
Modelling and Resolving Software Dependencies

Daniel Burrows <dburrows@debian.org>

June 15, 2005

Abstract

Many Linux distributions and other modern operating systems feature
the explicit declaration of (often complex) dependency relationships be-
tween the pieces of software that may be installed on a system. Resolving
incompatibilities between different pieces of software is an NP-complete
problem, and existing solutions require the user to manually resolve many
“simple” dependency problems.

I present a simplified, abstract model of dependency relationships, and
a restartable technique based on best-first-search to calculate resolutions.

Note. This is a work in progress; it sometimes lags behind or jumps ahead of
the current state of the software it documents, and some of the details may
be incomplete or unattended to. However, I hope that it provides some more
insight into the direction in which aptitude’s problem resolver is headed – and
in which I believe that other installation frontends should also consider heading.

1 Introduction

It is common nowadays for hundreds or thousands of software packages to be
installed on a single computer system, and for many of these software packages
to interact with one another. Because some combinations of software packages
will not function properly – for instance, an application program might require
a particular version of a graphics library – installing software manually while
avoiding unexpected breakage is an increasingly unpleasant chore.

To address this problem, programs known as package systems were devel-
oped. A package system typically manages packages that consist of the files
of a program or library, along with metadata such as the name and version of
the package, a brief description of what it contains, and (most importantly for
our purposes) a list of which other packages it requires or is incompatible with.
The package installation software warns the user upon any attempt to install or
remove software that would violate these constraints.

Unfortunately, the early versions of these tools replaced the chore of man-
ual software installation with the chore of dependency resolution: for instance,
installing a package of the popular game wesnoth might produce an error indi-
cating that the user should find, download, and install a new version of the SDL

1

Modelling and Resolving Software Dependencies Daniel Burrows

graphics library. A new version of the kmail mail client might require the user
to upgrade his or her entire operating system, indicating this fact by a slew of
cascading error messages.

As a result of this so-called “dependency hell”, new and more automated
tools, such as apt and up2date, were developed. These tools maintain a
database of software installed on the user’s system, along with software available
from any number of remote sites.

To install or remove a piece of software, the user issues a request to, for in-
stance, “install wesnoth” or “upgrade kmail”. The installation tool will proceed
to find a set of package installations or removals which leads to a consistent
result. Typically, it then presents this list of actions to the user and prompts
for confirmation; the user can either accept the proposed solution, or reject it
and proceed to fix the problem in a fully manual way. Once the user is satisfied
with the proposed changes, the tool will download any new software packages
and install them.

This approach has two major drawbacks:

1. The user interface for resolving dependencies is a “take it or leave it”
proposition: there is no way for the user to ask the algorithm to find
another solution. This means that if the algorithm makes a poor or unde-
sired choice (which, as I will argue below, will inevitably occur from time
to time) the user is forced to fall back to fully manual operation.

2. In at least some cases (particularly apt), the algorithm used in resolving
dependency conflicts deals poorly – which is a euphemism for “not at all”
– when there are more than two versions of a package to choose from1.
For instance, if versions 1, 2, and 3 of package A are available, with 2 being
the default version of the package, and if package B requires version 3 of
package A, when the user tries to install package B, he or she will receive
an error message indicating that the dependency on A cannot be fulfilled.

Another general difficulty in solving dependencies in these systems is that
the package systems contain many features which, although they are arguably
“syntactic sugar”, tend to cause algorithms that operate on packages to become
strewn with complex iteration constructs and unpleasant corner cases. Although
some attempts have been made to find general models of package dependencies
(for instance, the internal structures of apt can represent either Debian or Red
Hat packages), the models with which I am familiar work by taking a “greatest
upper bound” of the systems that they cover, leading to a generic framework
that is, if anything, even more convoluted than the individual package systems
that it covers.

Note. I have not yet performed an extensive survey of package systems, and it
may be that there already exist systems that fix one, two, or all of the drawbacks
listed above.

1More precisely, if more than one version other than the currently installed version (if any)
exists.

2

Modelling and Resolving Software Dependencies Daniel Burrows

2 Example: the Debian Package System

The Debian package system is implemented by a low-level tool known as dpkg.
Debian packages are files with the extension .deb; dpkg can install a .deb file
that has already been retrieved, or remove a package that is currently installed
on the system. If dependency constraints are violated, dpkg will print errors
messages and abort the installation after unpacking the packages.

The usual user interface to the package system is through one of the pro-
grams in the apt suite. apt is a high-level library which allows C++ programs
to examine the set of installed packages, determine what actions are to be per-
formed, and execute these actions (by, for instance, downloading package files
and calling dpkg to install them). apt-based installation tools typically refuse
to even begin any actions that will result in an inconsistent system state, and
all of them provide a basic algorithm that resolves inconsistencies by adjusting
package states until all dependencies are fixed.

In the Debian package system, each package may have one or more ver-
sions, but at most one version of each package may be installed at any given
time. The basic relationships between packages are dependencies and conflicts.
For instance, version 6.14.00-1 of the tcsh command shell depends on version
2.3.2.ds-4 or greater of the libc6 package and version 5.4-1 or greater of the
libncurses5 package: it may not be installed unless an appropriate version of
each of these package is installed. On the other hand, the same package conflicts
with all versions of the tcsh-kanji and tcsh-i18n packages: tcsh may not be
installed at the same time as either of these packages.

A single dependency may name several packages, combined with and OR
operator (indicated by a vertical bar). For instance, version 1.4.48 of the
debconf package depends upon debconf-i18n | debconf-english; in order
to install debconf, you must also install one of these two packages.

Last but not least, dpkg supports what are known as “virtual” packages.
Each version of each package may provide one or more package names; each
named package will become a virtual package. Virtual packages can have the
same name as a normal package, in which case they are known as mixed virtual,
or they can exist only through being provided by a normal package, in which case
they are known as pure virtual. An unversioned dependency on a virtual package
will be satisfied if any provider of the name is installed, while an unversioned
conflicts will require that all providers of the name are removed – but as a
special case, direct or implicit self-conflicts are ignored. Versioned dependencies
and conflicts do not, as of this writing, follow provided package names.

For instance, the virtual package mail-transport-agent is used to identify
packages containing mail transport agents. Every such package both provides
and conflicts with the virtual package, and packages that require a mail trans-
port agent depend on it.2

2Due to a quirk in how apt resolves dependencies, dependencies on a virtual package
are required to include a real package as an alternative: for instance, bugzilla depends on
sendmail|mail-transport-agent.

3

Modelling and Resolving Software Dependencies Daniel Burrows

3 An Abstract Model of Dependency Relation-
ships

As can be seen in the previous section, real dependency systems are complex.
This tends to complicate the business of reasoning about how to find solutions
to dependency problems, and to cause algorithms that manipulate dependencies
to become horribly messy. In situations like this, it is often a good idea to find
a simpler, more mathematical model of the problem being analyzed. Of course,
it is well-known that package dependencies can be reduced to the satisfaction
of Boolean equations, but such a reduction is arguably too extreme: it certainly
results in a mathematical model, but the model it produces hides the structure
of the original problem. The following section describes an alternate model
which is sufficient to capture any dependency problem (at least in Debian) and
retains the structure of a package system.

3.1 Basic Concepts

In this simplified model, the only objects in the world are packages, versions
of packages, and dependencies. Packages will typically be denoted by p1, . . . ;
versions will typically be denoted by v1, . . . ; and dependencies are of the form
v → {v′1, . . . }, indicating that the version v requires the versions {v′1, . . . }. The
package associated with a version v is denoted by PkgOf(v).

To represent the state of the entire system, the following sets are defined:

• P is the set of all packages.

• V is the set of all package versions.

• D is the set of all dependencies.3

Throughout this paper, I will assume that P and V (and hence D) are finite.

3.2 Reduction of Debian Dependencies to the Model

As claimed above, it is possible to reduce a Debian dependency system to this
abstracted model. The reduction proceeds in approximately the following way:

• P is the set of Debian packages.

• V is the set of versions of those packages, plus one additional version for
each package. This version represents the state of the package when it is
not installed. Versions corresponding to versions of the Debian package are
indicated by p:n where n is the version number, while the “uninstalled”
version is indicated by pu.

3Not the set of all potential dependencies, but the set of all dependencies asserted in the
current package system.

4

Modelling and Resolving Software Dependencies Daniel Burrows

• For each dependency of the version v of a package on A1 | . . . , accumu-
late a set S containing all the matching versions of each named package,
combined with every package version that provides a named package (if
the dependency is unversioned).

For instance, if v declares a dependency on A (>= 3.2) | B, versions
3.1, 3.2, and 3.3 of package A are available, versions 1, 2, and 3 of pack-
age B are available, and package C version 3.14 provides B, then S =
{A: 3.2, A: 3.3, B: 1, B: 2, B: 3, C: 3.14}.
D contains v → S for every such dependency.

• For each conflict declared by a version v on the package p, accumulate a
set S containing all the non-matching versions of p, including the “unin-
stalled” version, and insert v → S into D. Furthermore, if the conflict is
not versioned, then for each package p′ and version v′ of p′ such that v′

provides p, let S = {v′′ | PkgOf(v′′) = p′∧v′′ does not provide p} and
insert v → S into D.

For instance, if v conflicts with A, of which versions 3.2 and 3.3 are avail-
able, versions 2 and 3 of B provide A, and no other versions of B are
available, then S = {A: 3.2, A: 3.3, A: UNINST, B: 2, B: UNINST}.
Note. In reality, extra care must be taken to screen out self-conflicts in
this process, but the description above is complicated enough as it stands!

Remark. Although the above reduction is complicated to describe, its major
steps must be performed whenever any program is analyzing dependencies: for
instance, when listing all the versions that can fulfill a dependency, it is necessary
to iterate over all members of each OR and to search their providing packages
as necessary. Thus, an “on-the-fly” reduction in an algorithm written for the
generic model is conceivably almost as efficient as an algorithm that works with
the Debian package structure directly.

3.3 Installations

An installation represents a choice about which package versions to install; it is
a function that maps each package to a version of that package.

Definition 1. An installation I installs a version v, written I B v, if I(PkgOf(v)) =
v.

Definition 2. An installation I satisfies a dependency d = v → S if either
I 6B v or I B v′ for some v′ ∈ S.

Definition 3. An installation I is consistent if I ` d for all d ∈ D.

Definition 4. If I is an installation, then I; p 7→ v is a new installation which
installs the version v of the package p and leaves all other packages unchanged:

5

Modelling and Resolving Software Dependencies Daniel Burrows

(I; p 7→ v)(p′) =

{
I(p′), p′ 6= p

v, p′ = p
(1)

As a shorthand, the following notation indicates that a particular version of
a package is to be installed:

I; v = I;PkgOf(()v) 7→ v (2)

4 The Dependency Resolution Problem

4.1 Problem Definition

Let I0 be an inconsistent installation. We would like to find a consistent instal-
lation that is “similar to” I0. This is the dependency resolution problem. In a
real package manager, it corresponds to a situation in which the user’s requests
have resulted in an invalid state (with unsatisfied dependencies or conflicts); the
goal of the package manager in this situation is to find a “small” and “good”
set of changes that result in a valid state.

Note. This problem is poorly defined: “small” and “good” are not precise terms.
The goal, from a UI point of view, is to not change too many packages, but
to make reasonable decisions: for instance, if the user has requested that some
packages be installed and these installations cause dependency clashes, “solving”
the problem by cancelling the installations is probably not the desired result.
However, while it might have obviously wrong solutions, this problem has no
principled correct solution, because it is possible that if several different users
view a single dependency problem, each prefers a different solution from the
others. In other words, some of the information necessary to find the “best”
solution is inside the user’s head.

Thus, the best we can do is to define some criteria for “goodness” (to pri-
oritize solutions that are more likely to interest the user) and allow the user to
see alternatives to an undesired solution.

4.2 Dependency Resolution is NP-complete

In order to find a “good” solution, we must first find any solution to the existing
set of dependencies. Unfortunately, as shown below, this is an NP-complete
problem.

Theorem 5. Dependency resolution is NP-complete.

Proof. Proof is by reduction from CNF-SAT to the problem “does a consistent
installation I exist?”

Create one package for each variable and for each clause in the SAT problem.
For each variable x, let the versions of the corresponding package be x: 0 and
x: 1; for each clause, create exactly one version. For each SAT clause let vc

6

Modelling and Resolving Software Dependencies Daniel Burrows

be the package corresponding to the clause, and insert vc → S into D, where
for each literal of a variable x appearing in the clause, S contains x: 0 if x is
a negative literal and x: 1 if x is a positive literal. This reduction is clearly
polynomial-time; I claim that a solution to this set of dependencies exists if and
only if a solution to the corresponding SAT problem exists.

Suppose that there is an assignment that solves the SAT problem. Define an
installation I as follows: if p corresponds to a clause, I(p) is the single version
of p; if p corresponds to a variable x, I(p) = x: 0 if x is FALSE in the SAT
solution and I(p) = x: 1 if x is TRUE in the SAT solution. Now, consider any
dependency d = v → S. From the construction above, S and v correspond to a
clause of the SAT instance. At least one literal in this clause must be assigned
the value TRUE (otherwise the clause is not satisfied); let x be the corresponding
variable. If the literal is positive, then (by construction) S contains x: 1; since x
must be assigned the value TRUE. I B x: 1. Hence, I ` d. On the other hand,
if the literal is negative, then S contains x: 0 and I B x: 0, so I ` d. Thus, I is
a consistent installation.

On the other hand, suppose that there is a consistent installation I. For all
variables x, let p be the corresponding package; if I(p) = x: 0, assign FALSE to
x, and if I(p) = x: 1, assign TRUE to x. Now consider any clause in the SAT
problem: from the construction above, D contains a dependency vc → S where
vc is the single version of the package corresponding to the clause. Since we
must have I B vc and since I is consistent, there must be a version v′ ∈ S such
that I B v′. But from the construction, there is some x such that v corresponds
to either x: 1, where x appears as a positive literal in the clause or x: 0, where
x appears as a negative literal in the clause. Thus, the clause is satisfied, and
so the assignment described above satisfies all clauses.

Therefore, dependency resolution is NP-complete.

4.3 Don’t Panic

Although the problem at hand is NP-complete in general, there is good reason to
think that the instances that arise in practice are tractable. It is well-known that
many NP-complete problems have “easy” and “hard” instances: some instances
of the problem can be solved quickly by relatively naive algorithms, while others
are intractable even using the most sophisticated techniques available.

In the particular case of package dependencies, the traditions that have
grown up around package tools seem to encourage the creation of easy instances
of the dependency problem; furthermore, the user’s desired installation is typi-
cally consistent or “almost consistent” (meaning that few dependencies are vi-
olated). It is usually straightforward, when solving problems in an ad hoc way,
to isolate a small part of the dependency graph in which the problem occurs;
for instance, by informally applying a constraint such as “don’t solve dependen-
cies by removing core library packages”. Once this is done, the problem can be
declared either solvable or unsolvable on the basis of a quick analysis of that
region of the graph.

In fact, when even relatively basic search techniques are applied to many

7

Modelling and Resolving Software Dependencies Daniel Burrows

typical dependency problems, the difficulties that arise are related not to a
paucity of solutions, but rather to an excess of them. That is, finding a solution
is easy, but finding the right solution is more problematic. Indeed, in the Debian
framework there is always at least one solution: removing every package on the
system will satisfy all the dependencies. However, for obvious reasons, this is
not a solution that we want to produce!

4.4 Solving Dependencies Through Best-First Search

This problem statement suggests the use of a relatively simple algorithm –
best-first search – to resolve dependencies. To briefly review, best-first search
works by keeping a priority queue, known as the “open” queue, of potential
(or partial) solutions. The priority queue is sorted according to some heuristic
function that quantifies the “goodness” of each node (often in terms of nearness
to a full solution). In each iteration of the algorithm, the “best” partial solution
is removed from the queue. If it is a full solution, the algorithm terminates;
otherwise, each “successor” node is generated and placed in the queue.

There are two main issues to resolve:

• How should successors be generated?

• What heuristic should be used?

To generate successors, we could simply enqueue all possible changes to a
single package. However, this would result in a gigantic branching factor (over
1500 branches at each step in the current Debian archive), and it would cause
the algorithm to consider adjusting packages that were utterly irrelevant to the
problem at hand, as well as changing a package multiple times (which can lead
to choices being made for reasons that are obscure to the user). A more focussed
approach is needed.

Similarly, we could simply use the number of currently unsatisfied dependen-
cies as our heuristic, but this does not provide any guidance as to how dependen-
cies should be resolved. If A depends on B, A is installed, and B is not installed,
it is usually better to install B than to remove A; however, a straight count of
broken dependencies would consider both solutions to be equally “good”.

4.4.1 Generating Successors to a Partial Solution

An obvious way of generating the successors of a given solution is to do it on
the basis of unsatisfied dependencies. If the installation I does not satisfy the
dependency v → S, we know that v is installed but no member of S is. To
resolve this dependency, we can either install a different version of PkgOf(v)
or install any element of S. Applying this rule to each “broken” dependency
in turn will produce a set of successors that each solve at least one dependency
(although they may break others in the process).

However, this approach still has the potential to “run in circles” by installing
one version of a package, encountering broken dependencies, and then moving to

8

Modelling and Resolving Software Dependencies Daniel Burrows

a different version (possibly after resolving some dependencies of the intermedi-
ate version). The problem resolver of apt, for instance, sometimes confuses users
by exhibiting this behavior. To fix this, I enforce a simple rule in generating
solutions: a solution should never modify a package twice.

Definition 6. If the original installation was I0, then for any I and any d ∈ D
such that I 6` d, the installation I ′ = I; v is a successor of I for d if v 6=
I0(PkgOf(v)) and I(PkgOf(v)) = I0(PkgOf(v)).

One might wonder whether this approach risks overlooking solutions: for
instance, maybe it really is necessary to “go in circles” in order to find a par-
ticular solution. However, as shown below, if a solution cannot be generated
through the application of the successor rule defined above, then there is a “sim-
pler” version of that solution (one which modifies the states of fewer packages)
that can be generated. To prove this, I first will introduce some definitions and
notation.

Definition 7. Let I1, I2 be installations. The following notation is used to
denote the “distance” from I1 to I2 (defined as the number of packages whose
mappings differ between I1 and I2).

〈I1, I2〉 = |{p | I1(p) 6= I2(p)}| (3)

Definition 8. Let I1, I2 be installations. An installation I ′ is a hybrid of I1

and I2 if for all p, either I ′(p) = I1(p) or I ′(p) = I2(p).

Note. An alternative phrasing is that if I ′ is a hybrid of I1 and I2, then for all
v such that I ′ B v, either I1 B v or I2 B v.

Definition 9. If I ′ is a successor of I with respect to I0 for the dependency
d, then I

I0⇒
d

I ′. If there exist I1, . . . , In and d1, . . . , dn such that I1
I0⇒
d1

I2
I0⇒
d2

. . .
I0⇒

dn−1
In, then I1

I0⇒
∗

In.

Lemma 10. Let Ic be any consistent installation (if one exists) and I0 be any
installation. For all hybrids I of I0 and Ic and all dependencies d ∈ D such
that I 6` d, there exists an I ′ such that I

I0⇒
d

I ′, I ′ is a hybrid of I0 and Ic, and

〈I ′, Ic〉 < 〈I, Ic〉.

Proof. Consider any hybrid I of I0 and Ic such that I is not a solution and any
d = v → S ∈ D such that I 6` d.

Suppose that Ic 6B v. Since I is a hybrid of I0 and Ic, I0 B v. Thus, I
I0⇒
d

I ′,

where

I ′ = I; Ic(PkgOf(v)) (4)

On the other hand, if Ic B v′ for some v′ ∈ S, then I0 6B v′. Therefore,
I

I0⇒
d

I ′, where

9

Modelling and Resolving Software Dependencies Daniel Burrows

I ′ = I; v′ (5)

In either case, clearly I ′ is a hybrid of I0 and Ic and 〈I ′, Ic〉 < 〈I, Ic〉, proving
the lemma.

Theorem 11. For any consistent installation Ic and any inconsistent instal-
lation I0, there exists a consistent installation I ′c such that I ′c is a hybrid of I0

and Ic, and I0
I0⇒
∗

I ′c.

Proof. Proof is by repeated application of the previous lemma. Consider any
inconsistent hybrid I of I0 and Ic. Let I+ be the I ′ shown to exist in the
previous lemma for an arbitrary d such that I 6` d, and define a sequence I1, . . .
as follows:

Ik =

{
Ik−1 if Ik−1 is consistent
I+
k otherwise

(6)

I claim that this sequence converges; i.e., that for some finite n and all
m > n, In = Im. Proof: let Dk = 〈Ik, Ic〉 and n = 〈I0, Ic〉. By the previous
lemma, Dk ≥ Dk+1 for all k, and Dk = Dk+1 if and only if Ik is a solution.
Thus, if Ik is not a solution, we have Dk ≤ n− k. But by definition, Dk ≥ 0 for
all k, so clearly In+1 is a solution (else we have 0 ≤ Dn+1 ≤ −1).

Therefore, the theorem holds with I ′c = Dn+1.

4.4.2 Scoring

The second key ingredient of a best-first search is a scheme for ordering search
nodes, typically by assigning a numerical value to each prospective solution. In
doing so, we must balance two priorities: the desire to find a solution quickly,
and the desire to find a good solution.

The most obvious way to guide the search towards a solution is to “reward”
avenues of inquiry that decrease the number of unsatisfied dependencies. This is
not, of course, guaranteed to produce a solution quickly; however, in practice, it
seems to be a sufficient hint for the algorithm to reach a goal node in a reasonable
number of steps4. Finding “good” solutions is somewhat more difficult, not least
because of the fact that “good” is an ill-defined property. The experimental
implementation of this algorithm in aptitude uses the following general criteria
to assign scores to nodes:

• Each version of each package is assigned a separate score. By default,
removing any package is heavily penalized, altering packages which were
automatically installed recieves a smaller penalty, maintaining the state of
an automatic package makes no contribution to the score, and maintaining
the state of a manually installed package receives a bonus.5

4Most searches seem to converge in under 5000 steps.
5In actuality, all that is calculated is the difference between the initial total version score

and the final total version score.

10

Modelling and Resolving Software Dependencies Daniel Burrows

• A penalty is applied to each search node based on its distance from the
root of the search. This works to favor “simpler” solutions and penalize
more complex ones.

• Nodes that resolve all dependencies are given an additional bonus – usually
a relatively minor one. Goal nodes are moved through the priority queue
in the normal manner, rather than being floated directly to its head, in
order to ensure that solutions that are particularly “bad” are not produced
unless it is absolutely necessary to do so.

Thus, letting B(I) be the set of dependencies that are “broken” (not satis-
fied) by I and letting h(v) be the score of the version v, the total score of an
installation is

h(I) = αB |B(I)|+ αL〈I, I0〉+ αGδ(0, |B(I)|) +
∑
p∈P

h(I(p)) (7)

where αB , αL, and αG are weighting factors and δ is the Kronacker delta
function (i.e., δ(i, j) is 1 if i = j and 0 otherwise). In the current implementation,
αB = −100, αL = −10, and αG = 50.

5 Reducing the Branching Factor

5.1 One Dependency at a Time

The algorithm laid out above is sufficient to solve many of the dependency
problems that are encountered in practice. However, some problems still cause
the search to take an unacceptable amount of time to reach a solution. The
problems observed fall into two main categories:

1. Too many reverse dependencies.

In order to calculate the score of a successor of an installation (and of
course to analyze that solution later on) it is necessary to generate the set
of dependencies which are not satisfied by that successor. However, there
are some one hundred thousand dependencies in the Debian archive; so
that it completes in a reasonable amount of time, the current implemen-
tation uses the obvious optimization of only testing those dependencies
which either were previously broken, which impinge on the package version
being removed, or which impinge on the package version being installed.6

Unfortunately, some packages have very many reverse dependencies. For
instance, if I removes the system C library, over a thousand dependencies
will be unsatisfied – and simply generating the successors of this node will
require time at least quadratic in the number of reverse dependencies of
libc. This can impose a significant performance penalty on the process
of successor generation.

6Recall that a successor to I will install version v of p, removing I(p) in the process.

11

Modelling and Resolving Software Dependencies Daniel Burrows

2. Removing the bottom of a dependency chain.

When an important library such as GTK is removed, it is necessary to
propagate the removal “up the dependency tree”. However, the search
technique outlined above will search exponentially many installations be-
fore settling on this solution. Aside from the goal node of “keep the library
on the system”, the first step of the search will enqueue one node for each
package depending on GTK; each node will remove its corresponding pack-
age. As these nodes are processed, pairs of packages will be removed from
the system; then triples, and so on, until the full power set of all packages
depending (directly or indirectly) on GTK is generated. Worse, at each
step, solutions that suggest installing GTK (and removing many packages)
will be generated.

There is a simple solution to both of these problems. Instead of generating
successors for every dependency, it is sufficient to generate successors for a single,
arbitrary dependency (as shown in Theorem 11). In theory, this could lead to
somewhat less optimal ordering of generated solutions, but this doesn’t seem
to be a major problem in practice and the decrease in the problem’s branching
factor is well worth it.

5.2 Exclude Supersets of Solutions

One simple way to trim the search tree is to drop any search node I that is a
“superset” of a full solution Ic – meaning that Ic is a hybrid of I and I0. This has
the additional beneficial effect of preventing solutions from being offered to the
user which are just a previously-displayed solution with some extra, redundant
actions added to it.

5.3 Forbidden versions

If we have a choice between removing p and installing q, and we choose to
remove p, why should we ever install q? This question leads to yet another way
of reducing the problem’s branching factor.

To each solution node I, attach a set F of forbidden versions; the successors
of I are restricted to those which do not install any version in F . For all
successors I ′ of I, let F ′ ⊆ F ; furthermore, if a successor I ′ of I is generated
by removing the source version of a dependency, then all of the targets of that
dependency are members of I ′F . This new successor relationship is formally
defined in Figure 2 on page 15.

This has the effect of forcing the algorithm to “stick with” a decision to forgo
installing the targets of a dependency in favor of shifting the source.

Note. This technique could just as well be applied by expanding the forbidden
set when generating successors for the targets of a dependency: that is, for-
bidding a different version of the source of a dependency to be installed. The
decision regarding which exclusion principle to use was made on the basis of a

12

Modelling and Resolving Software Dependencies Daniel Burrows

I 6` d d = v → S I(v) = I0(v) PkgOf(v′) = PkgOf(v) v′ /∈ F

(I, F) I0⇒
d

(I; v′, F ∪ S)

I 6` d d = v → S v′ ∈ S I(v′) = I0(v′) v′ /∈ F

(I, F) I0⇒
d

(I; v′, F)

Figure 1: Successor generation with forbidden versions

conjecture that we are more likely to encounter a “hard” dependency problem
when moving “up” a dependency chain than when moving “down” it.

Of course, it is important to verify that cutting off wide swathes of the search
space in this manner does not impede our ability to generate solutions:

Theorem 12. Let Ic be any consistent installation (if one exists) and I0 be any
installation. There exists an I ′c such that I ′c is a hybrid of I0 and I0

I0⇒
∗

I ′C .

Proof. Let F0 = ∅. I claim that there exists a sequence (I1, F1), . . . such that
for all k ≥ 0,

• For all v ∈ Fk, Ic 6B v.

• I0
I0⇒
∗

Ik

• Either k = 0, Ik−1 is consistent and Ik = Ik−1, or 〈Ik, Ic〉 < 〈Ik−1, Ic〉.

Proof is by induction on k. Suppose that a sequence (I1, F1), . . . , (Ik, Fk)
exists satisfying the above condition. If Ik is consistent, then let Ik+1 = Ik and
Fk+1 = Fk; the inductive hypothesis is satisfied immediately.

Otherwise, consider any d = v → S ∈ D such that Ik 6` d (since Ik is
inconsistent, at least one such d exists). If there is a v′ ∈ S such that Ic B v′,
then let Ik+1 = Ik; v′ and Fk+1 = Fk. Clearly Ic 6B v′′ for all v′′ ∈ Fk+1

and 〈Ik+1, Ic〉 < 〈Ik, Ic〉; since we additionally have (Ik, Fk) I0⇒
d

(Ik+1, Fk), the

inductive hypothesis holds.
If instead Ic 6B v′ for all v′ ∈ S, then since Ic is consistent, Ic(PkgOf(v)) 6= v.

Let Ik+1 = Ik; Ic(PkgOf(v)) and Fk+1 = Fk ∪ S. Ic 6B v′′ for all v′′ ∈ S by
definition and clearly 〈Ik+1, Ic〉 < 〈Ik, Ic〉. In addition, Ik

I0⇒
d

Ik+1 by Figure 2;

therefore, the inductive hypothesis holds.
Thus, the claim is established: such a sequence exists. Following the logic

of Theorem 11, we can see that for n = 〈I0, Ic〉, In is a consistent installation.
Furthermore, from the construction above, In is a hybrid of I0 and Ic. Thus,
the theorem is established with I ′c = In.

13

Modelling and Resolving Software Dependencies Daniel Burrows

5.4 Use Logical Necessity

In combination with the tracking of forbidden versions, it is also possible to
detect forced installations and essential conflicts. A forced installation is one
which is logically necessary given I and F : for instance, if we have d = v →
{v′1, v′2}, I has touched v (i.e., I(v) 6= I0), v′1 ∈ F , and v′2 /∈ IF , then the only
permissible successor given d is (I; v′1). An essential conflict is a dependency for
which no successors can be generated: for instance, if in the previous example
we instead had v′2 ∈ F , then d would be an essential conflict.

If any essential conflicts exist in an installation I, it is discarded immediately
(rather than, for instance, generating successors for all the solvable dependen-
cies). If any forced installations exist, they are accumulated and a successor
formed by adding these installations to I is placed into the open queue.

6 Non-mandatory Dependencies

In addition to the standard Depends metadata, Debian also has a class of depen-
dencies known as “recommendations”. In the words of section 7.2 of Debian’s
technical policy:

Recommends: This declares a strong, but not absolute dependency.

The Recommends field should list packages that would be found
together with [the recommending package] in all but unusual instal-
lations.

Package management frontends adopt a variety of strategies to deal with rec-
ommendations, ranging from completely ignoring them to treating them nearly
as strictly as dependencies. The current best practice seems to be the rule “in-
stall recommendations when a package is first installed; ignore them otherwise”.

In this section, I will propose one way in which the above theory and algo-
rithm can be extended to accomodate these non-mandatory relationships.

6.1 “Hard” and “Soft”

The information content of a recommendation is equivalent to that of a de-
pendency, and so it makes sense to represent a recommendation in our formal
model as a special type of dependency. I will divide dependencies into two
classes: “hard” dependencies and “soft” dependencies. “soft” dependencies, of
course, represent recommendations7.

Now, although “soft” dependencies need not be satisfied in an eventual so-
lution, we would like the algorithm to at least try to satisfy them, and in fact
it should to make a reasonably significant effort to satisfy them. In order to
ensure that this is done, I suggest the following techniques:

7Or, to be more precise, recommendations of packages that are not presently installed, in
accordance with the abovementioned rule.

14

Modelling and Resolving Software Dependencies Daniel Burrows

d /∈ C
I 6` d d = v → S I(v) = I0(v) PkgOf(v′) = PkgOf(v) v′ 6∈ F

(I, F, C) I0⇒
d

(I; v′, F ∪ S, C)

d /∈ C I 6` d d = v → S v′ ∈ S I(v′) = I0(v′) v′ 6∈ F

(I, F, C) I0⇒
d

(I; v′, F, C)

I 6` d d is soft

(I, F, C) I0⇒
d

(I, F, C ∪ {d})

Figure 2: Successor generation with soft dependencies

• Extend the state of search nodes with an additional set C, representing the
dependencies that have been “closed” by being examined at least once. As
shown in Figure 2, extend successor generation to permit the algorithm
to “give up” on any open soft dependency: in addition to generating
successors for the various way of solving that dependency, it will also
generate a successor in which no package states are changed, but the
dependency is closed anyway.

• Penalize broken soft dependencies, to reward solutions that fulfill soft
dependencies.

This has not yet been tested, but will likely require some rebalancing of the
various weighting factors previously discussed in order to produce reasonable
results.

7 Implementation

A prototype implementation of this resolver algorithm exists in the experimen-
tal branch of aptitude. The implementation is composed of two pieces, which
are assembled via C++ templates: a search algorithm for a generic dependency
problem, and a runtime translation of APT dependencies to the generic form
outlined above. It does not implement “soft” dependencies, although their fu-
ture inclusion is planned.

The current implementation seems to perform reasonably well: in the cases
that I have tested, solutions are generated quickly enough for interactive use.
However, the order in which solutions are offered is sometimes surprising: for
instance, if the installation of a package causes problems, it is common for the
first generated solution to be “cancel this installation”. While, as noted above,
there is no perfect solution even in principle and any static weighting is likely
to occasionally produce odd results, I expect that some of these problems can
be fixed through adjustments of the score function.

15

Modelling and Resolving Software Dependencies Daniel Burrows

8 Future Work

As noted above, the score function needs to be adjusted and soft dependencies
need to be supported. In addition, some consideration of the following questions
seems worthwhile to me:

1. Is it ever possible to “divide and conquer” a dependency problem?

Rationale: as noted towards the beginning of this paper, informal analy-
ses of dependency problems often seem to adopt a “divide and conquer”
approach. Moreover, such an approach would have several important user
interface benefits: for instance, it would avoid the tendency of the algo-
rithm to produce the Cartesian product of all the different ways to solve
each isolated group of dependency problems.

I do not, however, see an obvious simple way of performing such a division.

2. Can and should “overly similar” solutions be detected and dropped?

When a solution implicates a large number of packages, the current algo-
rithm tends to produce many solutions which differ only slightly from one
another. From a user-interface perspective, it might be desirable to drop
some of these solutions. What metric, if any, should be used to perform
this dropping?

16

