
Towards Verifying Voter Privacy Through Unlinkability

Denis Butin, David Gray, Giampaolo Bella

To cite this version:

Denis Butin, David Gray, Giampaolo Bella. Towards Verifying Voter Privacy Through Unlink-
ability. ESSoS13 - International Symposium on Engineering Secure Software and Systems,
Feb 2013, Rocquencourt, France. Springer, pp.91-106, 2013, Lecture Notes in Computer
Science. <https://distrinet.cs.kuleuven.be/events/essos/2013/>. <10.1007/978-3-642-36563-
8 7>. <hal-00766201>

HAL Id: hal-00766201

https://hal.inria.fr/hal-00766201

Submitted on 8 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00766201

Towards Verifying Voter Privacy Through
Unlinkability

Denis Butin1, David Gray2, and Giampaolo Bella3

1 Inria, Université de Lyon
INSA-Lyon, CITI-Inria, F-69621, Villeurbanne, France

denis.butin@inria.fr
2 School of Computing, Dublin City University

Dublin, Ireland
david.gray@computing.dcu.ie

3 Dipartimento di Matematica e Informatica, Università di Catania, Italy
Software Technology Research Laboratory, De Montfort University, UK

giamp@dmi.unict.it

Abstract. The increasing official use of security protocols for electronic
voting deepens the need for their trustworthiness, hence for their for-
mal verification. The impossibility of linking a voter to her vote, of-
ten called voter privacy or ballot secrecy, is the core property of many
such protocols. Most existing work relies on equivalence statements in
cryptographic extensions of process calculi. This paper provides the first
theorem-proving based verification of voter privacy and overcomes some
of the limitations inherent to process calculi-based analysis. Unlinkability
between two pieces of information is specified as an extension to the In-
ductive Method for security protocol verification in Isabelle/HOL. New
message operators for association extraction and synthesis are defined.
Proving voter privacy demanded substantial effort and provided novel
insights into both electronic voting protocols themselves and the anal-
ysed security goals. The central proof elements are described and shown
to be reusable for different protocols with minimal interaction.

Keywords: E-voting, Trustworthy Voting System, Privacy, Security Pro-
tocols, Formal Methods

1 Introduction

The use of electronic voting (e-voting) for official elections is on the rise across the
world. Security protocols claiming properties that protect voters and guarantee
regular elections require formal scrutiny because of their sensitive nature. Voters
are asked to trust, in particular, election officials regarding the handling of their
votes. With e-voting, they are asked to trust a security protocol with special
goals. One key goal of e-voting protocols is to hide the way a particular voter
votes. Most recent efforts [17] to advance formal verification are based on process
equivalence. Despite substantial progress, issues remain regarding simplification
of protocol models or termination of supporting tools.

The benefits of specifying privacy in an interactive theorem prover have never
been explored until now. Isabelle [15], a generic theorem prover, is flexible enough
when used with higher-order logic to allow new classes of security properties to
be analysed in the framework provided by the Inductive Method [3]. Its exten-
sions for dealing with voter privacy are described and demonstrated on a classical
protocol in the sequel of this manuscript. They required new proof techniques
and lines of reasoning, whose development in turn demanded substantial effort.
Nevertheless, their application to other protocols is expected to be straightfor-
ward, as has been the case for the confidentiality argument [14] for example,
with most of the proof scripts adapted for new protocols without significant ef-
fort. Automated tools are ideal for checking conjectures about protocols quickly.
However, the interactive nature of the Inductive Method pays back, also with
e-voting, with a greater support to the analyst’s understanding of the protocol
entanglements than what automated tools offer today.

The most notable findings in this area stem from formalising the protocols
with a process algebra and encoding the privacy properties by process equiv-
alence [10]. As detailed below, process equivalence supports a notion of indis-
tinguishability between two situations where a voter voted, respectively, for two
different candidates. This implies that an observer cannot discern the two situ-
ations being formalised. In line with the operational semantics of the protocols
specified by the Inductive Method, we develop an operational encoding of pri-
vacy based on unlinkability of voter with vote, focusing on the associations that
an active attacker can derive from intercepting the protocol traffic. For example,
if Alice sent her vote for Bob to the election administrator as a clear-text, then
the attacker would build the association Alice-Bob.

However, actual protocol messages are complicated nestings of advanced
cryptographic operations (which are still assumed to be reliable), so that the
attacker’s inspection is far from straightforward. This inspection is formalised
by the innovative association analyser operator aanalz — naming is coherent
with the existing lingo. Also, the attacker can intelligently merge associations
when they have at least an element in common, similarly to an investigator re-
lating Alice to a crime scene because she wears the same shoe size as that of a
shoeprint in the scene. This merge is formalised by the innovative association
synthesiser operator asynth. When it is impossible to build, by means of analysis
and then synthesis, an association that features both voter and vote, then there
is unlinkability of voter with vote, hence the protocol enforces voter privacy
(about their vote). Conversely, the protocol violates voter privacy, irrespectively
of how many other voters cast that vote.

An outline of the indistinguishability and unlinkability approaches to mod-
elling privacy (§2) leads to our extensions to the Inductive Method to account
for privacy specification and analysis (§3). These extensions are then demon-
strated on a classical e-voting protocol known as FOO [12] through its inductive
specification (§4) and verification of voter privacy (§5). Conclusions and future
work end the manuscript (§6).

2 Modelling privacy

Voter privacy (also known as ballot secrecy) is generally [9,10] defined as follows:
how a particular voter voted is not revealed to anyone. Votes may or may not
be published at the end of an election, so it is not the confidentiality of the vote
in itself that matters but its association with the voter who cast it. In other
words, the way a voter votes should not be discoverable by anyone, even after
vote count. A caveat on this definition is the exclusion of the corner case where
all voters vote identically.

2.1 Indistinguishability

A common way of modelling privacy involves showing the indistinguishability
between two situations:

1. Voter Va votes x and Voter Vb votes y
2. Voter Va votes y and Voter Vb votes x

Indistinguishability here means that when Va and Vb swap their votes, no party
(including trusted parties running the election) can tell situations 1 and 2 apart.

Formal analysis is often performed in cryptographic extensions of process
calculi, with the applied pi calculus [2] being most typical. Automated tools
such as ProVerif [7] or, more recently, AKiSs [9] can be used to assist with such
analysis.

ProVerif is used to check protocols represented by processes modelled in
the applied pi calculus. It does not restrict the number of protocol sessions. A
stronger condition than observational equivalence between processes is checked.
Since the validity criterion is an under-approximation, spurious attacks may
be found in some cases. There is no risk for flawed protocols to be deemed
correct, but correct protocols may be invalidated by the tool because of the ap-
proximation. Various approaches to checking voter privacy have been presented.
Notably, Kremer and Ryan [13] presented an analysis with some manual parts.
In 2008 [11], a fully automatic verification was done. However, a translation al-
gorithm was used without formal proof of correctness. The next year, Delaune,
Kremer and Ryan published a detailed analysis in which the number of voters
is fixed, with a partially automated privacy proof [10]. New cryptographic prim-
itives can be added easily to the tool via equational theories, but the resulting
processes may not terminate in some cases.

AKiSs, the most recent automated tool able to check privacy automatically,
is also based on equivalence properties. However, a new kind of cryptographic
process calculus is used and a different type of process equivalence is checked,
called trace equivalence. Under- and over-approximations of trace equivalence
are used to detect flawed protocols and validate correct ones, respectively. The
set of supported cryptographic primitives is broader than in ProVerif. For a
specific class of processes, called determinate, a precise verification can be done.
However, not all e-voting protocols fall in this class, in which case one of the
approximations must be used. The number of sessions must be bounded as it
has critical impact on the computational cost.

2.2 Unlinkability

In contrast to the indistinguishability modelling of privacy, an operational view
reflects the natural threat model of an attacker monitoring all network traffic
and using the data she can extract to associate a voter with a vote. An outline
of this approach and comparison with the one based on indistinguishability first
appeared in our recent position paper [8]. Initially, the attacker decomposes each
individual message, and records all plaintexts and ciphertexts for which keys are
available. She can also associate these with the intended recipient agent of the
message. For each protocol event whereby an agent sends a message to another
agent, this analysis gives the attacker a set of (components of) messages, namely
an association. Moreover, if the communication channel is not anonymous, then
the attacker can also extend the association just gathered by storing the identity
of the sender.

However, it is not sufficient to inspect in isolation each of the messages sent
in the traffic. A voter’s identity V may appear near an element m that is later
to be extracted again, this time in conjunction with the vote Nv. In this case,
such a common element m provides the link between voter V and vote Nv. An
attacker monitoring the network sees messages as discrete entities and can exploit
the shared context of elements extracted from one given message. This process
of combining sets of associations builds up an association synthesis. When all
possible protocol scenarios are taken into account, establishing voter privacy
boils down to inspecting the synthesised set for the presence of a voter’s vote.

The only pieces of information that should not be treated as a possible link
to synthesise new associations are those that can be linked to all voters, such
as the name of the precise election officials that a protocol prescribes. Because
their identities appear in each and every protocol session, using one of them
as a link would lead to the synthesis of insignificant, that is, privacy-irrelevant,
associations. For example, an investigator will not call up every human being as
suspect of murder simply upon the basis that everyone could pull a trigger. We
shall see that with the FOO protocol, the administrator and the collector are
omnipresent, hence must be ruled out to synthesise significant associations.

Without setting bounds on the number of agents, sessions, or message nesting
depth, the number of different associations that the attacker can synthesise is
very large. Precisely, an unbounded number of associations can be derived by
observing a full trace, due to the fact that its length is unbounded. This size limits
the tool support that traditional finite-state search can offer. As experienced
before with other goals [3], inductive reasoning bypasses the size constraints also
with the analysis of associations.

3 Specifying unlinkability in Isabelle/HOL

3.1 Isabelle/HOL and the Inductive Method

Isabelle is a generic interactive theorem prover supporting many logics. The
most commonly used one, HOL, allows formalisation and proof of predicates in

higher-order logic. Automated reasoning tools are available, but the user must
still define the line of reasoning and guide the proving process. A file-based
hierarchy of theories is available. All theorems from parent theories are available
when those theories are imported in the current one.

The Inductive Method for security protocol verification was introduced in
Paulson’s paper [16] and later applied widely, notably to electronic payment [5],
non-repudiation [6], certified e-mail [3] and multicast protocols [14]. Its central
idea is the use of mathematical induction to model security protocols and their
properties. The proofs are also done by induction. A specification of the standard
Dolev-Yao threat model, common cryptographic primitives and their properties
are provided. All seminal elements of the Inductive Method reside in three the-
ory files. Message describes messages and agents, Event specifies network event
datatypes and Public contains the lemmas relevant to cryptographic keys and
initial states.

Because of the nature of induction, both the number of protocol sessions
and participating agents are unbounded. This allows detection of interleaving or
replay attacks. The threat model is incarnated by a special agent called Spy, who
sees all protocol messages, decrypts whatever she can, and participates actively
by sending anything she can build from parts previously obtained. The Spy’s
capabilities are subsumed by an inductive rule called Fake:

| Fake: [[evsf ∈ ns public; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ ns public

Protocol steps are also modelled as inductive rules with pre- and postcondi-
tions. Security properties are proven by checking that inductive theorem state-
ments hold over all possible network histories (traces).

Available network events are Says, Gets and Notes. The latter represents
internal storage of a message by an agent. Says A B X represents the sending of
message X by agent A to agent B. Delivery does not have to happen, but when
it does, this is denoted using Gets.

The message operators are as follows:

– analz formalises the breaking-up of messages without cryptanalysis. Plain-
text is only extracted when the relevant decryption key is part of the knowl-
edge of the agent applying the operator.

– parts returns all message building blocks ; it can be seen as analz expanded
with cryptanalysis.

– synth applied to a set of message returns the set of compound messages.

Asymmetric cryptography is available through functions priEK and pubEK
for private and public encryption keys, and then priSK and pubSK for private
and public signing keys. Each of them takes the proprietor agent as a parame-
ter. A private key of a given operation mode is required to decrypt a message
encrypted with the corresponding public key, and conversely.

Agent knowledge, formalised by the function knows, maps an agent and a list
of network events to a set of messages: the knowledge that the agent can extract

from this trace. Agents already know some elements (those in initState) such as
keys before a protocol even begins.

A hands-on, step by step guide to using the Inductive Method can be found
in a recent paper [4].

3.2 Extensions for unlinkability

The analysis of associations requires a new message operator, analzplus. It is built
on the traditional analz message operator, endowed with an external message
set providing extra decryption keys:

inductive set
analzplus :: msg set ⇒ msg set ⇒ msg set
for H :: msg set and ks :: msg set
where
Inj [intro,simp]: X ∈ H =⇒ X ∈ analzplus H ks
| Fst : {|X ,Y |} ∈ analzplus H ks =⇒ X ∈ analzplus H ks
| Snd : {|X ,Y |} ∈ analzplus H ks =⇒ Y ∈ analzplus H ks
| Decrypt [dest]: [[Crypt K X ∈ analzplus H ks; Key (invKey K) ∈ analzplus H ks]]

=⇒ X ∈ analzplus H ks
| Decrypt2 [dest]: [[Crypt K X ∈ analzplus H ks; Key (invKey K) ∈ ks]]

=⇒ X ∈ analzplus H ks

In particular, the new operator is useful to formalise everything, namely the set
of all message components, that the attacker can extract from a single message
sent in the traffic by hammering it with the entire knowledge she has acquired
on an entire trace. For a message X and a trace evs, this set can be defined as
analzplus {X } (analz (knows Spy evs)).

Using analzplus, the message association analyser aanalz can be defined in-
ductively. Only Says events influence it. Indeed, each Gets message reception
event follow a message sending event Says, and Notes events correspond to pri-
vate recording of data by agents:

primrec aanalz :: agent => event list => msg set set
where
aanalz Nil : aanalz A [] = {}
| aanalz Cons:
aanalz A (ev # evs) =
(if A = Spy then
(case ev of
Says A ′ B X ⇒
(if A ′ ∈ bad then aanalz Spy evs
else if isAnms X

then insert ({Agent B} ∪ (analzplus {X } (analz (knows Spy evs))))
(aanalz Spy evs)

else insert ({Agent B} ∪ {Agent A ′} ∪
(analzplus {X } (analz (knows Spy evs)))) (aanalz Spy evs))

| Gets A ′ X ⇒ aanalz Spy evs
| Notes A ′ X ⇒ aanalz Spy evs)
else aanalz A evs)

The definition indicates, among other aspects, that only the attacker can
analyse associations. Also, she will neglect the associations created by compro-
mised agents, thus including those that she may have created, by sending out
specific messages. It can also be seen that the sender identity is extracted only
for messages that are not sent anonymously. The isAnms predicate holds of mes-
sages with a specific form that we conventionally interpret to signify anonymity.

The association synthesiser asynth can be introduced now. Its definition is not
tied to aanalz, but it will always be used in conjunction with it for our purposes.
Specifically, we will examine the contents of the set asynth (aanalz Spy evs),
where evs is a generic protocol history. The asynth operator introduces a new
association as the union of association sets that share a common element:

inductive set
asynth :: msg set set ⇒ msg set set
for as :: msg set set
where
asynth Build [intro]: [[a1 ∈ as; a2 ∈ as; m ∈ a1 ; m ∈ a2 ;

m 6= Agent Adm; m 6= Agent Col]]
=⇒ a1 ∪ a2 ∈ asynth as

As noted above, the definition insists that the common element is not a piece
of information that can be linked to all voters — for instance, the name of
election officials since they appear in every step. The version below can be used
for protocols that define two election officials, here called Adm and Col, in line
with the subsequent case study.

4 Modelling the FOO protocol in the Inductive Method

The well-known Fujioka, Okamoto and Ohta (FOO) [12] protocol features two
election officials called administrator and collector and involves bit commitments
as well as blind signatures. The specification of its protocol steps follows after a
description of some extensions.

Blind signatures are a cryptographic primitive often found in e-voting proto-
cols, and in particular in the FOO protocol. We specify them for the first time in
the Inductive Method, as an inductive rule in the protocol model. The Spy gains
knowledge of a plain signature if she knows the corresponding blinded signature
and blinding factor, modelled as a symmetric key:

| Unblinding :
[[evsb ∈ foo; Crypt (priSK V) BSBody ∈ analz (spies evsb);
BSBody = Crypt b (Crypt c (Nonce N)); b ∈ symKeys; Key b ∈ analz (spies evsb)]]
=⇒ Notes Spy (Crypt (priSK V) (Crypt c (Nonce N))) # evsb ∈ foo

Anonymous channels are specified by defining a function to replace Says
when needed. We are conventionally defining an anonymous message by means
of a precise message format — the actual message is prepended with a constant
number:

consts anms :: nat
definition Anms :: [agent , agent , msg] ⇒ event where
Anms A B X ≡ Says A B {|Number anms, X |}

Administrator and collector are introduced as translations Adm and Col of
specific agents. We now turn to the actual protocol steps and their model.

4.1 FOO protocol steps and inductive protocol model

The FOO protocol features six phases that give rise to as many protocol steps
and corresponding inductive rules.

1. Preparation: The voter V picks a vote Nv, builds Nvc using the commitment
key c, and blinds this vote commitment using the blinding factor b. V then
signs the blinded commitment and sends it to the administrator along with
V ’s identity.

| EV1 :
[[evs1 ∈ foo; V 6= Adm; V 6= Col ; c ∈ symKeys; Key c /∈ used evs1 ;
b ∈ symKeys; Key b /∈ used evs1 ; b 6=c; Nonce Nv /∈ used evs1]]
=⇒ Says V Adm {|Agent V , Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|}

Notes V (Key c) # Notes V (Key b) # evs1 ∈ foo

2. Administration: Upon reception of a signed, blinded commitment, the ad-
ministrator opens it and checks that the quoted agent name is equal to the
signer of the blind signature. If such is the case and the agent has not voted
before, the administrator returns the message to V , now signed by the for-
mer. The administrator also records V ’s name.

| EV2 :
[[evs2 ∈ foo; V 6= Adm; V 6= Col ; Notes Adm (Agent V) /∈ set evs2 ;
Gets Adm {|Agent V , Crypt (priSK V) BSBody |} ∈ set evs2 ;
BSBody = Crypt P R; ∀ X Y . MPair X Y /∈ parts{BSBody}]]
=⇒ Says Adm V (Crypt (priSK Adm) BSBody)

Notes Adm (Agent V) # evs2 ∈ foo

3. Voting : If V obtained the administrator’s reply, V unblinds it and sends the
resulting plain signature to the collector over an anonymous channel.

| EV3 :
[[evs3 ∈ foo; Says V Adm {|Agent V ,
Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs3 ;
Gets V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce Nv)))) ∈ set evs3]]
=⇒ Anms V Col (Crypt (priSK Adm) (Crypt c (Nonce Nv))) # evs3 ∈ foo

4. Collecting : The collector checks the signature and publishes the enclosed vote
commitment Nvc on a bulletin board, provided that it was not published
before and that all votes have been received.

| EV4 :
[[evs4 ∈ foo; V 6= Adm; V 6= Col ; Says Col Col CX /∈ set evs4 ;
Gets Col {|Number anms, Crypt (priSK Adm) CX |} ∈ set evs4 ;
CX = Crypt P R; ∀ X Y . MPair X Y /∈ parts{CX }]]
=⇒ Says Col Col CX # evs4 ∈ foo

5. Opening : Once Nvc has appeared on the bulletin board, V sends c over an
anonymous channel so that Nv can be revealed.

| EV5 :
[[evs5 ∈ foo; Says V Adm {|Agent V ,
Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs5 ;
Gets Col (Crypt c (Nonce Nv)) ∈ set evs5 ; Key c ∈ analz (knows V evs5);
c /∈ range shrK ; c ∈ symKeys]]
=⇒ Anms V Col (Key c) # evs5 ∈ foo

6. Counting : Upon reception of V ’s key, the collector publishes Nv on the con-
dition that the key be identical to c.

| EV6 :
[[evs6 ∈ foo; Gets Col {|Number anms, Key c|} ∈ set evs6 ;
Gets Col (Crypt c (Nonce Nv)) ∈ set evs6 ;
Says Col Col (Nonce Nv) /∈ set evs6]]
=⇒ Says Col Col (Nonce Nv) # evs6 ∈ foo

5 Proving voter privacy for FOO

5.1 Main results

The following theorem, foo V privacy asynth, is the culmination of the entire
proof process and states that the FOO protocol guarantees voter privacy to all
honest voters that started the protocol. More precisely, assume that the regular,
honest voter V sent the administrator a message in line with the first step of the
protocol, containing a blinded commitment on the vote Nv. Also assume that
this very vote is in the message set of association syntheses. Then the name of
V is not in that set:

theorem foo V privacy asynth:
[[Says V Adm {|Agent V , Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;
a ∈ (asynth (aanalz Spy evs));
Nonce Nv ∈ a; V /∈ bad ; V 6= Adm; V 6= Col ; evs ∈ foo]]
=⇒ Agent V /∈ a

Before turning to the proof itself, we focus on the most important proof
elements, which are mainly results about associations.

A fundamental result is foo V privacy aanalz, which looks similar to the
foo V privacy asynth theorem. However, whereas the latter is a statement about
asynth, hence about association synthesis, the former only considers aanalz, that
is associations arising from individual messages. Whenever an honest voter per-
formed the first step of the protocol, the voter’s identity and vote cannot be
found in the same association:

theorem foo V privacy aanalz :
[[Says V Adm {|Agent V , Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;
a ∈ (aanalz Spy evs); Nonce Nv ∈ a; V /∈ bad ; evs ∈ foo]]
=⇒ Agent V /∈ a

The lemma called asynth insert is a direct consequence of the definition of
asynth quoted in 3.2. By introducing the various cases that an application of
asynth may imply, it provides a useful rewrite rule for expressions involving the
operator name:

lemma asynth insert :
a ∈ asynth(insert a1 as) =⇒
(a=a1 ∨
a ∈ asynth as ∨
(∃ a2 m. a2 ∈ as ∧ a = a1 ∪ a2 ∧ m ∈ a1 ∧ m ∈ a2 ∧

m 6= Agent Adm ∧ m 6= Agent Col))

The next three theorems allow more precise reasoning about messages that
contain encryption. They are all concerned with the situation where a message
yields an association set containing at least one ciphertext. They are necessary
for dealing with situations where protocol messages are not completely specified.
For instance, an agent may have to transmit an encrypted commitment with-
out even being able to check that the commitment is actually about a vote. In
those situations, protocol step specification must model agents’ limited knowl-
edge when dealing with sealed messages. However, even when the complete con-
tents of a ciphertext is not known, a number of scenarios can be distinguished.
Various encryption key values and partial knowledge of the ciphertext contents
lead to contradictions. Possible configurations are therefore made explicit in the
following results.

Lemma aanalz PR states constraints about the possible forms of a generic
ciphertext appearing in any association. Its conclusion is expressed as a conjunc-
tion between two predicates that are themselves disjunctions. The first conjunct
relates to the presence of an agent name in the association. If the name of the
collector appears in the association and any nonce (a vote) is an atomic compo-
nent of R, then no agents that are both honest and different from the collector
can also be in a. The second conjunct states that if any nonce is part of the
association, then the Spy must be able to decrypt the ciphertext and no agent
name can be an atomic component of R:

lemma aanalz PR:
[[a ∈ aanalz Spy evs; Crypt P R ∈ a; evs ∈ foo]] =⇒

(Agent Col /∈ a ∨
(Agent V ∈ a −→ V ∈ bad ∨ V = Col) ∨
(Nonce Nv /∈ parts {R})) ∧

((Nonce Nv /∈ a) ∨
(Key (invKey P) ∈ analz (spies evs) ∧ Agent V /∈ parts {R}))

Then, lemma aanalz AdmPR V Nparts relates to the specific case when a
ciphertext signed by the administrator is in an association. It establishes a dis-
junction: either no nonce is an atomic component of the ciphertext’s body, or

the Spy cannot open the ciphertext inside the signature, or there is no regular,
honest agent name in the association:

lemma aanalz AdmPR V Nparts:
[[a ∈ aanalz Spy evs; Crypt (priSK Adm) (Crypt P R) ∈ a; evs ∈ foo]]

=⇒ Nonce Nv /∈ parts {R} ∨
Key (invKey P) /∈ analz (knows Spy evs) ∨
(Agent V ∈ a −→ V ∈ bad ∨ V = Adm ∨ V = Col)

Finally, lemma aanalz Adm is still about associations containing a ciphertext.
Like foo V privacy aanalz, it binds the variables involved in a version of the first
step of the protocol. Assume an association contains the name of an honest agent
who already sent a message corresponding to step one. Also assume it contains
a ciphertext Crypt P R, and that the nonce from step one is in parts of R.
If the name of the collector is absent from the association, then the following
conclusions hold:

– If P is neither the signing key of the voter mentioned in the precondition nor
the signing key of the administrator, then it must be the blinding factor;

– If P is the administrator’s signing key, then the body of the ciphertext
is exactly the body of the message signed by the voter in the bound first
message:

lemma aanalz Adm:
[[Says V Adm {|Agent V , Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;
a ∈ aanalz Spy evs; Agent Col /∈ a; Agent V ∈ a; V /∈ bad ;
Crypt P R ∈ a; Nonce Nv ∈ parts {R}; evs ∈ foo]]
=⇒ (P = priSK V ∨ P = priSK Adm ∨ P = b) ∧

(P 6= priSK Adm ∨ R = Crypt b (Crypt c (Nonce Nv)))

5.2 Proof of the main theorem

Proving privacy by foo V privacy asynth is done, as usual in the Inductive
Method, by induction on the protocol model. Every protocol step generates
a subgoal. When all subgoals are closed, the theorem is proven. Developing the
proof required considerable effort. After eliminating redundancies and stream-
lining, it was reduced to about 170 steps. It will be shown that despite its length,
the proving strategy is general, hence reusable for different protocols.

Induction and simplification leaves us with seven subgoals: the six protocols
steps, plus Fake. The Fake is closed thanks to the classical reasoner blast. Its
proof is simple because messages sent by dishonest agents do not yield associ-
ations. Intuitively, the goal of the Spy is to extract plausible associations, not
make up new ones. However, it keeps its traditional Dolev-Yao attacker role
and influences all usual theorems proven for the protocol ; those are used in the
privacy proof.

The subgoal arising from EV1 is first simplified by remarking that fresh
keys (the blinding factor and commitment key) can never be known to the Spy
— they cannot yet be in the set analz (knows Spy evs1). We then perform a

case split about the agent Va involved in the version of the first protocol step
generated by this subgoal. If Va is dishonest (a member of the bad set), then the
message it sent yields no new association and the subgoal concludes thanks to
the inductive hypothesis. If Va is an honest agent, we must apply, for the first
time, asynth insert. This lemma is of constant use throughout the proof because
it allows us to split the asynth set. For instance, this stage of the proof features
the following precondition:

a ∈ asynth (insert
{{|Agent Va, Crypt (priSK Va) (Crypt ba (Crypt ca (Nonce Nva)))|},
Agent Va, Crypt (priSK Va) (Crypt ba (Crypt ca (Nonce Nva))),
Agent Va, Agent Adm, Crypt ba (Crypt ca (Nonce Nva))}
(aanalz Spy evs1))

Let us call X the set such that a ∈ asynth (insert X (aanalz Spy evs1)).
Applying asynth insert leaves us with three possibilities:

1. a = X.
2. a ∈ asynth (aanalz Spy evs1).
3. There exists a2 in aanalz Spy evs1 and an element m such that a is the

union of a2 and X and m is both in X and in a2.

The inductive hypothesis tells us that Nv is in a and X contains no nonces,
so the first disjunct is excluded. The second disjunct is eliminated thanks to
the lemma nv fresh a2, not quoted here, which states that fresh nonces do not
appear in association syntheses.

If a is a union, more precision is required. First, if the agent V from the
inductive hypothesis and the agent Va introduced by the induction are dif-
ferent, then V /∈ X and therefore V must be in a2. Since Nv is also in a2,
foo V privacy aanalz leads us to a contradiction.

Otherwise, V = Va. If Nv and Nva are equal, Nv must be fresh like Nva. The
auxiliary lemma aanalz traffic, according to which elements in associations which
are not agent names must have appeared in the traffic, solves this case (fresh
elements never appeared in network traffic). On the other hand, if Nv 6= Nva, the
element in common m can be any of the elements in X. We appeal to another
lemma, association Nv. It is specifically tailored for this subgoal, used only here,
and shows that an association containing a nonce can not contain also any of the
possibilities for m listed here except for V. Together with foo V privacy aanalz,
that takes care precisely of the case m = V, this solves the subgoal.

The use of asynth insert to split the association synthesis is a technique used
for all subgoals of the theorem. It turns out that the third disjunct generates the
bulk of the proving work for the remaining subgoals. We will therefore focus on
it. It requires taking a close look at the structure of sets in aanalz.

Subgoals arising from protocol steps two and four are much larger than the
other ones because of the generic specification of the steps. For instance, in the
second protocol step, the administrator has received a signed ciphertext from
the voter. The administrator can extract the ciphertext from the signature, but
has no means in general to look inside. We only assume that it is possible to

know that the ciphertext contains no more than one atomic component, by
inspecting its length. However, the precise nature of the plaintext is unknown
in general and this generality in the specification of the inductive step explains
the additional complexity of the proof. It is necessary if the precondition is to
be realistic. Likewise, in step four, the collector receives a signed ciphertext that
he cannot open in general. The concrete consequence in terms of association
syntheses is that potential common elements m are not listed explicitly in the
goal preconditions. Instead of belonging to a finite set of bound variables, only
partial information is known about them. For instance, we may only know that
an element m can be deduced from some ciphertext via analzplus. By contrast,
for non-generic protocol steps, we obtain an explicit set and the proof is much
easier.

A number of results about elements in aanalz are available, such as aanalz PR
and aanalz Adm. These theorems are stated with weak premises and offer a
number of conclusions as disjunctions. The most systematic proof strategy is
therefore to perform case splits about the ciphertext contained in aanalz. As
this is done, one can reason more precisely about encryption keys and plain-
texts until a contradiction is reached thanks to the aforementioned results. One
crucial distinction is whether the name of the collector appears in the associa-
tion. If such is the case, the elements in aanalz arose from the collection step
EV4. Conversely, if Agent Col /∈ a2, the association set in the precondition was
generated by another protocol step. The encryption key P from the ciphertext
Crypt P R, assumed to be in an association, is then compared in turn to the
voter’s signing key, the administrator’s signing key, and to the blinding factor.
Contradictions are reached in every case. The value of the payload R is also
compared with the voter’s blinded vote commitment Crypt b (Crypt c (Nonce
Nv)). Those different situations obviously refer to various ciphertext values nat-
urally generated by the protocol steps. In essence, the proving strategy amounts
to zooming in sufficiently into the various possible association configurations to
uncover contradictions that are not apparent at a more general level.

The outline of this proving strategy is not dependent of a given protocol. Let
us recall the important steps:

1. For every subgoal, split the association syntheses set asynth using asynth insert.
2. The subgoals arising from explicit protocol steps are straightforward to close

because the set of potential common elements m becomes explicit as well.
3. For more general subgoals, case splits about the possible values of initially

generic ciphertexts are combined with lemmas describing their structure in
associations in a systematic way.

5.3 Proof of the supporting theorems

Rather than describing the full proof of every theorem required for the privacy
one, we focus on aanalz PR due to space constraints. It is of constant use in the
privacy proof, appearing in it eleven times, and its proof exemplifies the kind
of reasoning required for the other supporting theorems. Recall its statement

from earlier (5.1) ; it constrains the form of elements of aanalz that contain a
ciphertext.

As expected, complications arise again from the generic steps, namely EV2
and EV4. As the other subgoals are easier to prove, let us concentrate on EV2,
as the proof for EV4 is similar.

We require the following subsidiary results in addition to standard lemmas
from the existing Inductive Method framework:

– analzplus into parts: Elements in the set analzplus X ks (recall ks is the
external key set) are in parts X.

– no pairs: If a message contains only atomic components and already contains
an agent name in its parts set, a number of other elements cannot be in the
parts set.

– analzplus Nv : Assume an analzplus Q (analz H) set contains a ciphertext and
a nonce. If parts Q contains only atomic components, then the decryption
key of the ciphertext must be in analz (insert Q H).

The case where the administrator (Adm) is dishonest is closed easily. Else, we
must distinguish cases on the basis of the origin of the association in the inductive
hypothesis. The first possibility is that it was generated by the EV2 message
introduced by the induction. In that case, the key P in the aanalz PR theorem
statement could either be the administrator’s signing key, or the encryption key
of the ciphertext that he signed. A third possibility is that the entire Crypt P R
is embedded deeper in the signed ciphertext. Let us examine each possibility in
turn.

In the first case, we must show that an agent name (either the collector or a
regular voter) and a nonce cannot be present in analzplus R at the same time.
This is shown by combining analzplus into parts and no pairs. In the second case,
the ciphertext Crypt P R from the theorem precondition is exactly the ciphertext
Crypt Pa Ra signed by the administrator in this version of the second protocol
step. Disentangling the precondition conjunction leads to the same scenario and
an additional one that entails proving that if the inverse of key P is known to
the attacker in the first place, it is all the more known to her after getting hold
of R.

If Crypt P R is embedded in the ciphertext generated by the administrator,
we must perform a few additional case splits but the line of reasoning is the
same, with the additional use of analzplus Nv.

Even though specifying the possible forms of elements in aanalz requires
inspecting a number of scenarios, the proving process is straightforward once
some crucial building blocks are established. Notably, the three subsidiary results
we listed earlier (analzplus into parts and so on) are stated without any reference
to the FOO protocol — they are protocol-independent and can be reused directly.
A submission of our Isabelle theories to the online Archive of Formal Proofs [1]
is being prepared.

6 Conclusion

We have presented the first interactive theorem proving-based analysis of voter
privacy. It offers an independent and complementary means of investigation to
consolidated work based on process equivalence, ultimately contributing to the
trustworthiness of voting systems. Privacy is modelled as an unlinkability prop-
erty between a voter and her ballot. Extensions to the Inductive Method are
implemented in Isabelle/HOL to specify associations between elements and com-
binations of associations that share a common element.

The initial proof development effort was significant, but a coherent line of rea-
soning emerges from the proof. This general strategy and a number of protocol-
independent results about the new operators support the case of re-usability for
other e-voting protocols. Interactive proofs entail a level of clarity about protocol
scenarios that is unavailable from automatic tools. The inductive nature of our
specification eliminates termination issues or inherent size limitations. While the
benefits of automated tools are clear, our approach sheds a complementary light
on voter privacy by its operational view.

A more general version of the asynth operator, allowing unbounded associa-
tion synthesis, is needed. Other privacy-type properties such as receipt-freeness
and coercion-resistance ought to be specified in the Inductive Method. Addi-
tionally, e-voting protocols that are not amenable to analysis in the process
equivalence model must be studied in our framework to investigate its domain
of applicability. We would also like to program some of the recurring proof steps
as ML tactics.

Acknowledgement This research was supported in part by the Science Fundation
Ireland (SFI) grant 08/RFP/CMS1347.

References

1. In G. Klein, T. Nipkow, and L. Paulson, editors, The Archive of Formal Proofs.
http://afp.sf.net.

2. M. Abadi and C. Fournet. Mobile Values, New Names, and Secure Communica-
tion. In Proc. of the 28th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL’01), pages 104–115. ACM Press, 2001.

3. G. Bella. Formal Correctness of Security Protocols. Information Security and
Cryptography. Springer, 2007.

4. G. Bella. Inductive study of confidentiality: for everyone. Formal Aspects of Com-
puting, pages 1–34, 2012.

5. G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal Verification
of Cardholder Registration in SET. In F. Cuppens, Y. Deswarte, D. Gollmann,
and M. Waidner, editors, Proc. of the 6th European Symposium on Research in
Computer Security (ESORICS’00), LNCS 1895, pages 159–174. Springer, 2000.

6. G. Bella and L. C. Paulson. Mechanical Proofs about a Non-Repudiation Protocol.
In R. J. Boulton and P. B. Jackson, editors, Proc. of the 14th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs’01), LNCS 2152,
pages 91–104. Springer, 2001.

http://afp.sf.net

7. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In Proc. of the 14th IEEE Computer Security Foundations Workshop (CSFW’01),
pages 82–96. IEEE Press, 1998.

8. D. Butin and G. Bella. Verifying Privacy by Little Interaction and No Process
Equivalence. In SECRYPT, pages 251–256. SciTePress, 2012.

9. R. Chadha, Ştefan Ciobâcă, and S. Kremer. Automated Verification of Equivalence
Properties of Cryptographic Protocols. In H. Seidl, editor, ESOP, LNCS 7211,
pages 108–127. Springer, 2012.

10. S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

11. S. Delaune, M. Ryan, and B. Smyth. Automatic verification of privacy properties
in the applied pi calculus. Syntax, 263/2008:263-278, 2008.

12. A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for Large
Scale Elections. In Proceedings of the Workshop on the Theory and Application of
Cryptographic Techniques: Advances in Cryptology (ASIACRYPT’92), pages 244–
251. Springer-Verlag, 1993.

13. S. Kremer and M. Ryan. Analysis of an Electronic Voting Protocol in the Applied
Pi Calculus. In In Proc. 14th European Symposium On Programming (ESOP’05),
LNCS 3444, pages 186–200. Springer, 2005.

14. J. E. Martina and L. C. Paulson. Verifying Multicast-Based Security Protocols
Using the Inductive Method. In Workshop on Formal Methods and Cryptography
(CryptoForma 2011), 2011.

15. L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. Springer, 1994.
16. L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols.

Journal of Computer Security, 6:85–128, 1998.
17. M. Ryan. Keynote: Analysing security properties of electronic voting systems.

In Ú. Erlingsson, R. Wieringa, and N. Zannone, editors, ESSoS, volume 6542 of
LNCS, pages 1–14. Springer, 2011.

	Towards Verifying Voter Privacy Through Unlinkability

