
Improved Analysis ofSome Simpli�ed Variants of RC6Scott Contini1, Ronald L. Rivest2, M.J.B. Robshaw1, and Yiqun Lisa Yin11 RSA Laboratories, 2955 Campus DriveSan Mateo, CA 94403, USAfscontini,matt,yiqung@rsa.com2 M.I.T. Laboratory for Computer Science, 545 Technology SquareCambridge, MA 02139, USArivest@theory.lcs.mit.eduAbstract. RC6 has been submitted as a candidate for the AdvancedEncryption Standard (AES). Two important features of RC6 that wereabsent from its predecessor RC5 are a quadratic function and a �xedrotation. By examining simpli�ed variants that omit these features weclarify their essential contribution to the overall security of RC6.1 IntroductionRC6 is an evolutionary improvement of the block cipher RC5 [9] that was de-signed to meet the requirements of the Advanced Encryption Standard (AES).Like RC5, RC6 makes essential use of data-dependent rotations, but it also in-cludes new features such as the use of four working registers instead of two, andthe inclusion of integer multiplication as an additional primitive operation. Twocomponents of RC6 that were absent from RC5 are a quadratic function to mixbits in a word more e�ectively and a �xed rotation that is used both to hinder theconstruction of good di�erentials and linear approximations and also to ensurethat subsequent data dependent rotation amounts are more likely to be a�ectedby any ongoing avalanche of change.An initial analysis of the security of RC6 and its resistance to the basicforms of di�erential and linear cryptanalysis was given in [3]. Here we furtherillustrate how these new operations contribute to the security of RC6 by studyingsimpli�ed variants (that is, intentionally weakened forms) of RC6. In particular,our approach is to �nd the best attack on the weakened forms and then try toadapt the attack to the full cipher. Since one of the design principles of RC6was to build on the experience gained with RC5, the focus of our analysis willbe in assessing the relevance to RC6 of the best existing cryptanalytic attackson RC5. We will often refer to the work of Knudsen and Meier [8] and thatof Biryukov and Kushilevitz [2]. These authors in particular have made verysigni�cant advances in understanding the security of RC5.Our work splits naturally into two parts. The �rst focuses on the usefulness ofthe �xed rotation and the second on the quadratic function. While our analysisis targeted at RC6 and its simpli�ed variants, some of the results might well be



of independent interest. Our analysis starts by considering some of the weakenedvariants of RC6 that were introduced in [3]. More speci�cally, by dropping the�xed rotation we derive a cipher that we will denote by RC6-NFR (where NFRstands for no �xed rotation), by dropping the quadratic function we obtain RC6-I (where I stands for the identity function), and by dropping both operations wehave RC6-I-NFR.We will consider characteristics and di�erentials for RC6-I-NFR and RC6-NFR that have already been described in [3]. We study the relations betweencertain values of the subkeys and the probability of a characteristic and/or dif-ferential. Such phenomena are similar to the \di�erentially-weak keys" of RC5observed by Knudsen and Meier [8]. We describe our observations and provide athorough analysis which suggests that inclusion of the �xed rotation destroys thestructure required for such dependencies to form. As a consequence RC6-I andRC6 itself seem to be immune from any direct extension of the results previouslyobtained on RC5.Second, we examine the di�usive properties of the quadratic function andother operations that are used in RC6. In this analysis we track the Hammingweight (the number of 1's) of the exclusive-or di�erence between two quantities asthey are encrypted. Quite naturally this leads to the idea of di�erentials that areconstructed using such a measure of di�erence and this notion is very similarin spirit to earlier work on RC5 [2, 8]. We show that the quadratic functiondrastically increases the Hamming weight of some input di�erence when theHamming weight of an input di�erence is small. This indicates that the useof both the quadratic function and data-dependent rotations in RC6 make itunlikely that di�erential attacks similar to those that were useful for RC5 [2, 8]can be e�ectively extended to RC6.2 Description of RC6 and variantsA version of RC6 is speci�ed as RC6-w/r/b where the word size is w bits, en-cryption consists of a nonnegative number of rounds r, and b denotes the lengthof the encryption key in bytes. Throughout this paper we will set w = 32, r = 20,b = 16, 24, or 32 and we will use RC6 to refer to this particular version. Thebase-two logarithm of w will be denoted by lgw and RC6 uses the following sixbasic operations:a+ b integer addition modulo 2wa� b integer subtraction modulo 2wa� b bitwise exclusive-or of w-bit wordsa� b integer multiplication modulo 2wa<<< b rotate the w-bit word a to the left by the amountgiven by the least signi�cant lgw bits of ba>>> b rotate the w-bit word a to the right by the amountgiven by the least signi�cant lgw bits of bThe user supplies a key of length k bytes which is then expanded to a setof subkeys. The key schedule of RC6 is described in [10]. Since here we are



only concerned with encryption, we will assume that the subkeys S[0], : : :, S[43]are independent and chosen at random. RC6 works with four w-bit registersA;B;C;D which contain the initial input plaintext as well as the output cipher-text at the end of encryption. We use (A;B;C;D) = (B;C;D;A) to mean theparallel assignment of values on the right to registers on the left.Encryption with RC6-w/20/bInput: Plaintext stored in four w-bit input registers A;B;C;Dw-bit round keys S[0; : : : ; 43]Output: Ciphertext stored in A;B;C;DProcedure: B = B + S[0]D = D + S[1]for i = 1 to 20 dof t = (B � (2B + 1))<<< lgwu = (D � (2D + 1))<<< lgwA = ((A� t)<<<u) + S[2i]C = ((C � u)<<< t) + S[2i + 1](A;B;C;D) = (B;C;D;A)gA = A + S[42]C = C + S[43]The three simpli�ed variants of RC6 that we will consider throughout thepaper are distinguished from RC6 in the way the values of t and u are assigned.These di�erences are summarized in the following table.The assignment of t and u in RC6 and some weakened variantsRC6-I-NFR RC6-I RC6-NFR RC6t = B B <<< lgw B � (2B + 1) (B � (2B + 1))<<< lgwu = D D<<< lgw D � (2D + 1) (D � (2D + 1))<<< lgw3 The �xed rotationIn [8] Knudsen and Meier show that the values of some of the subkeys in RC5can have a direct e�ect on the probability of whether some di�erential holds. Inthis section we show that a similar phenomenon can be observed in weakenedvariants of RC6 that do not use the �xed rotation. This should perhaps come aslittle surprise since while the structure of RC6-I-NFR is very di�erent to that ofRC5, it uses the same operations and might be expected to have similar behaviorat times. We will then consider the role of the �xed rotation used in RC6 and wewill demonstrate by analysis and experimentation that the e�ects seen in RC5and some simpli�ed variants of RC6 do not seem to exist within RC6 itself.



3.1 Existing analysis on RC6-I-NFR and RC6-NFRIn [3] one potentially useful six-round iterative characteristic was provided forattacking both RC6-I-NFR and RC6-NFR. This is given in Table 1. Here et isused to denote the 32-bit word that has all bits set to zero except bit t wheret = 0 for the least signi�cant bit. We use Ai (respectively Bi, Ci and Di) todenote the values of registers A (respectively B, C, and D) at the beginningof round i. As an example, A1, B1, C1, and D1 contain the plaintext inputafter pre-whitening and for the six-round variants of the cipher, A7, B7, C7 andD7 contain the output prior to post-whitening. According to [3], when averagedover all possible subkeys, the expected probability that this characteristic holdsis 2�30 for both RC6-I-NFR and RC6-I.3.2 Re�ned analysis of RC6-I-NFR and RC6-NFRCloser analysis of the characteristic probabilities for RC6-I-NFR and RC6-NFRsuggests that the values of some of the subkeys during encryption are important.In particular, the characteristic of interest for RC6-I-NFR and RC6-NFR givenin Table 1 can only occur if certain subkey conditions are met. Further, oncethese subkey conditions hold then the characteristic occurs with probability 2�20,which is much higher than the initial estimate of 2�30 that was obtained byaveraging over all subkeys. i Ai Bi Ci Di1 e31 e31 0 0#2 e31 0 0 0#3 0 0 0 e31#4 0 e31 e31 0#5 e31 e31 0 e31#6 e31 e31 e31 0#7 e31 e31 0 0Table 1. A characteristic for RC6-I-NFR and RC6-NFR.In the analysis that follows we will concentrate on RC6-NFR. The samearguments and results can be applied to RC6-I-NFR by replacing f(x) = x �(2x+1) with the identity function f(x) = x. We will use the fact that x mod 2i



uniquely determines (x�(2x+1)) mod 2i. Furthermore, the notation \=32" willbe used to indicate when two values are congruent modulo 32.Lemma1. If the characteristic given in Table 1 holds for RC6-NFR, then thefollowing two conditions on the subkeys must hold:f(�S[9]) =32 �S[7];f(S[8]) =32 �S[11]:Proof. First we observe that if the characteristic is to hold, then certain rotationamounts derived from the B and D registers must be zero. Note that we alwayshave thatBi = Ai+1 and thatDi = Ci+1. As a consequence, for the characteristicto hold we must haveD2 =32 C3 =32 0; B3 =32 A4 =32 0;B4 =32 A5 =32 0; D4 =32 C5 =32 0;B5 =32 A6 =32 0; B6 =32 A7 =32 0:Using the fact that the rotation amounts are 0, we get the following twoequations from rounds three and four and rounds four and �ve.B4 = (C3 � f(D3)) + S[7]; (1)B5 = (C4 � f(D4)) + S[9]: (2)Since B4 =32 0, C3 =32 0, B5 =32 0 and D4 =32 0, we have S[7] =32 �f(D3)and C4 =32 �S[9]. Since C4 = D3, we obtain the �rst condition on subkeysS[7] =32 �f(�S[9]).Similarly, looking at the computation from rounds four and �ve and rounds�ve and six, we get the following two equations.D5 = A4 � f(B4) + S[8]; (3)B6 = C5 � f(D5) + S[11]: (4)Since A4 =32 0, B4 =32 0, B6 =32 0 and C5 =32 0, we have D5 =32 S[8] andS[11] =32 �f(D5), and so S[11] =32 �f(S[8]). 2The subkey dependencies in Lemma 1 were obtained using only four equa-tions (those for B4, B5, D5 and B6). In total, one could write down 12 equa-tions of the form Bi+1 = (((Ci � f(Di))<<<f(Bi)) + S[2i + 1] and Di+1 =(((Ai � f(Bi))<<<f(Di)) + S[2i] for this characteristic. Although there mightbe dependencies involving other equations, the four given above will be the fo-cus of the rest of this section. Essentially, each equation involves four variablesand the aim is to combine equations to obtain two expressions with a singlevariable. If the two expressions involve the same variable then we can obtainconditions on the subkeys involved. The four equations we use are the only onesfrom the set of twelve that allow us to do this.It is worth noting that given such conditions on the subkeys involved notonly does the characteristic hold, but it does so with a higher probability thanthe expected value given in [3].



Lemma2. Assume that the characteristic given in Table 1 holds up to round�ve. Furthermore suppose that f(�S[9]) =32 �S[7] and f(S[8]) =32 �S[11].Then B5 =32 0 and B6 =32 0.Proof. From Lemma 1, we have that S[7] =32 �f(D3). This is equivalent to�S[7] =32 f(C4). Also, we have that B5 =32 C4+S[9]. So, if �S[7] =32 f(�S[9])then f(C4) =32 f(�S[9]) which implies that C4 =32 �S[9] and so B5 =32 0. Asimilar argument can be used to show that B6 =32 0. 2Lemma 2 shows that when the subkey conditions hold, B5 =32 0 and B6 =320. In this case the probability of the characteristic will be 2�30�25�25 = 2�20,since two of the rotation amounts are always zero. Recall that the estimatedprobability for the characteristic when averaged over all keys is 2�30 [3]. Here wehave shown (Lemmas 1 and 2) that there is some irregularity in the distributionof the probability: For a fraction of 2�10 keys the probability is 2�20, and for therest of the keys the probability is much smaller than 2�30. This kind of irregulardistribution can sometimes be exploited as was demonstrated by Knudsen andMeier with RC5 [8] who showed some techniques for using it in a di�erentialattack. We would expect the same to apply here. Similar subkey dependenciescan be observed for some of the other characteristics for RC6-I-NFR and RC6-NFR given in [3]. However in some cases the characteristic must be iterated morethan once before dependencies exist.Note that the behavior of the di�erential associated with some characteristicis typically of more importance in a di�erential attack. For RC6-I-NFR, while thecharacteristic displays the irregular behavior already described, the associateddi�erential has been experimentally veri�ed to hold with the expected proba-bility [3]. However the associated di�erential for RC6-NFR appears to have thesame irregular behavior as the characteristic. Why is there this discrepancy? In[3] it is shown how the introduction of the quadratic function helps to reduce theadditional e�ect of di�erentials. In short, for RC6-I-NFR there are many equallyviable paths that match the beginning and end-points of the characteristic. If thecharacteristic fails to hold because of some choice of subkey values, other char-acteristics hold instead thereby maintaining the probability of the di�erential.However, with RC6-NFR we introduce the quadratic function and this typicallyreduces di�erentials to being dominated by the action of a single characteristic.Irregular behavior in the characteristic will therefore manifest itself as irregularbehavior in the di�erential.3.3 Di�erential characteristics in RC6-I and RC6Let us now consider the role of the �xed rotation that was omitted in RC6-I-NFR and RC6-NFR. We will �nd that this single operation removes the kind ofsubkey dependencies that occurred in these two variants.We will focus on RC6-I in the analysis for simplicity, and the same argumentsalso apply to the full RC6. We will need to make some heuristic assumptions tomake headway with our analysis. Nevertheless our experimental results con�rm



that the di�erential behavior of RC6-I is pretty much as expected. It also closelymatches the behavior described in [3].Consider the characteristic given in Table 2. This is the characteristic whichseemed to be one of the most useful for attacking RC6-I [3]. We �rst argue thatthere are no subkey dependencies of the form we described in Section 3.2 forthis characteristic and we then broaden our discussion to include other, moregeneral, characteristics. i Ai Bi Ci Di1 e16 e11 0 0#2 e11 0 0 0#3 0 0 0 e26#4 0 e26 e26 0#5 e26 e21 0 e26#6 e21 e16 e26 0#7 e16 e11 0 0Table 2. A useful characteristic for RC6-I.At this stage we need some new notation and the exponent n will be used todenote when some quantity has been rotated to the left by n bit positions. Forexample,D52 =32 15 means that when D2 is rotated �ve bits to the left, then thedecimal value of the least signi�cant �ve bits is 15. Of course, this is the sameas saying that the most signi�cant �ve bits of D2 take the value 15.For simplicity, we will assume that (x + y)j = xj + yj where j denotes arotation amount. This is true if, and only if, there is no carry-out when addingthe top j bits and no carry-out when adding the bottom 32 � j bits. For thesake of our analysis however we make this assumption, since it should actuallyfacilitate the construction of any potential subkey dependencies!Following the arguments in Lemma 1, for the characteristic in Table 2 to holdthe following rotation amounts must take the values indicated:D52 =32 C53 =32 15; B53 =32 A54 =32 27;B54 =32 A55 =32 27; D54 =32 C55 =32 27;B55 =32 A56 =32 17; B56 =32 A57 =32 17:We wish to write down four equations similar to Equations (1), (2), (3)and (4) which cause subkey dependencies in RC6-NFR.From round three to four,



the di�erence e26 is copied from register D3, is changed to e31 by the action of the�xed rotation, and then exclusive-ored into the C strand. For it to become thee26 that appears in B4, the data dependent rotation B53 must have the value 27.Hence, we must have B53 =32 27 and B4 = (C3�D53)27+S[7] = C273 �D3+S[7].In a similar way other equations can be derived:B4 = C273 �D3 + S[7]; (5)B5 = C274 �D4 + S[9]; (6)D5 = A274 �B4 + S[8]; (7)B6 = C175 �D225 + S[11]: (8)In Lemma 1 we observed a subkey dependency by combining the analogousequations to (5) and (6), and another dependency from combining the analogousequations to (7) and (8). In the case of RC6-I we can demonstrate that neitherapproach now works.We �rst consider Equations (5) and (6). For Equation (6) we know that thevalues of B55 mod 32, D54 mod 32, and S[9]5 mod 32 are �xed. This implies acondition on the least signi�cant �ve bits of C4. Since C4 is the same as D3,we have a condition on D3 mod 32. We now have conditions on all the registersin Equation (5), namely, B54 mod 32, C53 mod 32, and D3 mod 32. However thebits from di�erent words involved in this equation are from di�erent positions.They don't lead to any constraints on S[9], and there appear to be no subkeydependencies as a result.Similarly arguments also apply to Equations (7) and (8). One may also tryto combine Equations (5) and (7), since they have the quantity B4 in common,or Equations (6) and (8), since they have C5 = D4 in common. However, thesecombinations once again fail to give any subkey dependencies.We performed experiments on RC6-I to assess the probability of the char-acteristics given in Table 2. These results con�rmed that the distribution of thecharacteristic probability was as expected, and there was no indication of anysubkey dependencies for the characteristic.More generally, we might consider characteristics of the form given in Table 3.The values which we need to �x if the characteristic is going to hold areD52 =32 C53 =32 s � t; B53 =32 A54 =32 u� 5� s;B54 =32 A55 =32 u� 5� s; D54 =32 C55 =32 v � u� 5;B55 =32 A56 =32 u� 15� v; B56 =32 A57 =32 u� 15� v:Let r1 = u � 5 � s, r2 = v � u � 5, and r3 = u � 15 � v. Then the subkeydependencies we observed would be produced by the following equations:B4 = Cr13 �D5+r13 + S[7];B5 = Cr14 �D5+r14 + S[9];D5 = Ar24 �B5+r24 + S[8];B6 = Cr35 �D5+r35 + S[11]:



i Ai Bi Ci Di1 et+5 et 0 0#2 et 0 0 0#3 0 0 0 es#4 0 eu es 0#5 eu eu�5 0 ev#6 eu�5 eu�10 ev 0#7 eu�10 eu�15 0 0Table 3. A generalized characteristic for RC6-I.Following similar arguments to those presented earlier, it can be veri�ed thatthere is no choice for r1, r2, and r3 that makes the characteristic depend uponthe values of the subkeys. In particular, the most promising values to try arer1 = 0; r1 = 27; r3 = 0 and r2 = 22; and r3 = 0, r2 = 27, and r1 = 27.The �xed rotation is an important component of RC6. Not only does it helpto hinder the construction of good di�erentials and linear approximations [3]but it helps to disturb the build-up of any inter-round dependencies. Here the�xed rotation ensures that equations can simultaneously hold without forcingany restriction on the values of the quantities involved.4 The quadratic functionIn this section, we examine the di�usive properties of the quadratic functionand other operations used in RC6. Both the work of Knudsen and Meier [8] andthat of Biryukov and Kushilevitz [2] rely on the following fact about RC5: Ithas a relatively slow avalanche of change from one round to the next, unlessthe di�erence in two words is in the bits used to determine a data-dependentrotation. When that happens, the amount of change in one round to the othercan be dramatic, but until then the rate of change tends to be rather modest.This can be exploited to a limited degree in attacks on RC5 [2, 8].We will choose a measure of di�usion that complements naturally the workgiven in [2, 8]. We will use the Hamming weight of the exclusive-or di�erencebetween two words as a measure of the di�erence, rather than the actual value ofthe di�erence as we would in di�erential cryptanalysis [1] or part of the di�erenceas we would in truncated di�erential cryptanalysis [7]. It is straightforward to



envisage using this notion of di�erence in a di�erential-style attack, something wecall Hamming weight di�erentials, and this is very similar to some of the earlieranalysis of RC5 [2, 8]. While this earlier work focused on how to e�ectively usesuch di�erentials to attack RC5, the focus of our work will be on assessing thelikely impact of the quadratic function in thwarting such attacks.Even for a simple operation it can be di�cult to fully characterize the prob-ability distribution of the Hamming weight of some output di�erence given theHamming weight of the input di�erences. We will study the problem by ana-lyzing the expected Hamming weight of such an output di�erence and it turnsout that such an approach provides a good insight into the role of the di�erentoperations.Our analysis shows that the quadratic function drastically increases the Ham-ming weight of some di�erence especially when the Hamming weight of the inputdi�erence is small. This illustrates a nice e�ect whereby the use of the quadraticfunction complements that of the data-dependent rotation. As we have men-tioned, the data-dependent rotation becomes an e�ective agent of change onlywhen there is a di�erence in the rotation amount. With a small Hamming weightdi�erence, it is less likely that non-zero di�erence bits appear in positions thata�ect a rotation amount. However, the quadratic function helps to drasticallyincrease the avalanche of change so that the full bene�t of the data-dependentrotations can be gained as soon as possible.4.1 De�nitions and assumptionsWe introduce some useful notation and de�nitions. For a w-bit binary vector X,let jXj denote the Hamming weight of X, i.e., jXj is the number of 1's in X.Throughout this paper we will be continually referring to RC6 and so we willassume that the word size w = 32. We will let X 0 = X1�X2, Y 0 = Y1�Y2, andZ 0 = Z1�Z2 and we use x; y; z to denote the Hamming weight of the di�erencesjX 0j; jY 0j; jZ 0j, respectively.Let us consider the following two conditions that may be imposed on somedi�erence that has Hamming weight x.A: There is a single block of consecutive 1's of length x, and the block isdistributed randomly at some position in the input di�erence.B: There are t > 1 blocks of consecutive 1's of length x1; x2; :::; xt such thatx1+x2+ � � �+xt = x. In addition, each block is distributed randomly acrossthe input di�erence.Condition B is actually a good characterization for the di�erences in the inter-mediate rounds of RC6 and its variants. In each round (of RC6 or its variants)any di�erence in the A and C strands are rotated by a random amount due tothe data-dependent rotations. Hence each block of 1's within the di�erences isdistributed randomly. Condition A is a special case of Condition B. In the nexttwo sections when we examine the di�usive properties of individual operations,we will �rst consider the special case Condition A and then generalize the resultsto Condition B.



4.2 Di�usive properties of the basic operationsHere we analyze the basic operations of exclusive-or, addition, and rotation. Themore complicated quadratic function will be considered in the next section.Lemma3. (exclusive-or) For i = 1; 2 let Zi = Xi � Yi. If X 0 and Y 0 satisfyCondition A, then E(z) = x+ y � 2xyw .Proof. Since the block of 1's inX 0 and Y 0 is distributed randomly, each bit \1" inX0 overlaps with each bit \1" in Y 0 with probability 1w . So the expected lengthof overlap in the output di�erence is xyw , implying that the expected Hammingweight of the output is x+ y � 2xyw . 2Corollary4. (exclusive-or) For i = 1; 2 let Zi = Xi�Yi. If X 0 and Y 0 satisfyCondition B then E(z) = x+ y � 2xyw .Proof. Follows directly from the proof of Lemma 3. 2Note that the expected overlap between the quantities X 0 and Y 0 is similar tothe number of \corrections" used by Biryukov and Kushilevitz in their analysis ofcorrected Fibonacci sequences [2]. There an explicit formula was not provided [2]but all sequences with a \reasonable" number of corrections were experimentallygenerated and this was used as an estimate in their work.Lemma5. (addition) For i = 1; 2 let Zi = Xi+S, where S is the subkey. If X 0satis�es Condition A then averaging over all possible X1; X2; S, E(z) = c+ x+12where c 2 [0; 1] and depends on X 0.Proof. We start with the special case where jX 0j = w, that is, X1 and X2 di�erin all bits. We �rst prove that when averaging over all possible X1; X2; S,prob(X1 + S < 2w and X2 + S � 2w) = 14 : (9)Given any X1 2 f0; 1gw, we de�ned(X1) = jS : S 2 f0; 1gw; s.t. X1 + S < 2w and X2 + S � 2wj:If X1 < 2w�1, we have d(X1) = X2�X1 = (X1� (2w�1))�X1 = 2w�1�2X1.(If X1 � 2w�1, d(X1) = 0.) Hence,prob(X1 + S < 2w and X2 + S � 2w) = P2w�1�1X1=0 d(X1)2w � 2w = 14 :Note that for Equation 9 the particular value of w is unimportant. So we canconsider the least signi�cant j bits of X1; X2; S. More precisely, for 1 � j � w,de�ne X1(j) = X1 mod 2j ; X2(j) = X2 mod 2j; S(j) = S mod 2j. Then,prob(X1(j) + S(j) < 2j and X2(j) + S(j) � 2j) = 14 : (10)



By symmetry,prob(X1(j) + S(j) � 2j and X2(j) + S(j) < 2j) = 14 : (11)From Equations 10 and 11, we know that with probability 1=2, exactly one ofthe two addition operations (X1 + S and X2+ S) produces a carry into bit j. Ifthis happens, Z1 and Z2 will be the same in bit j. Therefore, with probability1=2, the jth bit (j � 1) of Z 0 = Z1 � Z2 is 1. Since bit 0 of Z 0 is always 1, theexpected Hamming weight of Z 0 is w�12 +1 = w+12 = c+ w+12 for c = 0. We haveproved the Lemma for the special case where jX 0j = w.Let us now consider the general case where jX 0j = x for some 1 � x � w.Let v be the index of the most signi�cant 1 in X 0. So X1 and X2 are the samein bits v + 1 through w � 1. When computing Z1 = X1 + S and Z2 = X2 + S,it is possible that one or both of the carries will propagate into bits v + 1 andhigher. It is not hard to show that the \extra" number of bit di�erences betweenZ1 and Z2 due to this carry e�ect has an expectation c for some 0 � c � 1. Sothe expected Hamming weight of the output di�erence is c+ x+12 . 2Corollary 6. (addition) For i = 1; 2 let Zi = Xi + S, where S is the subkey.Suppose that X 0 satis�es Condition B and there are t blocks of 1's in X 0. Thenaveraging over all possible keys S, E(z) � t+ x+t2 .Proof. Follows from Lemma 5. 2The �xed rotation Z = X<<< lgw always preserves the Hamming weight ofthe input di�erence in the output di�erence. For data-dependent rotations, itis straightforward to see that provided the input di�erence does not a�ect therotation amount, then the Hamming weight of the di�erence is preserved. Wecan state this simple fact in the following lemma.Lemma7. (data-dependent rotation) For i = 1; 2 let Zi = Xi<<<Yi. IfY 0 =w 0, then z = x.The more interesting case is when Y 0 6=w 0. It has previously been shown [4,6] that once a di�erence in the amount of rotation is experienced then the outputdi�erence is distributed in an essentially random manner over a very large set.This essentially makes any di�erential-style attack impossible since in this casethere is a very substantial di�usive e�ect. So depending on the di�erence Y 0, adata-dependent rotation can either preserve the Hamming weight or increase theHamming weight by a signi�cant amount. The probability of the latter case oc-curring is closely related to the Hamming weight of Y 0 and we have the followinglemma that characterizes such a relation for the special case.Lemma8. Let y = jY 0j and let p be the probability that Y 0 6=w 0. If Y 0 satis�esCondition A then p = min�y+lgw�1w ; 1�.



For the more general case when Y 0 satis�es Condition B it is not so simple toderive a precise formula similar to the one given above. However it is clearly thecase that the heavier the Hamming weight of Y 0, the larger the probability thatsome part of the non-zero input di�erence will have an e�ect on the rotationamount.4.3 Di�usive properties of the quadratic functionHere we consider the di�usive properties of the quadratic function Z = f(X),an important new operation in RC6. First, we restate a lemma regarding thequadratic function that �rst appeared in [3]. This lemma characterizes the be-havior of the output when a single bit of some input is ipped.Lemma9. [3] Given an input X1 chosen uniformly at random from f0; 1g32,let gi;j denote the probability that ipping bit i of X1 will ip bit j of Z1 = f(X1).Then, gi;j = 8<:0 for j < i,1 for j = i,1 for j = 1 and i = 0, andgi;j 2 [1=4; 3=4] for j > i � 1 or j � 2 and i = 0.For the last case, gi;j is close to 3=4 if j = 2i+ 2, and for most of the other i; jpairs gi;j is close to 1=2.Put descriptively this lemma shows that ipping bit i of some input X willalways ip bit i of the output and will, in most cases, also ip bit j where j > iof the output with probability around 1=2.We can extend the lemma to the more general case where multiple bits ofthe input are ipped and we obtain a similar result: Let i be the bit positionof the least signi�cant 1 in X 0. Then ipping bit i of the input X1 will alwaysip bit i of the output and will, in most cases, ip bit j for j > i of the outputwith probability around 1=2. Experiments con�rm both this intuition and alsothe following, perhaps surprising, result.Lemma10. (quadratic function) For i = 1; 2 let Zi = f(Xi). Let x = jX 0jand z = jZ 0j. If X 0 satis�es Condition A then E(z) � 1 + x+w�24 .Proof. Let i be the index of the least signi�cant 1 in X 0. For a �xed i, theexpected value of z is roughly 1+ (w� 1� i)=2. If X 0 satis�es Condition A theni is uniformly distributed between 0 and (w � x). Hence,E(z) � 1(w � x) + 1 w�xXi=0 �1 + w � 1� i2 � = 1 + x+ w � 24 : 2



Corollary 11. (quadratic function) For i = 1; 2 let Zi = f(Xi). Let x = jX 0jand z = jZ 0j. If X 0 satis�es Condition B and there are t blocks of 1's in X 0,then E(z) � 1 + x+w+t�34 .Proof. Similar to the proof of Lemma 10. 2Lemma 10 shows that even when the di�erence in some input to the quadraticfunction has Hammingweight 1, the average Hammingweight of the di�erence inthe output is 8:75. This is a very important result. All the other basic operationsin RC6, as well as those used in RC5, generally provide little or no additionalchange to the output di�erence if the Hamming weight of the input di�erence isvery low.We can illustrate the e�ect of including the quadratic function in the followingway. We experimentally measure the probability that the rotation amounts3 atthe end of a given number of rounds are una�ected by a single bit change in the�rst word of the input to the cipher. We consider rotation amounts in this exercisebecause current di�erential-style attacks on RC5 and RC6 require any di�erencepropagating through the cipher to leave the rotation amounts unchanged. Weuse \-" to indicate that experimentally the probability is approximately (2�20),which is indistinguishable from random noise.Rounds RC6-I-NFR RC6-I RC6-NFR RC62 2�0:54 2�0:64 2�1:32 2�10:274 2�2:15 2�2:45 2�6:27 -6 2�6:14 2�7:04 2�14:30 -8 2�12:76 2�14:97 - -10 2�19:07 - - -For an increased number of rounds, the probability of unchanged rotationamounts gives a good illustration of the relative di�usive e�ect of RC6 and itsweakened variants. It also illustrates the role of the quadratic function in thesecurity of RC6.Basic di�erential-style attacks attempt to predict and control the change fromone round to the next during encryption [5]. Improved attacks on RC5 [2, 8] donot attempt to predict the di�erence quite so closely. Instead, they rely on therelatively slow di�usive e�ect of RC5 to ensure that any change propagatingthrough the cipher remains manageable and to some extent predictable. Eventhough single-bit starting di�erences might be used, di�erentials with an endingdi�erence of Hamming weight 15, for example, can still be useful [2, 8].The quadratic function was added to RC6 to address this particular short-coming of RC5 and our work suggests that the quadratic function is likely tohinder attacks that rely on a modest avalanche of change from one round to thenext.3 By \rotation amounts" we mean the low �ve bits of the registers for RC6-I-NFR andRC6-NFR, the high �ve bits of the registers for RC6-I, and the high �ve bits of theoutput of f(x) for RC6.
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