Volumes of Hyperbolic 3-Manifolds

Steven Finch

September 5, 2004
Hyperbolic n-space is the n-dimensional real upper half-space

$$
\mathbb{H}^{n}=\left\{\xi \in \mathbb{R}^{n}: x_{n}>0\right\}, \quad \xi=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right),
$$

endowed with the complete Riemannian metric $d s=|d \xi| / x_{n}$ of constant sectional curvature equal to -1 . That is, the geodesics of \mathbb{H}^{n} consist entirely of semicircles and vertical lines that are orthogonal to the $(n-1)$-dimensional boundary $\mathbb{R}^{n-1} \times\{0\}$.

A hyperbolic n-manifold M is an n-dimensional connected manifold with a complete Riemannian metric such that every point of M has a neighborhood isometric with an open subset of $\mathbb{H}^{n}[1]$. Such a manifold may be either orientable or nonorientable. It is open if it has at least one cusp, for example, a puncture in $n=2$ (see Figures 1 and 2); otherwise it is closed.

From the notion of length along a geodesic proceeds the definition of volume $\operatorname{vol}(M)$ of a hyperbolic manifold. Unlike the Euclidean case, this is an important characteristic of M. If two finite-volume hyperbolic n-manifolds are homeomorphic, where $n \geq 3$, then they must be isometric. This surprising fact (false for $n=2$) is known as the Mostow-Prasad rigidity theorem [2,3] and is believed to be crucial for the classification of 3 -manifolds. We henceforth restrict attention only to manifolds with finite volume; the topological invariance of $\operatorname{vol}(M)$ follows from the GaussBonnet theorem when $n=2$ and via Mostow-Prasad rigidity when $n \geq 3$.

Define the volume spectrum $\operatorname{spc}(n)$ to be the set of all volumes of finite-volume hyperbolic n-manifolds. It is known that $[4,5]$

$$
\operatorname{spc}(2)=\{2 \pi k: k \geq 1\}, \quad \operatorname{spc}(4)=\left\{\frac{4 \pi^{2}}{3} k: k \geq 1\right\}
$$

but $\operatorname{spc}(3)$ is far more complicated. Let us restrict attention only to orientable 3manifolds and call the consequential subset $\operatorname{spc}_{0}(3)$. Let ω denote the first infinite ordinal. Gromov, Jørgensen and Thurston $[6,7,8]$ proved that $\operatorname{spc}_{\mathrm{o}}(3)$ is a closed, non-discrete, well-ordered set of positive real numbers which looks like

$$
\begin{aligned}
v_{1} & <v_{2}<v_{3}<\ldots<v_{\omega}<v_{\omega+1}<v_{\omega+2}<\ldots<v_{2 \omega}<v_{2 \omega+1}<\ldots \\
& <v_{3 \omega}<v_{3 \omega+1}<\ldots<v_{\omega^{2}}<v_{\omega^{2}+1}<\ldots<v_{\omega^{3}}<v_{\omega^{3}+1}<\ldots
\end{aligned}
$$

where

[^0]

Figure 1: There exist two orientable surfaces with hyperbolic volume 2π : a sphere with 3 punctures and a torus with 1 puncture.

Figure 2: There exist three orientable surfaces with hyperbolic volume 4π : a sphere with 4 punctures, a torus with 2 punctures, and a (closed) connected sum of two tori.

- v_{1} is the least volume of a closed orientable 3-manifold,
- v_{2} is the next smallest volume of a closed orientable 3-manifold,
- $v_{\omega}=\lim _{k \rightarrow \infty} v_{k}$ is the least volume of an (open) orientable 3-manifold with one cusp and is the first limit point in $\mathrm{spc}_{\mathrm{o}}(3)$,
- $v_{2 \omega}=\lim _{k \rightarrow \infty} v_{\omega+k}$ is the next smallest volume of an (open) orientable 3manifold with one cusp and is the second limit point in $\operatorname{spc}_{0}(3)$,
- $v_{\omega^{2}}=\lim _{k \rightarrow \infty} v_{k \omega}$ is the least volume of an (open) orientable 3-manifold with two cusps and is the first limit point of limit points in $\mathrm{spc}_{\mathrm{o}}(3)$.

The set $\operatorname{spc}_{0}(3)$ is said to have ordinal type ω^{ω}. For convenience, we will henceforth use the phrase "minimal manifold" to refer to a "least-volume manifold".

Weeks [9] and Matveev \& Fomenko [10] independently discovered what is conjectured to be the unique minimal closed orientable 3-manifold. It has volume given by [11, 12, 13]

$$
v_{1}=\operatorname{Im}\left[\operatorname{Li}_{2}\left(z_{0}\right)+\ln \left(\left|z_{0}\right|\right) \ln \left(1-z_{0}\right)\right]=0.9427073627 \ldots
$$

where

$$
\operatorname{Li}_{2}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{2}}=-\int_{0}^{z} \frac{\ln (1-u)}{u} d u, \quad|z| \leq 1
$$

is the dilogarithm function [14] and z_{0} is the zero of the cubic $z^{3}-z^{2}+1$ with $\operatorname{Im}(z)>0$. Evidence supporting this conjecture includes $[15,16,17,18,19,20,21$, $22,23,24,25,26,27,28,29,30]$; the best known rigorous lower bound $v_{1} \geq 0.324$ can be strengthened to $v_{1} \geq 0.547$ [31] if Perelman's proof of the Poincaré conjecture is confirmed. The next smallest volume is conjectured to be $v_{2}=0.9813688288 \ldots$ [32]. Cao \& Meyerhoff [33] proved that there exist two minimal 1-cusped orientable 3 -manifolds; one of the manifolds is the complement of the figure-eight knot [34, 35] in \mathbb{H}^{3} and has volume given by

$$
\begin{aligned}
v_{\omega} & =2 \operatorname{Im}\left[\operatorname{Li}_{2}\left(e^{i \pi / 3}\right)\right]=2 \mathrm{Cl}_{2}(\pi / 3)=3 \mathrm{Cl}_{2}(2 \pi / 3) \\
& =\frac{9 \sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{2 n+1}{(3 n+1)^{2}(3 n+2)^{2}} \\
& =2(1.0149416064 \ldots)=2.0298832128 \ldots
\end{aligned}
$$

where Clausen's integral is defined by

$$
\mathrm{Cl}_{2}(\theta)=\sum_{k=1}^{\infty} \frac{\sin (k \theta)}{k^{2}}=-\int_{0}^{\theta} \ln \left(2 \sin \left(\frac{t}{2}\right)\right) d t=\operatorname{Im}\left[\operatorname{Li}_{2}\left(e^{i \theta}\right)\right]
$$

Broadhurst $[36,37,38]$ found a series that can be used as a base- 3 digit-extraction algorithm for v_{ω} :

$$
v_{\omega}=\frac{2 \sqrt{3}}{9} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{27^{n}}\left(\frac{9}{(6 n+1)^{2}}-\frac{9}{(6 n+2)^{2}}-\frac{12}{(6 n+3)^{2}}-\frac{3}{(6 n+4)^{2}}+\frac{1}{(6 n+5)^{2}}\right) .
$$

Define $L=v_{\omega} / 2=1.0149416064 \ldots$ [39] to be Lobachevsky's constant, which we will need later. The next smallest volume of a 1-cusped orientable 3-manifold is conjectured to be $v_{2 \omega}=2.5689706009 \ldots[40,41]$. Finally, it is conjectured that the Whitehead link complement is a minimal 2-cusped orientable 3-manifold, which has volume given by [42]

$$
v_{\omega^{2}}=4 \mathrm{Cl}_{2}(\pi / 2)=4 G=3.6638623767 \ldots
$$

where G is Catalan's constant [43, 44]. Much more about $\operatorname{spc}_{0}(3)$ still awaits discovery.
The full set $\operatorname{spc}(n)$ is well-ordered but surprisingly different from $\operatorname{spc}_{\mathrm{o}}(3)$. The minimal closed nonorientable 3-manifold appears to have volume $2 L$ (the same as the figure-eight complement) [32], but the minimal 1-cusped nonorientable 3-manifold was proved by Adams [45, 46] to be what is called the Gieseking manifold, which has volume L (only half as large). The next smallest volume of a 1 -cusped nonorientable 3 -manifold is conjectured to be $1.8319311884 \ldots$. It is known that $2 L$ is also the volume of the minimal 2 -cusped nonorientable 3-manifold [47].

The complement of a knot in \mathbb{H}^{3} admits a hyperbolic structure unless it is a torus or satellite knot. Automated techniques [48] exist for computing volume and other hyperbolic invariants of 3-manifolds, which serve to distinguish knots up to homeomorphism [49, 50, 51, 52, 53]. The so-called "volume conjecture" relates, for any knot, the asymptotic behavior of its colored Jones polynomial evaluated at a root of unity to its volume [11, 54].

We now generalize. A Kleinian group is a discrete nonelementary subgroup of the group of all orientation-preserving isometries of \mathbb{H}^{3}. A hyperbolic 3-orbifold is a quotient of \mathbb{H}^{3} by a Kleinian group, possibly with torsion. (An orientable 3manifold is a special case of a 3 -orbifold for which the Kleinian group is torsion-free.) The volume spectrum $\operatorname{spc}_{0}^{\prime}(3)$ of orientable 3-orbifolds is of ordinal type ω^{ω} [55] and is quite similar to before, where

- v_{1}^{\prime} is the least volume of a closed orientable 3-orbifold,
- $v_{l \omega}^{\prime}=\lim _{k \rightarrow \infty} v_{(l-1) \omega+k}^{\prime}$ is the $l^{\text {th }}$ limit point in $\operatorname{spc}_{\mathrm{o}}^{\prime}(3)$, where $l=1,2,3, \ldots$.

The unique minimal closed orientable 3 -orbifold is conjectured to have volume [56, 57, 58]

$$
v_{1}^{\prime}=\frac{1}{60} \sum_{j=1}^{3} \operatorname{Im}\left[\operatorname{Li}_{2}\left(z_{j}\right)+\ln \left(\left|z_{j}\right|\right) \ln \left(1-z_{j}\right)\right]=0.0390502856 \ldots
$$

where z_{1} is the zero of the quartic $z^{4}-2 z^{3}+z-1$ with $\operatorname{Im}(z)>0$, and z_{2}, z_{3} are the two distinct zeroes of the octic $z^{8}-3 z^{7}+5 z^{6}-5 z^{5}+3 z^{4}-z+1$ satisfying both $\operatorname{Re}(z)<1$ and $0<\operatorname{Im}(z)<1$. See $[16,59,60,61,62]$ for supporting evidence. Unlike what occurs for orientable manifolds, however, the volume u^{\prime} of the minimal 1-cusped orientable 3 -orbifold is not equal to the limit point v_{ω}^{\prime}. Adams [63] and Meyerhoff $[16,64]$ proved that

$$
u^{\prime}=L / 12=0.0845784672 \ldots<v_{\omega}^{\prime}=G / 3=0.3053218647 \ldots
$$

In fact $[65,66,67]$, the six open orientable orbifolds of volume less than $L / 4$ have volumes $L / 12, G / 6, L / 6, L / 6,5 L / 24$, and $G / 4$, whereas

$$
\begin{gathered}
v_{2 \omega}^{\prime}=\frac{7}{24}\left[\mathrm{Cl}_{2}\left(\frac{2 \pi}{7}\right)+\mathrm{Cl}_{2}\left(\frac{4 \pi}{7}\right)-\mathrm{Cl}_{2}\left(\frac{6 \pi}{7}\right)\right]=0.4444574639 \ldots \\
v_{3 \omega}^{\prime}=\frac{G}{2}=0.4579827970 \ldots
\end{gathered}
$$

See [13, 57] for an interesting unsolved problem about linear relations involving Clausen function values. Finally [65], with regard to the full set $\operatorname{spc}^{\prime}(3)$, the six open nonorientable orbifolds of volume less than $L / 8$ have volumes $L / 24, G / 12, L / 12$, $L / 12,5 L / 48$, and $G / 8$. The minimal closed nonorientable 3-orbifold appears not to be known. A remarkable connection between shortest geodesic lengths in closed arithmetic 3-orbifolds and Lehmer's conjecture from number theory [68] is described in $[1,69,70]$.

References

[1] C. Maclachlan and A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Springer-Verlag, 2003; MR1937957 (2004i:57021).
[2] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Princeton Univ. Press and Univ. of Tokyo Press, 1973; MR0385004 (52 \#5874).
[3] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973) 255-286; MR0385005 (52 \#5875).
[4] J. G. Ratcliffe and S. T. Tschantz, The volume spectrum of hyperbolic 4manifolds, Experim. Math. 9 (2000) 101-125; MR1758804 (2001b:57048).
[5] J. G. Ratcliffe, Hyperbolic manifolds, Handbook of Geometric Topology, ed. R. J. Daverman and R. B. Sher, North-Holland, 2002, pp. 899-920; MR1886683 (2003c:57017).
[6] W. P. Thurston, The Geometry and Topology of Three-Manifolds, unpublished manuscript, Princeton Univ., 1979, chs. 5-6; http://library.msri.org/books/gt3m/.
[7] M. Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), Séminaire Bourbaki: 1979/80, Lect. Notes in Math. 842, Springer-Verlag, 1981, pp. 40-53; MR0636516 (84b:53046).
[8] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357-381; MR0648524 (83h:57019).
[9] J. A. Weeks, Hyperbolic Structures on 3-Manifolds, Ph.D. thesis, Princeton Univ., 1985.
[10] S. V. Matveev and A. T. Fomenko, Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds (in Russian), Uspekhi Mat. Nauk 43 (1988) 5-22, 247; Engl. transl. in Russian Math. Surveys 43 (1988) 3-24; MR0937017 (90a:58052).
[11] R. M. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269-275; q-alg/9601025; MR1434238 (98b:57012).
[12] D. J. Broadhurst, Solving differential equations for 3-loop diagrams: Relation to hyperbolic geometry and knot theory, hep-th/9806174.
[13] J. M. Borwein and D. J. Broadhurst, Determinations of rational Dedekindzeta invariants of hyperbolic manifolds and Feynman knots and links, hepth/9811173.
[14] S. R. Finch, Apéry's constant: Polylogarithms, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 40-53.
[15] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, Canad. J. Math. 39 (1987) 1038-1056; MR0918586 (88k:57049).
[16] R. Meyerhoff, Sphere-packing and volume in hyperbolic 3-space, Comment. Math. Helv. 61 (1986) 271-278; MR0856090 (88e:52023).
[17] F. W. Gehring and G. J. Martin, Inequalities for Möbius transformations and discrete groups, J. Reine Angew. Math. 418 (1991) 31-76; MR1111201 (92j:20047).
[18] F. W. Gehring and G. J. Martin, Precisely invariant collars and the volume of hyperbolic 3-folds, J. Differential Geom. 49 (1998) 411-435; MR1669657 (2000c:57030).
[19] A. Przeworski, Tubes in hyperbolic 3-manifolds, Topology Appl. 128 (2003) 103122; MR1956607 (2004a:57023).
[20] A. Przeworski, Cones embedded in hyperbolic manifolds, J. Differential Geom. 58 (2001) 219-232; MR1913942 (2003e:57030).
[21] D. Gabai, R. Meyerhoff and P. Milley, Volumes of tubes in hyperbolic 3manifolds, J. Differential Geom. 57 (2001) 23-46; MR1871490 (2002i:57017).
[22] T. H. Marshall and G. J. Martin, Volumes of hyperbolic 3-manifolds. Notes on a paper of D. Gabai, G. Meyerhoff, and P. Milley, Conform. Geom. Dyn. 7 (2003) 34-48; MR1992036 (2004e:57022).
[23] I. Agol, Volume change under drilling, Geom. Topol. 6 (2002) 905-916; MR1943385 (2004e:57021).
[24] A. Przeworski, Density of tube packings in hyperbolic space, Pacific J. Math. 214 (2004) 127-144; MR2039129.
[25] T. Chinburg, E. Friedman, K. N. Jones and A. W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume, Annali Scuola Norm. Sup. Pisa Cl. Sci. 30 (2001) 1-40; MR1882023 (2003a:57027).
[26] S. Kojima and Y. Miyamoto, The smallest hyperbolic 3-manifolds with totally geodesic boundary, J. Differential Geom. 34 (1991) 175-192; MR1114459 (92f:57019).
[27] M. Culler and P. B. Shalen, Paradoxical decompositions, 2-generator Kleinian groups, and volumes of hyperbolic 3-manifolds, J. Amer. Math. Soc. 5 (1992) 231-288; MR1135928 (93a:57017).
[28] M. Culler and P. B. Shalen, The volume of a hyperbolic 3-manifold with Betti number 2, Proc. Amer. Math. Soc. 120 (1994) 1281-1288; MR1205485 (94f:57012).
[29] M. Culler, S. Hersonsky and P. B. Shalen, The first Betti number of the smallest closed hyperbolic 3-manifold, Topology 37 (1998) 805-849; MR1607748 (98m:57017).
[30] A. Przeworski, Volumes of hyperbolic 3-manifolds of Betti number at least 3, Bull. London Math. Soc. 34 (2002) 359-360; MR1887708 (2002k:57044).
[31] I. Agol, Testable predictions based on Perelman's proof, unpublished note (2004).
[32] C. D. Hodgson and J. R. Weeks, Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experim. Math. 3 (1994) 261-274; MR1341719 (97a:57013).
[33] C. Cao and R. Meyerhoff, The orientable cusped hyperbolic 3-manifolds of minimum volume, Invent. Math. 146 (2001) 451-478; MR1869847 (2002i:57016).
[34] S. R. Finch, Knots, links and tangles, unpublished note (2003).
[35] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, 1994; MR1299730 (95j:57011)
[36] D. J. Broadhurst, The master two-loop diagram with masses, Z. Phys. C-Part. Fields 47 (1990) 115-124.
[37] D. J. Broadhurst, Massive 3-loop Feynman diagrams reducible to SC^{*} primitives of algebras of the sixth root of unity, Europ. Phys. J. C Part. Fields 8 (1999) 313-333; hep-th/9803091; MR1739510 (2002a:81180).
[38] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A. K. Peters, 2004, pp. 88-91; MR2033012.
[39] J. Milnor, Hyperbolic geometry: The first 150 years, Bull. Amer. Math. Soc. 6 (1982) 9-24; MR0634431 (82m:57005).
[40] M. V. Hildebrand and J. A. Weeks, A computer generated census of cusped hyperbolic 3-manifolds, Computers and Mathematics, ed. E. Kaltofen and S. M. Watt, Springer-Verlag, 1989, pp. 53-59; MR1005959 (90f:57043).
[41] P. J. Callahan, M. V. Hildebrand and J. R. Weeks, A census of cusped hyperbolic 3-manifolds, Math. Comp. 68 (1999) 321-332; MR1620219 (99c:57035).
[42] H. Yoshida, Volumes of orientable 2-cusped hyperbolic 3-manifolds, Kobe J. Math. 18 (2001) 147-161; MR1907670 (2003f:57036).
[43] S. R. Finch, Catalan's constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 53-59.
[44] S. R. Finch, Kneser-Mahler polynomial constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 231-235.
[45] C. C. Adams, The noncompact hyperbolic 3-manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987) 601-606; MR0894423 (88m:57018).
[46] C. C. Adams, The newest inductee in the Number Hall of Fame, Math. Mag. 71 (1998) 341-349.
[47] C. C. Adams, Volumes of N-cusped hyperbolic 3-manifolds, J. London Math. Soc. 38 (1988) 555-565; MR0972138 (89k:22020).
[48] J. R. Weeks, SnapPea: A computer program for creating and studying hyperbolic 3-manifolds, http://www.geometrygames.org/SnapPea/.
[49] C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, 1994; MR1266837 (94m:57007).
[50] C. C. Adams, M. V. Hildebrand and J. R. Weeks, Hyperbolic invariants of knots and links, Trans. Amer. Math. Soc. 326 (1991) 1-56; MR0994161 (91j:57004).
[51] P. J. Callahan and A. W. Reid, Hyperbolic structures on knot complements, Chaos Solitons Fractals 9 (1998) 705-738; MR1628752 (99e:57022).
[52] P. J. Callahan, J. C. Dean and J. R. Weeks, The simplest hyperbolic knots, J. Knot Theory Ramifications 8 (1999) 279-297; MR1691433 (2000c:57005).
[53] A. Champanerkar, I. Kofman and E. Patterson, The next simplest hyperbolic knots, J. Knot Theory Ramifications 13 (2004) 965-987; math.GT/0311380; MR2101238.
[54] H. Murakami, J. Murakami, M. Okamoto, T. Takata and Y. Yokota, Kashaev's conjecture and the Chern-Simons invariants of knots and links, Experim. Math. 11 (2002) 427-435; MR1959752 (2004a:57016).
[55] W. D. Dunbar and R. Meyerhoff, Volumes of hyperbolic 3-orbifolds, Indiana Univ. Math. J. 43 (1994) 611-637; MR1291531 (95g:57024).
[56] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Annali Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 1-33; Collected Works, v. 3, Springer-Verlag, 1983, pp. 617-649; MR0616899 (82j:22008).
[57] D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions, Invent. Math. 83 (1986) 285-301; MR0818354 (87e:11069).
[58] D. J. Broadhurst, Volume of manifold m016($-4,3$) with quartic invariant trace field and discriminant -275, unpublished note (2004).
[59] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-orbifolds, Duke Math. J. 57 (1988) 185-203; MR0952231 (89f:57059).
[60] F. W. Gehring and G. J. Martin, On the minimal volume hyperbolic 3-orbifold, Math. Res. Lett. 1 (1994) 107-114; MR1258496 (95b:30072).
[61] F. W. Gehring and G. J. Martin, The volume of hyperbolic 3-folds with p-torsion, $p \geq 6$, Quart. J. Math. Oxford Ser. 50 (1999) 1-12; MR1673252 (2000c:57031).
[62] T. Chinburg and E. Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986) 507-527; MR0860679 (88a:22022).
[63] C. C. Adams, Limit volumes of hyperbolic three-orbifolds, J. Differential Geom. 34 (1991) 115-141; MR1114455 (92d:57029).
[64] R. Meyerhoff, The cusped hyperbolic 3-orbifold of minimum volume, Bull. Amer. Math. Soc. 13 (1985) 154-156; MR0799800 (87b:22022).
[65] C. C. Adams, Noncompact hyperbolic 3-orbifolds of small volume, Topology '90, ed. B. Apanasov, W. D. Neumann, A. W. Reid and L. Siebenmann, de Gruyter, 1992, pp. 1-15; MR1184398 (93h:57019).
[66] W. D. Neumann and A. W. Reid, Notes on Adams' small volume orbifolds, Topology '90, ed. B. Apanasov, W. D. Neumann, A. W. Reid and L. Siebenmann, de Gruyter, 1992, pp. 311-314; MR1184417 (94a:57028).
[67] C. C. Adams, Volumes of hyperbolic 3-orbifolds with multiple cusps, Indiana Univ. Math. J. 41 (1992) 149-172; MR1160907 (93c:57011).
[68] S. R. Finch, Pisot-Vijayaraghavan-Salem constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 192-199.
[69] W. D. Neumann and A. W. Reid, Arithmetic of hyperbolic manifolds, Topology '90, ed. B. Apanasov, W. D. Neumann, A. W. Reid and L. Siebenmann, de Gruyter, 1992, pp. 273-310; MR1184416 (94c:57024).
[70] E. Ghate and E. Hironaka, The arithmetic and geometry of Salem numbers, Bull. Amer. Math. Soc. 38 (2001) 293-314; MR1824892 (2002c:11137).

[^0]: ${ }^{0}$ Copyright © 2004 by Steven R. Finch. All rights reserved.

