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When enumerating trees [1, 2] or prime divisors [3, 4], the leading term of the
corresponding asymptotic series is usually sufficient for practical purposes. Greater
accuracy is possible by using several more terms, but the coefficients are not as widely
known as one might expect. We briefly provide the formulas required to compute the
required constants, as well as some theoretical background.

0.1. Trees. If T, is the number of non-isomorphic rooted trees with n vertices,
then [5]

0.0441699018... n 0.2216928059... N 0.8676554908...

T, ~ 1 "n =32 (0.4399240125... + 2 3
n n "

where r = 0.3383218568... is the unique positive root of the equation F'(z,1) = 0,

where
. T(zF
F(z,y) = zexp (?HZ <k )) —y

k=2
and T'(z) = > 7 T,a™ is the generating function for {7,,}. Let us denote the four
numerical coefficients by Cy/(2/7), C1/(2y/7), Cs/(2y/7) and C5/(2/7). Exact
formulas for these constants can be written in terms of the partial derivatives
giti
0x'0yJ

EJ = F(l’,y)

=T
y=1

via computer algebra. Note that Fyo = Fp1 = 0,
1= Fyo=Fy3=Fpa=Fos="--,

O<F1,0:F171:F172:F173:F174:. ,
and likewise F}; = Fjo for all i > 2, j > 1. We have

C() = \/27’F170,
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Cl = {9T'F1,0 + 7'2 [—11 F12,0 + 9F2,0]}/{1200},

Co = {2251 F7y+ 17 [=990 F{( + 810 Fy g Fa ]
+r2 [T69 Fi g — 990 FT o Fao — 135 F3 o + 360 Fy 0 F30)} /{576 F1,0 Co},

Cy = {425257 F} o+ r? [=571725 F} o + 467775 FY Fa )
+r% [1211175 FY g — 1559250 F} Fao — 212625 Fy g F3 o + 567000 FY o F3 0]
+1* [—680863 FP + 1211175 F} Fa,o — 155925 F{ Fi + 42525 F
—415800 F Fy0 — 113400 Fi g Fy o F30 + 113400 F7 o Fy0]}/{207360 F7 o Co}.

The associated formula for ¢,,, the number of non-isomorphic free trees of order
n, is [5]

0.4853877311...  2.379745574...
t, ~ 1 "% (0.5349496061... + + + .. )

n n?

where r is as before and the first numerical coefficient is simply C3/(4y/7). Exact
formulas for the second and third coefficients are

C2(C3 4+ 30C1) Co(C8 + 35C3C, + 21007 4 126C,Cs)
247 72T

and we wonder what the next few coefficients might look like.

Other varieties of trees examined in [5] include binary trees, identity trees and
homeomorphically irreducible trees. Different functional equations apply in each case;
for example, we have

F(z,y) =2+ % (v> + B(2%) —y

for the first variety, where B(x) = > 7 B,z" is the generating function for the
number B, of non-isomorphic rooted strongly binary trees with n leaves (B; = By =
B3 =1, By =2, Bs =3, ...). One obtains

0.2038317427... n 0.3682702316... n 1.4768193666...

B, ~ p "n3/? <0.3187766259... +

n n2 n3

with p = 0.4026975036... as the radius of convergence. The details are omitted.
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An intermediate step to studying {7} involves the analysis of the series [6, 7]

T(x) = ch(r—x)k/Q

= 1—(2.6811281472...)(r — x)'/? + (2.3961493806...)(r — )
—(1.4507456802...) (r — )%/ + (1.4447836810...)(r — x)?
—(5.1438071207...) (r — 2)*/% + - -

which is valid as x — r—, where

C():l, 61:—\/2F170, 62:2F170/3,
cs={11F},—9F0} /{18c1}, cx={43F},—45F50} /135,
s = {T69 F}'y — 990 FYo Foo — 135 F5 o + 360 Fy o Fa} /{2160 Figci}

Note that ¢y = ¢3/3 and ¢4 = (30cic3 — ¢}) /45, while c3 and ¢5 cannot be algebraically
represented in terms of preceding ¢, values.
Likewise, in connection with {¢,}, we have [6, 7]

tz) = ) di(r—x)"/?

= 0.5657439434... — (4.0484928944...)(r — ) — (6.4243835496...)(r — x)3/2
—(5.5810996983...) (1 — x)? + (7.3498535571...) (1 — z)>/? + - -

where
do=3(1+T(r?), =0,

dy = —% (C% + 27’T’(7‘2)) ) ds3 = cqco,
dy = % (—C% — 2c1c3 + 27”2T"(T2) + T’(T2)) ) ds = —CoC3 — C1C4

and T"(z), T"(z) denote the first and second derivatives of T'(x), respectively. The
singular part of ¢(z) (that is, the part corresponding to dj for odd k) depends just
on the coefficients ¢;. No analogous simplification of the analytic part of ¢(z) (dj for
even k) is known.

0.2. Darboux-Pdélya Method. Although the asymptotic series for 7}, and t,, are
evidently new, the underlying method appears (at least implicitly) in the works of
Darboux [8, 9] and Pélya [10]. We give the steps of a straightforward algorithm for
computing the m'" coefficient C,, of the asymptotic series for T},.
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Define first z; ; to be 0 if ( > 1 and j = 2) or (j > 2), and 1 otherwise. Define
P, ; and A;; via the recursions

i-1 j J
FiJ - (;) (Z,) Ap,qpi—pyj—q - Z (ZI) AO,qPiJ—q
P‘ ., p=1 ¢=0 q=1
7,7 2,7 A070 )
i—1 j+2
u+2 _ZZ J+2 A prj q+2
A = p=0 ¢=0
s G+D0+2)
with initial conditions Py, = 2 and Fy; = 0 for all j # 2. Let
. Pk71<—’f‘>k . Pkp(—?”)k
Pr = o qr = —

and define b, via the recursion

-1 ¢
- Z bebe—i + 3 Zpkpé—k+1 — Qo1
=1 =1

b, =
‘ 25
with initial condition by = —/—¢;.
Define next
i—1 i—1 i— k
=22 A ()2~ T (557 ey
Jj=1 k=1 j=1
with initial condition sy = 1, and the recursion
1 ifu=v=0
g (— 1)u21_4u Su Hfu>landv=0
u,v
—Z wﬂ Su—wp—1 fu>0andv>1.

Finally, we have
Cn =2 Z bieSm—k k41
k=0

which completes the algorithm.
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Some explanation is clearly needed. We know that F'(z,7(z)) = 0. The Weier-

strass Preparation Theorem implies that, for (z,y) sufficiently close to (r, 1),

F(z,y) = A(x,y) - P(x,y)

where A(z,y) is analytic, A(r, 1) # 0, and

P(z,y) = (y —1)> +p(z)(y — 1) + q(x)

where p(x), ¢(x) are analytic and p(r) = ¢(r) = 0. The sequence {b,} arises from
setting the various coefficients of the polynomial-like approximation P(z,T'(z)) equal

to zero. By Darboux’s theorem,

Tn ~ (_l)n,r—n Z bk: (k‘+1/2) .
k=0

hence it remains to compute asymptotic series for half-integer binomial coefficients.

We know that [11]

n I

21

(—1/2) _ (_1)n 1 1 1 3
" /TN

(=1)" < Sio

VT jz_; nJ

from which we immediately deduce that

()™ (L3, 2 105

T8 T 1osn T 10248

1659

3276307  262144n

6237

1 (—1)715‘@:25;,1

Y

3/2 j
2/ n¥/ =
0r) = 3(—1) 15 385 | 4725 | 28450 | 9TATTAS
n/o 4./Tnb/? 8n  128n2  1024n®  32768n* = 262144nd
1 (—1)"5‘@:253472
- 3/2 j+17
2/ n3/ Pl
5/2 15(—1)"*! 35 1785 40425 3462459 71996925
) = =55 (1+—+ + + + :
" 8/mn7/? 8n  128n2  1024n3 = 32768n*  262144nd

1 (=" i 255
Qﬁ n3/2 — nj+2>

and so forth. The conclusion follows.

vy — 2 2/
( " ) 2,/mn3/? ( 8n  128n? N 1024n3 * 32768n* i 262144n° * )

i )
+ )



Two ASYMPTOTIC SERIES 6

0.3. Addendum 1. Philippe Flajolet maintained that the preceding discussion
tends to “hide the facts” and provided thoughtful comments. Briefly, the equation
F(z,T(z)) = 0 can be rearranged as T'(x) = £ exp(T'(z)) with

(e o]

&(x) = xexp <Z @) :

k=2

The inverse function of yexp(—y) is the well-known Cayley tree function 7, an ele-
mentary variant of the Lambert W function:

[e.9]

_ n—lz_n
T(z) = Zn oy

n=1

on the complex plane. In a small disk around the origin, therefore, T'(z) = 7(£(2)).
From here, singularities are easily accessed, making a full asymptotic expansion
possible.  Writing such conceptual remarks were, in Flajolet’s words, an “enjoy-
able intermezzo” for him despite limited time. These eventually found their way
into his treatise [12] with Sedgewick. For completeness, we mention that Cy =
1.5594900203... for rooted trees (as presented in [12]) and that the corresponding
coefficient is 1.1300337163... for binary trees

0.4. Prime Divisors. If w(n) is the number of distinct prime divisors of n, and
Q(n) is the total number (including multiplicity) of prime divisors of n, then

[e'e) k—1
7\ (k—1)!
n ~ In(1 0.2614972128... -1 -
() ~ () + +z< +;ﬂ> e
1.0879488865...  3.3231293098...

~ In(1 —1. 42740...
Var,(w) ~ In(In(n)) — 1.8356842740... + —— =+ == rm—+ -

) k-1
En(2) ~ In(In(n)) 4+ 1.0346538818... + Z <_1 + Z %) (ﬁl(—n)lk)',

k=1
2.8767219464...  4.9035933594...
) ~ In(l 7164784 . — —
Var,, () ~ In(In(n)) 4+ 0.7647848097 ™) ()2 +-

where

Bu(X) =+ 3 X0, Var(X) = B (X?) — Ea(X)
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and v, is the j" Stieltjes constant [13]. The leading numerical terms in each of the
four expansions are [4, 14]

respectively, where ((z) is the Riemann zeta function, p(k) is the Mobius mu function,
©(k) is the Euler totient function, and the function ¢,(k) is defined by

o(k) 1 (s =10 - o(k)
-l(-7) oL

plk

(in particular, ¢ = ;).

The second numerical coefficient in Var,, (w) is
¢'(k)
C(k)

70_14’22]?(1;(?)1) :70_1+2;M(l€)

and the second numerical coefficient in Var,,(2) is

Yo—1-2) <pln_(pl))2 =7 — 1 +2kz_;so(’f)€((:)),

where ('(x) is the derivative of the zeta function. This result, as well as the result
for means, appears in [14, 15, 16] but apparently with errors. Knuth [17] revisited
Diaconis’ original computations; this essay closely follows [17]. Finally, the third
numerical coefficient in Var,, (w) is

—n = (-1 <% +2) hl(f)l)> +2Y° (2§p_<p1>_1§1§§)2

p(p
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and the third numerical coefficient in Var, () is
In(p) pln(p)®
1= (=1 |72 —2 ?
0= (-2 ) o 2

(p
this result is new and awaits confirmation.
For completeness’ sake, we record the values of six relevant prime series [4, 14, 18]:

1 1
t=>" 5= 0.4522474200..., T = Ep: e 1.3750649947...,

1
n(p) ~ — 1.2269688056...,
(p—1)

)
(2p — 1) In(p)® pln(p)?
v = Zp: = 1.1837806913..., V = Zp: =1 " 2.0914802823....

0.5. Selberg-Delange Method. The theory here is much deeper than what was
discussed earlier. It starts with asymptotic formulas for the generating functions
[19, 20, 21]

LS o) oyt a(z) | () a(2) 1
72 =) (““(Z> ) T inveE T vy Y <1n(N)7"+1)> !

n=1

% izﬂ(n) = In(N)*! (Ao(Z) T Tz T vy © (ﬁ» ’

where if

e v b B
O ey ATy

Let us focus on w(n) for the sake of definiteness. Delange’s formula expresses that,
asymptotically, if n is uniformly distributed on {1,2,..., N}, then the distribution
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of w(n) is the convolution of a Poisson random variable with mean In(In(NN)) and
another random variable X whose generating function is

ai(z) as(z)
m(N) (V)

E(z%) ~ ag(2) + + -

Thus the mean of w(n) will be In(In(NV)) plus the mean of X, and the variance will
be In(In(NV)) plus the variance of X. We have

B0 ~ ay(1) + 130 4 L
BOXCY = 1)) ~ (1) + s 4 oo e
hence
Var(X) ~ ¢y + (V) + (V)2 +
where

i=0
The corresponding coefficients for €(n) will be denoted by Cp, Cy, Cs, ... and satisfy

similar relations.
To obtain the mean, note that setting z = 1 in the formula for b(z) gives

s—1

S

C(s) =D be(1)(s = D"

Replacing s by s + 1, we have

() (425

i=0 j=0 )

)j’yjst) = ((s+1) = Z:bk(l)sl‘c

s+ 1 P

thus
bo(l) =1, 51(1) =7 — L, 52(1) = _(’71+’70_1)-

Since
ap(1) = bG(1) + vobo(1) = A (to be proved shortly),

a(1) = (1)1 (k= Dh(1), k> L,

the result follows. This argument also applies verbatim to B(z), but with \ replaced
by A.
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To obtain the variance, differentiate b(z) and set z = 1:

V(1) = b(1)) [m (1 - pl) - ]ﬂ

= {1+ -DE-1) = +r% D=1 +--}
AN =7) Fuls —=1) —v(s = 1)+ }

thus
bo(1) = A=, 01(1) = (vo = DA =) +u,
by(1) = —v + (vo — Du— (v1 +7 — L)(A = 70)-
Also

I ol (A B T

p p

= Q=)+ A=)+t ={1+-}{t+-}
therefore bj(1) = (A — ,)? — t. Since

aj(1) = B(1) + 298D + (13— 5 ) 1) = N 1 — %

ag(1) =2(=1)"1(k - 1)! <52(1) + <% - kf %) bk(1)> , k21

the formulas for ¢y, ¢, ¢y follow.
In the same way, to obtain the variance for Q(n), differentiate B(z) and set z = 1:

B(1) = B(1))_ [hl (1 - pl) o 1_ 1]

p

= {1+(-D6-1) = (n+r-DE—-1)°+--}
AN =) UG-+ V(s=1)*+---}
thus
By(1) = A — 7, Bi(1) = (7o — DA —7o) = U,
By(1) =V = (7o = DU = (71 + 7 — DA = 7p)-
Also

B'(1) = B(1))_ lm (1_1%) +p51—1] +B<1)zp:ﬁ

p

= (A=)t H A =g+ (L HT )
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therefore By (1) = (A — v4)* + T. We have Aj(1) = A2+ T — %2 and a formula for
Al(1), k > 1, identical to that for aj (1) earlier; hence the formulas for Cy, Cy, Cs
follow. It is interesting that higher-order terms for E,(w) and E,(Q2) coincide, but
differ for Var, (w) and Var,(2).

We conclude with an unsolved problem. The expressions

N N N
Z 2w(n)) Z 3w(n)’ Z QQ(n)
n=1 n=1 n=1

were mentioned in [22]. Tenenbaum [23] has computed that
N
3% = Nog (330) + O(N In(N)?)
n=1

where ¢ = In(3)/In(2) = 1.5849625007... [24] and g(x) is a fractal-like function of
period 1 that oscillates between two positive constants. In fact,

3 300m) —(0—1)k—{ o1l gy,
g(ac) — 5 E ( — . § 3 { In(2) }
m>1 £>0
ged(m,6)=1

where {y} =y — |y| for all real numbers y, and

3.74... = lim g(z) = inf g(x) < sup g(x) = 111%1+ g(x) =4.74...

z—1- T
It would be good to someday know these bounds to higher precision.

0.6. Addendum II. Let P(n) be the largest prime factor of n. The average of
P(n) satisfies [25]

1 > N
NP~ S R—
NZ]:V (n) kz_; 1n(N)k+15’f

as N — oo, where
k

6= g 3 O

Jj=0

and the median M (N) of {P(n) : n < N} satisfies [26]

e

M(N) ~ exp <7 ) NYVE = (0.7738078734...) N0-6065306597 ..
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(actually, more terms in the asymptotic expansion of M(N) are possible). Clearly
the median value grows substantially slower than the mean value. The mode (most
frequent value) grows even more slowly [27]. Another interesting asymptotic expan-
sion [26] refines de la Vallée Poussin’s average for fractional parts of a large integer
N divided by each prime p < N:

{3}~ S

p<N

as N — oo, , where

k
’y .
R
=0 J°
Alternative proofs regarding E,(w) and E,(€2) also appear in [26], but not Var,(w)
nor Var, ().
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