Continued Fraction Transformation

Steven Finch

May 23, 2007
We are interested in iterates of the continued fraction transformation T : $[0,1] \rightarrow[0,1]$ defined by $[1]$

$$
T(x)= \begin{cases}\left\{\frac{1}{x}\right\} & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

where $\{\xi\}=\xi-\lfloor\xi\rfloor$ denotes the fractional part of ξ. For example,
and

$$
\pi=3+\frac{1 \mid}{\mid 7}+\frac{1 \mid}{\mid 15}+\frac{1 \mid}{\mid 1}+\frac{1 \mid}{\mid 292}+\frac{1 \mid}{\mid 1}+\frac{1 \mid}{\mid 1}+\frac{1 \mid}{\mid 1}+\frac{1 \mid}{\mid 2}+\frac{1 \mid}{\mid 1}+\frac{1 \mid}{\mid 3}+\cdots
$$

is the regular continued fraction expansion for π. In words, T discards the first "digit" in any expansion, that is,

$$
T\left(\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots\right)=\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\frac{1 \mid}{\mid a_{4}}+\cdots .
$$

What can be said about the moments of $T^{j} X$ and of $\ln \left(T^{j} X\right)$, where X is a random variable in $[0,1]$? There are two cases: the first when X follows the uniform distribution, and the second when X follows the Gauss-Kuzmin distribution:

$$
\mathrm{P}(X \leq x)=\frac{\ln (x+1)}{\ln (2)}
$$

[^0]We will later study the partial convergents to x, for example,

$$
\frac{p_{1}}{q_{1}}=\frac{3}{1}, \quad \frac{p_{2}}{q_{2}}=\frac{22}{7}, \quad \frac{p_{3}}{q_{3}}=\frac{333}{106}, \quad \frac{p_{4}}{q_{4}}=\frac{355}{113}, \quad \frac{p_{5}}{q_{5}}=\frac{103993}{33102}, \quad \ldots
$$

when $x=\pi$. The asymptotic distribution of denominators Q_{n}, corresponding to uniformly distributed X as $n \rightarrow \infty$, turns out to be related to our earlier work on $\ln \left(T^{j} X\right)$ statistics.
0.1. Uniform Distribution. Let γ denote the Euler-Mascheroni constant [2], ζ denote the Riemann zeta function and Li_{k} denote the $k^{\text {th }}$ polylogarithm function [3]. If X is a random variable following the uniform distribution on $[0,1]$, then

$$
\begin{gathered}
\mathrm{E}(X)=\int_{0}^{1} x d x=\frac{1}{2}, \quad \mathrm{E}\left(X^{2}\right)=\int_{0}^{1} x^{2} d x=\frac{1}{3} \\
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}=\frac{1}{12}
\end{gathered}
$$

and, via the substitution $y=1 / x$,

$$
\begin{aligned}
\mathrm{E}(T X) & =\int_{0}^{1}\left\{\frac{1}{x}\right\} d x=\int_{1}^{\infty} \frac{\{y\}}{y^{2}} d y=\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{y-n}{y^{2}} d y \\
& =\sum_{n=1}^{\infty}\left(\ln \left(\frac{n+1}{n}\right)-\frac{1}{n+1}\right)=1-\gamma=0.4227843351 \ldots
\end{aligned}
$$

(which is related to de la Vallée Poussin's theorem [2, 4]),

$$
\begin{gathered}
\mathrm{E}\left((T X)^{2}\right)=\ln (2 \pi)-\gamma-1, \\
\operatorname{Var}(T X)=\ln (2 \pi)-\gamma^{2}+\gamma-2=0.0819148075 \ldots=(0.2862076300 \ldots)^{2}, \\
\mathrm{E}(X \cdot T X)=1-\frac{\pi^{2}}{12}, \\
\operatorname{Cov}(X, T X)=\mathrm{E}(X \cdot T X)-\mathrm{E}(X) \mathrm{E}(T X)=\frac{1}{12}\left(6-\pi^{2}+6 \gamma\right), \\
\rho(X, T X)=\frac{\operatorname{Cov}(X, T X)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(T X)}}=\frac{6-\pi^{2}+6 \gamma}{\sqrt{12} \sqrt{\ln (2 \pi)-\gamma^{2}+\gamma-2}}=-0.4098133678 \ldots
\end{gathered}
$$

where ρ denotes cross-correlation. Likewise,

$$
\mathrm{E}(\ln (X))=-1, \quad \mathrm{E}\left(\ln (X)^{2}\right)=2, \quad \operatorname{Var}(\ln (X))=1
$$

and, via the substitutions $y=1 / x$ and $z=y-n$,

$$
\begin{aligned}
\mathrm{E}(\ln (T X)) & =\int_{0}^{1} \ln \left\{\frac{1}{x}\right\} d x=\int_{1}^{\infty} \frac{\ln \{y\}}{y^{2}} d y=\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{\ln (y-n)}{y^{2}} d y \\
& =\sum_{n=1}^{\infty} \int_{0}^{1} \frac{\ln (z)}{(z+n)^{2}} d z=-\sum_{n=1}^{\infty} \frac{1}{n} \ln \left(\frac{n+1}{n}\right) \\
& =-\left(\ln (2)+\sum_{k=2}^{\infty}(-1)^{k} \frac{\zeta(k)-1}{k-1}\right)=-1.2577468869 \ldots
\end{aligned}
$$

(this constant appears elsewhere $[5,6]$),

$$
\begin{gathered}
\mathrm{E}\left(\ln (T X)^{2}\right)=-2 \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Li}_{2}\left(-\frac{1}{n}\right)=\zeta(2)-2 \sum_{k=1}^{\infty}(-1)^{k} \frac{\zeta(k+1)-1}{k^{2}}, \\
\operatorname{Var}(\ln (T X))=1.2665694005 \ldots=(1.1254196552 \ldots)^{2} \\
\mathrm{E}(\ln (X) \cdot \ln (T X))= \\
\sum_{n=1}^{\infty} \frac{1}{n}\left[\ln \left(\frac{n+1}{n}\right)(1+\ln (n))-\mathrm{Li}_{2}\left(\frac{1}{n+1}\right)\right] \\
= \\
-\zeta(2)+\sum_{k=2}^{\infty}\left[\left(\zeta(2)-\sum_{\ell=1}^{k-1} \frac{1}{\ell^{2}}\right)(\zeta(k)-1)-\left(1+\frac{(-1)^{k}}{k-1}\right) \zeta^{\prime}(k)\right], \\
\\
\rho(\ln (X), \ln (T X))=-0.2275522084 \ldots
\end{gathered}
$$

The cumulative distribution for $T X$ can be expressed in terms of the digamma function:

$$
F(x)=\mathrm{P}(T X \leq x)=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+x}\right)=\gamma+\psi(x+1)
$$

and its density in terms of the trigamma function:

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{2}}=\psi^{\prime}(x+1)
$$

For example, the median of $T X$ is $F^{-1}(1 / 2)=0.3846747346 \ldots$. The cumulative distribution for $T^{2} X$ is

$$
\begin{aligned}
G(x) & =\mathrm{P}\left(T^{2} X \leq x\right)=\sum_{n=1}^{\infty}\left(F\left(\frac{1}{n}\right)-F\left(\frac{1}{n+x}\right)\right) \\
& =\sum_{n=1}^{\infty}\left(\psi\left(\frac{1}{n}+1\right)-\psi\left(\frac{1}{n+x}+1\right)\right)
\end{aligned}
$$

its density is

$$
g(x)=\sum_{n=1}^{\infty} \psi^{\prime}\left(\frac{1}{n+x}+1\right) \frac{1}{(n+x)^{2}}
$$

and its median is $G^{-1}(1 / 2)=0.42278 \ldots$. It is certainly inconvenient that $F \neq G$!
0.2. Gauss-Kuzmin Distribution. If X is a random variable following the Gauss-Kuzmin distribution on $[0,1]$, then

$$
\begin{gathered}
\mathrm{E}(X)=\frac{1}{\ln (2)}-1=0.4426950408 \ldots=\mathrm{E}(T X) \\
\mathrm{E}\left(X^{2}\right)=1-\frac{1}{2 \ln (2)}=\mathrm{E}\left((T X)^{2}\right), \\
\operatorname{Var}(X)=\frac{(3 / 2) \ln (2)-1}{\ln (2)^{2}}=0.0826735803 \ldots=(0.2875301381 \ldots)^{2}=\operatorname{Var}(T X)
\end{gathered}
$$

by invariance under T, and

$$
\begin{gathered}
\mathrm{E}(X \cdot T X)=1-\frac{\gamma}{\ln (2)}, \quad \operatorname{Cov}(X, T X)=\frac{(2-\gamma) \ln (2)-1}{\ln (2)^{2}}, \\
\rho(X, T X)=\frac{(2-\gamma) \ln (2)-1}{(3 / 2) \ln (2)-1}=-0.3474517057 \ldots
\end{gathered}
$$

Likewise,

$$
\begin{gathered}
\mathrm{E}(\ln (X))=-\frac{\pi^{2}}{12 \ln (2)}=-1.1865691104 \ldots=\mathrm{E}(\ln (T X)), \\
\mathrm{E}\left(\ln (X)^{2}\right)=\frac{3 \zeta(3)}{2 \ln (2)}=\mathrm{E}\left(\ln (T X)^{2}\right), \\
\operatorname{Var}(\ln (X))= \\
=\frac{216 \ln (2) \zeta(3)-\pi^{4}}{144 \ln (2)^{2}}=1.1933560457 \ldots \\
\mathrm{E}(\ln (X) \cdot \ln (T X))=\frac{1}{\ln (2)} \sum_{n=1}^{\infty}\left[\frac{1}{2} \ln \left(\frac{n+1}{n}\right)^{2} \ln ((n+1) n)+\ln (n) \mathrm{Li}_{2}\left(-\frac{1}{n}\right)\right. \\
\\
-\ln (n+1) \operatorname{Li}_{2}\left(-\frac{1}{n+1}\right)+\ln (n+1) \mathrm{Li}_{2}\left(\frac{1}{(n+1)^{2}}\right) \\
\\
\left.+2 \mathrm{Li}_{3}\left(-\frac{1}{n}\right)-2 \mathrm{Li}_{3}\left(-\frac{1}{n+1}\right)+\mathrm{Li}_{3}\left(\frac{1}{(n+1)^{2}}\right)\right] \\
= \\
\frac{1}{\ln (2)}\left[-\frac{3 \zeta(3)}{2}+\sum_{k=1}^{\infty}\left(\frac{\zeta(2 k)-1}{k^{3}}-\frac{\zeta^{\prime}(2 k)}{k^{2}}+\frac{\zeta^{\prime \prime}(2 k)}{2 k}\right)\right],
\end{gathered}
$$

$$
\rho(\ln (X), \ln (T X))=-0.1858801270 \ldots=r_{1} .
$$

The median of $T^{j} X$ is $\sqrt{2}-1=0.4142135623 \ldots$ for every j. We wish to understand the decay rate of $\rho\left(X, T^{j} X\right)$ and $\rho\left(\ln (X), \ln \left(T^{j} X\right)\right)$ as j increases, but this appears to be a difficult problem.
0.3. Variance of Sample Mean. Let us consider the sample mean

$$
\hat{\mu}_{n}(X)=-\frac{1}{n} \sum_{0 \leq j<n} \ln \left(T^{j} X\right)
$$

that is, the average of the time series $\ln (X), \ln (T X), \ldots, \ln \left(T^{n-1} X\right)$ built from iterates of T evaluated at X. (The negative sign will simplify subsequent formulation.) It can be proved that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \mathrm{E}\left(\hat{\mu}_{n}(X)\right)=\frac{\pi^{2}}{12 \ln (2)}=1.1865691104 \ldots=\mu \\
\lim _{n \rightarrow \infty} n \operatorname{Var}\left(\hat{\mu}_{n}(X)\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\substack{0 \leq j<n, 0 \leq k<n}} \operatorname{Cov}\left(\ln \left(T^{j} X\right), \ln \left(T^{k} X\right)\right)=\sigma^{2} \\
\\
\approx \frac{216 \ln (2) \zeta(3)-\pi^{4}}{144 \ln (2)^{2}}\left(1+\frac{2 r_{1}}{1-r_{1}}\right) \approx 0.8
\end{gathered}
$$

for a wide variety of initial distributions for X on $[0,1]$. The latter is a poor numerical estimate (since it presumes that the lag- ℓ correlation r_{ℓ} is approximately r_{1}^{ℓ}, which is not true). It is inspired, in part, by Salamin [7]. A more precise estimate will be given shortly.
0.4. Partial Convergents. The denominator $Q_{n}(X)$ of the $n^{\text {th }}$ partial convergent to X is connected to our exposition via the formula

$$
\underbrace{\ln \left(Q_{n}(X)\right)}_{A_{n}}=\underbrace{-\sum_{0 \leq j<n} \ln \left(T^{j} X\right)}_{B_{n}}+\varepsilon_{n}
$$

where $\left|\varepsilon_{n}\right|<c$ for all n, for some constant c. It is clear that

$$
\lim _{n \rightarrow \infty} \frac{\mathrm{E}\left(A_{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{\mathrm{E}\left(B_{n}\right)}{n}=\mu
$$

and further known [8] that

$$
0<\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(A_{n}\right)}{n}<\infty
$$

We wish to prove that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(A_{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(B_{n}\right)}{n}
$$

From $B_{n}=A_{n}-\varepsilon_{n}$, deduce that

$$
\operatorname{Var}\left(B_{n}\right)=\operatorname{Var}\left(A_{n}\right)-2 \operatorname{Cov}\left(A_{n}, \varepsilon_{n}\right)+\operatorname{Var}\left(\varepsilon_{n}\right) ;
$$

hence

$$
\begin{aligned}
\left|\operatorname{Var}\left(A_{n}\right)-\operatorname{Var}\left(B_{n}\right)\right| & \leq 2\left|\operatorname{Cov}\left(A_{n}, \varepsilon_{n}\right)\right|+\operatorname{Var}\left(\varepsilon_{n}\right) \\
& \leq 2 \sqrt{\operatorname{Var}\left(A_{n}\right) \operatorname{Var}\left(\varepsilon_{n}\right)}+\operatorname{Var}\left(\varepsilon_{n}\right) \\
& \leq 2 \sqrt{\operatorname{Var}\left(A_{n}\right) \mathrm{E}\left(\varepsilon_{n}^{2}\right)}+\mathrm{E}\left(\varepsilon_{n}^{2}\right) \\
& \leq 2 c \sqrt{\operatorname{Var}\left(A_{n}\right)}+c^{2} ;
\end{aligned}
$$

hence

$$
\left|\frac{\operatorname{Var}\left(A_{n}\right)}{n}-\frac{\operatorname{Var}\left(B_{n}\right)}{n}\right| \leq 2 c \sqrt{\frac{\operatorname{Var}\left(A_{n}\right)}{n^{2}}}+\frac{c^{2}}{n} \rightarrow 0
$$

as $n \rightarrow \infty$. In particular,

$$
\operatorname{Var}\left(\ln \left(Q_{n}(X)\right)\right) \sim \sigma^{2} n
$$

and the importance of computing σ^{2} (as attempted using iterates of T) becomes evident.

In fact, the existence of σ^{2} (in connection with the denominators Q_{n}) has been known for a long time. Ibragimov [9], Philipp [10, 11, 12] and others [13, 14, 15, 16, 17, 18, 19] proved the following Central Limit Theorem:

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\frac{\frac{1}{n} \ln \left(Q_{n}(X)\right)-\mu}{\frac{\sigma}{\sqrt{n}}} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \exp \left(-\frac{u^{2}}{2}\right) d u
$$

No numerical estimate of σ^{2} appeared until Flajolet \& Vallée [8, 20, 21] computed that

$$
\begin{aligned}
\sigma^{2} & =\lambda_{1}^{\prime \prime}(2)-\lambda_{1}^{\prime}(2)^{2}=0.8621470373 \ldots=(0.9285187329 \ldots)^{2} \\
& =\frac{1}{4}(9.0803731646 \ldots)-\mu^{2}=(0.5160624088 \ldots) \cdot \mu^{3},
\end{aligned}
$$

where $\lambda_{1}(s)$ is the dominant eigenvalue of a family of linear operators (indexed by $s)$ on a certain infinite-dimensional function space. Lhote [22, 23] proved that σ^{2} is polynomial-time computable and obtained higher accuracy. An elementary expression for σ^{2} seems to be impossible. The quantities $4 \lambda_{1}^{\prime \prime}(2)$ or σ^{2} / μ^{3} are often called Hensley's constant.

We close with Loch's theorem [1, 24, 25]:

$$
\lim _{n \rightarrow \infty} \frac{m(n, x)}{n}=\frac{6 \ln (2) \ln (10)}{\pi^{2}}=0.9702701143 \ldots=(1.0306408341 \ldots)^{-1}=\alpha
$$

for almost all real x, where $m(n, x)$ is the number of partial denominators of x correctly predicted by the first n decimal digits of x. A corresponding Central Limit Theorem was proved by Faivre [26, 27]:

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\frac{\frac{m(n, X)}{n}-\alpha}{\frac{\theta}{\sqrt{n}}} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \exp \left(-\frac{u^{2}}{2}\right) d u
$$

where

$$
\begin{aligned}
\theta^{2} & =\frac{\alpha \sigma^{2}}{\mu^{2}}=\frac{864 \ln (2)^{3} \ln (10)}{\pi^{6}} \sigma^{2} \\
& =0.5941388048 \ldots=(0.7708039990 \ldots)^{2}
\end{aligned}
$$

For example, the first 10000 decimal digits of π give 9757 partial denominators, consistent with the value of α. A similar empirical confirmation of the value of θ would be good to see.
0.5. Acknowledgements. I thank Eugene Salamin, William Gosper, Philippe Flajolet and Brigitte Vallée for helpful discussions in 1999.

References

[1] K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Math. Assoc. Amer., 2002, pp. 20-26, 80-88, 172-175; MR1917322 (2003f:37014).
[2] S. R. Finch, Euler-Mascheroni constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 28-40.
[3] S. R. Finch, Apéry's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 40-53.
[4] G. Pólya and G. Szegö, Problems and Theorems in Analysis, v. 1, Springer-Verlag 1998, problems 42, 43; MR0580154 (81e:00002).
[5] S. R. Finch, Alladi-Grinstead constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 120-122.
[6] P. Erdös, S. W. Graham, A. Ivić, and C. Pomerance, On the number of divisors of n!, Analytic Number Theory, Proc. 1995 Allerton Park conf., v. 1, ed. B. C. Berndt, H. G. Diamond, and A. J. Hildebrand, Birkhäuser, 1996, pp. 337-355; MR1399347 (97d:11142).
[7] W. Gosper and E. Salamin, Lévy's (1936) limit and zeta(3), unpublished note (1999), http://www.people.fas.harvard.edu/~ sfinch/csolve/salamin.html.
[8] S. R. Finch, Gauss-Kuzmin-Wirsing constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 151-156.
[9] I. A. Ibragimov, A theorem from the metric theory of continued fractions (in Russian), Vestnik Leningrad. Univ. v. 16 (1961) n. 1, 13-24; MR0133619 (24 \#A3445).
[10] W. Philipp, Ein zentraler Grenzwertsatz mit Anwendungen auf die Zahlentheorie, Z. Wahrsch. Verw. Gebiete 8 (1967) 185-203; MR0215360 (35 \#6201).
[11] W. Philipp and O. P. Stackelberg, Zwei Grenzwertsätze für Kettenbrüche, Math. Annalen 181 (1969) 152-156; MR0244186 (39 \#5503).
[12] W. Philipp, Some metrical theorems in number theory. II, Duke Math. J. 37 (1970) 447-458; errata 37 (1970) 788; MR0272739 (42 \#7620) and MR0274412 (43 \#177).
[13] M. I. Gordin and M. H. Reznik, The law of the iterated logarithm for the denominators of continued fractions (in Russian), Vestnik Leningrad. Univ. v. 25 (1970) n. 13, 28-33; MR0276191 (43 \#1939).
[14] M. I. Gordin, The behavior of the dispersion of sums of random variables that generate a stationary process (in Russian), Teor. Verojatnost. i Primenen. 16 (1971) 484-494; Engl. transl. in Theor. Probability Appl. 10 (1971) 474-484; MR0287606 (44 \#4809).
[15] G. A. Misjavicus, Evaluation of remainders in limit theorems for functions of elements of continued fractions (in Russian), Litovsk. Mat. Sb. 10 (1970) 293308; MR0296041 (45 \#5102).
[16] G. A. Misjavicus, Evaluation of remainders in limit theorems for denominators of continued fractions (in Russian), Litovsk. Mat. Sb. 21 (1981) 63-74; Engl. transl. in Lithuanian Math. J. 21 (1981) 245-253; MR0637846 (83d:10063).
[17] T. Morita, Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition, J. Math. Soc. Japan 46 (1994) 309-343; correction 47 (1995) 191-192; MR1264944 (95h:58079) and MR1304197 (95k:58095).
[18] B. Vallée, Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes d'Euclide et de Gauss, Acta Arith. 81 (1997) 101-144; MR1456238 (98g:11091).
[19] P. Flajolet and B. Vallée, Continued fraction algorithms, functional operators, and structure constants, Theoret. Comput. Sci. 194 (1998) 1-34; MR1491644 (98j:11061).
[20] P. Flajolet and B. Vallée, Hensley's constant, unpublished note (1999), http://www.people.fas.harvard.edu/~sfinch/csolve/flajolet.html.
[21] P. Flajolet and B. Vallée, Continued fractions, comparison algorithms, and fine structure constants, Constructive, Experimental, and Nonlinear Analysis, Proc. 1999 Limoges conf., ed. M. Théra, Amer. Math. Soc., 2000, pp. 53-82; INRIA preprint RR4072; MR1777617 (2001h:11161).
[22] L. Lhote, Modélisation et approximation de sources complexes, Masters thesis, University of Caen, 2002.
[23] L. Lhote, Computation of a class of continued fraction constants, Analytic Algorithmics and Combinatorics (ANALCO), Proc. 2004 New Orleans workshop, http://www.siam.org/meetings/analco04/program.htm.
[24] S. R. Finch, Khintchine-Lévy constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 59-65.
[25] G. Lochs, Gustav Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abh. Math. Sem. Univ. Hamburg 27 (1964) 142-144; MR0162753 (29 \#57).
[26] C. Faivre, A central limit theorem related to decimal and continued fraction expansion, Arch. Math. (Basel) 70 (1998) 455-463; MR1621982 (99m:11088).
[27] C. Faivre, On calculating a continued fraction expansion from a decimal expansion, Acta Sci. Math. (Szeged) 67 (2001) 505-519; MR1876450 (2002j:11088).

[^0]: ${ }^{0}$ Copyright © 2007 by Steven R. Finch. All rights reserved.

