Two Asymptotic Series

Steven Finch

December 10, 2003
When enumerating trees [1, 2] or prime divisors [3, 4], the leading term of the corresponding asymptotic series is usually sufficient for practical purposes. Greater accuracy is possible by using several more terms, but the coefficients are not as widely known as one might expect. We briefly provide the formulas required to compute the required constants, as well as some theoretical background.
0.1. Trees. If T_{n} is the number of non-isomorphic rooted trees with n vertices, then [5]

$$
T_{n} \sim r^{-n} n^{-3 / 2}\left(0.4399240125 \ldots+\frac{0.0441699018 \ldots}{n}+\frac{0.2216928059 \ldots}{n^{2}}+\frac{0.8676554908 \ldots}{n^{3}}+\cdots\right)
$$

where $r=0.3383218568 \ldots$ is the unique positive root of the equation $F(x, 1)=0$, where

$$
F(x, y)=x \exp \left(y+\sum_{k=2}^{\infty} \frac{T\left(x^{k}\right)}{k}\right)-y
$$

and $T(x)=\sum_{n=1}^{\infty} T_{n} x^{n}$ is the generating function for $\left\{T_{n}\right\}$. Let us denote the four numerical coefficients by $C_{0} /(2 \sqrt{\pi}), C_{1} /(2 \sqrt{\pi}), C_{2} /(2 \sqrt{\pi})$ and $C_{3} /(2 \sqrt{\pi})$. Exact formulas for these constants can be written in terms of the partial derivatives

$$
F_{i, j}=\left.\frac{\partial^{i+j}}{\partial x^{i} \partial y^{j}} F(x, y)\right|_{\substack{x=r \\ y=1}}
$$

via computer algebra. Note that $F_{0,0}=F_{0,1}=0$,

$$
\begin{gathered}
1=F_{0,2}=F_{0,3}=F_{0,4}=F_{0,5}=\cdots, \\
0<F_{1,0}=F_{1,1}=F_{1,2}=F_{1,3}=F_{1,4}=\cdots,
\end{gathered}
$$

and likewise $F_{i, j}=F_{i, 0}$ for all $i \geq 2, j \geq 1$. We have

$$
C_{0}=\sqrt{2 r F_{1,0}},
$$

[^0]\[

$$
\begin{gathered}
C_{1}=\left\{9 r F_{1,0}+r^{2}\left[-11 F_{1,0}^{2}+9 F_{2,0}\right]\right\} /\left\{12 C_{0}\right\}, \\
C_{2}=\begin{array}{l}
\left\{25 r F_{1,0}^{2}+r^{2}\left[-990 F_{1,0}^{3}+810 F_{1,0} F_{2,0}\right]\right. \\
\left.+r^{3}\left[769 F_{1,0}^{4}-990 F_{1,0}^{2} F_{2,0}-135 F_{2,0}^{2}+360 F_{1,0} F_{3,0}\right]\right\} /\left\{576 F_{1,0} C_{0}\right\}, \\
C_{3}=\left\{42525 r F_{1,0}^{3}+r^{2}\left[-571725 F_{1,0}^{4}+467775 F_{1,0}^{2} F_{2,0}\right]\right. \\
+r^{3}\left[121175 F_{1,0}^{5}-1559250 F_{1,0}^{3} F_{2,0}-212625 F_{1,0} F_{2,0}^{2}+567000 F_{1,0}^{2} F_{3,0}\right] \\
+r^{4}\left[-680863 F_{1,0}^{6}+1211175 F_{1,0}^{4} F_{2,0}-155925 F_{1,0}^{2} F_{2,0}^{2}+42525 F_{2,0}^{3}\right. \\
\left.\left.-415800 F_{1,0}^{3} F_{3,0}-113400 F_{1,0} F_{2,0} F_{3,0}+113400 F_{1,0}^{2} F_{4,0}\right]\right\} /\left\{207360 F_{1,0}^{2} C_{0}\right\} .
\end{array}
\end{gathered}
$$
\]

The associated formula for t_{n}, the number of non-isomorphic free trees of order n, is [5]

$$
t_{n} \sim r^{-n} n^{-5 / 2}\left(0.5349496061 \ldots+\frac{0.4853877311 \ldots}{n}+\frac{2.379745574 \ldots}{n^{2}}+\cdots\right)
$$

where r is as before and the first numerical coefficient is simply $C_{0}^{3} /(4 \sqrt{\pi})$. Exact formulas for the second and third coefficients are

$$
\frac{C_{0}^{2}\left(C_{0}^{3}+30 C_{1}\right)}{24 \sqrt{\pi}}, \quad \frac{C_{0}\left(C_{0}^{6}+35 C_{0}^{3} C_{1}+210 C_{1}^{2}+126 C_{0} C_{2}\right)}{72 \sqrt{\pi}}
$$

and we wonder what the next few coefficients might look like.
Other varieties of trees examined in [5] include binary trees, identity trees and homeomorphically irreducible trees. Different functional equations apply in each case; for example, we have

$$
F(x, y)=x+\frac{1}{2}\left(y^{2}+B\left(x^{2}\right)\right)-y
$$

for the first variety, where $B(x)=\sum_{n=1}^{\infty} B_{n} x^{n}$ is the generating function for the number B_{n} of non-isomorphic rooted strongly binary trees with n leaves ($B_{1}=B_{2}=$ $\left.B_{3}=1, B_{4}=2, B_{5}=3, \ldots\right)$. One obtains
$B_{n} \sim \rho^{-n} n^{-3 / 2}\left(0.3187766259 \ldots+\frac{0.2038317427 \ldots}{n}+\frac{0.3682702316 \ldots}{n^{2}}+\frac{1.4768193666 \ldots}{n^{3}}+\cdots\right)$
with $\rho=0.4026975036 \ldots$ as the radius of convergence. The details are omitted.

An intermediate step to studying $\left\{T_{n}\right\}$ involves the analysis of the series $[6,7]$

$$
\begin{aligned}
T(x)= & \sum_{k=0}^{\infty} c_{k}(r-x)^{k / 2} \\
= & 1-(2.6811281472 \ldots)(r-x)^{1 / 2}+(2.3961493806 \ldots)(r-x) \\
& \quad-(1.4507456802 \ldots)(r-x)^{3 / 2}+(1.4447836810 \ldots)(r-x)^{2} \\
& \quad-(5.1438071207 \ldots)(r-x)^{5 / 2}+\cdots
\end{aligned}
$$

which is valid as $x \rightarrow r^{-}$, where

$$
\begin{gathered}
c_{0}=1, \quad c_{1}=-\sqrt{2 F_{1,0}}, \quad c_{2}=2 F_{1,0} / 3, \\
c_{3}=\left\{11 F_{1,0}^{2}-9 F_{2,0}\right\} /\left\{18 c_{1}\right\}, \quad c_{4}=\left\{43 F_{1,0}^{2}-45 F_{2,0}\right\} / 135, \\
c_{5}=\left\{769 F_{1,0}^{4}-990 F_{1,0}^{2} F_{2,0}-135 F_{2,0}^{2}+360 F_{1,0} F_{3,0}\right\} /\left\{2160 F_{1,0} c_{1}\right\} .
\end{gathered}
$$

Note that $c_{2}=c_{1}^{2} / 3$ and $c_{4}=\left(30 c_{1} c_{3}-c_{1}^{4}\right) / 45$, while c_{3} and c_{5} cannot be algebraically represented in terms of preceding c_{k} values.

Likewise, in connection with $\left\{t_{n}\right\}$, we have $[6,7]$

$$
\begin{aligned}
t(x)= & \sum_{k=0}^{\infty} d_{k}(r-x)^{k / 2} \\
= & 0.5657439434 \ldots-(4.0484928944 \ldots)(r-x)-(6.4243835496 \ldots)(r-x)^{3 / 2} \\
& \quad-(5.5810996983 \ldots)(r-x)^{2}+(7.3498535571 \ldots)(r-x)^{5 / 2}+\cdots
\end{aligned}
$$

where

$$
\begin{gathered}
d_{0}=\frac{1}{2}\left(1+T\left(r^{2}\right)\right), \quad d_{1}=0, \\
d_{2}=-\frac{1}{2}\left(c_{1}^{2}+2 r T^{\prime}\left(r^{2}\right)\right), \quad d_{3}=c_{1} c_{2}, \\
d_{4}=\frac{1}{2}\left(-c_{2}^{2}-2 c_{1} c_{3}+2 r^{2} T^{\prime \prime}\left(r^{2}\right)+T^{\prime}\left(r^{2}\right)\right), \quad d_{5}=-c_{2} c_{3}-c_{1} c_{4}
\end{gathered}
$$

and $T^{\prime}(x), T^{\prime \prime}(x)$ denote the first and second derivatives of $T(x)$, respectively. The singular part of $t(x)$ (that is, the part corresponding to d_{k} for odd k) depends just on the coefficients c_{j}. No analogous simplification of the analytic part of $t(x)\left(d_{k}\right.$ for even k) is known.
0.2. Darboux-Pólya Method. Although the asymptotic series for T_{n} and t_{n} are evidently new, the underlying method appears (at least implicitly) in the works of Darboux [8, 9] and Pólya [10]. We give the steps of a straightforward algorithm for computing the $m^{\text {th }}$ coefficient C_{m} of the asymptotic series for T_{n}.

Define first $z_{i, j}$ to be 0 if $(i \geq 1$ and $j=2)$ or $(j>2)$, and 1 otherwise. Define $P_{i, j}$ and $A_{i, j}$ via the recursions

$$
\begin{gathered}
P_{i, j}=z_{i, j} \frac{F_{i, j}-\sum_{p=1}^{i-1} \sum_{q=0}^{j}\binom{i}{p}\binom{j}{q} A_{p, q} P_{i-p, j-q}-\sum_{q=1}^{j}\binom{j}{q} A_{0, q} P_{i, j-q}}{A_{0,0}}, \\
A_{i, j}=\frac{F_{i, j+2}-\sum_{p=0}^{i-1} \sum_{q=0}^{j+2}\binom{i}{p}\binom{j+2}{q} A_{p, q} P_{i-p, j-q+2}}{(j+1)(j+2)}
\end{gathered}
$$

with initial conditions $P_{0,2}=2$ and $P_{0, j}=0$ for all $j \neq 2$. Let

$$
p_{k}=\frac{P_{k, 1}(-r)^{k}}{k!}, \quad q_{k}=\frac{P_{k, 0}(-r)^{k}}{k!}
$$

and define b_{ℓ} via the recursion

$$
b_{\ell}=\frac{-\sum_{k=1}^{\ell-1} b_{k} b_{\ell-k}+\frac{1}{4} \sum_{k=1}^{\ell} p_{k} p_{\ell-k+1}-q_{\ell+1}}{2 b_{0}}
$$

with initial condition $b_{0}=-\sqrt{-q_{1}}$.
Define next

$$
s_{i}=2^{i-2}\binom{2 i}{i}-\frac{1}{2} \sum_{j=1}^{i-1}\binom{i-1}{j-1} 2^{3(i-j)} s_{j}-\sum_{k=1}^{i-1} \sum_{j=1}^{i-k}\binom{i-k-1}{j-1} 2^{3(i-j-k)} s_{j} s_{k}
$$

with initial condition $s_{0}=1$, and the recursion

$$
S_{u, v}= \begin{cases}1 & \text { if } u=v=0 \\ (-1)^{u} 2^{1-4 u} s_{u} & \text { if } u \geq 1 \text { and } v=0 \\ -\sum_{w=0}^{u}\left(v-\frac{1}{2}\right)^{w+1} S_{u-w, v-1} & \text { if } u \geq 0 \text { and } v \geq 1\end{cases}
$$

Finally, we have

$$
C_{m}=2 \sum_{k=0}^{m} b_{k} S_{m-k, k+1}
$$

which completes the algorithm.

Some explanation is clearly needed. We know that $F(x, T(x))=0$. The Weierstrass Preparation Theorem implies that, for (x, y) sufficiently close to $(r, 1)$,

$$
F(x, y)=A(x, y) \cdot P(x, y)
$$

where $A(x, y)$ is analytic, $A(r, 1) \neq 0$, and

$$
P(x, y)=(y-1)^{2}+p(x)(y-1)+q(x)
$$

where $p(x), q(x)$ are analytic and $p(r)=q(r)=0$. The sequence $\left\{b_{\ell}\right\}$ arises from setting the various coefficients of the polynomial-like approximation $P(x, T(x))$ equal to zero. By Darboux's theorem,

$$
T_{n} \sim(-1)^{n} r^{-n} \sum_{k=0}^{\infty} b_{k}\binom{k+1 / 2}{n}
$$

hence it remains to compute asymptotic series for half-integer binomial coefficients. We know that [11]

$$
\begin{aligned}
\binom{-1 / 2}{n} & =\frac{(-1)^{n}}{\sqrt{\pi n}}\left(1-\frac{1}{8 n}+\frac{1}{128 n^{2}}+\frac{5}{1024 n^{3}}-\frac{21}{32768 n^{4}}-\frac{399}{262144 n^{5}}+\cdots\right) \\
& =\frac{(-1)^{n}}{\sqrt{\pi n}} \sum_{j=0}^{\infty} \frac{S_{j, 0}}{n^{j}}
\end{aligned}
$$

from which we immediately deduce that

$$
\begin{aligned}
\binom{1 / 2}{n} & =\frac{(-1)^{n+1}}{2 \sqrt{\pi} n^{3 / 2}}\left(1+\frac{3}{8 n}+\frac{25}{128 n^{2}}+\frac{105}{1024 n^{3}}+\frac{1659}{32768 n^{4}}+\frac{6237}{262144 n^{5}}+\cdots\right) \\
& =\frac{1}{2 \sqrt{\pi}} \frac{(-1)^{n}}{n^{3 / 2}} \sum_{j=0}^{\infty} \frac{2 S_{j, 1}}{n^{j}}, \\
\binom{3 / 2}{n} & =\frac{3(-1)^{n}}{4 \sqrt{\pi} n^{5 / 2}}\left(1+\frac{15}{8 n}+\frac{385}{128 n^{2}}+\frac{4725}{1024 n^{3}}+\frac{228459}{32768 n^{4}}+\frac{2747745}{262144 n^{5}}+\cdots\right) \\
& =\frac{1}{2 \sqrt{\pi}} \frac{(-1)^{n}}{n^{3 / 2}} \sum_{j=0}^{\infty} \frac{2 S_{j, 2}}{n^{j+1}}, \\
\binom{5 / 2}{n} & =\frac{15(-1)^{n+1}}{8 \sqrt{\pi} n^{7 / 2}}\left(1+\frac{35}{8 n}+\frac{1785}{128 n^{2}}+\frac{40425}{1024 n^{3}}+\frac{3462459}{32768 n^{4}}+\frac{71996925}{262144 n^{5}}+\cdots\right) \\
& =\frac{1}{2 \sqrt{\pi}} \frac{(-1)^{n}}{n^{3 / 2}} \sum_{j=0}^{\infty} \frac{2 S_{j, 3}}{n^{j+2}},
\end{aligned}
$$

and so forth. The conclusion follows.
0.3. Addendum I. Philippe Flajolet maintained that the preceding discussion tends to "hide the facts" and provided thoughtful comments. Briefly, the equation $F(x, T(x))=0$ can be rearranged as $T(x)=\xi \exp (T(x))$ with

$$
\xi(x)=x \exp \left(\sum_{k=2}^{\infty} \frac{T\left(x^{k}\right)}{k}\right) .
$$

The inverse function of $y \exp (-y)$ is the well-known Cayley tree function τ, an elementary variant of the Lambert W function:

$$
\tau(z)=\sum_{n=1}^{\infty} n^{n-1} \frac{z^{n}}{n!}
$$

on the complex plane. In a small disk around the origin, therefore, $T(z)=\tau(\xi(z))$. From here, singularities are easily accessed, making a full asymptotic expansion possible. Writing such conceptual remarks were, in Flajolet's words, an "enjoyable intermezzo" for him despite limited time. These eventually found their way into his treatise [12] with Sedgewick. For completeness, we mention that $C_{0}=$ $1.5594900203 \ldots$ for rooted trees (as presented in [12]) and that the corresponding coefficient is $1.1300337163 \ldots$ for binary trees
0.4. Prime Divisors. If $\omega(n)$ is the number of distinct prime divisors of n, and $\Omega(n)$ is the total number (including multiplicity) of prime divisors of n, then

$$
\begin{gathered}
\mathrm{E}_{n}(\omega) \sim \ln (\ln (n))+0.2614972128 \ldots+\sum_{k=1}^{\infty}\left(-1+\sum_{j=0}^{k-1} \frac{\gamma_{j}}{j!}\right) \frac{(k-1)!}{\ln (n)^{k}}, \\
\operatorname{Var}_{n}(\omega) \sim \ln (\ln (n))-1.8356842740 \ldots+\frac{1.0879488865 \ldots}{\ln (n)}+\frac{3.3231293098 \ldots}{\ln (n)^{2}}+\cdots, \\
\mathrm{E}_{n}(\Omega) \sim \ln (\ln (n))+1.0346538818 \ldots+\sum_{k=1}^{\infty}\left(-1+\sum_{j=0}^{k-1} \frac{\gamma_{j}}{j!}\right) \frac{(k-1)!}{\ln (n)^{k}}, \\
\operatorname{Var}_{n}(\Omega) \sim \ln (\ln (n))+0.7647848097 \ldots-\frac{2.8767219464 \ldots}{\ln (n)}-\frac{4.9035933594 \ldots}{\ln (n)^{2}}+\cdots,
\end{gathered}
$$

where

$$
\mathrm{E}_{n}(X)=\frac{1}{n} \sum_{i=1}^{n} X(i), \quad \operatorname{Var}_{n}(X)=\mathrm{E}_{n}\left(X^{2}\right)-\mathrm{E}_{n}(X)^{2}
$$

and γ_{j} is the $j^{\text {th }}$ Stieltjes constant [13]. The leading numerical terms in each of the four expansions are [4, 14]

$$
\begin{gathered}
\lambda=\gamma_{0}+\sum_{p}\left[\ln \left(1-\frac{1}{p}\right)+\frac{1}{p}\right]=\gamma_{0}+\sum_{k=2}^{\infty} \frac{\mu(k)}{k} \ln (\zeta(k)), \\
\lambda-\sum_{p} \frac{1}{p^{2}}-\frac{\pi^{2}}{6}=\lambda-\sum_{k=1}^{\infty} \frac{\mu(k)}{k} \ln (\zeta(2 k))-\frac{\pi^{2}}{6}, \\
\Lambda=\gamma_{0}+\sum_{p}\left[\ln \left(1-\frac{1}{p}\right)+\frac{1}{p-1}\right]=\gamma_{0}+\sum_{k=2}^{\infty} \frac{\varphi(k)}{k} \ln (\zeta(k)), \\
\Lambda+\sum_{p} \frac{1}{(p-1)^{2}}-\frac{\pi^{2}}{6}=\Lambda+\sum_{k=2}^{\infty} \frac{\varphi_{2}(k)-\varphi(k)}{k} \ln (\zeta(k))-\frac{\pi^{2}}{6},
\end{gathered}
$$

respectively, where $\zeta(x)$ is the Riemann zeta function, $\mu(k)$ is the Möbius mu function, $\varphi(k)$ is the Euler totient function, and the function $\varphi_{\ell}(k)$ is defined by

$$
\frac{\varphi_{\ell}(k)}{k^{\ell}}=\prod_{p \mid k}\left(1-\frac{1}{p^{\ell}}\right), \quad \frac{\zeta(s-\ell)}{\zeta(s)}=\sum_{k=1}^{\infty} \frac{\varphi_{\ell}(k)}{k^{s}}
$$

(in particular, $\varphi=\varphi_{1}$).
The second numerical coefficient in $\operatorname{Var}_{n}(\omega)$ is

$$
\gamma_{0}-1+2 \sum_{p} \frac{\ln (p)}{p(p-1)}=\gamma_{0}-1+2 \sum_{k=2}^{\infty} \mu(k) \frac{\zeta^{\prime}(k)}{\zeta(k)}
$$

and the second numerical coefficient in $\operatorname{Var}_{n}(\Omega)$ is

$$
\gamma_{0}-1-2 \sum_{p} \frac{\ln (p)}{(p-1)^{2}}=\gamma_{0}-1+2 \sum_{k=2}^{\infty} \varphi(k) \frac{\zeta^{\prime}(k)}{\zeta(k)}
$$

where $\zeta^{\prime}(x)$ is the derivative of the zeta function. This result, as well as the result for means, appears in $[14,15,16]$ but apparently with errors. Knuth [17] revisited Diaconis' original computations; this essay closely follows [17]. Finally, the third numerical coefficient in $\operatorname{Var}_{n}(\omega)$ is

$$
-\gamma_{1}-\left(\gamma_{0}-1\right)\left(\gamma_{0}+2 \sum_{p} \frac{\ln (p)}{p(p-1)}\right)+2 \sum_{p} \frac{(2 p-1) \ln (p)^{2}}{2 p(p-1)^{2}}
$$

and the third numerical coefficient in $\operatorname{Var}_{n}(\Omega)$ is

$$
-\gamma_{1}-\left(\gamma_{0}-1\right)\left(\gamma_{0}-2 \sum_{p} \frac{\ln (p)}{(p-1)^{2}}\right)-2 \sum_{p} \frac{p \ln (p)^{2}}{(p-1)^{3}}
$$

this result is new and awaits confirmation.
For completeness' sake, we record the values of six relevant prime series $[4,14,18]$:

$$
\begin{gathered}
t=\sum_{p} \frac{1}{p^{2}}=0.4522474200 \ldots, \quad T=\sum_{p} \frac{1}{(p-1)^{2}}=1.3750649947 \ldots, \\
u=\sum_{p} \frac{\ln (p)}{p(p-1)}=0.7553666108 \ldots, \quad U=\sum_{p} \frac{\ln (p)}{(p-1)^{2}}=1.2269688056 \ldots, \\
v=\sum_{p} \frac{(2 p-1) \ln (p)^{2}}{2 p(p-1)^{2}}=1.1837806913 \ldots, \quad V=\sum_{p} \frac{p \ln (p)^{2}}{(p-1)^{3}}=2.0914802823 \ldots
\end{gathered}
$$

0.5. Selberg-Delange Method. The theory here is much deeper than what was discussed earlier. It starts with asymptotic formulas for the generating functions [19, 20, 21]

$$
\begin{aligned}
& \frac{1}{N} \sum_{n=1}^{N} z^{\omega(n)}=\ln (N)^{z-1}\left(a_{0}(z)+\frac{a_{1}(z)}{\ln (N)}+\frac{a_{2}(z)}{\ln (N)^{2}}+\cdots \frac{a_{r}(z)}{\ln (N)^{r}}+O\left(\frac{1}{\ln (N)^{r+1}}\right)\right) \\
& \frac{1}{N} \sum_{n=1}^{N} z^{\Omega(n)}=\ln (N)^{z-1}\left(A_{0}(z)+\frac{A_{1}(z)}{\ln (N)}+\frac{A_{2}(z)}{\ln (N)^{2}}+\cdots \frac{A_{r}(z)}{\ln (N)^{r}}+O\left(\frac{1}{\ln (N)^{r+1}}\right)\right)
\end{aligned}
$$

where if

$$
\begin{aligned}
& \frac{s-1}{s} \prod_{p}\left(1-\frac{1}{p^{s}}\right)^{z-1}\left(1+\frac{z}{p^{s}-1}\right)=\sum_{k=0}^{\infty} b_{k}(z)(s-1)^{k}=b(z), \\
& \frac{s-1}{s} \prod_{p}\left(1-\frac{1}{p^{s}}\right)^{z-1}\left(1-\frac{z}{p^{s}}\right)^{-1}=\sum_{k=0}^{\infty} B_{k}(z)(s-1)^{k}=B(z),
\end{aligned}
$$

then

$$
a_{j}(z)=\frac{b_{j}(z)}{\Gamma(z-j)}, \quad A_{j}(z)=\frac{B_{j}(z)}{\Gamma(z-j)}
$$

Let us focus on $\omega(n)$ for the sake of definiteness. Delange's formula expresses that, asymptotically, if n is uniformly distributed on $\{1,2, \ldots, N\}$, then the distribution
of $\omega(n)$ is the convolution of a Poisson random variable with mean $\ln (\ln (N))$ and another random variable X whose generating function is

$$
\mathrm{E}\left(z^{X}\right) \sim a_{0}(z)+\frac{a_{1}(z)}{\ln (N)}+\frac{a_{2}(z)}{\ln (N)^{2}}+\cdots
$$

Thus the mean of $\omega(n)$ will be $\ln (\ln (N))$ plus the mean of X, and the variance will be $\ln (\ln (N))$ plus the variance of X. We have

$$
\begin{gathered}
\mathrm{E}(X) \sim a_{0}^{\prime}(1)+\frac{a_{1}^{\prime}(1)}{\ln (N)}+\frac{a_{2}^{\prime}(1)}{\ln (N)^{2}}+\cdots, \\
\mathrm{E}(X(X-1)) \sim a_{0}^{\prime \prime}(1)+\frac{a_{1}^{\prime \prime}(1)}{\ln (N)}+\frac{a_{2}^{\prime \prime}(1)}{\ln (N)^{2}}+\cdots,
\end{gathered}
$$

hence

$$
\operatorname{Var}(X) \sim c_{0}+\frac{c_{1}}{\ln (N)}+\frac{c_{2}}{\ln (N)^{2}}+\cdots
$$

where

$$
c_{j}=a_{j}^{\prime \prime}(1)+a_{j}^{\prime}(1)-\sum_{i=0}^{j} a_{i}^{\prime}(1) a_{j-i}^{\prime}(1) .
$$

The corresponding coefficients for $\Omega(n)$ will be denoted by $C_{0}, C_{1}, C_{2}, \ldots$ and satisfy similar relations.

To obtain the mean, note that setting $z=1$ in the formula for $b(z)$ gives

$$
\frac{s-1}{s} \zeta(s)=\sum_{k=0}^{\infty} b_{k}(1)(s-1)^{k} .
$$

Replacing s by $s+1$, we have

$$
\left(\sum_{i=0}^{\infty}(-1)^{i} s^{i}\right)\left(1+\sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} \gamma_{j} s^{j+1}\right)=\frac{s}{s+1} \zeta(s+1)=\sum_{k=0}^{\infty} b_{k}(1) s^{k}
$$

thus

$$
b_{0}(1)=1, \quad b_{1}(1)=\gamma_{0}-1, \quad b_{2}(1)=-\left(\gamma_{1}+\gamma_{0}-1\right)
$$

Since

$$
\begin{gathered}
a_{0}^{\prime}(1)=b_{0}^{\prime}(1)+\gamma_{0} b_{0}(1)=\lambda \quad(\text { to be proved shortly }) \\
a_{k}^{\prime}(1)=(-1)^{k-1}(k-1)!b_{k}(1), \quad k \geq 1
\end{gathered}
$$

the result follows. This argument also applies verbatim to $B(z)$, but with λ replaced by Λ.

To obtain the variance, differentiate $b(z)$ and set $z=1$:

$$
\begin{aligned}
b^{\prime}(1)= & b(1) \sum_{p}\left[\ln \left(1-\frac{1}{p^{s}}\right)+\frac{1}{p^{s}}\right] \\
= & \left\{1+\left(\gamma_{0}-1\right)(s-1)-\left(\gamma_{1}+\gamma_{0}-1\right)(s-1)^{2}+\cdots\right\} \\
& \cdot\left\{\left(\lambda-\gamma_{0}\right)+u(s-1)-v(s-1)^{2}+\cdots\right\}
\end{aligned}
$$

thus

$$
\begin{aligned}
b_{0}^{\prime}(1) & =\lambda-\gamma_{0}, \quad b_{1}^{\prime}(1)=\left(\gamma_{0}-1\right)\left(\lambda-\gamma_{0}\right)+u \\
b_{2}^{\prime}(1) & =-v+\left(\gamma_{0}-1\right) u-\left(\gamma_{1}+\gamma_{0}-1\right)\left(\lambda-\gamma_{0}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
b^{\prime \prime}(1) & =b^{\prime}(1) \sum_{p}\left[\ln \left(1-\frac{1}{p^{s}}\right)+\frac{1}{p^{s}}\right]-b(1) \sum_{p} \frac{1}{p^{2 s}} \\
& =\left\{\left(\lambda-\gamma_{0}\right)+\cdots\right\}\left\{\left(\lambda-\gamma_{0}\right)+\cdots\right\}-\{1+\cdots\}\{t+\cdots\}
\end{aligned}
$$

therefore $b_{0}^{\prime \prime}(1)=\left(\lambda-\gamma_{0}\right)^{2}-t$. Since

$$
\begin{gathered}
a_{0}^{\prime \prime}(1)=b_{0}^{\prime \prime}(1)+2 \gamma_{0} b_{0}^{\prime}(1)+\left(\gamma_{0}^{2}-\frac{\pi^{2}}{6}\right) b_{0}(1)=\lambda^{2}-t-\frac{\pi^{2}}{6} \\
a_{k}^{\prime \prime}(1)=2(-1)^{k-1}(k-1)!\left(b_{k}^{\prime}(1)+\left(\gamma_{0}-\sum_{j=1}^{k-1} \frac{1}{j}\right) b_{k}(1)\right), \quad k \geq 1,
\end{gathered}
$$

the formulas for c_{0}, c_{1}, c_{2} follow.
In the same way, to obtain the variance for $\Omega(n)$, differentiate $B(z)$ and set $z=1$:

$$
\begin{aligned}
B^{\prime}(1)= & B(1) \sum_{p}\left[\ln \left(1-\frac{1}{p^{s}}\right)+\frac{1}{p^{s}-1}\right] \\
= & \left\{1+\left(\gamma_{0}-1\right)(s-1)-\left(\gamma_{1}+\gamma_{0}-1\right)(s-1)^{2}+\cdots\right\} \\
& \cdot\left\{\left(\Lambda-\gamma_{0}\right)-U(s-1)+V(s-1)^{2}+\cdots\right\}
\end{aligned}
$$

thus

$$
\begin{gathered}
B_{0}^{\prime}(1)=\Lambda-\gamma_{0}, \quad B_{1}^{\prime}(1)=\left(\gamma_{0}-1\right)\left(\Lambda-\gamma_{0}\right)-U \\
B_{2}^{\prime}(1)=V-\left(\gamma_{0}-1\right) U-\left(\gamma_{1}+\gamma_{0}-1\right)\left(\Lambda-\gamma_{0}\right)
\end{gathered}
$$

Also

$$
\begin{aligned}
B^{\prime \prime}(1) & =B^{\prime}(1) \sum_{p}\left[\ln \left(1-\frac{1}{p^{s}}\right)+\frac{1}{p^{s}-1}\right]+B(1) \sum_{p} \frac{1}{\left(p^{s}-1\right)^{2}} \\
& =\left\{\left(\Lambda-\gamma_{0}\right)+\cdots\right\}\left\{\left(\Lambda-\gamma_{0}\right)+\cdots\right\}+\{1+\cdots\}\{T+\cdots\}
\end{aligned}
$$

therefore $B_{0}^{\prime \prime}(1)=\left(\Lambda-\gamma_{0}\right)^{2}+T$. We have $A_{0}^{\prime \prime}(1)=\Lambda^{2}+T-\frac{\pi^{2}}{6}$ and a formula for $A_{k}^{\prime \prime}(1), k \geq 1$, identical to that for $a_{k}^{\prime \prime}(1)$ earlier; hence the formulas for C_{0}, C_{1}, C_{2} follow. It is interesting that higher-order terms for $\mathrm{E}_{n}(\omega)$ and $\mathrm{E}_{n}(\Omega)$ coincide, but differ for $\operatorname{Var}_{n}(\omega)$ and $\operatorname{Var}_{n}(\Omega)$.

We conclude with an unsolved problem. The expressions

$$
\sum_{n=1}^{N} 2^{\omega(n)}, \quad \sum_{n=1}^{N} 3^{\omega(n)}, \quad \sum_{n=1}^{N} 2^{\Omega(n)}
$$

were mentioned in [22]. Tenenbaum [23] has computed that

$$
\sum_{n=1}^{N} 3^{\Omega(n)}=N^{\theta} g\left(\frac{\ln (N)}{\ln (2)}\right)+O\left(N \ln (N)^{3}\right)
$$

where $\theta=\ln (3) / \ln (2)=1.5849625007 \ldots[24]$ and $g(x)$ is a fractal-like function of period 1 that oscillates between two positive constants. In fact,

$$
g(x)=\frac{3}{2} \sum_{\substack{m \geq 1 \\ \operatorname{gcd}(m, 6)=1}}\left(\frac{3^{\Omega(m)}}{m^{\theta}} \cdot \sum_{k \geq 0} 3^{-(\theta-1) k-\left\{x-\frac{\ln (m)}{\ln (2)}-\theta k\right\}}\right)
$$

where $\{y\}=y-\lfloor y\rfloor$ for all real numbers y, and

$$
3.74 \ldots=\lim _{x \rightarrow 1^{-}} g(x)=\inf _{x} g(x)<\sup _{x} g(x)=\lim _{x \rightarrow 0^{+}} g(x)=4.74 \ldots
$$

It would be good to someday know these bounds to higher precision.
0.6. Addendum II. Let $P(n)$ be the largest prime factor of n. The average of $P(n)$ satisfies [25]

$$
\frac{1}{N} \sum_{n \leq N} P(n) \sim \sum_{k=0}^{\infty} k!\frac{N}{\ln (N)^{k+1}} \xi_{k}
$$

as $N \rightarrow \infty$, where

$$
\xi_{k}=\frac{1}{2^{k+1}} \sum_{j=0}^{k} \frac{2^{j}(-1)^{j}}{j!} \zeta^{(j)}(2)
$$

and the median $M(N)$ of $\{P(n): n \leq N\}$ satisfies [26]

$$
M(N) \sim \exp \left(\frac{\gamma-1}{\sqrt{e}}\right) N^{1 / \sqrt{e}}=(0.7738078734 \ldots) N^{0.6065306597 \ldots}
$$

(actually, more terms in the asymptotic expansion of $M(N)$ are possible). Clearly the median value grows substantially slower than the mean value. The mode (most frequent value) grows even more slowly [27]. Another interesting asymptotic expansion [26] refines de la Vallée Poussin's average for fractional parts of a large integer N divided by each prime $p \leq N$:

$$
\sum_{p \leq N}\left\{\frac{N}{p}\right\} \sim \sum_{k=0}^{\infty} k!\frac{N}{\ln (N)^{k+1}} \eta_{k}
$$

as $N \rightarrow \infty$, , where

$$
\eta_{k}=1-\sum_{j=0}^{k} \frac{\gamma_{j}}{j!}
$$

Alternative proofs regarding $\mathrm{E}_{n}(\omega)$ and $\mathrm{E}_{n}(\Omega)$ also appear in [26], but not $\operatorname{Var}_{n}(\omega)$ nor $\operatorname{Var}_{n}(\Omega)$.
0.7. Acknowledgements. I am grateful to Donald Knuth for his detailed letter [17], on which my discussion of the Selberg-Delange method is based, and Philippe Flajolet for his supportive guidance. Persi Diaconis kindly provided [15] and Pascal Sebah computed the constants v and V.

References

[1] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000055 and A000081.
[2] S. R. Finch, Otter's tree enumeration constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 295-316.
[3] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A001221, A001222, A013939, A022559, and A069811.
[4] S. R. Finch, Meissel-Mertens constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 94-98.
[5] J. M. Plotkin and J. W. Rosenthal, How to obtain an asymptotic expansion of a sequence from an analytic identity satisfied by its generating function, J. Austral. Math. Soc. Ser. A 56 (1994) 131-143; MR1250997 (94k:05015).
[6] M. Drmota and B. Gittenberger, The distribution of nodes of given degree in random trees, J. Graph Theory 31 (1999) 227-253; http://dmg.tuwien.ac.at/drmota/litalt.html; MR1688949 (2000f:05069).
[7] M. Drmota, Combinatorics and asymptotics on trees, Cubo 6 (2004) 105-136; http://dmg.tuwien.ac.at/drmota/litalt.html; MR2092045 (2005h:05100).
[8] G. Darboux, Mémoire sur l'approximation des fonctions de très grands nombres, Journal de Mathématiques 4 (1878) 5-56, 377-416.
[9] G. Szegö, Orthogonal Polynomials, $2^{\text {nd }}$ ed., Amer. Math. Soc., 1975, pp. 205-206; MR0106295 (21 \#5029).
[10] G. Pólya and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, Springer-Verlag, 1987; MR0884155 (89f:05013).
[11] D. E. Knuth, I. Vardi and R. Richberg, The asymptotic expansion of the middle binomial coefficient, Amer. Math. Monthly 97 (1990) 626-630.
[12] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, pp. 475-480; http://algo.inria.fr/flajolet/Publications/AnaCombi/; MR2483235 (2010h:05005).
[13] S. R. Finch, Stieltjes constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 166-171.
[14] D. E. Knuth, Selected Papers on Analysis of Algorithms, CSLI, 2000, pp. 338-339; MR1762319 (2001c:68066).
[15] P. Diaconis, Asymptotic expansions for the mean and variance of the number of prime factors of a number n, Dept. of Statistics Tech. Report 96, Stanford Univ., 1976.
[16] P. Diaconis, G. H. Hardy and probability??? Bull. London Math. Soc. 34 (2002) 385-402; MR1897417 (2003d:01023).
[17] D. E. Knuth, Asymptotics for $\mathrm{E}_{n}(\Omega)$ and $\operatorname{Var}_{n}(\Omega)$, unpublished note (2003).
[18] P. Sebah, Computing $\sum \frac{p}{(p-1)^{3}} \log ^{2} p$ and $\sum \frac{2 p-1}{2 p(p-1)^{2}} \log ^{2} p$, unpublished note (2003).
[19] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954) 83-87; MR0067143 (16,676a).
[20] B. Saffari, Sur quelques applications de la "méthode de l'hyperbole" de Dirichlet à la théorie des nombres premiers, Enseign. Math. 14 (1970) 205-224; MR0268138 (42 \#3037).
[21] H. Delange, Sur des formules de Atle Selberg, Acta Arith. 19 (1971) 105-146 (errata insert); MR0289432 (44 \#6623).
[22] S. R. Finch, Hafner-Sarnak-McCurley constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 110-112.
[23] G. Tenenbaum, Asymptotics for the sum of $3^{\Omega(n)}$, unpublished note (2001).
[24] S. R. Finch, Stolarsky-Harborth constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 145-151.
[25] E. Naslund, The average largest prime factor, Integers 13 (2013) A81; MR3167928.
[26] E. Naslund, The median largest prime factor, J. Number Theory 141 (2014) 109-118; arXiv:1207.0232; MR3195391.
[27] N. McNew, Popular values of the largest prime divisor function, arXiv:1504.05985.

[^0]: ${ }^{0}$ Copyright © 2003 by Steven R. Finch. All rights reserved.

