as a field can be 
associated with real numbers: the formal mathematics of real numbers is forever 
erroneous! 

Representing integers on a computer
The non-representability of real numbers is clear enough, but a computer also brings out 
the non-representability of integers as well. If we think about it a bit, it is clear that there 
is a difficulty in representing very large integers. We don’t readily encounter this difficult 
in practice, because, in practice, we never need to use very large integers: a zillion 
(howsoever defined) is about as far as most people get!

However, a little thought shows that the problem of representing real or floating point 
numbers is really equivalent to the problem of representing large integers, for ultimately 
any (finite) decimal expansion is just a fraction with a large numerator and a large 
denominator. In fact, this was the explicit way numbers were represented in Indian 
tradition: all arithmetic was ultimately reduced to integer arithmetic, possibly indefinitely 
continued integer arithmetic as in an indefinitely continued fraction. 

An interesting point here, which I have made earlier, but which has probably not got 
across, is this. A statement such as 2+2 = 4 seems simple enough, but in formal 
mathematics, even this simple statement surprisingly involves a supertask. Thus, for the 
symbol 2 we must specify that it is an integer (and not, for example, the rational number 
2/1, or the real number 2.0). On a computer, such a specification is easy enough. 
However, this formal specification (of integer-ness) itself involves a supertask. The fact 
that for any particular integer this specification is a finite task is poor consolation: with 
any finite specification, such as the one given on a computer, this arithmetic would 
necessarily fail to agree with the arithmetic of ideal integers beyond a point. To 
summarise, from the viewpoint of zeroism,  idealisations are erroneous simplifications, 
and where such “simplification” can only be achieved using abstractions that are complex 
and difficult to articulate (such as sets), they ought to be abandoned. Simplification by 
complexification is useless! 

The project on calculus without limits is to be understood against this background.

A brief history of limits in calculus
When the calculus first went from India to Europe, its practical value was immediately 
grasped. It was clear that the calculus could be used to calculate trigonometric values to 
high precision: and such trigonometric values (tables of secants) were in great demand 
for the Mercator chart which was indispensable for European navigation. While 
Mercator’s source for his table of secants remains a secret (Mercator was arrested by the 
Inquisition, and therefore had ample reason to hide his sources),  elaborate trigonometric 
tables were published by Clavius in 1607.  
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Clavius had ample access to the information about the Indian developments in calculus 
since Cochin was where the first Roman Catholic mission started in 1500. The school 
started by the missionaries (which soon turned into a college), and mainly catering to the 
local Syrian Christians, was taken over by the Jesuits in 1550. The Jesuits had made 
Cochin into a mini Toledo: for they collected vast amounts of local literature, got it 
translated and sent it back to Rome. This literature on the Indian calculus was to be found 
in the local timekeeping (jyotisa) texts circulating in the vicinity of Cochin.  Clavius’ 
loyal student, Matteo Ricci recorded that he was in Cochin, looking for an “honest Moor 
or an intelligent Brahmin” to explain to him the Indian methods of timekeeping. This was 
shortly before the Gregorian calendar reform of 1582, authored by Clavius. (The revised 
length of the year used in this calendar reform was based on texts, not empirical 
observations.) Of course, Clavius did not really understand any trigonometry, for he 
didn’t know even the elementary trigonometry needed to measure the size of the earth. 
(This was then a critical parameter for navigation; the globe could not then be used for 
navigation, since the size of the earth had underestimated by Columbus, and the use of 
the globe was banned aboard ships by Portugal.)

Eventually, through Tycho Brahe, then Kepler, and Galileo, and his student Cavalieri, 
this Indian work on calculus started circulating in Europe. Some mathematicians, such as 
Pascal and Fermat  greeted it with enthusiasm. However, others like Descartes 
complained that this was not mathematics. Descartes wrote in his Geometry that 

[T]he ratios between straight and curved lines are not known, and I believe 
cannot be discovered by human minds, and therefore no conclusion based 
upon such ratios can be accepted as rigorous and exact.

From the Indian perspective this is a very strange statement, very hard for the human 
mind to grasp. Thus, Indians used a string or rope since the days of the sulba sutra. 
Measurement using the rope (rajju) was part of the mathematics syllabus traditionally 
taught to Indian children. 

A string can obviously be used to measure a curved line. It can be straightened, and thus 
compared with a straight line. Therefore, it is very easy for any child to grasp the ratio of 
a curved and a straight line. Why did this major Western thinker find this simple thing so 
hard to understand?

First, Descartes took it for granted that the straight line was the natural figure, and that 
curved lines must necessarily be understood in terms of straight lines, and not the other 
way around. Second, he ruled out empirical procedures as not mathematics. According to 
his system of religious beliefs only the metaphysical could be perfect, and mathematics 
being perfect had to be metaphysical. It should be observed that this belief that 
mathematics ought to be metaphysical was unique to post-Crusade Christianity: Proclus, 
for example, did not subscribe to it, for he admitted the empirical at the beginning of 
mathematics, as in the proof of the Side-Angle-Side theorem (Elements 1.4, as it is 
called). 
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Thus, Descartes, if he at all thought about it, regarded this easy empirical procedure of 
comparing straight and curved lines as suspect, since physical. Descartes assumed that 
the only right way to understand the matter was to do so metaphysically. So his question 
was, how is this procedure to be justified metaphysically? 

On a computer screen, a curved line can be easily represented by means of a large 
number of tiny straight line segments. The eye cannot see the difference, and the digitised 
representation is adequate for any practical purpose. But Descartes was worried that this 
was not exact. Like a dot on a piece of paper, he thought it involved an approximation, 
howsoever tiny. Something somehow was being lost, he felt. 

As we have seen this difficulty of representation arises  even with integers, or with 
anything else, but Descartes thought this was a problem specific to this new-fangled 
calculus, which lacked perfection, and hence was not quite mathematics. Perfection 
required, in his opinion, that each such straight-line segment should be infinitesimal, but 
then there ought to be an infinity of them. So, perfection required a supertask—that of 
summing the infinity of these infinitesimal lengths—and this, he thought, was beyond the 
human mind.25  After vacillating for a few years, Galileo concurred, and hence he left it to 
his student Cavalieri to take the credit or discredit for this disreputable sort of 
mathematics which was not perfect.

Given Newton’s religious predilections, and his belief in the perfection of mathematics, 
he mathematized physics to a never-before extent. Calculations with planetary orbits 
were being done, using the calculus, well before Newton or Kepler. What Newton did 
was to bring in some “perfection” in this process by introducing the right sort of 
metaphysics. 

This “right sort of metaphysics” had a peculiar consequence for Newtonian physics. 
Compared to his predecessor, Barrow, who adopted a physical definition of time and 
time-measurement, and summarily rejected Augustine as a metaphysical “quack”, 
Newton reverted to a metaphysical and mathematical notion of time. His definition about 
“absolute, true, and mathematical time...” is not usually understood correctly, although 
all three adjectives make it clear that he is referring to a metaphysical and not a physical 
notion, and he confirms this by saying that it “flows on without regard to anything 
external”. Something physical cannot obviously have such a generalized disregard for 
anything external! This metaphysical notion of time meant that there was no proper way 
to measure time in Newtonian physics.26 The absence of a proper definition of time was 
the reason for the eventual failure of Newtonian mechanics when it clashed with 
electromagnetic theory, and relativity had to be brought in.

Why did Newton need such a definition of time? We have to understand that he wanted 
to use calculus, and specifically time derivatives, to explain circular and elliptical orbits 
in terms of straight line motion. (Circular orbits alone could be “explained”, without the 
need of the calculus,  by postulating an inverse-square force law, and a “natural” straight 
line motion; Newton’s success lay in extending this procedure to elliptical planetary 
orbits on the one hand, and to parabolic ballistic trajectories on the other.)  
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But more than the practical applications, Newton was interested in rigour. It was critical 
to his understanding of calculus in terms of his theory of fluxions that time should flow, 
or be a “fluent” entity. This, he thought, made time infinitely divisible—at any rate it 
made “absolute, true and mathematical time” infinitely divisible—and such infinite 
divisibility was needed to justify that the supertasks needed  for making the time-
derivative meaningful could be performed. He thought the process would fail if time were 
discrete (for then the process of subdividing time, needed for taking time derivatives, 
would stop when subdivisions reached some finite, atomic proportions). 

Historically speaking, in his defence against Leibniz’s charges of plagiarism, it is rigour 
for which Newton, writing anonymously about himself, claims credit. (The other thing he 
claims credit for is the sine series, which was obviously known from earlier, though not 
in Europe.) And, historians, today, once again credit Newton with the calculus on the 
grounds that he had rigorously proved the “fundamental theorem of calculus”. 

Of course, Newton was mistaken in thinking that this “fluency” of time provided a 
solution to the  problem of supertasks. Many discerning people were aware of this, and 
Berkeley took it upon himself to tear Newton’s theory of fluxions to bits, when there 
seemed a danger that Newton’s views on the church would become public. In the event, 
Newton’s History of the Church in 8 volumes, a result of 50 years of scholarship, was 
successfully suppressed, and Berkeley’s criticism was subsequently played down. 

Regardless of its probable motivation, and regardless of the subsequent attempts to play it 
down,  Berkeley’s criticism was valid. His argument was very simple and robust, and 
interesting. He assumes, along with Newton, Descartes, and Galileo, that mathematics is 
perfect, and cannot neglect even the smallest quantity. However, he goes along with 
Newton and allows that a quantity may be neglected if it is infinitesimal (whatever that 
might mean). But, he asks, if a quantity is to be set to zero at the end of the calculation, 
why not set it to zero in the beginning itself? 

We know the modern answer to Berkeley’s objections: that the ratio of two infinitesimals 
may be finite. A hundred years ago, when neither Non-Standard analysis nor non-
Archimedean fields  had come in, and infinitesimals were still formally disreputable, the 
idea was to try and define limits by playing on the space provided by the non-definition 
of 0/0. Dedekind’s formal real numbers, or the continuum, by allowing infinite 
divisibility, seemed to be just the right framework for such limits. That is how advanced 
calculus (or elementary analysis) is still taught—by appealing to the completeness of the 
(formal) real numbers. But, of course, it was evident, even in Dedekind’s time, that the 
construction of formal real numbers required set theory which was suspect for the 
infinitary processes it involved. 

The axiomatisation of set theory has tamed those doubts in an interesting way. From 
curves, to numbers, the doubts have now been pushed into the domain of set theory 
which the average mathematician does not care about. So, like the professional 
theologians who were concerned with establishing the number of angels that could fit on 
the head of a pin, without bothering about fundamental questions as to the nature of God, 
the professional mathematician can merrily go on proving theorems without bothering 
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about the supertasks used in set theory. 

Secondly, on the philosophy of formalism the only question that mathematicians will 
accept about the process is that of consistency. The consistency of set theory has not been 
formally proved, of course, but mathematicians believe it is consistent. It is interesting to 
see the double standards involved here. 

Thus, if supertasks were really regarded as really admissible, one should be able to apply 
them also in metamathematics. In that case, it would be a trivial matter to use some 
transfinite induction principle, such as Zorn’s lemma, or Hausdorff maximality principle, 
to make set theory decidable. In such a case, the theory obviously cannot be consistent, 
by Godel’s theorem, for it easily accommodates a statement which asserts its own 
negation. Thus, the consistency of set theory is maintained by means of a double 
standard: allow supertasks within mathematics, but not while talking about mathematics. 
It is interesting to note the theological parallel: it was exactly such a double standard that 
was needed to claim the consistency of the notion of an omnipotent, and omniscient God 
with the existence of evil in the world!

Calculus without limits

The proposal on calculus without limits comes against this background. A rigorous 
formulation of the calculus does not need any supertasks. The need for supertasks was 
just a myth that arose in the West because of the idealistic belief in the “perfection” of 
mathematics, and the belief that this perfection could only be attained through 
metaphysics. 

Let us start, for example, with a key polemic used by Western historians, which relates to 
the “Fundamental theorem of Calculus”. It is clear from the above considerations, that 
Newton could hardly have proved it, for his theory of fluxions was mistaken and had to 
be rejected. Also, the idea of the fundamental theorem of calculus supposes that we have 
an independent definition of the integral and the derivative, and the two are related by the 
theorem. However, where was Newton’s definition of the integral? Such a definition 
became available only after limits (and this led to various complexities, for the 
fundamental theorem of calculus obviously does not hold with either the classical 
derivative and the Lebesgue integral, or with the Schwartz derivative and the Riemann 
integral). All that Newton had was the naïve idea of the integral as the anti-derivative, 
which naïve idea is the basis of the calculus today taught to students.

More to the point, the central question is: just what mathematics is about? If it is not 
metaphysics, or a branch of theology, its function is to help carry out calculations with a 
practical purpose in mind. From this perspective, what is the exact purpose that the 
fundamental theorem of calculus serves? At best, it enables one to solve the differential 
equations Newton used to formulate physics. However, the more appropriate thing for the 
calculus (and for Newtonian physics), then, is to have is a numerical technique for 
calculating the solution of ordinary differential equations. This was what Aryabhata 
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developed, and which later came to be known as Euler’s method of solving ordinary 
differential equations. Thus, instead of a theorem, we have a process. (Of course, the 
process can and has been improved since Aryabhata and Euler.) 

From the point of view of practical calculation, this process is far superior to the plethora 
of theorems that are needed to be able to solve the simplest ordinary differential equation. 
For example, the theory of the simple pendulum cannot be taught in schools, and is 
missed out even by most physics teachers, since it involves the Jacobian elliptic 
functions, which are difficult to teach and explain. Consequently, most people confound 
the simple pendulum with simple harmonic motion, the linear differential equations for 
which can easily be solved symbolically. However, with the process of numerical 
solution, the equations for the simple pendulum can be solved just as readily. 

With the advent of the computer, there is no question that this is the superior approach, 
and the one that one will surely adopt for any practical task, such as ballistics. 

The only question is whether this practical approach can be supported by means of an 
appropriate philosophy. Zeroism is such an appropriate philosophy which counters both 
formalism and idealism, and supports this practically superior approach.

Thus, consider the idealist polemic about the “perfection” of mathematics. (This is just a 
polemic the moment one has divorced mathematics from “Neoplatonic” ideas.)  This has 
generated the belief that symbols are somehow superior to numbers (which are, of course, 
symbols of another sort). That is, to one trained in formal mathematics, it seems desirable 
to write  instead of using 3.14, for one might mean 3.1415. Now, so long as a name, 
such as 2 refers to a process (like the algorithm for square root extraction) by which 
the quantity in question may be specified (as in the ostensive definition of an individual) 
this may be regarded as an acceptable practice. However, where there is no such 
underlying process, or the underlying process involves a supertask, this representation is 
faulty and deceitful: for merely by assigning a name to a thing one generates a faulty 
expectation that there is a real and unique entity corresponding to that name. This, as we 
have seen, is not the case, and cannot be the case, whenever a supertask is involved. 

Similarly, there is the belief that a “closed form” solution is superior to a numerical 
solution. Now, to the extent, and only to the extent, that one is comparing a definite and 
well-established process of calculation (such as the calculation of sine values) with a 
new, and as-yet unclear numerical method, I am willing to go along with this. Often, such 
symbolic representation is just a fallback to the old days (namely 30 or 40 years ago) 
when a desktop-computation of the values of special functions (such as the Jacobian 
elliptic functions) was a complex task that one did not want to perform.  

When there is no reference to any such underlying process of calculation or specification, 
the symbolic representation is just erroneous.  To my mind, there is a close analogy 
between this argument, and the Buddhist (and specially sunyavada) argument against 
Naiyayikas, although this argument is in a new context. 

From the formal math angle, let us see how this process works for the case of limits. To 
fix ideas, consider the case of an infinite series: all other cases can be handled similarly. 
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Recall also that the first definition of the sum of an infinite geometric series was given in 
India. Similar notions of convergence were used to sum the sine and cosine series. 

From the present-day perspective, limits are idealized constructs, which are required to be 
unique (even if not specifiable). In practice what we require is something specifiable 

(even if not unique).  On the formal definition, a series ∑
n=1

∞

an is convergent if for all 

0 , there exists a number N such that ∣∑
n=N

Nm

an∣ for all m. 

Let us compare this formal definition of limit with the earlier definition used in India. 
Working to a fixed but arbitrary precision is equivalent to having a fixed but arbitrary 
0. Formally speaking, by the principle of generalisation, anything that is true for 

such an  will be true for all 0. Now the Yuktidipika (or 
Tantrasangrahavyakhya)  asks us to sum the series up to that value of N beyond which 
adding additional terms will not make any difference to the sum (up to the precision 

concerned). This is the same as the requirement that ∣∑
n=N

Nm

an∣  although it was not 

specified that this ought to be done for all values of  m.  Clearly, except where there is a 
distinct pattern, that would constitute a supertask. Of course, if some value of m were to 
be found at which this condition was violated, no doubt the author of the Yuktidipika 
would have agreed that the series cannot be summed—it was just that he did not 
formulate things in a “legalistic” or formal way. (Indian law then was not so rigidly 
codified, and had plenty of room for to apply commonsense and neglect the quibbles that 
one today associates with legalese.) So, this difference of formulation would not really 

have been an issue in the case of a slowly divergent series, such as ∑
1

∞ 1
n

.

So, the only difference between the present-day definition “Cauchy criterion of 
convergence”) and the notion of convergence used in India is the absence of supertasks. 

Now what exactly does this formal ability to do supertasks mean? Consider a series such 
as 1-1+1-1+.... What is the sum of this series? The partial sums of the series clearly 
oscillate between the values of 0 and 1 and hence the series is judged to be divergent on 
conventional analysis. However, in many practical situations it is convenient to define the 

sum of this series as 
1
2

. Such a definition may seem puzzling at first sight since the 

series never attains that value, and the sum to any finite number of terms is always either 
0 or 1. This is an example of an  “asymptotically convergent” series. The point is that just 
like 0/0, the sum of an infinite number of terms has no arithmetical meaning of its own. 
Within the philosophy of formal mathematics, such a meaning has to be assigned by 
definition: and definitions, as everyone knows are bound to have some arbitrariness in 
them. The above definition is practically convenient and is often used in physics in the 
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more sophisticated form  .=1
2
 , where  is the Heaviside function and  is 

the Dirac delta function. So we are back to the situation where there is no need to actually 
perform any supertasks. When a seeming supertask arises, what one needs, instead, is a 
process (a finite process) which needs to be carried out. The nature of this process (or, 
equivalently, the definition of such products of Schwartz distributions) is to be decided 
by practical value and empirical considerations. (The alternative is to rely on 
mathematical authority.)

There remains the question of the value of teaching symbolic manipulation. Under the 
current system of education, symbolic manipulation is most of what is taught in a 
calculus course, and this is the skill that the students are expected to take away. But what 
is the worth of this? A half-century ago, one could possibly justify this procedure by 
arguing that it helped people to relate a new process of calculation to an old process. But 
that is no longer necessary. Moreover, computers can carry out such mechanical symbolic 
manipulation (by applying rules such as integration by parts)  far more easily.  Today, no 
one would dream of doing a complex piece of arithmetic by hand: one would use a 
computer. Likewise, no one today would dream of doing by hand any complex process of 
symbolic manipulation: one would use MATHEMATICA, or better, MACSYMA. I am 
specially reminded of the months of frustrating effort that I have spent in getting a 
complex piece of symbolic manipulation right, and which could be done in a jiffy today 
with these programs. Therefore, apart from a knowledge of the  basic rules involved, the 
student does not need to be drilled in such symbolic manipulation, as happens in a normal 
calculus course: it is enough to teach how to use the open source version: MAXIMA. 
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