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When enumerating trees [1, 2] or prime divisors [3, 4], the leading term of the

corresponding asymptotic series is usually sufficient for practical purposes. Greater

accuracy is possible by using several more terms, but the coefficients are not as widely

known as one might expect. We briefly provide the formulas required to compute the

required constants, as well as some theoretical background.

0.1. Trees. If  is the number of non-isomorphic rooted trees with  vertices,

then [5]

 ∼ −−32
µ
04399240125+

00441699018


+
02216928059

2
+
08676554908

3
+ · · ·

¶
where  = 03383218568 is the unique positive root of the equation  ( 1) = 0,

where

 ( ) =  exp

Ã
 +

∞X
=2

 ()



!
− 

and  () =
P∞

=1 
 is the generating function for {}. Let us denote the four

numerical coefficients by 0(2
√
), 1(2

√
), 2(2

√
) and 3(2

√
). Exact

formulas for these constants can be written in terms of the partial derivatives

 =
+


 ( )

¯̄̄̄
=
=1

via computer algebra. Note that 00 = 01 = 0,

1 = 02 = 03 = 04 = 05 = · · · 

0  10 = 11 = 12 = 13 = 14 = · · · 
and likewise  = 0 for all  ≥ 2,  ≥ 1. We have

0 =
p
2  10
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1 = {9  10 + 2 [−11 2
10 + 920 ]}{120}

2 = {225   2
10 + 2 [−990 3

10 + 81010 20]

+3 [769 4
10 − 990 2

10 20 − 135 2
20 + 36010 30]}{576100}

3 = {42525   3
10 + 2 [−571725 4

10 + 467775
2
10 20]

+3 [1211175 5
10 − 1559250 3

10 20 − 21262510  2
20 + 567000

2
10 30]

+4 [−680863 6
10 + 1211175

4
10 20 − 155925 2

10 
2
20 + 42525

3
20

−415800 3
10 30 − 11340010 20 30 + 113400 2

10 40]}{207360 2
100}

The associated formula for , the number of non-isomorphic free trees of order

, is [5]

 ∼ −−52
µ
05349496061+

04853877311


+
2379745574

2
+ · · ·

¶
where  is as before and the first numerical coefficient is simply 3

0(4
√
). Exact

formulas for the second and third coefficients are

2
0(

3
0 + 301)

24
√



0(

6
0 + 35

3
01 + 210

2
1 + 12602)

72
√


and we wonder what the next few coefficients might look like.

Other varieties of trees examined in [5] include binary trees, identity trees and

homeomorphically irreducible trees. Different functional equations apply in each case;

for example, we have

 ( ) = +
1

2

¡
2 +(2)

¢− 

for the first variety, where () =
P∞

=1
 is the generating function for the

number  of non-isomorphic rooted strongly binary trees with  leaves (1 = 2 =

3 = 1, 4 = 2, 5 = 3, ). One obtains

 ∼ −−32
µ
03187766259+

02038317427


+
03682702316

2
+
14768193666

3
+ · · ·

¶
with  = 04026975036 as the radius of convergence. The details are omitted.
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An intermediate step to studying {} involves the analysis of the series [6, 7]

 () =

∞X
=0

( − )2

= 1− (26811281472)( − )12 + (23961493806)( − )

−(14507456802)( − )32 + (14447836810)( − )2

−(51438071207)( − )52 + · · ·

which is valid as → −, where

0 = 1 1 = −
p
210 2 = 2103

3 =
©
11 2

10 − 920
ª
 {18 1}  4 =

©
43 2

10 − 4520
ª
135

5 =
©
769 4

10 − 990 2
10 20 − 135 2

20 + 36010 30
ª
 {216010 1} 

Note that 2 = 213 and 4 = (3013−41)45, while 3 and 5 cannot be algebraically
represented in terms of preceding  values.

Likewise, in connection with {}, we have [6, 7]

() =

∞X
=0

( − )2

= 05657439434− (40484928944)( − )− (64243835496)( − )32

−(55810996983)( − )2 + (73498535571)( − )52 + · · ·

where

0 =
1
2
(1 +  (2))  1 = 0

2 = −12 (21 + 2 0(2))  3 = 12

4 =
1
2
(−22 − 213 + 22 00(2) +  0(2))  5 = −23 − 14

and  0(),  00() denote the first and second derivatives of  (), respectively. The
singular part of () (that is, the part corresponding to  for odd ) depends just

on the coefficients . No analogous simplification of the analytic part of () ( for

even ) is known.

0.2. Darboux-Pólya Method. Although the asymptotic series for  and  are

evidently new, the underlying method appears (at least implicitly) in the works of

Darboux [8, 9] and Pólya [10]. We give the steps of a straightforward algorithm for

computing the th coefficient  of the asymptotic series for .
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Define first  to be 0 if ( ≥ 1 and  = 2) or (  2), and 1 otherwise. Define

 and  via the recursions

 = 

 −
−1X
=1

X
=0

¡




¢¡




¢
−− −

X
=1

¡




¢
0−

00


 =

+2 −
−1X
=0

+2X
=0

¡




¢¡
+2



¢
−−+2

( + 1)( + 2)

with initial conditions 02 = 2 and 0 = 0 for all  6= 2. Let

 =
1(−)

!
  =

0(−)
!

and define  via the recursion

 =

−
−1X
=1

− + 1
4

X
=1

−+1 − +1

20

with initial condition 0 = −
√−1.

Define next

 = 2
−2¡2



¢− 1
2

−1X
=1

¡
−1
−1
¢
23(−) −

−1X
=1

−X
=1

¡
−−1
−1

¢
23(−−)

with initial condition 0 = 1, and the recursion

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if  =  = 0

(−1)21−4 if  ≥ 1 and  = 0

−
X

=0

¡
 − 1

2

¢+1
−−1 if  ≥ 0 and  ≥ 1

Finally, we have

 = 2

X
=0

−+1

which completes the algorithm.
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Some explanation is clearly needed. We know that  (  ()) = 0. The Weier-

strass Preparation Theorem implies that, for ( ) sufficiently close to ( 1),

 ( ) = ( ) ·  ( )
where ( ) is analytic, ( 1) 6= 0, and

 ( ) = ( − 1)2 + ()( − 1) + ()

where (), () are analytic and () = () = 0. The sequence {} arises from
setting the various coefficients of the polynomial-like approximation  (  ()) equal

to zero. By Darboux’s theorem,

 ∼ (−1)−
∞X
=0


¡
+12



¢
;

hence it remains to compute asymptotic series for half-integer binomial coefficients.

We know that [11]¡−12


¢
=

(−1)√


µ
1− 1

8
+

1

1282
+

5

10243
− 21

327684
− 399

2621445
+ · · ·

¶
=

(−1)√


∞X
=0

0



from which we immediately deduce that¡
12



¢
=

(−1)+1
2
√
32

µ
1 +

3

8
+

25

1282
+

105

10243
+

1659

327684
+

6237

2621445
+ · · ·

¶
=

1

2
√


(−1)
32

∞X
=0

21




¡
32



¢
=

3(−1)
4
√
52

µ
1 +

15

8
+

385

1282
+

4725

10243
+
228459

327684
+
2747745

2621445
+ · · ·

¶
=

1

2
√


(−1)
32

∞X
=0

22

+1


¡
52



¢
=

15(−1)+1
8
√
72

µ
1 +

35

8
+
1785

1282
+
40425

10243
+
3462459

327684
+
71996925

2621445
+ · · ·

¶
=

1

2
√


(−1)
32

∞X
=0

23

+2


and so forth. The conclusion follows.
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0.3. Addendum I. Philippe Flajolet maintained that the preceding discussion

tends to “hide the facts” and provided thoughtful comments. Briefly, the equation

 (  ()) = 0 can be rearranged as  () =  exp( ()) with

() =  exp

Ã ∞X
=2

 ()



!


The inverse function of  exp(−) is the well-known Cayley tree function  , an ele-

mentary variant of the Lambert  function:

() =

∞X
=1

−1


!

on the complex plane. In a small disk around the origin, therefore,  () = (()).

From here, singularities are easily accessed, making a full asymptotic expansion

possible. Writing such conceptual remarks were, in Flajolet’s words, an “enjoy-

able intermezzo” for him despite limited time. These eventually found their way

into his treatise [12] with Sedgewick. For completeness, we mention that 0 =

15594900203 for rooted trees (as presented in [12]) and that the corresponding

coefficient is 11300337163 for binary trees

0.4. Prime Divisors. If () is the number of distinct prime divisors of , and

Ω() is the total number (including multiplicity) of prime divisors of , then

E() ∼ ln(ln()) + 02614972128+
∞X
=1

Ã
−1 +

−1X
=0



!

!
( − 1)!
ln()



Var() ∼ ln(ln())− 18356842740+ 10879488865
ln()

+
33231293098

ln()2
+ · · · 

E(Ω) ∼ ln(ln()) + 10346538818+
∞X
=1

Ã
−1 +

−1X
=0



!

!
( − 1)!
ln()



Var(Ω) ∼ ln(ln()) + 07647848097− 28767219464
ln()

− 49035933594
ln()2

+ · · · 

where

E() =
1



X
=1

() Var() = E(
2)− E()2
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and  is the 
th Stieltjes constant [13]. The leading numerical terms in each of the

four expansions are [4, 14]

 = 0 +
X


∙
ln

µ
1− 1



¶
+
1



¸
= 0 +

∞X
=2

()


ln(())

−
X


1

2
− 2

6
= −

∞X
=1

()


ln((2))− 2

6


Λ = 0 +
X


∙
ln

µ
1− 1



¶
+

1

− 1
¸
= 0 +

∞X
=2

()


ln(())

Λ+
X


1

(− 1)2 −
2

6
= Λ+

∞X
=2

2()− ()


ln(())− 2

6


respectively, where () is the Riemann zeta function, () is the Möbius mu function,

() is the Euler totient function, and the function () is defined by

()


=
Y
|

µ
1− 1



¶


(− )

()
=

∞X
=1

()



(in particular,  = 1).

The second numerical coefficient in Var() is

0 − 1 + 2
X


ln()

(− 1) = 0 − 1 + 2
∞X
=2

()
 0()
()

and the second numerical coefficient in Var(Ω) is

0 − 1− 2
X


ln()

(− 1)2 = 0 − 1 + 2
∞X
=2

()
 0()
()



where  0() is the derivative of the zeta function. This result, as well as the result
for means, appears in [14, 15, 16] but apparently with errors. Knuth [17] revisited

Diaconis’ original computations; this essay closely follows [17]. Finally, the third

numerical coefficient in Var() is

−1 − (0 − 1)
Ã
0 + 2

X


ln()

(− 1)

!
+ 2

X


(2− 1) ln()2
2(− 1)2
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and the third numerical coefficient in Var(Ω) is

−1 − (0 − 1)
Ã
0 − 2

X


ln()

(− 1)2
!
− 2

X


 ln()2

(− 1)3 ;

this result is new and awaits confirmation.

For completeness’ sake, we record the values of six relevant prime series [4, 14, 18]:

 =
X


1

2
= 04522474200  =

X


1

(− 1)2 = 13750649947

 =
X


ln()

(− 1) = 07553666108  =
X


ln()

(− 1)2 = 12269688056

 =
X


(2− 1) ln()2
2(− 1)2 = 11837806913  =

X


 ln()2

(− 1)3 = 20914802823

0.5. Selberg-Delange Method. The theory here is much deeper than what was

discussed earlier. It starts with asymptotic formulas for the generating functions

[19, 20, 21]

1



X
=1

() = ln()−1
µ
0() +

1()

ln()
+

2()

ln()2
+ · · · ()

ln()
+

µ
1

ln()+1

¶¶


1



X
=1

Ω() = ln()−1
µ
0() +

1()

ln()
+

2()

ln()2
+ · · · ()

ln()
+

µ
1

ln()+1

¶¶


where if

− 1


Y


µ
1− 1



¶−1µ
1 +



 − 1
¶
=

∞X
=0

()(− 1) = ()

− 1


Y


µ
1− 1



¶−1µ
1− 



¶−1
=

∞X
=0

()(− 1) = ()

then

() =
()

Γ( − )
 () =

()

Γ( − )


Let us focus on () for the sake of definiteness. Delange’s formula expresses that,

asymptotically, if  is uniformly distributed on {1 2  }, then the distribution
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of () is the convolution of a Poisson random variable with mean ln(ln()) and

another random variable  whose generating function is

E(
) ∼ 0() +

1()

ln()
+

2()

ln()2
+ · · ·

Thus the mean of () will be ln(ln()) plus the mean of , and the variance will

be ln(ln()) plus the variance of . We have

E() ∼ 00(1) +
01(1)
ln()

+
02(1)
ln()2

+ · · · 

E(( − 1)) ∼ 000(1) +
001(1)
ln()

+
002(1)
ln()2

+ · · · 

hence

Var() ∼ 0 +
1

ln()
+

2

ln()2
+ · · ·

where

 = 00 (1) + 0(1)−
X

=0

0(1)
0
−(1)

The corresponding coefficients for Ω() will be denoted by 0, 1, 2,  and satisfy

similar relations.

To obtain the mean, note that setting  = 1 in the formula for () gives

− 1


() =

∞X
=0

(1)(− 1)

Replacing  by + 1, we haveÃ ∞X
=0

(−1)
!Ã

1 +

∞X
=0

(−1)
!


+1

!
=



+ 1
(+ 1) =

∞X
=0

(1)


thus

0(1) = 1 1(1) = 0 − 1 2(1) = −(1 + 0 − 1)
Since

00(1) = 00(1) + 00(1) =  (to be proved shortly),

0(1) = (−1)−1( − 1)!(1)  ≥ 1
the result follows. This argument also applies verbatim to (), but with  replaced

by Λ.
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To obtain the variance, differentiate () and set  = 1:

0(1) = (1)
X


∙
ln

µ
1− 1



¶
+
1



¸
=

©
1 + (0 − 1)(− 1)− (1 + 0 − 1)(− 1)2 + · · ·

ª
·©(− 0) + (− 1)− (− 1)2 + · · ·ª

thus

00(1) = − 0 01(1) = (0 − 1)(− 0) + 

02(1) = − + (0 − 1)− (1 + 0 − 1)(− 0)

Also

00(1) = 0(1)
X


∙
ln

µ
1− 1



¶
+
1



¸
− (1)

X


1

2

= {(− 0) + · · · } {(− 0) + · · · }− {1 + · · · } {+ · · · }
therefore 000(1) = (− 0)

2 − . Since

000(1) = 000(1) + 20
0
0(1) +

³
20 − 2

6

´
0(1) = 2 − − 2

6


00(1) = 2(−1)−1( − 1)!
Ã
0(1) +

Ã
0 −

−1P
=1

1


!
(1)

!
  ≥ 1

the formulas for 0, 1, 2 follow.

In the same way, to obtain the variance for Ω(), differentiate () and set  = 1:

0(1) = (1)
X


∙
ln

µ
1− 1



¶
+

1

 − 1
¸

=
©
1 + (0 − 1)(− 1)− (1 + 0 − 1)(− 1)2 + · · ·

ª
·©(Λ− 0)− (− 1) +  (− 1)2 + · · ·ª

thus

0
0(1) = Λ− 0 0

1(1) = (0 − 1)(Λ− 0)− 

0
2(1) =  − (0 − 1) − (1 + 0 − 1)(Λ− 0)

Also

00(1) = 0(1)
X


∙
ln

µ
1− 1



¶
+

1

 − 1
¸
+(1)

X


1

( − 1)2
= {(Λ− 0) + · · · } {(Λ− 0) + · · · }+ {1 + · · · } { + · · · }
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therefore 00
0 (1) = (Λ − 0)

2 +  . We have 000(1) = Λ2 +  − 2

6
and a formula for

00(1),  ≥ 1, identical to that for 00(1) earlier; hence the formulas for 0, 1, 2
follow. It is interesting that higher-order terms for E() and E(Ω) coincide, but

differ for Var() and Var(Ω).

We conclude with an unsolved problem. The expressions

X
=1

2()

X
=1

3()

X
=1

2Ω()

were mentioned in [22]. Tenenbaum [23] has computed that

X
=1

3Ω() = 
³
ln()

ln(2)

´
+( ln()3)

where  = ln(3) ln(2) = 15849625007 [24] and () is a fractal-like function of

period 1 that oscillates between two positive constants. In fact,

() =
3

2

X
≥1

gcd(6)=1

Ã
3Ω()


·
X
≥0

3
−(−1)−{− ln()

ln(2)
−}

!

where {} =  − bc for all real numbers , and

374 = lim
→1−

() = inf


()  sup


() = lim
→0+

() = 474

It would be good to someday know these bounds to higher precision.

0.6. Addendum II. Let  () be the largest prime factor of . The average of

 () satisfies [25]

1



X
≤

 () ∼
∞X
=0

!


ln()+1


as  →∞, where
 =

1

2+1

X
=0

2(−1)
!

()(2)

and the median () of { () :  ≤ } satisfies [26]

() ∼ exp
µ
 − 1√



¶
1

√
 = (07738078734)06065306597
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(actually, more terms in the asymptotic expansion of () are possible). Clearly

the median value grows substantially slower than the mean value. The mode (most

frequent value) grows even more slowly [27]. Another interesting asymptotic expan-

sion [26] refines de la Vallée Poussin’s average for fractional parts of a large integer

 divided by each prime  ≤  :

X
≤

½




¾
∼

∞X
=0

!


ln()+1


as  →∞, , where
 = 1−

X
=0



!


Alternative proofs regarding E() and E(Ω) also appear in [26], but not Var()

nor Var(Ω).

0.7. Acknowledgements. I am grateful to Donald Knuth for his detailed letter

[17], on which my discussion of the Selberg-Delange method is based, and Philippe

Flajolet for his supportive guidance. Persi Diaconis kindly provided [15] and Pascal
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