MAINTAINING XML DATA
INTEGRITY IN PROGRAMS

AN ABSTRACT DATATYPE APPROACH

Patrick Michel
Arnd Poetzsch-Heftter

oooooooooooooooooooooo

Outline

* Overview of the Problem Domain
* Abstract Datatype Approach

* Implementation of the Approach
* Tool Demo

* Conclusion

Scenario

@ ¢

* loosely coupled distributed systems

collaborate (workflows)

exchange XML data

data is schema-constrained

applications have to keep the data valid (invariant)
applications are written in languages like Java or C#

* %k Kk kK

Simple Example Schema

start =
element bin {
attribute capacity {

xs:integer [. > 0] [sum(//size) <= .]
o
element item * {

attribute size { xs:integer [. > 0] }

Fo

* typical integrity constraints:

range constraints

value comparisons

contain aggregates like sum, count, etc.

contain references (e.g. an item could reference a type)

¥ X X X%

Integrity Constraints

* structural and base types are not enough

* e.g. tax declaration forms
* value consistence, value relations
//capacity > 0

sum(//size) <= /bin/capacity
sum(//salary[//employee/level]/amount) <= //budget

* integrity constraints are inherent to datatypes

¥ failures are fatal
* constraints have to be invariant
* modifications have to be correct

XML Support

Structure Integrity
XML Schema Schematron
XML Dure
Relax NG DSD
4 generic specific>
JAXB
Programming DOM - '7
Support

SAX XDuce

* Validating v, Reading v (even gets easier), Modifying ?

Maintaining Data Integrity

* consider a Java method addItem

* implemented using e.g. DOM or X]J
* modifies data constrained by bin-schema (Relax NG)
* does it violate any integrity constraints? (e.g. XPath)

* combinations of complex languages

* hard to know in advance if invariants are violated
* expensive to check if invariants are violated

* hard to recover from a detected error

* verification is next to impossible

Abstract Datatype Approach

* XML datatype with integrity constraints

* declarative definition (like bin example)

* with a set of interface procedures
* written in a restricted language with XML support
* e.g.
proc addItem(ident id, int size) {
insert /bin <item id=(id) size=(size) />

}

proc remItem(ident id) {
free //item[id];

}

* prove that all procedures maintain the invariant
* proof is done on the schema + procedures alone

Abstract Datatype Approach

* generate abstract type with these methods

* invariant, structure and implementations hidden

* modifications through interface procedures

* all language features can be used

* ok to allow introspections for reading (with any language)

* e.g.: class Bin, with interface procedures:

* addItem(Identifier id, Integer size)
* DuplicateItemException
* InvalidSizeException
* CapacityExceededException
* remItem(Identifier id)
* NoSuchItemException

Using the AD'I' 1in Java

* Backtracking Bin-Packing Algorithm

* using recursion and loops on interface procedures
* exploiting the fact that no invariant can be violated

public static boolean pack(Bin source, Bin[] target) {
if(source.bin().item().empty()) return true;
itemElement item = source.bin().item().first();
for(int 1 = 0; 1 < target.length; i++) {
try { target[i].addItem(item.Id(), i1tem.size());
catch(CapacityExceededException e) { continue; }
source.remItem(item.Id());
1if (pack(source, target)) return true;
target[i].remItem(item.Id());
source.addItem(item.Id(), item.size());

}

return false;

}

I0

Implementation

* approach is more general

¥ we focus on automated methods

* Java programmers can use this!
* trying to support as many features as possible

X prototype system

* schemata lead to path-based propositions (invariant)

* weakest precondition technique for procedures

* simplification technique to get smallest incremental
check, using an SMT solver in the process

* remaining preconditions become exceptions

II

Conclusion

* Integrity constraints are essential to datatypes.

* To be able to maintain them, XML data is made
available as ADT, with a set of interface procedures.

* The constraints are defined and maintained without
involving the host language semantics.

* Still, all host language features can be used to create
complex algorithms on top of interface procedures.

* Correctness proofs can be automated for useful invariants
combined with local manipulation procedures.

* The technique is usable by Java programmers, as no
background in theory is needed.

12

Invarnant

Structure:
Jeeky)
/bin/capacity
{ /bin/item{x} } /bin/item{x}/size

Typing:
/ is complex
/bin is complex
/bin/capacity is int
{ /bin/item{x} } /bin/item{x} is complex
{ /bin/item{x}/size } /bin/item{x}/size is int

Inegrity:
/bin/capacity > 0
sum (/bin/item*/size) <= /bin/capacity
{ /bin/item{x}/size } /bin/item{x}/size > 0

13

Preconditions

Preconditon:
not /bin/item[id] DuplicateltemException
size > 0 InvalidSizeException

size + sum (/bin/item*/size) <= /bin/capacity
CapacityExceededException

proc addItem(ident id, int size) {
new /bin/item[id];
new /bin/item[id]/size;
set /bin/item[id]/size size;

14

