Efficiently four-coloring planar graphs
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Abstract

An outline of a quadratic algorithm to 4-color planar graphs is presented, based upon
a new proof of the Four Color Theorem. This algorithm improves a quartic algorithm of
Appel and Haken.

1. Introduction.

Within the class of planar graphs, there is an interesting variation in complexity for the
problem of coloring the graph in k colors, for different values of k. It is trivial to k-color the
vertices of a planar graph in linear time (if possible) for £ < 2 and k£ > 6. Garey, Johnson,
and Stockmeyer [5] showed that it is N P-hard to 3-color the vertices of a planar graph (if
possible), even if the problem is restricted to graphs where the maximum degree of a vertex
is four.

An unsophisticated application of Heawood’s proof of the Five Color Theorem [6] gives
a quadratic algorithm to 5-color a planar graph. Linear algorithms to 5-color planar graphs
can be found in [4, 9]. It seems worthy to digress for a moment to show how a modification
of Heawood’s original proof together with a 1904 theorem of Wernicke [10] can be used to
obtain a simple linear-time 5-coloring algorithm.

For this paper, let a graph possibly contain multiple edges, but not loops. Let the
degree of a vertex be the number of edges that are incident with it. Let the degree of a face
be the number of edge-face incidences involving it (a cut-edge produces two such incidences
with the same face). Let a plane graph be a triangulation if each of its faces has degree
three. Let a plane graph be normal if each of its faces has degree at least three.

Wernicke, interested in the Four Color Theorem, proved (in the dual) that every normal
plane graph of minimum degree five has a vertex of degree five which is adjacent to a vertex
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of degree at most six. Now consider the following linear 5-coloring algorithm. The input
for the algorithm is a normal, plane graph G.

By Wernicke’s Theorem, G has a vertex x which is either of degree at most 4, of degree
5, but adjacent to at most 4 vertices, or of degree 5, and adjacent to 5 vertices, one of which
has degree at most 6.

If  has degree at most 4, or degree 5, but adjacent to at most 4 vertices, then let H :=
G — z. Otherwise, x has degree 5, and if v1,...,vs is the clockwise cyclic neighborhood of
x, then these five vertices are pairwise distinct, and without loss of generality, deg(v1) < 6.
Check to see if v; is adjacent to vz (which takes constant time since deg(vi) < 6). If not,
let H be the plane graph obtained from G — z by identifying v; and v3 (the edge lists are
just merged where the edges to x were; this takes constant time, noting that multiple edges
are allowed); otherwise, by planarity, vs is not adjacent to vy, and let H be the plane graph
obtained from G — z by identifying vo and vy.

Apply the algorithm recursively to H, after deleting an edge from any face of degree
2 created (this takes constant time, as the only edges that could be involved are together
with z in faces of degree at most four in G). A 5-coloring of H easily gives a 5-coloring of
G in constant time.

Each iteration can be performed in constant time then, with the exception of finding
the appropriate z, which can be done in amortized linear time by maintaining a stack of
vertices of degree at most five.

The final coloring problem for planar graphs is 4-coloring. In 1989, Appel and Haken
were able to devise a quartic algorithm to 4-color planar graphs from their proof of the Four
Color Theorem. A quadratic algorithm to 4-color planar graphs has been obtained from
the new proof of the Four Color Theorem by the authors. The improvement in complexity
occurs by the avoidance of reducing bending 6-rings. This is described in the following
section.

2. A Quadratic Four-Coloring Algorithm.

Define V(G), E(G), F(G) to be the sets of vertices, edges, and faces of a plane graph
G.

A normal plane triangulation G is said to be nearly 7-connected if

1. G has no k-ring for k£ € {2,3,4}, where a k-ring is a cycle on k edges with at least 1
vertex in each of its interior and exterior;

2. G has no non-trivial 5-ring, which is a cycle on 5 vertices with at least 2 vertices in
each of its interior and exterior;

3. G has no bending 6-ring, which is a cycle C' on 6 vertices with at least 4 vertices in
each of its interior and exterior, and there is a vertex not on C which is adjacent to
three consecutive vertices of C.

If G satisfies condition 1 it is called 5-connected, and if it satisfies conditions 1 and 2,
it is called internally 6-connected. A graph is said to be minimal if it is a planar graph with
the fewest vertices requiring five colors. In 1913, Birkhoff [3] showed that every minimal
graph is internally 6-connected. In 1948, Bernhart [2] further showed that every minimal
graph is nearly 7-connected.



Appel and Haken proved the Four Color Theorem by showing that every nearly 7-
connected plane triangulation contains one of a set Uz of 1528 reducible configurations
(52 extra configurations not appearing on the published list are necessary for their 4-color
algorithm to avoid immersion problems [see p. 255 in 1]). Their algorithm is, then, in
an arbitrary plane triangulation G, to find either a k-ring for k£ < 4, a non-trivial 5-ring,
a bending 6-ring, or a configuration in Uz. Once finding one of these structures, their
algorithm recurses on at most three smaller graphs, whose colorings are combined to give
a coloring of G.

The structure that causes the most trouble algorithmically is the bending 6-ring; it
is the only structure that requires the coloring of three smaller graphs. The new proof
of the Four Color Theorem by the authors [8] shows that every internally 6-connected
plane triangulation contains one of a set U of 633 reducible configurations. Thus the new
algorithm finds either a k-ring for £ < 4, a non-trivial 5-ring, or a configuration of U in a
plane triangulation and recurses on at most two smaller graphs. Avoiding the other small
rings would not improve the complexity of the algorithm.

In more detail, let a near-triangulation be a connected plane graph where every finite
face has degree three. Then K is a configuration if K is a near triangulation G(K) together
with a function yx from V(G(K)) to the non-negative integers such that properties 1, 2,
and 3 below hold. The property of a configuration being reducible will be discussed later.
Let the ring-size of K be ), (yx(v) —deg(v) — 1), summed over all vertices v incident with
the infinite face such that G(K) — v is connected.

1. for every vertex v, G(K) — v has at most two components, and if there are two, then
VK (v) = deg(v) + 2;

2. for every vertex v, if v is not incident with the infinite region, then vy (v) = deg(v),
and otherwise yx (v) > deg(v); and in either case, vk (v) > 5;

3. the ring-size of K is at least 2.

In a figure, for a vertex v, the value of yx(v) will be indicated by a shape in the
figure. The standard shapes are a solid dot if vk (v) = 5, a circle if yx (v) = 7, a square if
vk (v) = 8, a triangle if yx(v) = 9, a pentagon if vk (v) = 10, and no shape if v (v) = 6.
An example of a configuration of ring size 14 appears in Figure 1.

Figure 1. A configuration.

Let a configuration K be weakly contained in a plane graph G if there is a function f
from V(G(K)) to V(G) and a function g from the interior faces of G(K) to F(G) such that

1. for every v € V(G(K)), deg(f(v)) = vx (v);
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2. for every v,w € V(G(K)), if v is adjacent to w in G(K), then f(v) is adjacent to f(w)
in G.
3. for every interior face F' = wow, g(F') = f(u) f(v)f(w).

Also, let a configuration K be strongly contained in a plane graph G if K is weakly
contained in G by means of functions f, g which also satisfy that

4. for every v,w € V(G(K)), if f(v) = f(w), then v = w.
5. for every v,w € V(G(K)), if f(v) is adjacent to f(w) in G, then v is adjacent to w in
G(K).

Figure 2 shows the configuration of Figure 1 strongly contained in a plane graph, and
also weakly, but not strongly contained in a plane graph.

Figure 2. Examples of strong and weak containment.

The authors used the discharging method with 32 discharging rules to show that every
plane triangulation G of minimum degree five weakly contains a configuration in U. This
is formally stated as Theorem 1 below, which is followed by a sketch of the proof. For
more details, see [8]. The proof of Theorem 1 is a very lengthy case analysis. It is written
formally so that it can be verified by a computer in a few minutes or by a conscientious
reader in a few months. The proof, as well as a paper explaining it and the computer
program to verify it, is available by anonymous ftp from ftp.math.gatech.edu in the
directory pub/users/thomas/four.

Theorem 1. Every plane triangulation of minimum degree five weakly contains a configu-
ration in U.



For each vertex z of G, let charge(z) = 10(6 — deg(z)). Since G is a triangulation,
a simple manipulation of Euler’s formula gives }_ ¢ () charge(z) = 120. The particular
value 120 is not important, just that it is positive. Without modifying the charges, this
simply says that every plane triangulation has a vertex of degree at most five. The dis-
charging method works by sending the positive charge away from these vertices, and then,
as can be seen by recounting the modified charges, there must still remain positive charge
somewhere. Examining the rules that are used to move the charge shows that in each possi-
bility of a vertex z having positive modified charge, the graph has one of the configurations
of U present within the second neighborhood of 2 (meaning the vertices distance at most
two from z). Three of the 32 rules that the authors used are as follows:

1. For each edge st such that deg(s) = 5, send a charge of 2 from s to ¢.

2. For each triangle stu such that deg(s) < 6, deg(t) > 7, and deg(u) = 5, send a charge
of 1 from s to t.

3. For each pair of triangles stu, suv such that deg(s) < 6, deg(t) > 6, deg(u) < 6, and
deg(v) = 5, send a charge of 1 from s to t.

Each of the 32 rules sends a charge of 1 (or 2 in just Rule 1) from a source s to a sink ¢
along the edge st dependent only upon the degrees of certain vertices distance at most two
from each of s and £. In the 1960s, when it was as yet uncertain that the method of reducible
configurations would be able to solve the Four Color Problem, Heesch [7] conjectured that
the discharging method could be used to solve it, and further, that the modified charge of a
vertex x could be determined by only examining vertices distance at most two from z. The
authors have verified this conjecture. This property of the rules is the one that forces any
weakly contained configuration K found via discharging to be entirely within the second
neighborhood of the vertex whose charge is positive. This in turn shows that if K is not
strongly contained in the graph, then either a k-ring for £ < 4 or a non-trivial 5-ring is
present in the graph.

This is more easily seen using a property of U that was accidental. It turns out that
every configuration K of U has diameter at most four; i.e. that each pair of vertices of
G(K) have distance at most four in G(K). Using this bound on the diameter, it is easily
seen that if K is weakly, but not strongly contained in G, then G has a k-ring for k£ < 4 or
a non-trivial 5-ring.

Now the reducibility of configurations will be discussed. Instead of giving a formal
definition of reducibility (which can be found in [8]), the properties of reducibility that are
needed for the algorithm will be stated.

Given a coloring ¥ of a graph G, a pair P of colors, and a vertex z of G colored a
color in P, let H(P) be the graph induced by the vertices colored a color in P, and let
H(P,z) be the component of H(P) containing z. Let the coloring ¥’ of G obtained from
¥ by recoloring each vertex v in H (P, z) with the color in P\ {¥(v)} be called the coloring
which is Kemped from ¥ at x by P. This process of recoloring to get from ¥ to ¥’ is called
a Kempe.

Let K be a configuration of ring-size r strongly contained in a triangulation G. Let H
be the graph obtained from G by deleting the image of G(K); H has a face with a facial
walk of length r where the copy of G(K) used to be; call R the vertices incident with this
face. Given a coloring ¥ of H with colors in {1,2,3,4}, then ¥ can be Kemped into a
coloring ® of H if there are an integer j > 0 and colorings ®(, ®1,...,®; of H such that
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D)=V, P, =, and for i € {1,...,j}, ®; is Kemped from ®,_; at some vertex of R by
some pair of colors in {1,2,3,4}.

Finally, a configuration K of ring-size r is reducible if for every triangulation G strongly
containing K, there is a set T of at most four edges of GG, each incident with an image of
a vertex of G(K), such that if J is obtained from G by contracting the edges of T', then J
is loopless, and for every coloring ¥ of J, the coloring of G \ G(K) induced by ¥ can be
Kemped into a coloring ® which is extendable into a coloring of G. Moreover, if ¥ is given,
® can be found by performing at most 3%” Kempes.

Remark: The restriction on the size of T' is not important for the algorithm. Also,
it was easier for the presentation here to let T' depend on G. This does not appear in
the true definition of reducibility; the edges are chosen from looking at K only, not G. In
fact, the true definition includes no reference to a graph G at all. Checking whether a
configuration is reducible only requires the manipulation of colorings of R (whose size is at
most 7, regardless of G) that do not extend into G(K). This is a finite problem.

It has been claimed that the 633 configurations of U previously mentioned were all
reducible. Many configurations of small ring-size have been shown to be reducible by hand
[see, e.g. 3], but most configurations of large ring-size have been shown to be reducible
by means of a computer program. The C program that the authors used, as well as
the configurations in appropriate form for input and a paper explaining the details of
the program, is available by anonymous ftp from ftp.math.gatech.edu in the directory
pub/users/thomas/four.

Now the algorithm can be described.

Algorithm 1.

The input to the algorithm will be a normal plane graph G with n vertices. The output
will be a coloring of the vertices of G with four colors.

If n < 4, just color each vertex a different color. Clearly this uses only constant time.

If G has a face F' of degree at least four, then by planarity, there are two non-adjacent
vertices z,y incident with F'. Create H from G by identifying  and y into a vertex z, and
recurse on H. Color G by coloring each of z,y the color of z, and the other vertices receive
the colors they received in H.

If G has a vertex z of degree k < 4, then the circuit C' surrounding it is a k-ring. Go
to the k-ring analysis below.

Otherwise G has minimum degree five. By Theorem 1, G must weakly contain a
configuration in U. Find a configuration K in U that is weakly contained in G. There are
several linear algorithms to perform this, as each vertex of a configuration in U has degree
at most 11. If K is not strongly contained in G, then let C be a k-ring for £k < 4 or a
non-trivial 5-ring in G. Go to the k-ring analysis below.

Otherwise K is strongly contained in G. Suppose K is a configuration of ring-size r.
Every configuration in U has r < 14. Let H be the graph obtained from G by deleting the
image of G(K). Let R be the set of vertices, and T be a set of edges as in the definition of
reducibility, and then let J be the graph obtained from G by contracting T'. Recurse on J.
This induces a coloring ¥ of H. Kempe the vertices of R until a coloring ® is found that
extends into K. Since K is reducible, ® can be found by performing at most 32" Kempes,
each of which takes linear time.



Given a ring R which is either a k-ring for k£ < 4 or a non-trivial 5-ring, a procedure
developed by Birkhoff [3] can be used. Let E, I be the subgraphs of G on the exterior and
interior of R. First form a suitable graph H; from G by deleting E, and performing simple
operations to triangulate it (see one of [1, 3, 8] for details). Recurse on H;. This induces
a coloring of G\ E. Then form a suitable graph Hs from G by deleting I, and performing
simple operations (which in this case depend on the coloring of H;) to triangulate it.
Recurse on H,. This induces a coloring of G\ I. Birkhoff proved that the colorings of G\ E
and G\ I can be Kemped to match on R. For the analysis, it is important to know that the
simple operations performed to create H; and Hj are such that |V (H;)| < n, |V(H2)| < n,
and |V (Hy)|+ |V (H2)| <n+6.

Theorem 2. Algorithm 1 4-colors a plane graph in quadratic time.

Indeed, the algorithm calls itself at most O(n) times and as shown within the descrip-
tion, each iteration takes linear time. Thus the overall running time is O(n?). O
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