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ABSTRACT
Display advertising has been a significant source of rev-
enue for publishers and ad networks in online advertising
ecosystem. One important business model in online display
advertising is Ad Exchange marketplace, also called non-
guaranteed delivery (NGD), in which advertisers buy tar-
geted page views and audiences on a spot market through
real-time auction. In this paper, we describe a bid landscape
forecasting system in NGD marketplace for any advertiser
campaign specified by a variety of targeting attributes. In
the system, the impressions that satisfy the campaign tar-
geting attributes are partitioned into multiple mutually ex-
clusive samples. Each sample is one unique combination
of quantified attribute values. We develop a divide-and-
conquer approach that breaks down the campaign-level fore-
casting problem. First, utilizing a novel star-tree data struc-
ture, we forecast the bid for each sample using non-linear
regression by gradient boosting decision trees. Then we em-
ploy a mixture-of-log-normal model to generate campaign-
level bid distribution based on the sample-level forecasted
distributions. The experiment results of a system devel-
oped with our approach show that it can accurately forecast
the bid distributions for various campaigns running on the
world’s largest NGD advertising exchange system, outper-
forming two baseline methods in term of forecasting errors.

Categories and Subject Descriptors
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1. INTRODUCTION
Online advertising has become a major industry. In 2009,

despite the total advertising expenditures in U.S. declined
12.3% due to economic recession, online display advertising
geared up 7.3% [10]. Such a tremendous growth is logi-
cally due to the need of online advertisers for both brand
awareness and direct responses. Most publishers sell their
premium ad inventories to the highest-paying advertisers
through their direct sales channel on a guaranteed basis,
called guaranteed delivery (GD). By this way, inventories
must be delivered systematically to achieve the desired im-
pression goals committed by the publisher’s direct sales force.
On the other hand, publishers usually sell their remaining ad
space on a non-guaranteed basis through their direct sales
channel, as well through their indirect sales channel, typ-
ically through an online auction mechanism. This market
place is called non-guaranteed delivery (NGD). It takes the
advantage of ad networks and ad exchanges that provide a
bidding platform for buyers to bid for ad impressions.

NGD is a dynamic system which relies heavily on the bid-
ding price. On a specific publisher, the number of available
impressions is relatively stable, that is, the overall user vis-
its during a certain period will not change much. Thus, the
actual impression delivered for an ad campaign mostly de-
pends on its winning rate, which is decided by the bidding
pricing and the demand landscape in the marketplace. The
role of bid landscape forecasting in NGD is to predict the
bid price distribution that a given ad campaign would fetch
on the display advertising exchange marketplace. It’s much
needed to provide a bid landscape (distribution) forecasting
on how many impressions an advertiser can win if bidding
at a certain bid amount. This functionality is very useful
for advertisers to obtain budget guidance as well as for the
publishers to allocate NGD traffic and set price for their
inventories [13].

The major difficulties of NGD bid landscape forecasting
lie in forecasting for new or changed ad campaigns, and
forecasting the winning rate on an unseen bid value. An-
other difficulty lies in the variety of ad campaign targeting
attributes. For every campaign, there is a targeting pro-
file describing all its targeting attributes. Advertisers can
change or add new targeting attributes at any time to the
profile. For example, an advertiser’s targeting may include
users in certain geographic locations regardless of age, while
excludes some publishers; or the advertiser can target at
users who are interested in movie at a specified time, and
change to target at users interested in sports later. In ad-
dition, different combinations of targeting attribute values
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have different supply/demand and thus different competi-
tiveness in the NGD marketplace, which leads to different
bid landscapes. Figure 1 shows a bid landscape example
of two consecutive months from one sample campaign in a
real display ad network, represented by cumulative density
function (CDF). The CDF value at a certain bid amount
indicates how much traffic the advertiser can win if bidding
at this price. As clearly shown in the figure, the shapes of
the two curves differ distinctly, and the CDF value of month
1 changed almost at all bid price in month 2. The changes
in the distribution are mostly caused by the changes of tar-
geting attributes. Therefore, direct prediction of each cam-
paign which contains targeting to many different attributes
is not effective, we need a more general way to estimate the
winning bid distribution at finer granularity based on the
campaign/advertiser’s specific targeting attributes.
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Figure 1: Actual cumulative histograms for two con-
secutive months of a sample campaign

In this paper, we develop a bid landscape forecasting sys-
tem for NGD ad exchange marketplace to provide bidding
guidance for both publishers and advertisers. Instead of di-
rect prediction of each campaign, we break down the prob-
lem to perform forecasting on each combination of targeting
attribute values, namely a sample, to meet the variety of ad-
vertisers’ targeting requirements. In the targeting profile of
each campaign, every targeting attribute can have multiple
values. We define a sample as a unique combination of tar-
geting attribute values. For example, for a campaign with
following target profile: target to publisher P1 and P2, male
users in age (18-23) or (30-35). We have several samples to
represent it. S1: publisher=P1, gender=male, age in (18-
23); S2: publisher=P2, gender=male, age in (18-23). S3:
publisher=P1, gender=male, age in (30-35); and S4: pub-
lisher=P2, gender=male, age in (30-35). We produce the
estimated bid for each sample, using non-linear regression
with gradient boosting decision tree (GBDT) [7]. Because
history information is very important in sample-level bid
forecasting, a novel star-tree data structure is introduced to
store it. A template matching method is designed to deal
with the low coverage in exact match for history search. It
also has the advantage of smoothing the low confidence his-
tory measures caused by data sparseness. Then we propose a
mixture-of-log-normal model to generate campaign-level bid
landscape forecasting based on the sample-level estimated
statistics. The experiment results show that our system can
accurately forecast the bid distribution for targeting pro-
files with various targeting attributes running on the world’s
largest NGD advertising exchange system.
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Figure 2: NGD bid landscape forecasting system

The rest of the paper is organized as follows. In the next
section, we give an overview of the proposed bid landscape
forecasting system architecture. The details of the developed
approach is presented in Section 3. In Section 4, we discuss
the evaluation results of our system running on a real world
display ad exchange. The related works is summarized in
Section 5. Finally, we conclude the paper with future work
in Section 6.

2. OVERVIEW OF THE NGD BID LAND-
SCAPE FORECASTING SYSTEM

Given an advertiser campaign, directly tracking the his-
torical bid histogram to perform forecasting is not applicable
because if the advertisers’ targeting profiles have changed
or are going to change, the winning bid value in the mar-
ketplace could change accordingly. Therefore, we develop
a three-step divide-and-conquer approach for our NGD bid
landscape forecasting system. First, each campaign is de-
composed into samples based on their targeting, then we
perform forecasting on the finer sample-level granularity. In
the end, the sample-level estimations are aggregated using
model fitting to predict the bid landscape at campaign level.
The whole procedure is summarized in Figure 2.

The entire NGD bid landscape forecasting system can be
roughly divided into two parts, offline process and online
serving. In the offline process, we perform data preprocess-
ing, feature extraction, history index building and predic-
tion model training. In a typical NGD display advertising
system, every bidding and serving event, including the ad
opportunity, winner of this auction and the user viewed this
ad impression is logged. Every ad opportunity is described
by its attributes, including url, publisher, ad position; and
user demographic, geo location information; while the win-
ner information includes winning bid value, actual payout
etc. Typically, there are a myriad of targeting attributes.
Most of them are complex boolean targeting logic rules to
match the ad inventory advertisers want to target. Thus,
feature selection is a crucial factor in the system. There
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Figure 3: The log of winning bid prices of a sam-
ple on the NGD marketplace as fitted with normal
distribution

are several possible ways to evaluate features, such as de-
cision tree based method [2] or feature weighting by rele-
vance [8]. In this work, we select a subset of features by the
Fast-Correlation Based Filtering (FCBF) method proposed
in [14] because of its efficiency in dealing with large amount
of features. FCBF is a deterministic algorithm to elimi-
nate attributes that are either uncorrelated with the target
value, or redundant when considered along with other at-
tributes that have higher correlation with the target value.
It enables us to cut down the feature search time consider-
ably, since we are able to search a limited subset of the space
while having reasonably high confidence that a representa-
tive sample of the entire space are covered. It computes the
correlation between features and target values in terms of
symmetric uncertainty (SU), defined as:

SU(X,Y ) = 2
IG(X|Y )

H(X) +H(Y )
, (1)

where IG is the information gain, and H is the entropy.
IG(X|Y ) measure the additional information of X provided
by Y, and IG(X|Y ) = IG(Y |X). SU is a normalized mea-
sure of IG compensating for IG’s bias on feature cardinality.
After selecting a subset of the features, we aggregate the
historical data according to them for sample generation and
star tree expansion, which will be described in detail in the
next section. The history index is built for all paths in the
star tree. With the data stored in the star tree, we train
and validate our prediction model.

In an online serving session, when an advertiser call comes,
samples are generated according to the targeting logics de-
scribed in its targeting profile. Then we query the history in-
dex to get history bid information for every sample. The his-
tory features together with the samples’ targeting attribute
values are fed to the prediction model. The estimated pa-
rameters of bid distribution for each sample is then obtained.
Finally, the sample-level estimations are aggregated to get
the bid distribution for the campaign of the ad call.

3. NGD BID LANDSCAPE FORECASTING
In the NGD marketplace, the bid values of most samples

exhibit heavy-tailed distributions. While the vast majority
of prices are low, there are significant numbers of opportu-
nities that fetch higher bids. After taking the log of the bid
values, the distribution can be reasonably approximated by
a normal distribution. See Figure 3 for an example. Based
on this assumption, the problem of estimating sample-level
bid distribution is reduced to estimating the bid mean and
standard deviation (std) of log-normal distribution. In this

section, we concentrate on star tree expansion with runtime
lookup via templates, sample-level bid mean and std predic-
tion, and aggregation of sample-level estimation to get bid
distribution for every ad campaign.

3.1 Online Bid History Lookup
Two important features we use to forecast bid mean and

std for a sample are its historical bid mean and std. There-
fore we need to build a history lookup table for every possible
combination of targeting attribute values. This task can be
achieved in two steps. In the first step, we introduce a bid
star tree to expand our observed samples to cover as much
targeting space as possible. In the second step, we retrieve
the bid history for testing samples by searching in the tree
with the help of templates. In this section, we will explain
the bid star tree expansion and how to select templates for
runtime lookup.

3.1.1 Bid Star Tree Expansion
Bid history lookup table can be organized into a tree struc-

ture, where each level corresponds to one targeting attribute
and each path represents a sample. An example tree is
shown on the left side of Figure 4. There are three tar-
geting attributes TA1, TA2 and TA3 so each path has a
length of three. TA1 can have two values: a1 and a2; TA2
can have one: b1; and TA3 can have two: c1 and c2. We
observe three unique samples in history: a1b1c1, a1b1c2 and
a2b1c1. The three leaf nodes at the bottom store the corre-
sponding bid mean and std values. Note that when a sample
has no impression observed (e.g. a2b1c2), it is not included
in the tree. The bid history lookup table is generated by
populating observed impressions into the tree structure.

This simple structure works well for samples with suffi-
cient histories but has several limitations. First of all, if a
testing sample is never observed before, we are unable to find
its history in the tree. In addition, there are a large num-
ber of rare samples whose bid are too sparse to be reliable.
Therefore we need to introduce a smoothing mechanism to
deal with unseen or rare samples. Another scenario that the
simple lookup tree cannot handle is when a testing sample
consists of a special “targeting all” value for one or more at-
tributes. This value means that the advertiser does not care
about a particular attribute and any value for that attribute
is considered as a match.

In order to solve these problems, we introduce a “star”
value for each targeting attribute. This value is used to
represent “targeting all” for that attribute as well as those
with few or no histories. For each internal node in the lookup
tree, we add one star node as its child. If the star node is
not at the bottom level, we also add additional nodes as
its children as if it were a normal node. An example is
shown on the right side of Figure 4. New edges are added
in bold lines. Now one impression can match multiple paths
in the tree. For example, an impression with values a1b1c1
matches paths ***, **c1, *b1*, *b1c1, a1**, a1*c1, a1b1*
and a1b1c1. This impression will be considered in the bid
mean and std calculation of all those paths. The star nodes
play an important role in smoothing. For example, if we
want to look up the history for a2b1c2 in the tree shown
in Figure 4, we cannot find an exact match because this
sample is new. But we may choose a similar path a2b1* or
*b1c2 for approximation. In addition, we can remove the
paths with very few impressions because their bid history is
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Figure 4: Bid star tree expansion. Left: original bid
tree build by raw events. Right: bid star tree by
star value expansion

too sparse, and rely on similar star paths for more reliably
bid estimation. By doing so, we also reduce the storage
space significantly. Another advantage of the star tree is
to support the ”targeting all” values easily. When a testing
sample consists of such a value, we just need to replace it
with a star and look up the tree like regular samples.

3.1.2 History Lookup via Templates
While the star tree provides smoothed estimation for bid

history and supports the “targeting all” value, it also intro-
duces a new challenge, i.e., how to find the most similar path
to a testing sample. In the ideal case, the testing sample can
find a path exactly match itself. If an exact matched path
does not exist, we still want to find a path which shares
the largest number of most important targeting attribute
values. Templates are introduced for the purpose of find-
ing the most similar path in the star tree, when there is no
exact match. There are two matching types for each tar-
geting attribute: one is exact match, denoted as “v” match;
the other is star match since star value means “targeting
all” and is considered a match for any value, denoted as “*”
match. A template is defined as a combination of matching
types for each targeting attribute. D targeting attributes
lead to D-dimensional templates. For one example, we have
a template Tk = [Tk1Tk2 . . . Tkd . . . TkD] where Tkd ∈ {∗, v}
and a sample si. When we apply Tk to mask si, denoted
as “s′i = si ⊕ Tk”. If Tkd = v, the dth original targeting
attribute value of si (sid) remain unchanged; while Tkd = ∗,
sid is changed to star in the output s′i. If s′i exists in the
tree, we get a matching path for si. For the star tree shown
in Figure 4, if si = a2b1c2 and Tk = [vv∗], s′i = a2b1∗ is a
matching path for si. We define the similarity score between
si and s′i as simScore(si, s

′
i) =

∑D
d=1 λdδ(sid, s

′
id), where

λd is the feature importance of the dth targeting attribute
(TAd). δ(sid, s

′
id) equals 1 if sid = s′id for TAd and 0 other-

wise. The similarity score is calculated as the overall weight
of retained attributes. To measure the feature importance
λd, we use SU defined in Eq.(1) because it is non-negative
and normalized to the range [0,1], i.e., λd = SU(TAd, bid).
Accordingly, we can assign a quality score to any template
Tk as qualityScore(Tk) =

∑D
d=1 λdδ(Tkd, v). Because if Tk

has “v” at the dth dimension, i.e. Tkd = v, its masked out-
put is guaranteed to equal to the original sample for the
dth targeting attribute value. It is also clear that the all “v”
template keeps all the original targeting attribute values and
thus has the highest quality. Therefore, high quality tem-

Algorithm 1 Training algorithm for template selection

1. Function templateSelection(trainingSamples si, impi,
featureWeight λ, numberTemplate K)

2. qualityScore=(0)
3. for each possible template Tk, k ∈ {1, 2, . . . , 2D}
4. qualityScore(Tk) =

∑D
d=1 λdδ(Tkd, v)

5. sort {Tk} by qualityScore in decreasing order → {Tsorted}

6. coverageScore=(0);
7. for each si, i ∈ {1, 2, . . . , N}
8. Ttmp = T1 in {Tsorted}
9. while (si ⊕ Ttmp not exist)
10. Ttmp ← next Tk in {Tsorted}
11. coverageScore(Ttmp) = coverageScore(Ttmp) + impi

12. sort {Tk} by coverageScore
{Tselected} ← top K templates

13. if (all-star template 6∈ {Tselected} )
replace the last in {Tselected} with all-star template

14. return {Tselected}

plates assure high similarity between their masked outputs
and the original sample.

Finding the most similar path via template is by no means
an easy task because runtime history lookup is subject to
the curse of dimensionality even with tens of dimensions.
For example, for a star tree with 20 targeting attributes,
there will be 220 possible templates. In the worst case, we
may need to scan the outputs from all the templates for a
match, and end up with stars for all dimensions. This is not
practical in a real system. It is desirable to find a small set of
templates, which can limit the search space as well as retain
the similarity between samples and their matching paths in
the tree as high as possible. We develop an algorithm to
solve this problem, as shown in Algorithm 1.

The input of this algorithm consists of a set ofD-dimensional
training samples {s1, s2, . . . , sN}, the aggregated numbers of
impressions for each sample {imp1, imp2, . . . , impN}, fea-
ture importance values of the D targeting attributes λ =
(λ1, . . . , λD) and the number of templates we want to select
K. Note that the samples used here are held-out data that
are not used in building the star tree. More specifically, we
use samples from time period t1 to build the star tree and
samples from time period t2 to select templates. The aggre-
gated impressions impi are also calculated from t2 events.

The criteria for template set selection are high quality and
high coverage. As shown by lines 2-4 in Algorithm 1, we first
compute the quality score for every possible template. Then
the templates are sorted by quality score in decreasing order.
For each sample si, we sequentially mask it with templates
from the sorted list. If the output path si ⊕ T exists in the
star tree, we stop and update the coverage score for template
T . The detailed calculation is shown in lines 6-11. Finally,
the templates are sorted by coverage score and the top K
templates are selected. If there is a tie, the template with a
higher quality score is chosen. All-star template is a special
template because any sample is guaranteed to have at least
one matching path in the star tree (all-star path) by masking
to it. Then if it is not in the selected template set, we add
it in to replace the last one.

We perform the template selection training offline. Al-
though it seems time consuming in searching the outputs of
sample s masked by all templates, most of the time, it will
stop at the first several templates. And in our system, the
search in Algorithm 1 line 9-10 is not performed template by
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template; instead, we query the star tree with the outputs
from tens of templates in parallel. Also because the selected
template set changes very slow from time to time, we only
need to train it once for several months. For online history
lookup, we mask an incoming sample with all the templates
selected, typically around 30, and send all the outputs in
parallel to query the history star tree. From all the existing
paths, we choose the one whose template has the highest
quality score. The bid history stored in its leaf node will
then be retrieved.

3.2 Bid Forecasting using Gradient Boosting
Decision Trees

In our experiments it shows that although historical fea-
tures are very important, other user features and publisher
features also have strong impact on the bid values. To ex-
ploit those features effectively we use regression method for
bid mean and std forecasting. In the regression formaliza-
tion, those ad opportunity features also act as a smoothing
factor for samples with sparse history. Gradient boosting
decision trees (GBDT) [4, 5, 7] model is used for the regres-
sion because it is especially effective for prediction based
on a large number of potentially interacting categorical and
continuous variables. This is particularly desirable as al-
most all of our targeting attributes are categorical. It can
be shown that GBDT, a weighted additive expansion of weak
trees, can produce an excellent fit of the predicted values to
the observed values, even if the specific nature of the rela-
tionships between the predictor variables and the dependent
variable of interest is very complex (nonlinear in nature).

From the statistics point of view, regression problem can
be formulated as follows: given a set of training samples
{(xi, yi)}Ni=1 with xi ∈ X and yi ∈ Y, the goal is to find a
function F ∗(x) that maps X to Y, such that the expected
value of some specified loss function ` over the joint distri-
bution of all (y,x)-values is minimized

F ∗(x) = arg min
F (x)

Ey,x{`(y, F (x))}.

GBDT generates a prediction model in the form of an en-
semble of a sequence of simple decision trees as base learner,
where each successive tree is learned for prediction residuals
of the preceding trees. We use least square gradient boost-
ing tree, which performs least-squares residual fitting, with
a square-error loss function. Assume that the scaling pa-
rameter is incorporated in the base learner h(x; a), with F0

be the sample average, the splitting variables a and F (x)
are updated at each step m:

F0(x) =
1

N

N∑
i=1

yi

am = arg min
a

N∑
i=1

[yi − Fm−1(xi)− h(xi; a)]2 (2)

Fm(x) = Fm−1(x) + h(x; am).

There are many advantages of using the least-square boost-
ing tree for our prediction problem. For example, no nor-
malization is needed when using different types of features.
The tradeoff between runtime efficiency and accuracy can
be easily achieved by truncating the number of trees used
in the model. Feature importance is also a byproduct of
the boosted trees model because it performs greedy feature
search when selecting splitting features. The boosting tree

Algorithm 2 Pseudocode for online bid landscape forecasting

1. Function getBidHistogram(campaign CP, templates {Tk}Kk=1,
history bid star tree, GBDT model)

2. matching samples {s1, s2, . . . , sN} ← CP’s targeting profile

3. for each si ∈ {s1, s2, . . . , sN}
4. {s(1)i , s

(2)
i , . . . , s

(K)
i } = si⊕ all T ∈ {Tk}Kk=1

5. query history tree for all s
(k)
i in parallel

6. s′i ← exist(s
(k)
i ) with max quality score,

get historical bid mean Ẽ(s′i) and std ˜std(s′i)

7. (Ê[si], ˆstd[si])← GBDT (si1, . . . , siD, Ẽ(s′i),
˜std(s′i))

8. (µ̂i, σ̂i
2)← (Ê[si], ˆstd[si]) by Equation 4

9. histogram(CP) ← mixture of si ∼ Log −N (µ̂i, σ̂i
2)

10. return histogram(CP)

prediction also has good scalability, it can be easily extended
if we add new features as regressors. In our experiments, we
also demonstrate the effectiveness of using the powerful tool
- GBDT for sample-level prediction in Section 4.2.1.

3.3 Aggregation of Sample-level Estimation
From the observation that the sample winning bid values

are log normal distributed, the campaign level bid distri-
bution is modeled by a mixture of log normals, with each
component be a log-normal distribution of sample-level es-
timated bid mean and std. To formalize, the probabil-
ity of the data given a finite mixture model (FMM) [9] is

P (X|Θ) =
∑C

j=1 πjP (X|θj), where πj is the prior probabil-

ity (or mixture proportion) of each component and θj is the
model parameter, C is the total number of mixture compo-
nents. In our model, the bid distribution of each sample s
is a mixture component, x = bid(s) ∼ Log −N (µ, σ2),

fs(x;µ, σ) =
1

xσ
√

2π
e

−(lnx−µ)2

2σ2 , x > 0;

the probability density function of campaign level bid price
X can be represented by:

f(X|x; θ1, θ2, . . . , θC ;π1, π2, . . . , πC) =

C∑
j=1

πj
1

xσj

√
2π
e

−(lnx−µj)
2

2σ2
j , (3)

where 0 < πj < 1, and
∑C

j=1 πj = 1.
We take the weighted sum of the probability density func-

tion of sample-level bid to estimate the campaign-level bid
distribution. The sample level bid distribution is represented
by its mean E[s] and std std[s] in the original linear space,
we can simply get the parameters µ and σ of log normal
distribution via:

µ = ln(E[s])− 1

2
ln(1 +

std[s]2

E[s]2
)

σ2 = ln(1 +
std[s]2

E[s]2
) (4)

The weights of each mixture component πj are assigned
based on different metrics for each sample, such as the num-
ber of expected available impressions. Alternatively, πj can
also be learned to maximize log-likelihood [3]. Our experi-
ment shows that the finite mixture model we proposed is par-
ticularly well-suited to the representation of the campaign-
level bid distribution.
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Our divide-and-conquer approach for campaign level bid
landscape forecasting is summarized in Algorithm 2. Note
that in the online process, the for-loop in lines 3-8, esti-
mation of each sample bid mean Ê(si) and std ˆstd(si) is
conducted in parallel on a distributed computing infrastruc-
ture. This makes the whole procedure very fast so that the
estimated bid histogram can be returned in real time.

4. EXPERIMENTS
In this section, we discuss the experiments we conducted

to validate our approach. We apply our method to an in-
dustry leading NGD exchange system and conduct extensive
evaluation with real online event log data and advertising
campaigns.

4.1 Data Set
We collect the actual bid events from three consecutive

time periods, t1, t2 and t3, sampled from the world’s largest
NGD exchange system, RightMedia Exchange. In our ex-
periment, each time period t contains 30 days. We forecast
the bid distribution in a certain time period based on the
data from the previous time period. To be specific, we train
a prediction model using t1 and t2 data, and testing the
model on the forecasting of t3 bid distribution.

In the daily NGD bid event log, we recorded the informa-
tion of every auction on both publisher side and user side.
Users are anonymized to hide personal identifiable informa-
tion. We also record the most important bid related at-
tributes, such as winning bid value, pricing type, advertiser
payout. From these bid events, we performed feature se-
lection as explained in Section 2, and selected 15 targeting
attributes in our experiments, including user age, gender,
geo location, segments, ad position, ad size, publisher page
categories and others. Based on these targeting attributes,
we aggregated the bid events in t1 and t2 respectively into
raw samples without “*”, and record the bid mean and std
of each sample. Then we expand two bid star trees for t1
and t2 based on their raw samples as described in Section
3.1.1. For each time period t, there are 15 billion impressions
and we aggregated them to about 5M number of unique raw
samples, each is a combination of the 15 targeting attribute
values. After star tree expansion, we have approximately
120M number of distinct leaf nodes/samples in each tree.
Post pruning is performed with an impression threshold of
200 in order to remove the rare samples for the uncertainty
of their bid mean and std. Finally, 30M leaf nodes are left
in each tree.

For the sample-level forecasting, we trained GBDT regres-
sion models using samples in t2 bid star tree. 10-fold cross
validation is conducted to avoid over-fitting. According to
the method described in Algorithm 1, we selected 30 tem-
plates with samples in t1 and t2 periods as training samples.
Our testing data are composed of 1800 campaigns randomly
sampled from t3 period. We expanded these campaigns into
samples, searched their bid history in t2 star tree, and fed
them to the trained GBDT model to get the sample-level es-
timated bid mean and std. Finally, these estimations were
combined to generate campaign-level bid distribution. We
compared our forecasted bid landscape of t3 to the empirical
bid histogram of the same period for evaluation.

Table 1: Sample level error for bid mean
Bid Samp avg 90%I avg 90%I
Range (%) |erri| (erri) |rerri| % rerri(%)
[0− 0.1) 4.45 0.02 [-0.04 0.04] 34.18 [-61.99 70.06]
[0.1− 0.2) 3.61 0.04 [-0.10 0.06] 29.46 [-65.17 43.00]
[0.2− 0.3) 3.46 0.07 [-0.17 0.09] 29.29 [-66.21 35.63]
[0.3− 0.4) 3.59 0.10 [-0.22 0.11] 27.06 [-62.41 31.30]
[0.4− 0.5) 4.54 0.11 [-0.26 0.14] 25.35 [-58.64 30.39]
[0.5− 0.6) 4.23 0.14 [-0.33 0.17] 25.79 [-59.72 30.77]
[0.6− 0.8) 6.20 0.19 [-0.43 0.19] 27.26 [-62.01 26.72]
[0.8− 1.0) 5.83 0.24 [-0.55 0.30] 26.72 [-61.26 33.32]
[1.0− 1.5) 13.35 0.31 [-0.71 0.44] 24.85 [-57.28 35.25]
[1.5− 2.0) 12.04 0.38 [-0.89 0.56] 21.76 [-50.99 32.08]
[2.0− 3.0) 23.80 0.43 [-1.02 0.55] 17.32 [-41.44 22.68]
[3.0− 5.0) 14.29 0.59 [-1.37 0.31] 16.19 [-36.86 8.19]
[5.0−∞) 0.63 1.99 [-3.25 -0.73] 34.60 [-47.47 -21.73]

Table 2: Sample level error for bid std
Bid Samp avg 90%I avg 90%I
Range (%) |erri| (erri) |rerri| % rerri(%)
[0− 0.1) 4.45 0.05 [-0.15 0.09] 40.12 [-85.55 64.10]
[0.1− 0.2) 3.61 0.10 [-0.26 0.12] 31.74 [-71.23 35.29]
[0.2− 0.3) 3.46 0.12 [-0.31 0.16] 30.08 [-68.12 34.04]
[0.3− 0.4) 3.59 0.14 [-0.35 0.21] 29.40 [-65.99 40.51]
[0.4− 0.5) 4.54 0.15 [-0.37 0.25] 27.24 [-61.00 42.50]
[0.5− 0.6) 4.23 0.18 [-0.43 0.27] 26.42 [-59.99 39.88]
[0.6− 0.8) 6.20 0.22 [-0.53 0.30] 25.29 [-58.77 34.74]
[0.8− 1.0) 5.83 0.24 [-0.58 0.32] 23.42 [-55.27 32.25]
[1.0− 1.5) 13.35 0.26 [-0.65 0.33] 21.39 [-51.16 27.63]
[1.5− 2.0) 12.04 0.28 [-0.70 0.34] 18.82 [-45.35 23.74]
[2.0− 3.0) 23.80 0.26 [-0.65 0.37] 15.74 [-38.12 24.39]
[3.0− 5.0) 14.29 0.24 [-0.61 0.45] 13.64 [-31.90 26.46]
[5.0−∞) 0.63 0.50 [-0.97 1.19] 23.33 [-37.47 54.98]

4.2 Results and Discussions
In this section, to demonstrate the effectiveness of our ap-

proach, we present the detailed results of our experiments.
Because the NGD bid landscape forecasting system requires
accurate prediction of bid distribution for each campaign,
we also conduct comparisons of our divide-and-conquer ap-
proach to two baseline approaches on campaign-level bid
histogram estimation. Note that all bid values used in the
experiments are in virtual currency, due to the sensitive na-
ture of the revenue related bid information. The numbers
shown are the actual bid amount in US dollar multiplied by
a scaling factor.

4.2.1 Sample-level Forecasting Error
First, we study the sample-level forecasting error of our

system. Two GBDT models are trained for bid mean and
bid std separately. There are 30 million of unique sample in
our testing data (period t3), including those star nodes. We
randomly sampled 10% of them and compute the estimation
error erri = ŷi − yi and relative error rerri = (ŷi − yi)/yi,
where ŷi is our estimation and yi is the actual value. We
present the average absolute value of these two error met-
rics with their 90% confidence interval. The 90% interval
is a range that 90% of the testing samples have their error
in that range. The numerical results are shown in table 1
for bid mean estimation, and table 2 for bid std estimation
with respect to each bid range shown in the first column.
The bid range is obtained according to the actual bid mean.
The second column shows the percentage of samples falls in
each bid range. From the tables we can see that there are
fewer samples with smaller bid values and more samples with
high bid values. This tells us that samples are more diversi-
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Figure 5: Impression-weighted sample level estima-
tion error for mean and std. The x-axis: bins by
actual bid value; the y-axis: (a).RMSE (b).RMSRE
and (c).impression percentage for each bin.

fied with high bid values, because the advertisers’ targeting
include some specific attribute values which are expensive.
For example, they may target at users who are interested
in diamonds or automobiles. When bid value is less than
1, the number of samples are rather flat because the adver-
tisers’ targeting basically are those common attributes. We
also found that the relative error becomes smaller as the bid
value increases for both bid mean and std, and the confi-
dence interval becomes tight. When the actual bid value is
small, even a little bit over-estimate will result in high rel-
ative error. Despite very few outliers with bid greater than
5, our forecasting tends to be more acurate when the actual
bid value is high.

Because our bid landscape is built on each impression
level, we are also interested in the impression weighted er-
rors. In our GBDT training, samples are not equally weighted.
From our past experience, popular targeting attributes in
the previous month has high possibility to remain popular
in the following month. Therefore, we use history impres-
sions as sample weights because we want to have smaller
errors for samples with high-volume traffic. To measure
sample-level forecasting error, we use impression-weighted
root-mean-sqaured error (RMSE) and impression-weighted
root-mean-squared relative error (RMSRE), defined as:

RMSE =

√√√√ N∑
i=1

Ii(ŷi − yi)2/
N∑
i=1

Ii

RMSRE =

√√√√ N∑
i=1

Ii(
ŷi − yi
yi

)2/

N∑
i=1

Ii (5)

where ŷi is the estimation and yi is the actual value, N is
the total number of samples and Ii is number of impressions
of the ith sample. Within each bid range, we aggregate the
impression weighted square-error into a single measure to
further show the overall predictive power of our system.

The statistics of impression-weighted errors are presented
in Figure 5, with black bars for bid mean and white bars for
bid std. We use the same bid bin as above. For example,
bin 0 contains samples with actual bid mean in [0 - 0.1).
Subfigure(a) shows the RMSE at each bin. Basically, the

RMSE of bid mean increases with bid value. Although the
RMSE of bid mean jumps when the true bid value is greater
than 2, the RMSRE remains small, as shown in Subfigure(b).
Subfigure (b) shows the RMSRE of predicted bid mean and
std. Subfigure(c) describes the traffic distribution in terms
of impression percentage in each bin. Most of the traffic
has the true bid value within 0 to 0.2 or 0.8 to 2. This
gives us a clue of our advertiser behavior. They can be
classified into two groups, one just targets at the general
categories which is relatively cheap, with a goal of receiving
large number of impressions; while the other targets at some
specific segments with high value, very likely to be defined
by the advertiser itself, and is willing to pay more. This is
also shown by that although both groups share about 35%
of the total impressions, the latter has unique samples over
10 times the former as shown in Tables 1 and 2. We use
impression Ii in t2 period as data wights to train our GBDT
model, and subfigures(b)-(c) demonstrate that in prediction
of t3, samples with high impressions have smaller errors in
RMSRE. Bid range [0.1 0.2) and [0.8 2] have 70% traffic,
and the RMSRE is less than 20%. While the errors seem to
be high for bid values in [3 5) and [5∞], the impressions are
only 1.43% and 0.02% of the total traffic respectively.

We also conduct a comparison between GBDT prediction
and direct forecast using history bid average for each sample.
The latter has about 15% and 25% higher overall impression
weighted RMSE and RMSRE respectively. This is because
those samples without an exact match in the history bid star
tree will pick the bid average from a star node, and the bid
values, although smoothed, may be different from the ac-
tual bid values. Besides historical features, other features,
such as publishers, ad position and user segments are also
very important features. The accuracy of simply using the
historical sample bid mean and std, to predict new combi-
nation of target attributes/samples, is inferior to that of our
regression model based approach.

4.2.2 Campaign-level Forecasting Error
After obtaining the sample-level estimated bid mean and

std, we use the mixture-of-log-normal model described in
Section 3.3 for campaign-level bid landscape forecasting. We
also present two baseline methods for comparison as follows
to benchmark our system forecasting accuracy:

Baseline method 1: This method directly uses the em-
pirical bid distribution of t2 period as the estimated bid
distribution of t3 period. It actually copies the recent his-
torical bid distribution if available. Note that baseline 1 has
no generalization ability to predict a new campaign without
history. We compare the proposed method to this baseline
method in order to show that the“divide step”, which breaks
each campaign’s targeting profile into samples, is quite nec-
essary and powerful.

Baseline method 2: Because direct estimation of the
bid value for each impression is not realistic, we performed
sample-level bid estimation as described in Section 4.2.1.
Utilizing the estimated average bid of each sample, we per-
form a rough counting to get the distribution for each line.
Without any assumption of the sample-level bid distribu-
tion, we treat each impression belonging to a certain sample
to have the same bid amount as the average bid of this sam-
ple. We count the number of impressions at each bid amount
and generate the final distribution. By the comparison of

271



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid

CD
F

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid
CD

F
0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid

CD
F

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid

CD
F

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid

CD
F

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid

CD
F

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid

CD
F

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bid

CD
F

Figure 6: The estimated cumulative density function
vs. the actual cumulative density function. Solid
line: actual bid CDF; dotted line: estimated CDF.

our method to this baseline method, we demonstrate the
superiority of the proposed mixture model of log-normals.

For the 1800 campaigns we sampled from t3 data, we study
the actual histogram of bid versus our estimated distribu-
tion. These campaigns cover about 2/3 of the leaf nodes
stored in the bid star tree. Since the estimated distribution
is used to calculate the winning rate, which is more inter-
esting to the advertisers and publishers, we use cumulative
density function (CDF) to represent the histogram.

The bid distributions of eight randomly selected cam-
paigns are shown in figure 6. As expected, our estimated
CDF curve is smoother because it is obtained from a close
form distribution of mixtures. For the actual bid CDF, we
used 50 bins from 0 to 5, with each bin a 0.1 increase, and
counted the actual percentage of the traffic falling in each
bin. We can see that our approach can generate the CDF
close to the actual CDF. The 4 subfigures shown in the top
row of figure 6 demonstrate that we can accurately predict
the bid landscape, while the subfigures at the bottom row
show higher errors. Our predictions tend to under-estimate
the winning rate when the bid value is low, and over-estimate
the winning rate when the bid value is high as shown in
curves at the bottom. But clearly, the estimated distribu-
tions share roughly the same shape as the actual curves,
and follow the actual bid in a decent range. The actual his-
togram shown in the top left-most in Figure 6 is for the same
campaign shown in Figure 1. By our method, we are able
to forecast its bid distribution very well.

The overall errors distribution of the 1800 campaigns are
shown in Figures 7. We compute the average of error erri
and relative error rerri in each bid bin. Similar to sample-
level forecasting accuracy evaluation, we also provide their
90% confidence interval to show the low variance of our sys-
tem. The average error distributions are shown on the left
and relative error distribution are shown on the right. The
two subfigures on the top are the results generated by our
proposed divide-and-conquer (DC) method; the middle sub-
figures are from baseline method 1; the two subfigures at
the bottom are obtained from baseline method 2. For our
DC method, the major error lies in the bins with small bid
value. When the bid value increases, the error bound be-
comes tighter. When the bid is greater than 0.4, the in-
terval becomes quite small. For baseline method 1, only
1309 (72.72%) testing campaigns find their history in t2 pe-
riod, and our testing error is calculated on these campaigns.
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Figure 7: The error and relative error distribution
for testing campaigns in each bin. (a). our proposed
DC method; (b). baseline method 1; (c). baseline
method 2. Left: error distribution; Right: relative
error distribution for testing campaigns.

Moreover, among these campaigns with t2 appearance, only
815 (62.26%) campaigns remain their targeting profile un-
changed. The new coming campaigns and changed cam-
paigns make very high prediction errors. The error value is
higher and the error bound is much wider. Baseline method
2 uses rough counting of the impressions with sample-level
estimated bid. With sample-level estimation, the error is
much smaller compared to baseline method 1. However, the
results show serious under-estimation when the bid amount
is small. The error bound is also considerably wider than
that of our DC method. Beside smaller average error and
relative error, the tighter error bounds in subfigure (a), show
that the estimated cumulative histogram created by our DC
method are more trustable.

We compute the RMSE and RMSRE for each campaign
using Eq. (5), with yi be the CDF value at bid bin i. The
average RMSE and RMSRE with their std over all lines are
summarized in Table 3. For the 1800 testing campaigns, the
RMSRE of our method is only 34.5% of baseline method
1 and 61.5% of baseline method 2; and std is only 5.24%
of baseline method 1 and 61.6% of baseline method 2. We
also conduct chi-sqaure goodness of fit test at the 0.05 sig-
nificance level to check if the observed actual bids fit the
mixture model we proposed. 1630/1800 campaigns pass the
test, counting for 90.56%. This again demonstrates the ef-
fectiveness and robustness of our forecasting system.

5. RELATED WORK
Until recently, there has not been much attention paid to

the forecasting system in display advertising. The focus has
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Table 3: Campaign-level average and std of RMSE
and RMSRE for testing campaigns

avg std avg std
Method (RMSE) (RMSE) (RMSRE) (RMSRE)
DC method 0.1204 0.0379 23.51% 4.53%
baseline 1 0.1695 0.0688 67.88% 86.47%
baseline 2 0.1974 0.0498 38.21% 7.36%

largely been on forecasting in search related online advertis-
ing, such as prediction of click-through-rate or impressions in
sponsored search and content match [11, 1, 12]. Due to the
very different objectives and mechanisms of search related
advertising and display advertising, these techniques can not
be applied directly. More closely related, in display advertis-
ing, some ad networks provide certain forecasting function-
alities for guaranteed delivery (GD). Because in GD most
campaigns are from large advertisers with relatively stable
targeting attribute values and their ads are mostly shown on
large publishers, time series models are typically applied to
predict impressions. Unfortunately, those systems are pro-
prietary thus no public evaluations are reported in the liter-
ature. Moreover, the method proposed in [6] estimates the
distribution of highest bid for bidding agent of GD to meet
the advertiser goal; and the system developed in [13] involves
forecasting of available impressions to optimize inventory al-
location between GD and NGD advertising campaigns. To
the best of our knowledge, we have found no prior work
on a complete bid landscape forecasting system for NGD.
The advantage of our method is that it allows greater flex-
ibility for advertisers in the design and implementation of
their display advertising campaigns. Our system provides a
powerful tool in prediction of the bid distribution with the
advertisers’ varying targeting and bid amount in the NGD
marketplace, which is quite dynamic in nature.

6. CONCLUSION AND FUTURE WORK
The goal of NGD bid landscape forecasting is to forecast

the bid distribution for any advertising campaign in NGD
exchange system. In this paper, we propose a general divide-
and-conquer approach to solve this problem in real time. An
input campaign is decomposed to samples according to the
attribute values in its targeting profile. Using sample his-
tory stored in a novel bid star tree, we forecast the sample-
level distribution by a non-linear regression model. Finally,
sample-level estimates are aggregated using a mixture-of-
log-normal model to generate bid distribution estimation
for the ad campaign. The proposed approach offers both
scalability and generality.

We evaluate our NGD bid landscape forecasting system
experimentally using real data and campaigns collected from
the world’s largest NGD exchange system. The results demon-
strate that the forecasting system we developed can predict
the bid distribution effectively. Comparisons with two base-
line methods show the superiority of our system in the mea-
sure of both forecasting accuracy and robustness. In future
work, we will extend the system to long-term forecasting by
designing time series method to model long term trend and
seasonality patterns in bid evolution. Another future work
is to develop campaign recommendation algorithms on top
of bid landscape forecasting. By suggesting targeting at-
tributes to advertisers, they could optimize their campaigns

on the NGD marketplace to reach their ROI goals and other
objectives more effectively.
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