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I. Stationary Sets

Thomas Jech

1. The closed unbounded filter

1.1. Closed unbounded sets

Stationary sets play a fundamental role in modern set theory. This chapter
attempts to explain this role and to describe the structure of stationary sets
of ordinals and their generalization.

The concept of stationary sets first appeared in the 1950’s; the definition
is due to G. Bloch [16], and the fundamental theorem on stationary sets
was proved by G. Fodor in [24]. However, the concept of a stationary set is
implicit in the work of P. Mahlo [71].

The precursor of Fodor’s Theorem is the 1929 result of P. Alexandroff
and P. Urysohn [2]: if f(α) < α for all α such that 0 < α < ω1, then f is
constant on an uncountable set.

Let us call an ordinal function f regressive if f(α) < α whenever α > 0.
Fodor’s Theorem (Theorem 1.5) states that every regressive function on
a stationary set is constant on a stationary set. As a consequence, a set
S ⊆ ω1 is stationary if and only if every regressive function on S is constant
on an uncountable set.

In this section we develop the theory of closed unbounded and stationary
subsets of a regular uncountable cardinal.

If X is a set of ordinals, then α is a limit point of X if α > 0 and
sup(X ∩ α) = α. A set X ⊆ κ is closed (in the order topology on κ) if and
only if X includes Lim(X), the set of all limit points of X less than κ.
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4 I. Stationary Sets

1.1 Definition. Let κ be a regular uncountable cardinal. A set C ⊆ κ is
closed unbounded (or club for short) if it is closed and also an unbounded
subset of κ. A set S ⊆ κ is stationary if S∩C 6= ∅ for every closed unbounded
C ⊆ κ.

It is easily seen that the intersection of any number of closed sets is closed.
The basic observation is that if C1 and C2 are both closed unbounded, then
C1∩C2 is also closed unbounded. This leads to the following basic property.

1.2 Proposition. The intersection of less than κ closed unbounded subsets
of κ is closed unbounded.

Consequently, the closed unbounded sets generate a κ-complete filter on
κ called the closed unbounded filter. The dual ideal (which is κ-complete
and contains all singletons) consists of all sets that are disjoint from some
closed unbounded sets – the nonstationary sets, and is thus called the non-
stationary ideal, denoted INS .

If I is any nontrivial ideal on κ, then I+ denotes the set P (κ) − I of
all I-positive sets. Thus stationary subsets of κ are exactly those that are
INS-positive.

1.3 Definition. Let 〈Xα : α < κ〉 be a κ-sequence of subsets of κ. Its
diagonal intersection is the set

∆α<κXα = {ξ < κ : ξ ∈ ⋂
α<ξ Xα} ;

its diagonal union is

Σα<κXα = {ξ < κ : ξ ∈ ⋃
α<ξ Xα} .

The following lemma states that the closed unbounded filter is closed
under diagonal intersections (or dually, that the nonstationary ideal is closed
under diagonal unions):

1.4 Lemma. If 〈Cα : α < κ〉 is a sequence of closed unbounded subsets of
κ, then its diagonal intersection is closed unbounded.

This immediately implies Fodor’s Theorem:

1.5 Theorem (Fodor [24]). If S is a stationary subset of κ and if f is a
regressive function on S, then there exists some γ < κ such that f(α) = γ
on a stationary subset of S.

Proof. Let us assume that for each γ < κ there exists a closed unbounded
set Cγ such that f(α) 6= γ for each α ∈ S ∩ Cγ . Let C = ∆γ<κCγ . As C is
closed unbounded, there exists an α > 0 in S ∩C. By the definition of C it
follows that f(α) ≥ α, a contradiction. a
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A nontrivial κ-complete ideal I on κ is called normal (and so is its dual
filter) if I is closed under diagonal unions; equivalently, if for every A ∈ I+,
every regressive function on A is constant on some I-positive set. Thus
Fodor’s Theorem (or Lemma 1.4) states that the nonstationary ideal (and
the club filter) is normal. In fact, the nonstationary ideal is the smallest
normal κ-complete ideal on κ:

1.6 Proposition. If F is a normal κ-complete filter on κ, then F contains
all closed unbounded sets.

Proof. If C is a club subset of κ, let 〈aα : α < κ〉 be the increasing enumer-
ation of C. Then

C ⊇ ∆α<κ{ξ : aα+1 < ξ < κ} ∈ F,

because F contains all final segments (being nontrivial and κ-complete). a

In other words, if I is normal, then every I-positive set is stationary.

The quotient algebra B = P (κ)/INS is a κ-complete Boolean algebra,
where the Boolean operations

∑
α<γ and

∏
α<γ for γ < κ are induced by⋃

α<γ and
⋂

α<γ . Fodor’s Theorem implies that B is in fact κ+-complete:
if {Xα : α < κ} is a collection of subsets of κ, then ∆α<κXα and Σα<κXα

are, respectively, the greatest lower bound and the least upper bound of
the equivalence classes Xα/INS ∈ B. This observation also shows that if
〈Xα : α < κ〉 and 〈Yα : α < κ〉 are two enumerations of the same collection,
then ∆αXα and ∆αYα differ only by a nonstationary set.

The following characterization of the club filter is often useful, in partic-
ular when used in its generalized form (see Section 6). Let F : [κ]<ω → κ;
an ordinal γ < κ is a closure point of F if F (α1, . . . , αn) < γ whenever
α1, . . . , αn < γ. It is easy to see that the set ClF of all closure points of F
is a club. Conversely, if C is a club, define F : [κ]<ω → κ by letting F (e) be
the least element of C greater than max(e). It is clear that ClF = Lim(C).
Thus every club contains ClF for some F , and we have this characterization
of the club filter:

1.7 Proposition. The club filter is generated by the sets ClF , for all F :
[κ]<ω → κ. A set S ⊆ κ is stationary if and only if for every F : [κ]<ω → κ,
S contains a closure point of F .

1.2. Splitting stationary sets

It is not immediately obvious that the club filter is not an ultrafilter, that
is that there exist stationary sets that are co-stationary, i.e. whose comple-
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ment is stationary. The basic result is the following theorem of Solovay:

1.8 Theorem (Solovay [85]). Let κ be a regular uncountable cardinal. Then
every stationary subset of κ can be partitioned into κ disjoint stationary sets.

Solovay’s proof of this basic result of combinatorial set theory uses meth-
ods of forcing and large cardinals, and we shall describe it later in this
section. For an elementary proof, see e.g. [49], p. 434.

To illustrate the combinatorics involved, let us prove a special case of
Solovay’s theorem.

1.9 Proposition. There exist ℵ1 pairwise disjoint stationary subsets of ω1.

Proof. For every limit ordinal α < ω1, choose an increasing sequence {aα
n}∞n=0

with limit α. We claim that there is an n such that for all η < ω1, there
are stationary many α such that aα

n ≥ η: Otherwise there exists, for each
n, some ηn such that aα

n ≥ ηn for only a nonstationary set of α’s. By ω1-
completeness, for all but a nonstationary set of α’s the sequences {aα

n}n are
bounded by supn ηn. A contradiction.

Thus let n be such that for all η, the set Sη = {α : aα
n ≥ η} is stationary.

The function f(α) = aα
n is regressive and so by Fodor’s Theorem, there is

some γη ≥ η such that Tη = {α : aα
n = γη} is stationary. Clearly, there are

ℵ1 distinct values of γη and therefore ℵ1 mutually disjoint sets Tη. a

Let κ be a regular uncountable cardinal, and let λ < κ be regular. Let

Eκ
λ = {α < κ : cf α = λ}.

For each λ, Eκ
λ is a stationary set. An easy modification of the proof of 1.9

above shows that for every regular λ < κ, every stationary subset of Eκ
λ can

be split into κ disjoint stationary sets.

The union
⋃

λ Eκ
λ is the set of all singular limit ordinals. Its complement

is the set Reg of all regular cardinals α < κ. The set Reg is stationary just
in case κ is a Mahlo cardinal.

1.3. Generic ultrapowers

Let M be a transitive model of ZFC, and let κ be a cardinal in M . Let U
be an M -ultrafilter, i.e. an ultrafilter on the set algebra P (κ) ∩ M . Using
functions f ∈ M on κ, one can form an ultrapower N = UltU (M), which is
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a model of ZFC but not necessarily well-founded:

f =∗ g ⇐⇒ {α : f(α) = g(α)} ∈ U ,

f ∈∗ g ⇐⇒ {α : f(α) ∈ g(α)} ∈ U .

The (equivalence classes of) constant functions cx(α) = x provide an ele-
mentary embedding j : (M, ε) → (N,∈∗), where j(x) = cx, for all x ∈ M .

An M -ultrafilter U is M -κ-complete if it is closed under intersections of
families {Xα : α < γ} ∈ M , for all γ < κ; U is normal if every regressive
f ∈ M is constant on a set in U .

1.10 Proposition. Let U be a nonprincipal M -κ-complete, normal M -
ultrafilter on κ. Then the ordinals of N have a well-ordered initial segment
of order type at least κ + 1, j(γ) = γ for all γ < κ, and κ is represented in
N by the diagonal function d(α) = α.

Now let κ be a regular uncountable cardinal and consider the forcing
notion (P, <) where P is the collection of all stationary subsets of κ, and the
ordering is by inclusion. Let B be the complete Boolean algebra B = B(P ),
the completion of (P, <). Equivalently, B is the completion of the Boolean
algebra P (κ)/INS . Let us consider the generic extension V [G] given by
a generic G ⊆ P . It is rather clear that G is a nonprincipal V -κ-complete
normal ultrafilter on κ. Thus Proposition 1.10 applies, where N = UltG(V ).
The model UltG(V ) is called a generic ultrapower.

There is more on generic ultrapowers in Foreman’s chapter in this volume;
here we use them to present the original argument of Solovay’s [85]. First
we prove a lemma (that will be generalized in Section 2):

1.11 Lemma. Let κ be a regular uncountable cardinal, and let S be a sta-
tionary set. Then the set

T = {α ∈ S : either α /∈ Reg or S ∩ α is not a stationary subset of α}
is stationary.

Proof. Let C be a club and let us show that T ∩ C is nonempty. Let α be
the least element of the nonempty set S ∩ C′ where C′ = Lim(C − ω). If α
is not regular, then α ∈ T ∩ C and we are done, so assume that α ∈ Reg.
Now C′ ∩ α is a club subset of α disjoint from S ∩ α, and so α ∈ T . a

We shall now outline the proof of Solovay’s Theorem:

Proof. (Theorem 1.8.) Let S be a stationary subset of κ that cannot be
partitioned into κ disjoint stationary sets. By 1.9 and the remarks following
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its proof, we have S ⊆ Reg. Let I = INS � S, i.e. I = {X ⊆ κ : X ∩ S ∈
INS}. The ideal I is κ-saturated, i.e. every disjoint family W ⊂ I+ has size
less than κ; equivalently, B = P (κ)/I has the κ-chain condition. I is also
κ-complete and normal.

Let G ⊂ I+ be generic, and let N = UltG(V ) be the generic ultrapower.
As I is κ-saturated, N is well-founded (this is proved by showing that every
name ḟ for a function in V on κ can be replaced by an actual function on
κ). Thus we have (in V [G]) an elementary embedding j : V → N where
N is a transitive class, j(γ) = γ for all γ < κ, and κ is represented in N
by the diagonal function d(α) = α. Note that if A ⊆ κ is any set (in V ),
then A ∈ N : this is because A = j(A) ∩ κ; in fact A is represented by the
function f(α) = A ∩ α.

Now we use the fact that κ-c.c. forcing preserves stationarity (cf. Theo-
rem 1.13 below). Thus S is stationary in V [G], and because N ⊂ V [G], S
is a stationary set in the model N . By the ultrapower theorem we have

V [G] � S ∩ α is stationary for G-almost all α.

This, translated into forcing, gives

{α ∈ S : S ∩ α is not stationary} ∈ I

but that contradicts Lemma 1.11. a

Another major application of generic ultrapowers is Silver’s Theorem:

1.12 Theorem (Silver [84]). Let λ be a singular cardinal of uncountable
cofinality. If 2α = α+ for all cardinals α < λ, then 2λ = λ+.

Silver’s Theorem is actually stronger than this. It assumes only that
2α = α+ for a stationary set of α’s (see Section 2 for the definition of
“stationary” when λ is not regular). The proof uses a generic ultrapower.
Even though UltG(V ) is not necessarily well founded, the method of generic
ultrapowers enables one to conclude that 2λ = λ+ when 2α = α+ holds
almost everywhere.

Silver’s Theorem can be proved by purely combinatorial methods [10, 11].
In [30], Galvin and Hajnal used combinatorial properties of stationary sets
to prove a substantial generalization of Silver’s Theorem (superseded only by
Shelah’s powerful pcf theory). For further generalizations using stationary
sets and generic ultrapowers, see [51] and [52].

One of the concepts introduced in [30] is the Galvin-Hajnal norm of an
ordinal function. If f and g are ordinal functions on a regular uncountable
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cardinal κ, let f < g if {α < κ : f(α) < g(α)} contains a club. The relation
< is a well-founded partial order, and the norm ‖f‖ is the rank of f in the
relation <.

We remark that if f < g, then in the generic ultrapower (by INS), the
ordinal represented by f is smaller than the ordinal represented by g.

By induction on η one can easily show that for each η < κ+ there exists
a canonical function fη : κ → κ of norm η, i.e. ‖fη‖ = η and whenever
‖h‖ = η, then {α : fη(α) ≤ h(α)} contains a club. (Proof: Let f0(α) = 0,
fη+1(α) = fη(α) + 1. If η < κ+ is a limit ordinal, let λ = cf η and let
η = limξ→λ ηξ. If λ < κ, let fη(α) = supξ<λ fηξ

(α) and if λ = κ, let
fη(α) = supξ<α fηξ

(α).)

A canonical function of norm κ+ may or may not exist, but is consistent
with ZFC (cf. [53]). The existence of canonical function fη for all η is
equiconsistent with a measurable cardinal [50].

1.4. Stationary sets in generic extensions

Let M and N be transitive models and let M ⊆ N . Let κ be a regular
uncountable cardinal and let S ∈ M be a subset of κ. Clearly, if S is
stationary in the model N , then S is stationary in M ; the converse is not
necessarily true, and κ may even not be regular or uncountable in N . It
is important to know which forcing extensions preserve stationarity and
we shall return to the general case in Section 5. For now, we state two
important special cases:

1.13 Theorem. Let κ be a regular uncountable cardinal and let P be a
notion of forcing.

(a) If P satisfies the κ-chain condition, then every club C ∈ V [G] has
a club subset D in the ground model. Hence every stationary S remains
stationary in V [G].

(b) If P is λ-closed for every λ < κ, then every stationary S remains
stationary in V [G].

Proof. (outline) (a) This follows from this basic fact on forcing: if P is
κ-c.c., then every unbounded A ⊂ κ in V [G] has an unbounded subset in
V .

(b) Let p  Ċ is a club; we find a γ ∈ S and a q ≤ p such that q  γ ∈ Ċ
as follows: we construct an increasing continuous ordinal sequence {γα}α<κ

and a decreasing sequence {pα} of conditions such that pα+1  γα+1 ∈ Ċ,
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and if α is a limit ordinal, then γα = limξ<α γξ and pα is a lower bound of
{pξ}ξ<α. There is some limit ordinal α such that γα ∈ S. It follows that
pα  γα ∈ Ċ. a

We shall now describe the standard way of controlling stationary sets in
generic extensions, so called shooting a club. First we deal with the simplest
case when κ = ℵ1. Let S be a stationary subset of ω1, and consider the
following forcing PS (cf. [9]): The forcing conditions are all bounded closed
sets p of countable ordinals such that p ⊂ S. A condition q is stronger than
p if q end-extends p, i.e. p = q ∩ α for some α.

It is clear that this forcing produces (“shoots”) a closed unbounded subset
of S in the generic extension, thus the complement of S becomes nonstation-
ary. The main point of [9] is that ω1 is preserved and in fact V [G] adds no
new countable sets. Also, every stationary subset of S remains stationary.

The forcing PS has the obvious generalization to κ > ℵ1, but more care
is required to guarantee that no new small sets of ordinals are added. For
instance, this is the case when S contains the set Sing of all singular ordinals
< κ. For a more detailed discussion of this problem see [1].

1.5. Some combinatorial principles

There has been a proliferation of combinatorial principles involving closed
unbounded and stationary sets. Most can be traced back to Jensen’s investi-
gation of the fine structure of L [59] and generalize either Jensen’s diamond
(♦) or square (�). These principles are discussed elsewhere in this volume;
we conclude this section by briefly mentioning diamond and club-guessing,
and only their typical special cases.

1.14 Theorem (♦(ℵ1), Jensen [59]). Assume V = L. There exists a se-
quence 〈aα : α < ω1〉 with each aα ⊆ α, such that for every A ⊆ ω1, the set
{α < ω1 : A ∩ α = aα} is stationary.

(Note that every A ⊆ ω is equal to some aα, and so ♦(ℵ1) implies 2ℵ0 =
ℵ1.)

1.15 Theorem (♦(Eℵ2
ℵ0

), Gregory [40]). Assume GCH. There exists a se-
quence 〈aα : α ∈ Eℵ2

ℵ0
〉 with each aα ⊆ α, such that for every A ⊆ ω2, the

set {α < ω2 : A ∩ α = aα} is stationary.

1.16 Theorem (Club-guessing, Shelah [82]). There exists a sequence 〈cα :
α ∈ Eℵ3

ℵ1
〉, where each cα is a closed unbounded subset of α, such that for

every club C ⊆ ω3, the set {α : cα ⊂ C} is stationary.
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Unlike most generalizations of square and diamond, Theorem 1.16 is a
theorem of ZFC but we note that the gap (between ℵ1 and ℵ3) is essential.

2. Reflection

2.1. Reflecting stationary sets

An important property of stationary sets is reflection. It is used in several
applications, and provides a structure among stationary sets – it induces a
well founded hierarchy. Natural questions about reflection and the hierarchy
are closely related to large cardinal properties.

We start with a generalization of stationary sets. Let α be a limit ordinal
of uncountable cofinality, say cf α = κ > ℵ0. A set S ⊆ α is stationary if it
meets every closed unbounded subset of α. The closed unbounded subsets
of α generate a κ-complete filter, and Fodor’s Theorem 1.5 yields this:

2.1 Lemma. If f is a regressive function on a stationary set S ⊆ α, then
there exists a γ < α such that f(ξ) < γ on a stationary subset of S.

If S is a set of ordinals and α is a limit ordinal such that cf α > ω, we
say that S is stationary in α if S ∩ α is a stationary subset of α.

2.2 Definition. Let κ be a regular uncountable cardinal and let S be a
stationary subset of κ. If α < κ and cf α > ω, S reflects at α if S is
stationary in α. S reflects if it reflects at some α < κ.

It is implicit in the definition that κ > ℵ1.

For our first observation, let α < κ be such that cf α > ω. There is a
club C ⊆ α of order type cf α such that every element of C has cofinality <
cf α. Thus if S ⊆ κ is such that every β ∈ S has cofinality ≥ cf α, then S
does not reflect at α. In particular, if κ = λ+ where λ is regular, then the
stationary set Eκ

λ does not reflect.

On the other hand, if λ < κ is regular and λ+ < κ, then Eκ
λ reflects at

every α < κ such that cf α > λ.

To investigate reflection systematically, let us first look at the simplest
case, when κ = ℵ2. Let E0 = Eℵ2

ℵ0
and E1 = Eℵ2

ℵ1
. The set E1 does not

reflect; can every stationary S ⊆ E0 reflect?

Let us recall Jensen’s Square Principle [59]:

(�κ) There exists a sequence 〈Cα : α ∈ Lim (κ+)〉 such that
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(i) Cα is club in α,

(ii) if β ∈ Lim(Cα), then Cβ = Cα ∩ β,

(iii) if cf α < κ, then |Cα| < κ.

Now assume that �ω1 holds and let 〈Cα : α ∈ Lim (ω2)〉 be a square
sequence. Note that for each α ∈ E1, the order type of Cα is ω1. It follows
that there exists a countable limit ordinal η such that the set S = {γ ∈ E0 :
γ is the ηth element of some Cα} is stationary. But for every α ∈ E1, S has
at most one element in common with Cα, and so S does not reflect.

Thus �ω1 implies that there is a nonreflecting stationary subset of Eℵ2
ℵ0

.
Since �ω1 holds unless ℵ2 is Mahlo in L, the consistency strength of “every
S ⊆ Eℵ2

ℵ0
reflects” is at least a Mahlo cardinal. This is in fact the exact

strength:

2.3 Theorem (Harrington-Shelah [41]). The following are equiconsistent:

(i) the existence of a Mahlo cardinal.

(ii) every stationary set S ⊆ Eℵ2
ℵ0

reflects.

Theorem 2.3 improves a previous result of Baumgartner [6] who proved
the consistency of (ii) from a weakly compact cardinal. Note that (ii) implies
that every stationary set S ⊆ Eℵ2

ℵ0
reflects at stationary many α ∈ Eℵ2

ℵ1
.

A related result of Magidor (to which we return later in this section)
gives this equiconsistency:

2.4 Theorem (Magidor [70]). The following are equiconsistent:

(i) the existence of a weakly compact cardinal,

(ii) every stationary set S ⊆ Eℵ2
ℵ0

reflects at almost all α ∈ Eℵ2
ℵ1

.

Here, “almost all” means all but a nonstationary set.

Let us now address the question whether it is possible that every station-
ary subset of κ reflects. We have seen that this is not the case when κ is
the successor of a regular cardinal. Thus κ must be either inaccessible or
κ = λ+ where λ is singular.

Note that because a weakly compact cardinal is Π1
1 indescribable, every

stationary subset of it reflects. In [68], Kunen showed that it is consistent
that every stationary S ⊆ κ reflects while κ is not weakly compact. In
[76] it is shown that the consistency strength of “every stationary subset
of κ reflects” is strictly between greatly Mahlo and weakly compact. (For
definition of greatly Mahlo, see Section 2.2.)
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If, in addition, we require that κ be a successor cardinal, then much
stronger assumptions are necessary. The argument we gave above using
�ω1 works for any κ:

2.5 Proposition (Jensen). If �λ holds, then there is a nonreflecting sta-
tionary subset of Eλ+

ℵ0
.

As the consistency strength of ¬�λ for singular λ is at least a strong
cardinal (as shown by Jensen), one needs at least that for the consistency of
“every stationary S ⊆ λ+ reflects”. In [70], Magidor proved the consistency
of “every stationary subset of ℵω+1 reflects” from the existence of infinitely
many supercompact cardinals.

We mention the following applications of nonreflecting stationary sets:

2.6 Theorem (Mekler-Shelah [76]). The following are equiconsistent:

(i) every stationary S ⊆ κ reflects,

(ii) every κ-free abelian group is κ+-free.

2.7 Theorem (Tryba [90]). If a regular cardinal κ is Jónsson, then every
stationary S ⊆ κ reflects.

2.8 Theorem (Todorčević [88]). If Rado’s Conjecture holds, then for every
regular κ > ℵ1, every stationary S ⊆ Eκ

ℵ0
reflects.

2.2. A hierarchy of stationary sets

Consider the following operation (the Mahlo operation) on stationary sets.
For a stationary set S ⊆ κ, the trace of S is the set of all α at which S
reflects:

Tr(S) = {α < κ : cf α > ω and S ∩ α is stationary}.
The following basic properties of trace are easily verified.

2.9 Lemma. (a) If S ⊆ T , then Tr(S) ⊆ Tr(T ),

(b) Tr(S ∪ T ) = Tr(S) ∪ Tr(T ),

(c) Tr(Tr(S)) ⊆ Tr(S),

(d) if S ' T mod INS, then Tr(S) ' Tr(T ) mod INS.

Property (d) shows that the Mahlo operation may be considered as an
operation on the Boolean algebra P (κ)/INS .
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If λ < κ is regular, let Mκ
λ = {α < κ : cf α ≥ λ}, and note that Tr(Eκ

λ)
= Tr(Mκ

λ) = Mκ
λ+ .

The Mahlo operation on P (κ)/INS can be iterated α times, for α < κ+.
Let

M0 = κ

Mα+1 = Tr(Mα)
Mα = ∆ξ<κMαξ

(α limit, α = {αξ : ξ < κ}).

The sets Mα are defined mod INS (the limit stages depend on the enu-
meration of α). The sequence {Mα}α<κ+ is decreasing mod INS , and when
α < κ, then Mα = Mκ

λ where λ is the αth regular cardinal. Note that κ is
(weakly) Mahlo just in case Mκ = Reg is stationary, and that by Lemma
1.11, {Mα}α is strictly decreasing (mod INS , as long as Mα is stationary).
Following [13], κ is called greatly Mahlo if Mα is stationary for every α < κ+.

We shall now consider the following relation between stationary subsets
of κ.

2.10 Definition (Jech [47]).

S < T iff S ∩ α is stationary for almost all α ∈ T.

In other words, S < T iff Tr(S) ⊇ T mod INS . As an example, if
λ < µ are regular, then Eκ

λ < Eκ
µ. Note also that the language of generic

ultrapowers gives this description of <:

2.11 Proposition. S < T iff T  S is stationary in UltG(V ).

The following lemma states the basic properties of <.

2.12 Lemma. (a) A < Tr(A),

(b) if A < B and B < C than A < C,

(c) if A ' A′ and B ' B′ mod INS , and if A < B, then A′ < B′.

By (c), < can be considered a relation on P (κ)/INS . By Proposition
1.11, < is irreflexive and so it is a partial ordering. The next theorem shows
that the partial ordering < is well founded.

2.13 Theorem (Jech [47]). The relation < is well founded.

Proof. Assume to the contrary that there are stationary sets such that A1 >
A2 > A3 > · · · . Therefore there are clubs Cn such that An∩Cn ⊆ Tr(An+1)
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for n = 1, 2, . . . . For each n, let

Bn = An ∩ Cn ∩ Lim(Cn+1) ∩ Lim(Lim(Cn+2)) ∩ · · ·
Each Bn is stationary, and for every n, Bn ⊆ Tr(Bn+1). Let αn = min(Bn).
Since Bn+1∩αn is stationary, we have αn+1 < αn, and therefore, a decreas-
ing sequence α1 > α2 > α3 > · · · . A contradiction. a

As < is well founded, we can define the order of stationary sets A ⊆ κ,
and of the cardinal κ:

o(A) = sup{o(X) + 1 : X < A} ,

o(κ) = sup{o(A) + 1 : A ⊆ κ stationary}.
We also define o(ℵ0) = 0, and o(α) = o(cf (α)) for every limit ordinal α.

Note that o(Eκ
ℵ0

) = 0, and in general o(Eκ
λ) = o(Mκ

λ) = α, if λ is the

αth regular cardinal. Also, o(ℵn) = n, o(κ) ≥ κ + 1 iff κ is Mahlo, and
o(κ) ≥ κ+ iff κ is greatly Mahlo.

2.3. Canonical stationary sets

If λ is the αth regular cardinal, then Eκ
λ has order α; moreover, the set is

canonical, in the sense explained below. In fact, canonical stationary sets
exist for all orders α < κ+.

Let E be a stationary set of order α. If X ⊆ E is stationary, then
o(X) ≥ o(E). We call E canonical of order α if (i) every stationary X ⊆ E
has order α, and (ii) E meets every set of order α.

Clearly, a canonical set of order α is unique (mod INS), and two canonical
sets of different orders are disjoint (mod INS). In the following proposition,
“maximal” and ' is meant mod INS .

2.14 Proposition (Jech [47]). A canonical set E of order α exists iff there
exists a maximal set M of order α. Then (mod INS)

E ' M − Tr(M) , M ' E ∪ Tr(E) , and Tr(E) ' Tr(M) .

One can show that the sets Mα obtained by iterating the Mahlo operation
are maximal (as long as they are stationary). Thus when we let Eα =
Mα − Tr(Mα), we get canonical stationary sets, of all orders α < κ+ (for
α < o(κ)).

The canonical stationary sets Eα and the canonical function fα (of Galvin-
Hajnal norm α) are closely related:
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2.15 Proposition (Jech [47]). For every α < κ+, α < o(κ),

Eα ' {ξ < κ : fα(ξ) = o(ξ)}.

2.4. Full reflection

Let us address the question of what is the largest possible amount of reflec-
tion, for stationary subsets of a given κ. As A < B means that A reflects
at almost all points of B, we would like to maximize the relation <. But
A < B implies that o(A) < o(B), so we might ask whether it is possible
that A < B for any two stationary sets such that o(A) < o(B).

By Magidor’s Theorem 2.4 it is consistent that S < Eℵ2
ℵ1

, and therefore
S < T for every S of order 0 and every T of order 1. However, this does
not generalize, as the following lemma shows that when κ ≥ ℵ3, then there
exist S and T with o(S) = 0 and o(T ) = 1 such that S ≮ T .

2.16 Lemma (Jech-Shelah [54]). If κ ≥ ℵ3, then there exist stationary sets
S ⊆ Eκ

ℵ0
and T ⊆ Eκ

ℵ1
such that S does not reflect at any α ∈ T .

Proof. Let Sγ , γ < ω2, be pairwise disjoint stationary subsets of Eκ
ℵ0

, and
let Cα, α ∈ Eκ

ℵ1
, be such that for every α, Cα is a club subset of α, of order

type ω1. Because at most ℵ1 of the sets Sγ meet each Cα, there exists for
each α some γ(α) such that Cα ∩ Sγ(α) = ∅.

There exists some γ such that the set T = {α : γ(α) = γ} is stationary;
let S = Sγ . For every α ∈ T , S ∩Cα = ∅ and so S does not reflect at α. a

This lemma illustrates some of the difficulties involved when dealing with
reflection at singular ordinals. This problem is investigated in detail in [54],
where the best possible consistency result is proved for stationary subsets
of the ℵn, n < ω.

Let us say that a stationary set S ⊆ κ reflects fully at regular cardinals
if for any stationary set T of regular cardinals o(S) < o(T ) implies S < T ,
and let us call Full Reflection the statement that every stationary subset of
κ reflects fully at regular cardinals.

Full Reflection is of course nontrivial only if κ is a Mahlo cardinal. A
modification of Theorem 2.4 shows that Full Reflection for a Mahlo cardinal
is equiconsistent with weak compactness. The following theorem establishes
the consistency strength of Full Reflection for cardinals in the Mahlo hier-
archy:
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2.17 Theorem (Jech-Shelah [55]). The following are equiconsistent, for
every α ≤ κ+:

(i) κ is Π1
α-indescribable,

(ii) κ is α-Mahlo and Full Reflection holds.

(A regular cardinal κ is α-Mahlo if o(κ) ≥ κ + α; κ is Π1
1-indescribable

iff it is weakly compact.)

Full Reflection is also consistent with large cardinals. The paper [57]
proves the consistency of Full Reflection with the existence of a measurable
cardinal. This has been improved and further generalized in [38].

Finally, the paper [91] shows that any well-founded partial order of size
≤ κ+ can be realized by the reflection ordering < on stationary subsets of
κ, in some generic extension (using P 2κ-strong κ in the ground model).

3. Saturation

3.1. κ+−saturation

By Solovay’s 1.8 every stationary subset of κ can be split into κ disjoint
stationary sets. In other words, for every stationary S ⊆ κ, the ideal INS � S
is not κ-saturated. A natural question is if the nonstationary ideal can be
κ+-saturated.

An ideal I on κ is κ+-saturated if the Boolean algebra P (κ)/I has the
κ+-chain condition. Thus INS � S is κ+-saturated when there do not exist
κ+ stationary subsets of S such that the intersection of any two of them
is nonstationary. The existence and properties of κ+-saturated ideals have
been thoroughly studied since their introduction in [85], and involve large
cardinals. The reader will find more details in Foreman’s chapter in this
volume. We shall concentrate on the special case when I is the nonstationary
ideal.

The main question, whether the nonstationary ideal can be κ+-saturated,
has been answered. But a number of related questions are still open.

3.1 Theorem (Gitik-Shelah [37]). The nonstationary ideal on κ is not κ+-
saturated, for every regular cardinal κ ≥ ℵ2.

3.2 Theorem (Shelah). It is consistent, relative to the existence of a Woodin
cardinal, that the nonstationary ideal on ℵ1 is ℵ2-saturated.
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The consistency result in Theorem 3.2 was first proved in [87] using a
strong determinacy assumption. That hypothesis was reduced in [92] to
AD, while in [27], the assumption was the existence of a supercompact
cardinal. Shelah’s result (announced in [81]) is close to optimal: by Steel
[86], the saturation of INS plus the existence of a measurable cardinal imply
the existence of an inner model with a Woodin cardinal.

All the models mentioned in the preceding paragraph satisfy 2ℵ0 > ℵ1.
This may not be accidental, and it has been conjectured that the saturation
of INS on ℵ1 implies that 2ℵ0 > ℵ1. In fact, Woodin proved this [94] under
the addional assumption that there exists a measurable cardinal. We note
in passing that by [27], 2ℵ0 = ℵ1 is consistent with INS � S being saturated
for some stationary S.

Woodin’s construction [94] yields a model (starting from AD) in which
the ideal INS is ℵ1-dense, i.e. the algebra P (ω1)/INS has a dense set of size
ℵ1. This, and Woodin’s more recent work using Steel’s inner model theory,
gives the following equiconsistency.

3.3 Theorem (Woodin). The following are equiconsistent:

(i) ZF + AD,

(ii) there are infinitely many Woodin cardinals,

(iii) the nonstationary ideal on ℵ1 is ℵ1-dense.

As for the continuum hypothesis, Shelah proved in [80] that if INS is
ℵ1-dense, then 2ℵ0 = 2ℵ1 .

We remark that the mere existence of a saturated ideal affects cardinal
arithmetic, cf. [63] and [52].

Let us now return to Theorem 3.1. The general result proved in [37] is
this:

3.4 Theorem (Gitik-Shelah [37]). If ν is a regular cardinal and ν+ < κ,
then INS � Eκ

ν is not κ+-saturated.

The proof of 3.4 combines an earlier result of Shelah (Theorem 3.7 below)
with an application of the method of guessing clubs (as in 1.16). The earlier
result uses generic ultrapowers and states that if κ = λ+ and ν 6= cf λ is
regular, then no ideal concentrating on Eκ

ν is κ+-saturated.

The method of generic ultrapowers is well suited for κ+-saturated ideals.
Forcing with P (κ)/I where I is a normal κ-complete κ+-saturated ideal
makes the generic ultrapower N = UltG(V ) well founded, preserves the
cardinal κ+, and satisfies PN (κ) = PV [G](κ). It follows that all cardinals
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< κ are preserved in V [G], and it is obvious that if Eκ
ν ∈ G, then N (and

therefore V [G] as well) satisfies cf κ = ν.

Shelah’s Theorem 3.7 below follows from a simple combinatorial lemma.
Let λ be a cardinal and let α < λ+ be a limit ordinal. Let us call a family
{Xξ : ξ < λ+} a strongly almost disjoint (s.a.d.) family of subsets of α if
every Xξ ⊆ α is unbounded, and if for every ϑ < λ+ there exist ordinals
δξ < α, for ξ < ϑ, such that the sets Xξ − δξ, ξ < ϑ, are pairwise disjoint.
Note that if κ is a regular cardinal than there is a s.a.d. family {Xξ : ξ < κ+}
of subsets of κ.

3.5 Lemma. If α < λ+ and cf α 6= cf λ, then there exists no strongly
almost disjoint family of subsets of α.

Proof. Assume to the contrary that {Xξ : ξ < λ+} is a s.a.d. family of
subsets of α. We may assume that each Xξ has order type cf α. Let f
be a function mapping λ onto α. Since cf λ 6= cf α there exists for each ξ
some γξ < λ such that Xξ ∩ f“γξ is cofinal in α. There is some γ and a
set W ⊂ λ+ of size λ such that γξ = γ for all ξ ∈ W . Let ϑ > sup W . By
the assumption on the Xξ there exist ordinals δξ < α, ξ < ϑ, such that the
Xξ − δξ are pairwise disjoint. Thus f−1(Xξ − δξ), ξ ∈ W , are λ pairwise
disjoint subsets of γ. A contradiction. a

3.6 Corollary (Shelah [79]). If κ is a regular cardinal and if a forcing P
makes cf κ 6= cf |κ|, then P collapses κ+.

Proof. Assume that κ+ is not collapsed; thus in V [G], (κ+)V = λ+ where
λ = |κ|. In V there is a s.a.d. family {Xξ : ξ < (κ+)V }, and it remains a
s.a.d. family in V [G], of size λ+. Since cf κ 6= cf λ, in V [G], this contradicts
Lemma 3.5. a

3.7 Theorem (Shelah). If κ = λ+, if ν 6= cf λ is regular and if I is a
normal κ-complete κ+-saturated ideal on κ, then Eκ

ν ∈ I.

Proof. If not, then forcing with I-positive subsets of Eκ
ν preserves κ+ as

well as cf λ, and makes cf κ = ν; a contradicton. a

Theorem 3.4 leaves open the following problem: If λ is a regular cardinal,
can INS � Eλ+

λ be λ++-saturated? (For instance can INS � Eℵ2
ℵ1

be ℵ3-
saturated?) Let us also mention that for all regular ν and κ not excluded
by Corollary 3.7, it is consistent that INS � S is κ+-saturated for some
S ⊂ Eκ

ν (see [33]).
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If κ is a large cardinal, then INS � Reg can be κ+-saturated, as the follow-
ing theorem shows. Of course, κ cannot be too large: if κ is greatly Mahlo,
then the canonical stationary sets Eα κ ≤ α < κ+ witness nonsaturation.

3.8 Theorem (Jech-Woodin [58]). For any α < κ+, the following are
equiconsistent:

(i) κ is measurable of order α,

(ii) κ is α-Mahlo and the ideal INS � Reg on κ is κ+-saturated.

3.2. Precipitousness

An important property of saturated ideals is that the generic ultrapower
is well-founded. It has been recognized that this property is important
enough to single out and study the class of ideals that have it. The ideals
for which the generic ultrapower is well founded are called precipitous. They
are described in detail in Foreman’s chapter in this volume; here we address
the question of when the nonstationary ideal is precipitous.

Precipitous ideals were introduced by Jech and Prikry in [51]. There
are several equivalent formulations of precipitousness. Let I be an ideal on
some set E. An I-partition is a maximal family of I-positive sets such that
the intersection of any two of them is in I. Let GI denote the infinite game
of two players who alternately pick I-positive sets Sn such that S1 ⊇ S2 ⊇
S3 ⊇ · · · . The first player wins if

⋂∞
n=1 Sn = ∅.

3.9 Theorem (Jech-Prikry [51, 45, 46, 29]). Let I be an ideal on a set E.
The following are equivalent:

(i) forcing with P (E)/I makes the generic ultrapower well-founded,

(ii) for every sequence {Wn}∞n=1 of I-partitions there exists a sequence
{Xn}∞n=1 such that Xn ∈ Wn for each n, and

⋂∞
n=1 Xn 6= ∅,

(iii) the first player does not have a winning strategy in the game GI .

The problem of whether the nonstationary ideal on κ can be precipitous
involves large cardinals. For κ = ℵ1 the exact consistency strength is the
existence of a measurable cardinal:

3.10 Theorem (Jech-Magidor-Mitchell-Prikry [50]). The following are equicon-
sistent:

(i) there exists a measurable cardinal,

(ii) the nonstationary ideal on ℵ1 is precipitous.



4. The closed unbounded filter on Pκλ 21

For κ ≥ ℵ2, stronger large cardinal assumptions are involved. For κ = ℵ2,
the consistency strength is a measurable of order 2:

3.11 Theorem (Gitik [31]). The following are equiconsistent:

(i) there exists a measurable cardinal of order 2,

(ii) INS on ℵ2 is precipitous.

For the general case, the paper [47] provided lower bounds for the con-
sistency strength of “INS is precipitous,” in terms of the Mitchell order,
while models with INS precipitous for κ > ℵ2 were constructed in [33] and
[27] from strong assumptions. In [35] and [36], Gitik established the exact
consistency strength of “INS on κ is precipitous” when κ is the successor
of a regular cardinal λ (the existence of an (ω, λ + 1)-repeat point), as well
as nearly optimal lower and upper consistency bounds for κ inaccessible.
Additional lower bounds for the case κ = λ+ where λ is a large cardinal
appear in [95].

The problem of whether the nonstationary ideal on κ can be precipitous
while κ is measurable was first addressed by Kakuda in [61] who proved
that many measurables are necessary. This lower bound was improved to
having Mitchell order κ+ + 1 in [47], and to a repeat point in [34]. Gitik’s
paper also shows that the existence of a supercompact cardinal suffices for
the consistency of the nonstationary ideal on a supercompact cardinal being
precipitous.

4. The closed unbounded filter on Pκλ

4.1. Closed unbounded sets in PκA

One of the useful tools of combinatorial set theory is a generalization of the
concepts of closed unbounded set and stationary set. This generalization,
introduced in [43] and [44], replaces 〈κ, <〉 with 〈Pκλ,⊂〉, and is justified by
the fact that the crucial Theorem 1.5 remains true under the generalization.

Let κ be a regular uncountable cardinal and let A be a set of cardinality
at least κ. Let PκA denote the set {x : x ⊂ A and |x| < κ}. Furthermore,
we let [X ]ν = {x ⊆ X : |x| = ν} whenever |X | ≥ ν and ν an infinite
cardinal.

4.1 Definition (Jech [44]). Let κ be a regular uncountable cardinal and let
|A| ≥ κ.
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A set X ⊆ PκA is unbounded (in PκA) if for every x ∈ PκA there is a
y ⊃ x such that y ∈ X .

A set X ⊆ PκA is closed (in PκA) if for any chain x0 ⊆ x1 ⊆ · · · ⊆ xξ ⊆
· · · , ξ < α, of sets in X , with α < κ, the union

⋃
ξ<α xξ is in X .

A set C ⊆ PκA is closed unbounded if it is closed and unbounded.

A set S ⊆ PκA is stationary (in PκA) if S ∩ C 6= ∅ for every closed
unbounded C ⊆ PκA.

The closed unbounded filter on PκA is the filter generated by the closed
unbounded sets. We remark that when A = κ, then the set κ ⊂ Pκκ is
closed unbounded, and the club filter on κ is the restriction to κ of the club
filter on Pκκ. As before, the basic observation is that the intersection of
two clubs is a club, and we have again:

4.2 Proposition. The club filter on PκA is κ-complete.

For the generalization of Theorem 1.5, let us first define the diagonal
intersection.

∆a∈A Xa = {x ∈ PκA : x ∈
⋂
a∈x

Xa}.

The generalization of Lemma 1.4 is this:

4.3 Lemma. If 〈Ca : a ∈ A〉 is a sequence of closed unbounded sets in PκA,
then its diagonal intersection is closed unbounded.

Again, this lemma immediately implies the appropriate generalization of
Theorem 1.5:

4.4 Theorem (Jech [44]). If S is a stationary set in PκA and if f is a
function on S such that f(x) ∈ x for every x ∈ S − {∅}, then there exists
some a ∈ A such that f(x) = a on a stationary subset of S.

In Proposition 1.6 we showed that the club filter is the smallest normal
filter on κ. We shall now do the same for PκA. A κ−complete filter F on
PκA is normal if for every a ∈ A, {x ∈ PκA : a ∈ x} ∈ F , and if F is closed
under diagonal intersections.

The following fact (proved by induction on |D|) is quite useful; D is
⊆-directed if for any x, y ∈ D there is a z ∈ D such that x ∪ y ⊆ z.

4.5 Proposition. If X is a closed set in PκA, then for any ⊆-directed D
with |D| < κ,

⋃
D ∈ X.
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Let f : [A]<ω → PκA; a set x ∈ PκA is a closure point of f is f(e) ⊆ x
whenever e ⊆ x. The set Clf of all closure points x ∈ PκA is easily seen to
be a club. More importantly, the sets Clf generate the club filter:

4.6 Proposition (Menas [77]). For every closed unbounded set in PκA there
is an f : [A]<ω → PκA such that Clf ⊆ C.

Proof. By induction on |e| we find an infinite set f(e) ∈ C such that e ⊂ f(e)
and that f(e′) ⊆ f(e) whenever e′ ⊂ e. To see that Clf ⊆ C, let x be a
closure point of f . As x =

⋃{f(e) : e ∈ [x]<ω} is the union of a small
⊆-directed subset of C, we have x ∈ C. a

4.7 Corollary (Carr [18]). If F is a normal κ−complete filter on PκA, then
F contains all closed unbounded sets.

Proof. Let F+ denote the F -positive sets, those whose complement is not
in F . A consequence of normality is that if X ∈ F+ and g is a function on
X such that g(x) ∈ [x]<ω for all x ∈ X , then g is constant on a set in F+.

Now assume that there is a club not in F . Thus there is an f : A → PκA
such that the complement X of Clf is F -positive. For each x ∈ X there is
some e = g(x) ∈ [x]<ω such that f(e) * x. Therefore there is some e such
that {x : f(e) * x} ∈ F+. This is a contradiction, because {x : f(e) ⊆ x} ∈
F . a

As another consequence of Proposition 4.6 we consider projections and
liftings of stationary sets. Let A ⊆ B (and |A| ≥ κ). For X ∈ PκB, the
projection of X is the set

X � A = {x ∩ A : x ∈ X};

for Y ∈ PκA, the lifting of Y is

Y B = {x ∈ PκB : x ∩ A ∈ Y }.

4.8 Proposition (Menas [77]). Let A ⊆ B.

(i) If S is stationary in PκB, then S � A is stationary in PκA.

(ii) If S is stationary in PκA, then SB is stationary in PκB.

Proof. (i) is easy and holds because if C is a club in PκA, then CB is a club
in PκB. For (ii), it suffices to prove that if C is a club in PκB, then C � A
contains a club in PκA.
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If C ⊆ PκB is a club, by Proposition 4.6 there is an f : [B]<ω → PκB
such that Clf ⊆ C. Let g : [A]<ω → PκA be as follows: let g(E) = (the
f -closure of e) ∩A. Since Clf � A = Clg, we have Clg ⊆ C � A. a

When κ = ℵ1, Proposition 4.6 can be improved by replacing f by a
function with values in A, i.e. an operation on A. For f : [A]<ω → A,
let Clf denote the set {x : f(e) ∈ x whenever e ⊆ x}. The following
characterization of the club filter on Pω1A was given in [66]; this and [67]
used Pω1A in the study of model theory.

4.9 Theorem (Kueker [66]). The club filter on Pω1A is generated by the
sets ClF where F : [A]<ω → A.

When κ > ℵ1, then the clubs ClF where F : [A]<ω → A, do not generate
the club filter: every F has countable closure points while the set of all
uncountable x ∈ PκA is closed unbounded. However, a slight modification
of Theorem 4.9 works, namely Proposition 4.10 below. Let us call the club
ClF for F : [A]<ω → A strongly closed unbounded.

Let us consider Pκλ where λ ≥ κ. We note that the set

{x ∈ Pκλ : x ∩ κ ∈ κ}
is closed unbounded. It turns out that the club filter is generated by adding
this set to the filter generated by the strongly club sets.

4.10 Proposition ([27]). For every club C in Pκλ there exists a function
F : [λ]<ω → λ such that

{x ∈ Pκλ : x ∩ κ ∈ κ and F“[x]<ω ⊆ x} ⊆ C.

Now let us consider Pκλ for κ = ν+ where ν is uncountable. As the set
[λ]ν is closed unbounded in Pν+λ, let us consider the restriction of the club
filter to [λ]ν . We say that a set S ⊆ [λ]ν is weakly stationary if it meets
every strongly club set. It turns out that the question whether weakly
stationary sets are stationary involves large cardinals. By Proposition 4.10,
this question depends on whether the set {x ∈ [λ]ν : x ∩ ν+ ∈ ν+} is in the
strongly club filter. The following reformulation, implicit in [27], establishes
the relation to large cardinals:

4.11 Proposition. There exists a weakly stationary nonstationary set in
[λ]ν if and only if the (nonstationary) set {x ∈ [λ]ν : x + ν} is weakly
stationary.

4.12 Corollary. The following are equivalent:

(i) The club filter on [ω2]ℵ1 is not generated by strongly club sets,

(ii) Chang’s Conjecture.
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4.2. Splitting stationary sets

Let us now address the question whether stationary sets can be split into
a large number of disjoint stationary sets. In particular, does Theorem 1.8
generalize to PκA? As only the size of A matters, and the club filter on Pκκ
is basically just the club filter on κ, we shall consider subsets of Pκλ where
λ is a cardinal and λ > κ.

We have |Pκλ| = λ<κ and so the maximal possible size of a disjoint family
of subsets of Pκλ is λ<κ. While it is consistent that every stationary set
splits into λ<κ disjoint stationary subsets (see Corollary 4.18), this is not
provable in ZFC. The reason is that there may exist closed unbounded sets
in Pκλ whose size is less than λ<κ. For instance, [8] shows that there exists
a club in Pω3ω4 of size ℵℵ1

4 ; thus if 2ℵ2 > 2ℵ1 ·ℵ4, then Pω3ω4 is not the union
of ℵ<ℵ3

4 disjoint stationary sets. An earlier result [12] proved the consistency
of a stationary set S ⊆ Pω1ω2 such that INS � S is 2ℵ0-saturated.

A modification of Solovay’s proof, using the generic ultrapower by INS ,
gives this:

4.13 Theorem (Gitik [32]). Every stationary subset of Pκλ can be parti-
tioned into κ disjoint stationary sets.

The question of splitting stationary sets has been more or less completely
solved for splitting into λ sets. Let us first observe that the nonexistence of
λ disjoint stationary sets is equivalent to λ-saturation:

4.14 Lemma. If Xα, α < λ, are stationary sets in Pκλ such that Xα∩Xβ ∈
INS for all α 6= β, then there exist pairwise disjoint stationary sets Yα with
Yα ⊆ Xα for all α < λ.

Proof. Let Yα = Xα ∩ {x : α ∈ x and ∀β ∈ x(β 6= α → x /∈ Xβ)}. a

A long succession of results by Jech [44], Menas [77], Baumgartner,
DiPrisco and Marek [19], Matsubara [72], [73] established the following:

4.15 Theorem. (i) Pκλ can be partitioned into λ disjoint stationary sets.

(ii) If κ is a successor cardinal, than every stationary subset of Pκλ can
be partitioned into λ disjoint stationary sets.

(iii) If 0# does not exist, then every stationary subset of Pκλ can be
partitioned into λ disjoint stationary sets.

A complete proof of this theorem can be found in Kanamori’s book [62].
The results (ii) and (iii) are best possible, in the following sense:
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4.16 Theorem (Gitik [32]). It is consistent, relative to a supercompact
cardinal, that κ is inaccessible, λ > κ, and some stationary set S ⊂ Pκλ
cannot be partitioned into κ+ disjoint stationary subsets.

(For a simplification of Gitik’s proof, as well as further results, see [83].)

The proof of Theorem 4.15 involves the following set, which clearly is
stationary:

S0 = {x ∈ Pκλ : |x ∩ κ| = |x|}.
This stationary set can be partitioned into λ disjoint stationary sets, and if
either κ = ν+ or 0# does not exist, then S0 contains a club (cf. [62]).

Clearly, in Gitik’s model the set S0 does not contain a club. Thus the
statement that for some κ and λ,

{x ∈ Pκλ : |x ∩ κ| < |x|}
is stationary, is a consistent large cardinal statement. Its exact consistency
strength (between 0# and Ramsey) is pinned down in [5] and [20].

As for splitting into λ<κ sets, the following result of Matsubara together
with Theorem 4.15 proves the consistency result mentioned earlier:

4.17 Proposition (Matsubara [74]). Assume GCH. If cf λ < κ, then every
stationary subset of Pκλ can be partitioned into λ+ disjoint stationary sets.

4.18 Corollary. Assume GCH and that 0# does not exist. Then every
stationary subset of Pκλ can be partitioned into λ<κ disjoint stationary
sets.

4.3. Saturation

By Theorem 4.15, the nonstationary ideal on Pκλ is not λ-saturated (even
though INS � S can be κ+-saturated for some S). The next question is
whether it can be λ+-saturated, and the answer is again no.

4.19 Theorem (Foreman-Magidor [26]). For every regular uncountable car-
dinal κ and every cardinal λ > κ, the nonstationary ideal on Pκλ is not
λ+-saturated.

We note that special cases of this theorem have been proved earlier, cf .
[4], [73], [60] and [17].

When dealing with λ+-saturation, we naturally employ generic ultra-
powers and use the fact that the ultrapower is well founded; a normal λ+-
saturated ideal on Pκλ is precipitous. The nonstationary ideal on Pκλ (for
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regular λ) can be precipitous. The consistency, a result of Goldring [39], is
relative to a Woodin cardinal, and strengthens an earlier result in [27]. On
the other hand, the paper [75] gives instances of κ and λ for which INS on
Pκλ cannot be precipitous.

5. Proper forcing and other applications

5.1. Proper forcing

One of the most fruitful applications of the club filter on Pω1A is Shelah’s
concept of proper forcing. As proper forcing is discussed in detail in Abra-
ham’s chapter in this volume, I shall only give a brief account in this section.
The rest of Section 5 deals with applications of the club filter on Pω1A in
the theory of Boolean algebras.

When dealing with closed unbounded sets in Pω1A we may as well restrict
ourselves to infinite sets, and thus consider the space [A]ℵ0 (where A is
an uncountable set). By Kueker’s Theorem 4.9, a set X ⊆ [A]ℵ0 is in
the club filter just in case it contains the set ClF of all closure points of
some operation on A. Equivalently, X contains all elementary submodels of
some model with universe A. A useful modification of this is the following
consequence of Proposition 4.8.

5.1 Proposition. A set X ⊆ [A]ℵ0 is in the club filter if for some suffi-
ciently large λ, X contains M ∩ A, for all countable M ≺ Hλ such that
A ∈ M .

Here Hλ = 〈Hλ,∈〉 where Hλ is the set of all sets hereditarily of power
< λ; “sufficiently large” means 2|TC(A)| < λ.

Let us now turn to proper forcing. First we remark that the preservation
theorem 1.13 generalizes to [A]ℵ0 :

5.2 Theorem. (a) If P satisfies ccc, then every club C ∈ V [G] in [A]ℵ0

has a club subset in the ground model. Hence every stationary subset of
[A]ℵ0 remains stationary in V [G].

(b) If P is countably closed, then every stationary subset of [A]ℵ0 remains
stationary in V [G].

For a proof, we refer the reader to [7], Theorem 2.3, or [48] p. 87. This
leads to the important definition, cf. [79]:

5.3 Definition. A notion of forcing P is proper if for every uncountable set
A, every stationary subset of [A]ℵ0 remains stationary in V [G].
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There are several equivalent definitions of properness, most using the club
filter on [A]ℵ0 . Let me state one of them (see [79], p. 77, [48], p. 97):

5.4 Proposition. A complete Boolean algebra B is proper if and only if for
every nonzero a ∈ B for every uncountable λ and every collection {aαβ :
α, β < λ} such that

∑
β<λ aαβ = a for every α < λ, there exists a club

C ⊆ [λ]ℵ0 such that
∏

α∈x

∑
β∈x aαβ 6= 0 for all x ∈ C.

5.2. Projective and Cohen Boolean algebras

The club filter on [A]ℵ0 turns out to be a useful tool in the study of Boolean
algebras. Here we present a uniform approach to the investigation of two
related concepts, projective and Cohen Boolean algebras. For simplicity, we
consider only atomless Boolean algebras of uniform density.

5.5 Definition. (a) A Boolean algebra B is projective if for some Boolean
algebra C, the free product B ⊕ C is a free Boolean algebra.

(b) A Boolean algebra B is a Cohen algebra if its completion is isomorphic
to the completion of a free Boolean algebra.

Projective algebras have several other (equivalent) definitions and are
projective in the sense of universal algebra; we refer to [64] for details.
Forcing with Cohen algebras adds Cohen reals. In the present context, it is
the following equivalences that make these two classes interesting: Let A be
a subalgebra of a Boolean algebra B. A is a relatively complete subalgebra
of B, A ≤rc B, if for each b ∈ B there is a smallest element a ∈ A such that
b ≤ a. A is a regular subalgebra of B, A ≤reg B, if every maximal antichain
in A is maximal in B. Let 〈A1 ∪ A2〉 denote the subalgebra generated by
A1 ∪ A2.

5.6 Theorem. (a) (Ščepin [78]) A Boolean algebra B is projective if and
only if the set {A ∈ [B]ℵ0 : A ≤rc B} contains a club C with the property
that for all A1, A2 ∈ C, 〈A1 ∪ A2〉 ∈ C.

(b) (Koppelberg [65], Balcar-Jech-Zapletal [3]) A Boolean algebra B is
Cohen if and only if the set {A ∈ [B]ℵ0 : A ≤reg B} contains a club with
the property that for all A1, A2 ∈ C, 〈A1 ∪ A2〉 ∈ C.

This leads naturally to the following concepts:

5.7 Definition. (a) (Ščepin) A Boolean algebra B is openly generated if the
set {A ∈ [B]ℵ0 : A ≤rc B} contains a club.

(b) (Fuchino-Jech) A Boolean algebra B is semi-Cohen if the set {A ∈
[B]ℵ0 : A ≤reg B} contains a club.
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Openly generated (also called rc-filtered) and semi-Cohen Boolean alge-
bras are investigated systematically in [42] and [3], respectively.

Our first observation is that every projective algebra is openly generated
and every Cohen algebra is semi-Cohen; and if |B| = ℵ1 and B is openly
generated (or semi-Cohen), then B is projective (or Cohen). Because a
σ-closed forcing preserves stationary sets in [B]ℵ0 (by Theorem 5.2), we
have:

5.8 Corollary. B is openly generated (resp. semi-Cohen) iff V P � B is
projective (resp. Cohen), where P is the σ-closed collapse of |B| onto ℵ1.

An immediate consequence is that the completion of a semi-Cohen alge-
bra is semi-Cohen.

Using some simple algebra and Proposition 4.8, one can show that every
rc-subalgebra of an openly generated algebra is openly generated and every
regular subalgebra of a semi-Cohen algebra is semi-Cohen. Consequently,
we have:

5.9 Corollary. (a) (Ščepin) If B is projective and A ≤rc B has size ℵ1,
then A is projective.

(b) (Koppelberg) If B is a Cohen algebra and A ≤reg B has size ℵ1, then
A is Cohen.

Finally, the use of the club filter yields a simple proof of the following
theorem:

5.10 Theorem. (a) (Ščepin [78], Fuchino [28]) The union of any continuous
≤rc-chain of openly generated algebras is openly generated.

(b) (Balcar-Jech-Zapletal [3]) The union of any continuous ≤reg-chain of
semi-Cohen algebras is semi-Cohen.

Proof. Let B be the union and let λ be sufficiently large; by Proposition
5.1 it suffices to show that for every countable M ≺ Hλ such that B ∈ M ,
B ∩ M is a relatively complete (resp. regular) subalgebra of B. It is not
very difficult to prove this. a

6. Reflection

In Section 2 we introduced the important concept of reflection. One can
expect that its generalization to Pκλ will be equally important. This is
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indeed the case, and in particular, reflection of stationary sets in [λ]ℵ0 at
sets of cardinality ℵ1 plays a significant role in applications of Martin’s
Maximum.

Let us begin with a generalization of reflection of which very little is
known (see [56] for a consistency result): Let κ be inaccessible, and let
λ > κ. For each x ∈ Pκλ, let κx = x ∩ κ; note that for almost all x, κx

is a cardinal. When κa is regular uncountable, we say that a stationary S
reflects at a if S ∩ Pκaa is a stationary subset of Pκaa.

The following argument shows that there are limitations to reflection:
Let S ⊆ Eλ

ℵ0
and T ⊆ Eλ

ℵ1
be such that S does not reflect at any α ∈ T (see

Lemma 2.16). Let Ŝ = {x ∈ Pκλ : sup x ∈ S} and T̂ = {a ∈ Pκλ : sup a ∈
T }. Then Ŝ does not reflect at any a ∈ T̂ .

A similar generalization leads to significant results in the large cardinal
theory and we shall now investigate this generalization.

6.1. Reflection principles

In [27], Foreman, Magidor and Shelah introduced Martin’s Maximum and
proved a number of consequences. Let us recall that Martin’s Maximum
(MM) states that whenever P is a notion of forcing that preserves stationary
subsets of ℵ1, and D is a family of ℵ1 dense subsets of P , then there exists
a D-generic filter on P . By [27] Martin’s Maximum is consistent relative to
a supercompact cardinal.

Among the consequences of MM proved in [27] are the following:

• The nonstationary ideal on ℵ1 is ℵ2-saturated

• For every regular κ ≥ ℵ2, every stationary set S ⊆ Eκ
ℵ0

contains a
closed set of order type ω1.

• 2ℵ0 = ℵ2.

• For every regular κ ≥ ℵ2, κℵ0 = κ.

The authors of [27] introduced the following Reflection Principle and
proved that it follows from MM.

If S is a stationary subset of [λ]ℵ0 and X ∈ [λ]ℵ1 we say that S reflects
at X if S ∩ [X ]ℵ0 is stationary in [X ]ℵ0 .

6.1 Definition (Reflection Principle, Foreman-Magidor-Shelah [27]).
For every regular λ ≥ ℵ2, every stationary set S ⊆ [λ]ℵ0 reflects at some
X ∈ [λ]ℵ1 such that X ⊇ ω1.
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For a given regular λ, let us call the property in Definition 6.1 Reflection
Principle at λ. As for the extra condition X ⊇ ω1, this is not just an
ad hoc requirement. Its role is clarified in the following two propositions.
(Compare this with the remark following Theorem 2.3.)

6.2 Proposition (Feng-Jech [21]). Let λ ≥ ℵ2 be a regular cardinal.

(a) Reflection Principle at λ holds if and only if for every stationary set
S ⊆ [λ]ℵ0 , the set {X ∈ [λ]ℵ1 : S reflects at X} is stationary in [λ]ℵ1 .

(b) Every stationary S ⊆ [λ]ℵ0 reflects at some X ∈ [λ]ℵ1 if and only if
for every stationary set ⊆ [λ]ℵ0 , the set {X ∈ [λ]ℵ1 : S reflects at X} is
weakly stationary in [λ]ℵ1 .

For λ = ℵ2 the assumption X ⊇ ω1 can be dropped; it is unknown if the
same is true in general:

6.3 Proposition (Feng-Jech [21]). Reflection Principle at ℵ2 holds if and
only if every stationary S ⊆ [ω2]ℵ0 reflects at some X ∈ [ω2]ℵ1 .

The significance of this and related reflection principles is illustrated by
the fact that they imply the major consequences of MM. Firstly, Reflection
Principle at ℵ2 implies that the continuum is at most ℵ2:

6.4 Theorem (Shelah [80], Todorčević [89]). If every stationary S ⊆ [ω2]ℵ0

reflects at some X ∈ [ω2]ℵ1 , then 2ℵ0 ≤ ℵ2.

Proof. For each uncountable α < ω2, let Cα ⊆ [α]ℵ0 be a club of cardinality
ℵ1, and let D =

⋃
ω1≤α<ω2

Cα. By Propositions 6.3 and 6.2(a), the set D
contains a club, and we have |D| = ℵ2. However, it is proved in [12] that
every club in [ω2]ℵ0 has cardinality ℵℵ0

2 ; hence 2ℵ0 ≤ ℵ2. a

Reflection Principle at ℵ2 is not particularly strong; it is equiconsistent
with the existence of a weakly compact cardinal. A modification of Magi-
dor’s construction [70] gives a model in which every stationary S ⊆ [ω2]ℵ0

reflects at [α]ℵ0 for almost all α ∈ Eℵ2
ℵ1

.

The general Reflection Principle, for all regular λ ≥ ℵ2, is a stronger
large cardinal property. A modification of the proof of Theorem 25 in [27]
shows that the Reflection Principle implies that the nonstationary ideal on
ω1 is presaturated (i.e. precipitous, and forcing with P (ω1)/INS preserves
ω2). This has strong large cardinal consequences.

The Reflection Principle follows from MM and in fact from a weaker
forcing axiom MA+ (σ-closed). (This latter axiom is known to be strictly
weaker than MM). In fact, MA+ (σ-closed) implies (cf. [14]) for every
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regular λ ≥ ℵ2, for every stationary set ·S ⊆ [λ]ℵ0 , the set {X ∈ [λ]ℵ1 :
S reflects at X} meets every ω1-closed unbounded set C in [λ]ℵ1 . This
reflection principle was introduced in [23].

Todorčević formulated a strengthening of the Reflection Principle and
proved that his Strong Reflection Principle (SRP) implies that the nonsta-
tionary ideal on ω1 is ℵ2-saturated, that every stationary subset of Eκ

ℵ0

contains a closed copy of ω1 and that for every regular κ ≥ ℵ2, κℵ0 = κ
(cf. [15]). In [22], another reflection principle is introduced, called Projec-
tive Stationary Reflection (PSR), and proved to be equivalent to the Strong
Reflection Principle (SRP=PSR).

6.5 Definition ([22]). A stationary set S ⊆ [A]ℵ0 where A ⊇ ω1, is projec-
tive stationary if for every club C ⊆ [A]ℵ0 , the projection (S ∩ C) � ω1 =
{x ∩ ω1 : x ∈ S ∩ C} to ω1 contains a club.

6.6 Definition (Projective Stationary Reflection (PSR), Feng-Jech
[22]). For every regular λ ≥ ℵ2, every projective stationary set S ⊆ [Hλ]ℵ0

contains an increasing continuous ∈-chain {Nα : α < ω1} of elementary
submodels of Hλ.

If S ⊆ [Hλ]ℵ0 is stationary, let PS be the forcing notion consisting of
countable increasing continuous ∈-chains {Nα : α < γ} ⊆ S of elementary
submodels of Hλ. The set S is projective stationary just in case PS preserves
stationary subsets of ω1. Thus PSR follows from Martin’s Maximum. It is
also proved in [22] that PSR implies the Reflection Principle.

6.7 Theorem (Feng-Jech [22]). Assume PSR. (a) For every regular κ ≥ ℵ2,
every stationary set S ⊆ Eκ

ℵ0
contains a closed set of order type ω1.

(b) The nonstationary ideal on ω1 is ℵ2-saturated.

Proof. (a) This is proved by applying PSR to the projective stationary set

{N ∈ [Hκ]ℵ0 : S ∈ N ≺ Hκ and sup(N ∩ κ) ∈ S},

where S is a given stationary subset of Eκ
ℵ0

.

(b) Let A be a maximal antichain of stationary subsets of ω1. Then the
set

X = {N ∈ [Hω2 ]
ℵ0 : A ∈ N ≺ Hω2 and N ∩ ω1 ∈ S for some S ∈ A ∩ N}

is projective stationary. By PSR, there exists an ∈-chain {Nα : α < ω1} ⊂
X , and we let N =

⋃
α<ω1

Nα. One can verify that A ⊂ N , and therefore
|A| ≤ ℵ1. a
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Finally, recent work of Woodin shows that Strong Reflection implies that
2ℵ0 = ℵ2, in fact δ1

2 = ω2:

6.8 Theorem (Woodin [94]). Assume SRP. Then the set {N ∈ [Hω3 ]
ℵ1 :

N ≺ Hω3 and the order type of N ∩ ω3 is ω1} is weakly stationary. This
together with the saturation of the nonstationary ideal, implies that δ1

2 = ω2.

6.2. Nonreflecting stationary sets

The results about reflecting stationary sets in [λ]ℵ0 at sets of size ℵ1 do not
generalize to [λ]κ for κ ≥ ℵ1. For instance, the analog of the Reflection
Principle is false:

6.9 Proposition. If λ is sufficiently large, then it is not the case that every
stationary S ⊆ [λ]ℵ1 reflects at some X ∈ [λ]ℵ2 such that X ⊇ ω2.

In Section 6.1 we mentioned that the Reflection Principle implies that
INS on ω1 is presaturated. To prove Proposition 6.9, one first shows that
the generalization of the Reflection Principle would yield presaturation of
INS on ω2, thus (as in Shelah’s Corollary 3.7) a forcing notion that changes
the cofinality of ω2 to ω while preserving ℵ1 and ℵ3. But that is impossible.

Specific examples of nonreflecting stationary subsets of [λ]ℵ1 are given
in [25]. That paper also explains why the consistency proof of Reflection
Principle does not generalize. A model of MA+ (σ-closed) is obtained by
Lévy collapsing (to ℵ1) cardinals below a supercompact. A crucial fact is
that the collapse preserves stationary sets in [λ]ℵ0 (Theorem 5.2(a)). Un-
fortunately, the analog of this is false in general, as < κ-closed forcing can
destroy stationary sets in Pκλ.

Following [27], a model N ≺ Hλ is internally approachable (IA) if there
exists a chain 〈Nα : α < γ〉 whose initial segments belong to N , with
N =

⋃
α<γ Nα. Let κ be a regular uncountable cardinal and let λ ≥ κ be

regular. The set PκHλ ∩ IA is stationary and its projection to κ contains
a club. Moreover, every countable N is internally approachable and so
[Hλ]ℵ0 ∩ IA contains a club.

It is proved in [25] that every < κ-closed forcing preserves stationary
subsets of PκHλ ∩ IA, and that the < κ-closed collapse of Hλ shoots a club
through PκHλ ∩ IA. As for a generalization of Reflection Principle, they
prove that if cardinals between κ and a supercompact are collapsed to κ,
then in the resulting model, every stationary set S ⊆ PκHλ ∩ IA reflects at
a set of size κ.
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7. Stationary tower forcing

In this last section we give a brief description of the stationary tower forcing,
introduced by Woodin in [93]. See also [69].

Let δ be an inaccessible cardinal. Let Q and P the following notions of
forcing (the stationary tower forcing):

A forcing condition in Q is a pair (A, S) where A ∈ Vδ and S is a sta-
tionary subset of [A]ℵ0 ; (A, S) < (B, T ) if A ⊇ B and S � B ⊆ T .

A forcing condition in P is a pair (A, S) where A ∈ Vδ and S is a weakly
stationary subset of P|A|A; (A, S) < (B, T ) if A ⊇ B and S � B ⊆ T .

In fact, the stationary tower forcing is somewhat more general than these
two examples, and uses the following generalization of stationary sets (con-
sidered e.g. in [20]). A set S is stationary in P (A) if S ⊆ P (A) and if for
every F : [A]<ω → A, S contains a closure point of F , i.e. a set X ⊆ A
such that F (e) ∈ X for all e ∈ [X ]<ω. As in Proposition 4.8, projections
and liftings of stationary sets are stationary. Also, the analog of Theorem
4.4 holds. Note that the sets S � PκA are exactly the weakly stationary sets
in PκA, and S � {X ∈ Pκλ : X ∩ κ ∈ κ} are the stationary sets in Pκλ.

The general version of stationary tower forcing uses conditions (A, S)
where S is stationary in P (A).

If G is a generic filter on Q, then for each A ∈ Vδ, the set GA = {S :
(A, S) ∈ G} is a V -ultrafilter on ([A]ℵ0 )V ; similarly for P . Moreover, if
A ⊆ B, then GB projects to GA. In V [G] we form a limit ultrapower
M = UltG(V ) by the GA, A ∈ Vδ. The elements of M are represented by
functions (in V ) whose domain is some A ∈ Vδ. Let j : V → M be the
generic embedding, i.e. the elementary embedding from V into the limit
ultrapower.

The ultrapower has a well founded initial segment up to at least δ: each
ordinal α ≤ δ is represented by the function fα(x) = x ∩ α. The identity
function id(x) = x represents the set j“Vδ. Woodin’s main tool is the
following:

7.1 Theorem (Woodin [93]). Suppose δ is a Woodin cardinal. If G is
a generic on either Q or P , then the generic ultrapower UltG(V ) is well
founded, and the model M is closed under sequences of length < δ.

When forcing with Q, one has crit(j) = ω1 and j(ω1) = δ. For applica-
tions, see [93].

Forcing with P gives more flexibility and yields various strong forcing
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results. We conclude this section with a typical application. Assume that
ℵω is strong limit. Let

S = {X ∈ [Vℵω+1 ]
ℵω : X ∩ ℵω+1 ∈ ℵω+1 and cf (X ∩ ℵω+1) = ℵ3}

and let G be a generic on P such that S ∈ G. Then crit(j) = ℵω+1 and
cf Mℵω+1 = ℵ3. As PV [G](ωn) = PM (ωn) = PV (ωn) for all n, we conclude
that forcing with P (below (Vℵω+1 , S)) changes the cofinality of ℵω+1 to ℵ3

while preserving ℵω.
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[28] Sakaé Fuchino. Some remarks on openly generated Boolean algebras.
J. Symbolic Logic, 59(1):302–310, 1994.

[29] F. Galvin, T. Jech, and M. Magidor. An ideal game. J. Symbolic Logic,
43(2):284–292, 1978.

[30] Fred Galvin and András Hajnal. Inequalities for cardinal powers. Ann.
of Math. (2), 101:491–498, 1975.

[31] Moti Gitik. The nonstationary ideal on ℵ2. Israel J. Math., 48(4):257–
288, 1984.

[32] Moti Gitik. Nonsplitting subset of Pκ(κ+). J. Symbolic Logic,
50(4):881–894, 1985.

[33] Moti Gitik. Changing cofinalities and the nonstationary ideal. Israel
J. Math., 56(3):280–314, 1986.

[34] Moti Gitik. On precipitousness of the nonstationary ideal over a su-
percompact. J. Symbolic Logic, 51(3):648–662, 1986.

[35] Moti Gitik. Some results on the nonstationary ideal. Israel J. Math.,
92(1-3):61–112, 1995.

[36] Moti Gitik. Some results on the nonstationary ideal. II. Israel J. Math.,
99(1-3):175–188, 1997.

[37] Moti Gitik and Saharon Shelah. Less saturated ideals. Proc. Amer.
Math. Soc., 125(5):1523–1530, 1997.
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