
MAINTAINING XML DATA
INTEGRITY IN PROGRAMS

AN ABSTRACT DATATYPE APPROACH

Patrick Michel
Arnd Poetzsch-Heffter

Outline

Overview of the Problem Domain
Abstract Datatype Approach
Implementation of the Approach
Tool Demo
Conclusion

2

Scenario

loosely coupled distributed systems
collaborate (workflows)
exchange XML data
data is schema-constrained
applications have to keep the data valid (invariant)
applications are written in languages like Java or C#

3

B C

A

Simple Example Schema

typical integrity constraints:
range constraints
value comparisons
contain aggregates like sum, count, etc.
contain references (e.g. an item could reference a type)

4

start =
 element bin {
 attribute capacity {
 xs:integer [. > 0] [sum(//size) <= .]
 },
 element item * {
 attribute size { xs:integer [. > 0] }
 } }

Integrity Constraints

structural and base types are not enough
e.g. tax declaration forms
value consistence, value relations

integrity constraints are inherent to datatypes
failures are fatal
constraints have to be invariant
modifications have to be correct

5

//capacity > 0
sum(//size) <= /bin/capacity
sum(//salary[//employee/level]/amount) <= //budget

XML Support

Validating ✓, Reading ✓ (even gets easier), Modifying ?

6

generic specific

XML
Relax NG

XML Schema

Programming
Support

pure

DOM

SAX

JAXB

XJ

XDuce

Schematron

DSD

Structure Integrity

?

Maintaining Data Integrity

consider a Java method addItem
implemented using e.g. DOM or XJ
modifies data constrained by bin-schema (Relax NG)
does it violate any integrity constraints? (e.g. XPath)

combinations of complex languages
hard to know in advance if invariants are violated
expensive to check if invariants are violated
hard to recover from a detected error
verification is next to impossible

7

Abstract Datatype Approach
XML datatype with integrity constraints

declarative definition (like bin example)
with a set of interface procedures

written in a restricted language with XML support
e.g.

prove that all procedures maintain the invariant
proof is done on the schema + procedures alone

8

proc addItem(ident id, int size) {
 insert /bin <item id=(id) size=(size) />
}

proc remItem(ident id) {
 free //item[id];
}

Abstract Datatype Approach
generate abstract type with these methods

invariant, structure and implementations hidden
modifications through interface procedures
all language features can be used
ok to allow introspections for reading (with any language)

e.g.: class Bin, with interface procedures:
addItem(Identifier id, Integer size)
DuplicateItemException
InvalidSizeException
CapacityExceededException

remItem(Identifier id)
NoSuchItemException

9

Using the ADT in Java
Backtracking Bin-Packing Algorithm

using recursion and loops on interface procedures
exploiting the fact that no invariant can be violated

public static boolean pack(Bin source, Bin[] target) {
 if(source.bin().item().empty()) return true;
 itemElement item = source.bin().item().first();
 for(int i = 0; i < target.length; i++) {
 try { target[i].addItem(item.Id(), item.size()); }
 catch(CapacityExceededException e) { continue; }
 source.remItem(item.Id());
 if (pack(source, target)) return true;
 target[i].remItem(item.Id());
 source.addItem(item.Id(), item.size());
 }
 return false;
}

10

Implementation
approach is more general
we focus on automated methods

Java programmers can use this!
trying to support as many features as possible

prototype system
schemata lead to path-based propositions (invariant)
weakest precondition technique for procedures
simplification technique to get smallest incremental
check, using an SMT solver in the process
remaining preconditions become exceptions

11

Conclusion
Integrity constraints are essential to datatypes.
To be able to maintain them, XML data is made
available as ADT, with a set of interface procedures.

The constraints are defined and maintained without
involving the host language semantics.
Still, all host language features can be used to create
complex algorithms on top of interface procedures.
Correctness proofs can be automated for useful invariants
combined with local manipulation procedures.

The technique is usable by Java programmers, as no
background in theory is needed.

12

Invariant

13

Structure:
 /bin
 /bin/capacity
 { /bin/item{x} } /bin/item{x}/size

Typing:
 / is complex
 /bin is complex
 /bin/capacity is int
 { /bin/item{x} } /bin/item{x} is complex
 { /bin/item{x}/size } /bin/item{x}/size is int

Inegrity:
 /bin/capacity > 0
 sum (/bin/item*/size) <= /bin/capacity
 { /bin/item{x}/size } /bin/item{x}/size > 0

Preconditions

14

Preconditon:
 not /bin/item[id] DuplicateItemException
 size > 0 InvalidSizeException
 size + sum (/bin/item*/size) <= /bin/capacity
 CapacityExceededException

proc addItem(ident id, int size) {
 new /bin/item[id];
 new /bin/item[id]/size;
 set /bin/item[id]/size size;
}

