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Summary. Another family of generalized zeta functions built over the Riemann

zeros {p}, namely % (s,z) = Zp(m—p)_s, has its analytic properties and (countably

many) special values listed in explicit detail.

This work is a partial expansion of our first paper [20] on zeta functions
built over the Riemann zeros {p}, i.e., the nontrivial zeros of the Riemann zeta
function ¢(s). While our oral presentation was more introductory, here we
will pursue a fully parallel treatment, begun in [20], for two such generalized
(i.e., parametric) zeta functions:

o

2(0,0) € Y (1 +v)7 (and 2(0)™ 2(0,0)), (1)
k=1
#(5,2) E Y (—p) T =Y (pre-1)" (and () Z(5,1), (2)
p p
where {p} = {1 +im}k=12,. = {the Riemann zeros} (3)

(or, in a latest extension, the zeros of arithmetic zeta or L-functions [21]).
The two families (1) and (2) are truly inequivalent except for one function,

Z(0,0) = Z(0) = (2cosmo) ! #(20,1), (4)

already considered in [8, Sect. 4 ex. (A)], [4]. Other previous results appear
in [11, 15] for the functions Z(o, i), in [5, 18] for the family { %} and earlier
[16, 12, 10] for the specific sums % (n) = Zp p~™ (often denoted o).

In [20], we mainly strived at exhausting explicit results for the family (1),
handling the family (2) in lesser detail. The present work will in turn pro-
vide a thoroughly explicit description for the family (2), in parallel to (1), but
now based on a parametric analytical-continuation formula, (42). At the same
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time we will switch from a Hadamard to a zeta-regularized product formal-
ism, definitely simpler for the family (2). This zeta-regularization technique
is adapted from spectral theory and quantum mechanics, where it serves to
define spectral (or functional) determinants [19, 17]. However, our analysis
remains wholly decoupled from any actual spectral meaning whatsoever for
the Riemann zeros.

We recapitulate the results of [20] in Sect. 1, but refer to that article for
further details. We basically keep the same notations, with (2) subsuming the
main few changes: the second family used in [20] was £(s,x) = (27)® 2 (s, ),
and Z(n) =>_ , P~ " was formerly 2,; we also slightly renormalize the func-
tion called D, cf. (38) below. The other essential notations are [1, 7, 3, 6]:

B Bernoulli
n ) . [Bernoulli numbers: B, (+): Bernoulli polynomials;
E, Euler

7: Euler’s constant; 7;,_ : “Stieltjes cumulants”, defined by: (5)

log [s¢(1+ 8)] = Z % T 18" (eg., V5 =7);

the 7S _; are cumulants [20] for the more classic Stieltjes constants ¥, —1 [1, 12];
see also 9,1 = (—=1)"n 75 _; /(n — 1)! in [2] — notations are not standardized
(the so denoted constants and cumulants all truly have degree n, anyway);

E(s) € s(s — D)r=*/2 1(s/2) ((s), (6)

which is an entire function, even under s «— (1 — s), normalized to

Z(0) = 2(1) = 1, and only keeping the nontrivial zeros of ¢{(s);

o

¢

B(s) < (=1)"(2n 4+ 1)~* : the Dirichlet S-function, (7)

0

3
Il

which is a particular L-series of period 4;
¢ o0
¢(sya) o Z(n + a)~® : the Hurwitz zeta function, (8)
n=0

which has a single pole at s = 1, of polar part 1/(s—1), and the special values

¢(=m,a) = =Bmy1(a)/(m+1) (meN), (eg., ¢(0,a)=3-a) (9)
FPs-1((s,a) = —I"'(a)/ I'(a) (FP 2 finite part at a pole) (10)
¢'(0,a) = log [I"(a)/(2m)"/?]; (11)

upon generalized zeta functions as in (1), (2), (11), " will always mean differ-
entiation with respect to the principal variable: the exponent, s or o.
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1 Summary of previous results

1.1 Zeta functions and zeta-regularized products

We first recall some needed results on zeta and infinite-product functions built
over certain abstract numerical sequences {zx}r=12.. (0<z1 <z2<---,
xp T oo as in [19]; or xp € C* with |zx| T oo, | arg x| sufficiently bounded
as in [17, 14, 9]). Such a sequence is deemed admissible of order pi for some
1o € (0, +00) if, essentially, the series

(o)
Z(s) € Zxk_s converges in {Re s > po}, (12)
k=1

and this zeta function Z(s) (analytic for Re s > po) admits a meromorphic ex-
tension to the whole s-plane, with poles lying in a real sequence o > p1 > - - -
(tn, | —00). The smaller details are better fine-tuned to each context: thus,
the zeta functions Z in (1) could be treated earlier [20] using a very low order
o < 1 but double poles, which are handled in [14, 9]; now, the functions %
in (2) will require o = 1 but only simple poles, as in [19, 17].

As a consequence of (12), the Weierstrass infinite product

Ala) kfjl (1+) GXP{IS;SW% (—%)m} (13)

converges Vo € C, to an entire function. In the context of the Riemann zeros,
the above meromorphic continuation requirements for Z(s) are more easily
enforced through a controlled large-x behavior of log A(x) [20]; here we impose

(o)
log A(x) ~ Z(dun logx + ay,, )xH" (x = o0, |argzx| < 6) (14)
n=0

uniformly in z for some 6 > 0, with a,, # 0 only for the (finitely many)
tn € N [19]: this will fit the family {2}, which only features simple poles
(any p, ¢ N with a,, # 0 would give a double pole).

At the same time, log A(z) has a specially simple Taylor series at x = 0:

Z(m)
—log A(z) = —(—z)™ i i
og A(z) Z - (—x)™  (converging for |z| < Hlif lxk])  (15)
m> o
= O(Jz|™) for mg 4 the least integer > io.
The latter bound and (14) allow these Mellin representations for Z(s):

™

Z(s)

(oo}
/ log A(y) vy~ 'dy (o < Re s < my) (16)
0

— _ (_1)m0 F(_S) = mo mo—s—1
== m/o (log 4)™)(y) y dy. (17)

s sinms
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[Proof: equations (16) and (17) are equivalent through integrations by parts;
now to verify (17), expand (log A)(™0) (y) = (=1)m0 =L (mo—1)I S, (y+a) "™
and integrate term by term.] Then, repeated integrations by parts, as in [20,
Sect. 2.2 and App. A] but pushed further, likewise imply that Z(s) is mero-
morphic in C, with poles lying in the sequence {u,} and polar parts

1

Z(pn +€) = pin [7‘('_ Sin iy, ay,, + COS iy, dun] et +0(1)0, (18)

by specializing formula (23) in [20]. Thus for Z(s), all the poles are simple,
and s = 0 is a regular point (as well as all points s € —N).

All previous results transfer to shifted admissible sequences {x + 21} up
to reasonable limitations on the shift parameter = (e.g., (x + 1) ¢ R~ VEk),

and hence to the generalized zeta function Z(s, x) def > i(® +xx)”°. Then,
the zeta-regularized product D(z) (formally “ [], (x + %) ”) can be defined
as

D(x) 4 oxp [-Z'(0,2)] (recalling that ' = 9/9s, as in (11)).  (19)
It can also be uniquely characterized in several concrete ways [19]. On the one
hand, it relates to A(z) through a definite multiplicative factor, trivial in the
sense that D(z) stays entire and keeps the same zeros (and order) as A(x):

D(a) = exp[-2'(0) ~ Y %m(—x)m} Alz), (20)
with 7y = FP,_1Z(s) (_ﬁn;c:)part) (21)

and Z,, = Z(m) if Z(s) is regular at m,

otherwise Z,, (m > 2) is more contrived [19, eq. (4.12)] but unneeded when
to = 1; in which case (15), (20) and (21) finally simplify to

—log D(z) = Z'(0)—[FPs=1Z(s)] x — log A(z) (22)

= Z’(O)—[FPsle(s)]x—i—Z @(—x)m (|=] <i2f|xk|). (23)

On the other hand, log D(x) has a characteristic large-2 asymptotic behavior
as well: a generalized Stirling expansion, of a very specific or “canonical” form,

(o)
—log D(z) ~ Y ay, {2}  (x— +o0), (24)
n=0
where {z#"} = zHn for u, ¢ N

{¥"} =zt (loge — C,,) forp, €N, Co=0, Ci=1

(higher Cy,, [19, eq. (5.1)] are again unneeded when pg = 1); conversely, the
constrained form of expansion (14) for log A(x) is implied by (20) and (24).
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A basic feature of the zeta-regularized product prescription is, by con-
struction, its full invariance under pure translations {xy} — {xp + y} (but
under no other change of variables in general). As an application, we now
express Z(s,z) as a Mellin transform over log D. First, for integer m > pyo,
the formulae (15), (20), (21) shifted by y yield

Zm,y) =Y (y+z) " = —ﬁ(—%)mlogl?(y); (25)
k

whereas for m = 1, they yield the finite part value

FP=1Z(s,y) = (log D)'(y). (26)
Then, since (log D)™ = (log A)™ for m > g by (20), it follows that (25)
can be substituted into (17) shifted by z, giving

—1)! e X
Z(s,x) = (mo — 1) )/O Z(mg,x +1y)y™ "y (1o < Re s < my),

I'(s) I'(mo—s e

Remarks: — (27) actually defines an extension of (25) to m = s no longer an
integer; — the rightmost pole of Z(s, ) remains s = pg for any .

The above results will be invoked later for ug = 1, hence mg = 2; except
that we will actually need a formula analogous to (27) but for some Re s < 1:
this just requires a couple of integrations by parts upon (27), as

: 0o
Z(s,x):%/o Z(2,x +y)y' *dy (I1<Res<2) (28)
sin s >~ d
=———""_ | —[wZ(@2 7sdy (0<Res<2) (29
7T(l_s)Q/O dy[y 2, z+y)ly dy ( es<2) (29
: oo
sinms . 1—s
=— | Z.2 d 0<R 1), (30
7 |z (0<Res<1), (30)

with  yZ,(2,y) def yZ(2,x +y) + a1 (vanishing at y = +00).  (31)

1.2 The family {Z(o,v)}

We make a digression to recall earlier formulae for that family [20]. The main
primary result was the integral representation (72) therein for Z(c) = 2(o, 0),

. +ie
~Z(20) +2%0e¥2m0 singg [T, (¢
= t7202 (L gy de, (32
Z(o) 2cosmo * m /0 ¢ (2 * ) (82)
Z(20) def Z(20,3), where (33)
(o)
Z(s,2) =Y (z+26)7° =27°C(s,1 +2/2) (34)

=

=1
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(admitting real variants [20, eqgs. (73)—(74)]); Z(20) is the “shadow” zeta func-
tion of Z(0), i.e., the precise counterpart of Z(o) for the trivial zeros of {(s);
the more general form Z(s, z) will enter in Sect. 2, and (34) writes it as a
variant of the Hurwitz zeta function (8).

As shown in [20], (32) supplies an explicit analytical continuation of Z(o)
to a meromorphic function in the whole complex o-plane, plus exhaustive
explicit results and special values for Z(o). Their extension to the full family
{Z(0o,v)} then follows using the expansion formula (91) in [20], i.e.,

Ze'p 1_"_@ Zo+0u (W <n?.  (35)

The following explicit formulae for { Z(o,v)} resulted [20].
a) the full polar parts (of order 2):

1 I'(n+ 3
2z -ntev) = 87rn('T<>)“"f‘2+Rn<v>a-l+O(1>6ﬁo forn €N,
.  I(n+1/2)1 1~ 1 log27m)
with Ra(v) = = q79) [ wz_l2j—1+ A }“ (36)

n

(n+1/2) (=1) 1-2jy . | n—i.
t2 e J)'F.7+1/2)[ Sej 2Bl

Jj=1

b) special values at integer o, compiled in Table 1; these evaluations can still
be pushed further ([20, Table 1] for v =0 and 1; [21 Table 2] for general v).

o Z(o,v) = i;(TkQ‘FU)_U

m<0 B (120 - 4B 0

0 7/8
deré\t/agive 2'(0,v) = Llog 87 —log (% +v'/?)
_1 m—1 dm
tm>1 (()ﬁd—mlg =3+

Table 1. Special values of Z(o,v) (upper half: algebraic, lower half: transcendental
[20, Sect. 4]). Notations: see (5)—(6); m is an integer.

Finally, as an extra result (useful for comparison with (45) below), we now
recast the Hadamard product for the Riemann zeta function,

exp (log2r — 1 —7/2)x

@)= raTe2) 1;[(1 —a/p)et, (37)




More Zeta Functions for the Riemann Zeros 7

in terms of zeta-regularized factors related to Z(o,v).

First, the zeta-regularized product underlying the Gamma factor for the
trivial zeros, I'(1+x/2)71, i.e. the spectral determinant D(z) for the sequence
{2k}k=1,2,..., can be specified using (19), (34), (9) and (11), as

D(z) = exp [-2Z/(0,2)] = 27%/27Y2 ) P(1 + 2/2) (38)

(warning: the determinant called D in [20] was normalized differently). Check:
logD(x) has a large-z asymptotic behavior of the canonical form (24) for the
order 19 = 1 (this also being the order of the entire function (1 + z/2)71),

(o)
logD(z) ~ —1z(logz — 1) — L logz [—i-z cnx_"}. (39)
1

The other factor in (37) essentially contains the function Z(z) of (6): it
can be related to the zeta-regularized product D(v) for the sequence {732},
which is admissible of order p1o = 3 [20], through (cf. Table 1)

D(v) = exp [~ 2/(0,v)] = (87) V1= (L +0'/?). (40)
The factorization formula (37) thus admits a zeta-regularized form as

D(3 + t)D(t?)

(3 +1) = 0= (41)

This is quite analogous to an earlier decomposition of hyperbolic Selberg zeta
functions over spectral determinants [19, eq. (7.18)]. In (41), the denomina-
tor also has the zeta-regularized normalization for an elementary factor; as
for the prefactor (27)!/2, it corrects for the discrepancy between the zeta-
regularizations with respect to ¢ (as in D) and ¢? (in D).

2 The family {#(s,x)}: analytical continuation formula

Apart from the special values #(n), n € N* [16, 12, 10], functions equivalent
to {#(s,x)} of (2) were considered first (to our knowledge) by Deninger for
Re x > 1 [5], then proved by Schréter and Soulé [18] to be meromorphic in the

whole s-plane over the larger domain x € {2 e {zeC|(x+p) ¢R™ (Vp)}.

2.1 The primary result

For the family (2), the “shadow” zeta function over the trivial zeros (definable
just as before, but now with x as second argument) is just the function Z(s, z)
of (34). It governs an integral representation for % (s, z) similar to (32), but
simpler and now available for all z € 2\ (—oo, +1]:
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1 : oo At
Z(s,x) = —Z(s,x) + -+ SH;WS / %(Jc +y)y °dy (Re s < 1);
0

@1

(42)

here, (x —1)® is given its standard determination in C\ (—oo, +1]; this cut is

not a singularity for % (s, z), indeed the discontinuities across it of the three

right-hand side terms in (42) can be seen to precisely cancel out when added.
Alternative real forms can be built; a very simple one for real z > —2 is

Z(s,x) = —Z(s,x)—l—smﬂs /O‘X’ [C_I(x+y)+

s )
- R }y dy (0 <Re s < 1)

(43)
this form only converges in the stated s-plane strip, but contrary to (42), it
enjoys a well defined x — +1 limit:

z+y—1

: o !
2(s) (= Z(s.1) = 1-(1-27) {(s)+ —— / [%(1+y)+iy‘sdy. (44)
0

Equation (42) (plus (43) for x real) is the new basic result here, extending
an earlier formula by Deninger valid only for Re z > 1 [5, p. 149]. Tt is a
genuine analog for %(s,z) to the Joncquiére-Lerch functional relation for
C(sya) [7, Sect. 1.11 (16)], itself generalizing the functional equation of ((s).
At z = 1, (42) also restores our previous formula (32) for Z(c) by virtue of
the relation (4). Every explicit consequence that (32) implied for Z(o) alone

will extend here to the whole family % (s, x) solely by (42).

2.2 Derivation of the main formula (42)

As a preliminary step, we transform the Hadamard product (37) for ¢(s) into
a zeta-regularized factorization even simpler than (41).
We now just factor out the previous “shadow” determinant D(z), as

D(z)2(x)

()= =220 (45)

D(z) = (x —1)2°27x 2 P(1 + 2/2)¢(z) = 1n7/2(2m)* 25 (x).  (46)

We can then anticipate that this factor Z(x) must be a zeta-regularized prod-
uct in & over the Riemann zeros {p}. Indeed, Z(z) has precisely the {p} as
zeros, and log % (x) has a large-z expansion of the canonical form (24) in = be-
cause all other factors present in (45) have that property. We will accordingly
confirm that log Z(x) = —%'(0, z) below: see (54), and earlier in a variant
form, [5, thm 3.3] (for Re 2 > 1) and [18] (for general x).

Now to prove (42), we specialize the results of Sect. 1.1 to the sequences
{—p} and {2k}: both of these are admissible of order po =1 [5, 18, 9], mainly
because log D(x), and hence log Z(x), comply with (14) (cf. (39), then (45)).

Specifically here, the factorization (45), together with (25) at m = 2 (first
with Z = %, then with Z = Z) and with (31), entail
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%(2,y) = ~Zo(2.y) + (w+y - D)2 = [/ (x +y) (47)
1 - 1

with "25,(2,y) = (2,2 +y) + 3 Z,(2,y) =Z(2,x +y) - 2 (48)
the last line comes from generalized Stirling expansions for ¢ and D, cf.
(39). Upon the specific decomposition (47), it is allowed to apply the Mellin
transformation (30) term by term on both sides, at fixed z € 2\ (—o0, +1].
Then, the left-hand side yields (s, x); as for the right-hand side, the first
term yields —Z(s, ) by exactly the same argument, the second term trivially
evaluates to (x — 1)7®, and the last term can be subjected to an ultimate
integration by parts now valid in the whole half-plane {Re s < 1}, using

def 1 o 1 I—s o CI s

PACEE “lElery = | @y (49)
L=sJo ¢ o ¢

all that yields the desired formula (42). If the last two terms in (47) are kept

together instead, (43) can be obtained likewise. The structure of the repre-

sentation (42) thus clearly stems from the simple factorization formula (45).

3 Explicit consequences for the family { % (s, x)}

3.1 Analytical results (in the s-variable)

First, (42) gives an explicit one-step analytical continuation of #(s,z) to
the half-plane {Re s < 1}. It also implies its analytical continuation in s to
all of C \ {1}, since the Mellin transform _#¢(s,z) of (49) is seen (through
repeated integrations by parts, using [log¢]™(z) = o(z™), 10 Y7, N)
to be meromorphic in the whole s-plane, and to have only simple poles at
s=1,2,... with residues

Ress—n_#¢(s,2) = —[log |[¢|]™(z)/(n — 1)! (x#1), n=1,2,... (50)

(the singularity at 2 = 1 is harmless: see after (58), and left part of Table 3).
At fixed z, (42) and (50) imply that %°(s, x) acquires its polar structure solely
from —Z(s,z): it thus has the only pole s = 1, of polar part —3 /(s — 1) [18].

Still for fixed z, the mere substitution into (42) of the standard Dirichlet
series

!
A
%(Z) = - g (n) (A(n) def logp if n = p” for some prime p, else 0)
nZ
n>2
(51)

for z = x + y, followed by term-by-term y-integration, yields

F(s,x)+Z4(s,x) —(x—1)"° ~ — ! Z A(n) (logn)*~t. (52)
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The summation in the right-hand side of (52) converges iff the Dirichlet series
(51) converges uniformly for y > 0: i.e., for Re # > 1, where (52) becomes an
identity — written in [5, p. 148], but it is just a particular case of Weil’s explicit
formula, or equivalently of equation (1.1) in [§], again provided Re = > 1. Here,
by contrast, (52) is meant for general fixed z, albeit only as an asymptotic
expansion (for s — —o0) if Re z < 1.

3.2 Special values for general x

Finally, (42) outputs all the special values of % (s, z) just by inspection:

#F(—n,x) = =2"C(—n,1+z/2) + (x — 1)" (n eN), (53)
#'(0,z) = —1(log2)x + 1logm — log I'(1 + /2) — log[(x — 1)¢()]

= —log 9(x), (54)

FP,_; #(s,x) = %(103’;2 + F?(l + x/2)) + [x—il + %(x)} (55)

= (log 2)'(x), (56)

ZF(+n,x) = =27"¢(n,1 4+ 2/2)

o0 - gl ™@)] (=230 67

= w log @)™ —93 58

:(n—l)!(Og ) (33) (n_ ) 7) ( )
using (9)—(11), (34), (46), (50); the quantities in square brackets are appar-
ently singular for x = 4+1 but globally extend there by continuity, using the
expansion (5) with the Stieltjes cumulants.

In particular, (54) confirms that the factor Z(x) in (45) is the zeta-
regularized product in x over the sequence of Riemann zeros {p} — the
argument is not circular, because our derivation of the basic formula (42)
does not rely on that fact but purely on the factorization itself. Thereupon,
(56), (58) simply repeat the general formulae (26), (25) respectively.

The point s = 1 (= o) deserves extra attention. Upon logarithmic differ-
entiation, one Hadamard product formula for =(x) [6, Sects. 1.10, 2.8] directly
yields

E@)=][a-2/p = Z@L2)ED (z-p 7" =(ogZ) (2), (59)
P P

where both product and sum (now only semiconvergent) are performed with
zeros grouped in symmetrical pairs, as usual. Thus, in spite of the pole of
#(s,x) at s =1, (59) yields a finite value for #(1, z), which however differs
from the finite part (FP) of #(s,x) at s = 1:

#(1,x) — FP—y #(s,x) = —5log2m (60)
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according to (46), (56). This fixed discrepancy can also be traced to the
nonzero residue of the double pole in the former zeta function Z(c), see (69)
below.

The resulting special values for { % (s, x)} are fully compiled in Table 2,
in their form closest to their analogs for the family { Z(o,v)} in Table 1.

§ F(s,x)=>(x—p)°
P
—n=0 2"Bop1(14+ %)/ (n+1) + (x—1)"
0 Nz +3)
derlyagive  2/(0,2) = ~3(log2m) @ + }(log 4) — log 5(a)
ﬁn;tteffrt FPs:1 5(87.’1)) = %log 2 + (log E)/(.’E)
+n>1 (-1t (log )™ (x)
— (n—1)!

Table 2. Special values of # (s, z) (upper part: algebraic, lower part: transcendental
[20, Sect. 4]); see also (53)—(62). Notations: see (6); Bn+1(-) : Bernoulli polynomial;
n is an integer.

Finally, we state two sets of linear identities imposed upon the values
% (n,z) purely by the symmetry (p «— 1 — p) in (2):

Fn,z)=(-1)" #(n,1-1x) forn=1,2,...; (61)
1 o [t-1 —k
#F(k,x)=—= Z (2x—1)""%(l,x) for each odd k > 1; (62)
2 k—1
t=k—+1
and the finite, triangular linear relations connecting them to the other special
values Z(m,v), m=1,2,...,at v = (z — %)2, as derived in [21, Sect. 3.3]:
(A1
20—1)"""t(m—l,x v#0
sy~ 12 (o ) 2ty 020
s(=1)™ Z(2m, 3) (v=0)
#(n,x) o [n—1 _9p Z(n—1L,v)
e —l = —1 2¢—1)" _—. 63
" (") ey 20 (63)
0<0<n/2

The countably many “sum rules” (62) merely result from the Taylor expansion
—k
around =3 of (z—p)~% = (z—14p) =% = (=1)F (z—p) ¥ [1—(22-1) / (2—p)]
followed by summation over the zeros p grouped in pairs. Equations (62)
recursively allow to eliminate any finite subset of odd values, expressing them
as series over all higher values. (In the infinite recursion limit, every odd value
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ends up as a formal power series around x = % over the higher even values
(o)
only, (2m+1,2) = 3. Apme #(2(,7) (20—1)2=Cm+) vm € N, but this
L=m+1
has to be a divergent series (exercise!); only for z = % is the latter elimination

fully effective, giving #(2m +1,1) =0Vm € N, cf. (67) below.)

Remark: the previous argument expanded % (s, y) about % (s, z) in powers
of (y — x), specifically at s = n, y = 1 — x. Just like the earlier series (35) for
Z(o,v) in powers of v, such expansions could also yield results for (s, x) at
general z, but the continuation formula (42) now suffices for this task.

3.3 Special values for z = 1 and 1

For half-integer z, the values ((£m,1 + x/2) which arose in (53) and (57)
can be made slightly more explicit, and even more so for integer . The most
interesting cases are z = 1 and 1: then, (34) implies

Z(s,1) = (1-27%)(¢(s)— 1, Z(s,3) =5 [(2°=1)C(s)+2°B(s)] —2°, (64)

and the resulting special values of #(s,1) = #(s) and (s, 1) form Ta-
ble 3. They display many relations with the special values of Z(o, %) and
Z(0,0) = Z(o) respectively [20, Table 1], as discussed next.

s F)=p " [z=1] Z(s,35)=2(p—3)° [x=73]
o o
2_"+1(1 — %En) n even
-n<0 1-(2"—1)22s
—f(a-27m B podd
0 2 7/4
deré\t/agive #'(0) = %log? #/(0, %) — log [211/471_1/2 F(i)—1|4(%)|—1]
ﬁn;ieflart FP.—1 #(s) =1— 1(log2—7) FP,_1 #(s,1) = Llog2r
+1 —Llogdr +1+ %7 0
—n n c —1f(2n-1 2"
1=(1=27") ¢(n)+ Gy s 2[(2n+1 )¢tn) +1 ﬁ(n()r]o 1 }n o
+n>1 = + _(n—l)'(Og|C|) (2)
1—(—1)"2—" _ (og[¢h™ (0)
(=1) ¢(n) (n=1)! 0 n odd

Table 3. Special values of the functions % (s, z) for z = 1 (see also (62), (63), (71)),
and for z = 1 (see also (65)—(70)). Notations: see (5); n is an integer. In the bottom

line, when n is even, {(n) = (2m)"|Bn|/(2n!) while 3(n) (cf. (7)) remains elusive.

In the case z = % (right-hand column), there is a 1-1 correspondence

between the latter explicit results and those for Z(o) (Sect. 1.2, and [20]),
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through the relation (4):

Z(2m, 1) = 2(-=1)" Z(m) for m € Z (65)
Z(142m, 1) = (—1)m+127rResU:%+m Z(o) forme Z* (66)
=0form=12,... (67)

Res,y #(s,3) = ~Anlim22(3 +2) (= —}) (65)
FP,_1 #(s, 1) = —2r Res,_1 Z(o) (= 1log2m) (69)
#'(0,3) = 2(0). (70)

Equation (67) otherwise immediately results from the zeros’ symmetry (e.g.,
from (61) or (62)), now including m = 0 as well: i.e., 2(1,3) = 0. This
and (69) in turn imply, upon setting z = % in the formula (60), that the
constant discrepancy [%(1,2) —FPs—1 % (s, x)] relates to the nonzero residue
in the double pole of Z(0) at o = 1. The actual value (—(47) ! log 27) of this
residue [20], used in (69), was retrieved here from (36) taken at n =0, v = 0.

In the case = 1 (left-hand column), and with n = 1,2,... henceforth,
the special values %(n) were already known: for n = 1, see [3, ch. 12], [6,
Sec. 3.8]; for n > 1, we tabulate two equivalent expressions [16, 12, 20] and
we refer to [12, Table 5] for numerical values. Furthermore, the % (n) satisfy
three sets of linear identities:

- the (infinite) sum rules (62) specialized to x =1 [10, eq. (18)] [20] (remark:
[10, eq. (18)] states a sum rule for every even index k as well, but this reduces
to a finite linear combination of the higher odd-index sum rules that we wrote);
- the (finite, triangular) relations (63) specialized to x = 1, v = %, which then
connect the 2(n) to the other special values Z(m, 1) [15, 20];

- a similar connection to the sequence \, & >, [1—(1—1/p)"] used by Li’s
criterion for the Riemann Hypothesis (i.e., A\, > 0 Vn [13]) [10, eq. (27)] [2,
thm 2]:

n n
. n . n
et (N2 = 2= e (D @
=1 J =1 J
j j
(Note: the A, of [13], used here, are n times the A, of [10].)
Aside from those % (n), n=1,2,...and 2'(0,z) [5, eq. (3.3.1)] [18], the
values in Table 3 seem new to us. Remark: the fully explicit 2’(0) yields the

zeta-regularized product of all the Riemann zeros: “] p” = e~ %'(0) = 2-1/2,
P

3.4 Concluding remark

Just as stated for the family (1) [20, Sect. 5.5], the whole foregoing analy-
sis extends straightforwardly to zeros of other zeta and L-functions having
functional equations similar to that of {(s) [21].
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