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Abstract—The human heart rate is influenced by different
internal systems of the body and can reveal valuable information
about health and disease conditions. In this paper, we analyze the
instantaneous heart rate signal using a Bayesian method, inferring
in real time a probabilistic distribution that approximates the
real distribution of this signal. The best model is chosen after an
experimental analysis of real data collected within our framework.
The parameters of this distribution can reveal interesting insights
on the influences of the sympathetic and parasympathetic divisions
of the autonomic nervous system (ANS) in real time.

I. INTRODUCTION AND RELATED WORK

The frequency at which the human heart pulses (heart rate)

is an important signal that can help in understanding not only

the state of our heart, but the functioning of our internal

systems [1], as well. It is possible to affect heart rate indirectly,

through physical activity, emotions, and also through controlled

breathing and other techniques. Heart rate is regulated by the

interaction of the sympathetic and the parasympathetic nervous

systems (SNS and PSNS, respectively), two branches of the

autonomic nervous system (ANS). Parasympathetic innervation

of the heart is controlled by the vagus nerve which acts to

lower the heart rate by releasing a neurotransmitter called

acetylcholine. On the other hand, the SNS increases heart rate,

through the emission of two neurotransmitters: epinephrine

(also known as adrenaline) and norepinephrine.

Motivated by this causal connection between the ANS and

heart rate, a vast literature has focused on modeling heart

rate variability (HRV), i.e., the cyclic and acyclic variations

in the instantaneous heart rate (IHR), see e.g., [2]–[6]. The

IHR is calculated each time a pulse is detected; it is inversely

proportional to the time interval between two pulses. There is

also a large body of literature on the clinical relevance of HRV,

see e.g., the recent paper [7] and references therein. Regarding

the connections between the HRV and the ANS, we refer the

interested reader to [8] and references therein.

The mathematical methods adopted in the current literature

can be divided into two typologies, the time-domain methods

and the frequency-domain methods. The IHR is studied as a

point process in [2], [3] and it is stochastically modeled as

a history-dependent inverse Gaussian process, thus providing

a new methodology for defining HRV in the time domain

and analyzing it in both the time and frequency domains.

Another interesting approach is presented in [4], where a phase-

rectified signal averaging (PRSA) model is proposed. This

method is suitable to study quasiperiodicity in nonstationary

data; the paper highlights the advantages of this method over

conventional spectral analysis. In [5] the PRSA is applied to

a clinical trial where the method is shown to be effective as a

predictor of mortality after myocardial infarction. This method

is of particular interest since it discriminates between the ac-

celeration and deceleration of the heart rate, thus distinguishing

between the effects of the SNS and PSNS. From a medical point

of view this is significant because it can reveal and specify

important insights on the functioning of the ANS, which has

an dramatic influence on both health and disease, see e.g., [9].

An overview of the literature reveals the importance of the

heart rate signal as a key variable that is influenced by many

internal processes and that can provide significant information

about the health and/or disease status of a person. Many

commercial sensors to detect the IHR are available to the public,

therefore, we want to investigate if it is possible to analyze this

signal with a simple device, e.g., a smartphone connected to the

heart rate sensor, and what kind of information can be extracted

from it. In addition, we want to investigate novel methods to

extract information in real time from the heart rate signal, in

order to give immediate feedback to the user regarding the

effects of the activity that he/she is performing and the real-

time reaction of his/her ANS.

In previous work [6], we have exploited the wavelet trans-

formation to study the heart rate signal in the time-frequency

domain. Using wavelet coherence [10], we were able to detect

the presence of entrainment among people that are performing

certain activities in unison.

In this paper, we propose a Bayesian analysis, with two

levels of inference, to study the instantaneous variations in the

heart rate. In particular, we propose a model that discriminates

between the decrease and increase of the heart rate. We obtain

a method that can be used to study in real time, with a simple

nonobtrusive device, the individual effects of the two branches

of the ANS (parasympathetic and sympathetic) on heart rate.

The main contributions of this paper are:

• the study of the heart rate signal through a Bayesian

method with two levels of inference;

• the use of this method for real-time updates of the signal

distribution, each time a new heart pulse is recorded;

• the identification of a suitable model, based on real data

analysis, to approximate such a signal;

• a preliminary real-time analysis of a heart-rate signal, with
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Figure 1. Electrocardiogram obtained from a BioHarness 3.0 device. In the
figure we highlight the point process t, the instants at which an R peak is
detected, and r, the intervals between peaks (RR intervals).

discrimination between heart rate increase and decrease,

corresponding to the sympathetic and parasympathetic

effects on the heart rate, respectively.

The rest of the paper is organized as follows. In Sec. II

we briefly describe the data collection devices and the user

interface developed for this project, then in Sec. III we detail

the notation used to represent the heart rate signal. In Sec IV

we present the Bayesian model adopted and optimized to infer

a proper distribution for the heart rate signal, together with the

techniques used to update such a distribution in real time. In

Sec. V we select an appropriate model from real data analysis

and we show preliminary results on the real-time analysis of

the heart rate signal. Sec. VI provides a summary of the work.

II. HEALTHWARE PLATFORM

In this section we present the various tools for data collection

and the user interface that we have developed at the University

of California San Diego division of the California Institute for

Telecommunications and Information Technology (Calit2): the

Healthware platform [11]. The algorithms that will be described

in detail in the following sections were developed using the data

collected through this platform. The data analyzed in this paper

were collected with two kinds of sensors.

• The Polar Team2 Pro system: each device is composed

of a chest strap, a sensor, and a transmitter. The devices

are synchronized to a common internal clock and they are

able to record information about the heart rate in the form

of RR intervals, i.e., the time between two consecutive R

peaks (pulses) of the heart signal. This signal is collected

off-line via Bluetooth using the Polar Team2 proprietary

software on a central server that can be accessed from a

personal computer via IEEE 802.11.

• The BioHarness 3.0: each device is composed of a chest

strap, several sensors and a transmitter. It can sense the

breathing rate (18 Hz), electrocardiography (ECG, up to

250 Hz), skin temperature, acceleration, and posture. It

derives the RR intervals from the ECG. It can connect via

Bluetooth to a personal computer, as well as a tablet or

a smartphone, for real-time data visualization as well as

off-line data collection.

The data collected can be visualized and analyzed on our

Healthware website [11], where it is possible to analyze the

available data with several time-domain [1] and frequency

domain [6] data analysis tools optimized for the analysis of

this kind of signal. The website is publicly available; users can

upload their own data collected through a heart rate sensor, and

analyze it with the available tools.

In addition, we are developing an Android application that

can read the data from the BioHarness sensor via Bluetooth,

visualize it in real time, pre-process the data, and send it to

our website via IEEE 802.11. This application can run on a

smartphone or tablet.

III. THE CONTINUOS HEART RATE SIGNAL

In this section we detail the notation used to describe the

heart rate signal sensed by the sensors, as well as the signals

that are directly obtained from this data. The sensors are able

to detect, with good accuracy, the time at which an R peak

occurs, i.e., the peak in the electrocardiogram (ECG) shown in

Fig. 1. The succession of the times at which an R peak is sensed

can be represented as a point process, namely t = t
(0:N+1),

where t(i) is the time instant at which the ith R peak is sensed,

i = 0, . . . , N + 1. In order to analyze this random process

we consider the process r = r
(1:N+1) of the interarrival times

between two consecutive pulses, namely:

r(i) = t(i) − t(i−1) ,

for all i = 1, . . . , N + 1. In the medical literature, r(i) is

defined as an RR (or NN) time interval. From the process r,

it is possible to calculate the instantaneous heart rate (IHR) at

time i (in pulses per minute), i.e.,

HR(i) =
60

r(i)
.

In Fig. 2–(a) we represent each instance r(i) of the process

as a function of the corresponding time t(i). Observing the

figure, we can notice that the elements of r are not independent

and identically distributed, instead, they strongly depend on

the past history. An approach to analyze this kind of process

that is often used by the medical community is to assume

that each element of the process is independent, i.e., that

p
[

r(i)|r(1:(i−1))
]

= p
[

r(i)
]

, where r
(1:(i−1)) is the set of r(j),

for j = 1, . . . , i − 1. Given this assumption, it is possible to

estimate different statistics on r, like the standard deviation [1],

which can be calculated as:

SDNN =

√

√

√

√

∑N

i=1(r
(i))2

N
−

(

∑N

i=1 r
(i)

N

)2

. (1)
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Figure 2. The RR interarrival times r (a), and the corresponding differences
among the interarrival times d (b).

However, since each r(i) is strongly dependent on the recent

history and the process r is not stationary, the measure of the

SDNN can be very difficult to interpret from a statistical point

of view. Another approach is based on the definition of another

process, namely d = d
(1:N), given by the differences between

consecutive RR intervals, which is defined as:

d(i) = r(i+1) − r(i) = t(i+1) − 2t(i) + t(i−1) ,

for all i = 1, . . . , N . An example of this process is shown in

Fig. 2–(b).

In order to study the signal d, it is common in the literature

to implicitly assume that the interarrival times r are well

approximated by a one step Markov process. In particular, we

assume that each interarrival time r(i) is equal to the previous

interarrival time r(i−i) plus an independent and identically

distributed (i.i.d.) component, d(i). With this assumption, it

is possible to study the distribution of such a process. Many

interesting measures can be derived from this distribution, e.g.,

as presented in [12]:

pNNx =

N
∑

i=1

1
(

|d(i)| ≥ x
)

N
≃ p

(

|d(i)| ≥ x
)

, (2)

where 1(·) is the indicator function. In the medical community

the threshold is usually set to x = 50 ms, thus having only

one measure for each process analyzed (the pNN50). This

approach has some limitations, as detailed in [12], where the

authors studied the pNNx measure for different values of x
and suggested to use a value for the threshold as low as 20
ms, or less. This approach fails to discriminate between the

increase (d(i) < 0) and decrease (d(i) > 0) of the instantaneous

heart rate, because these two events are treated in the same

way. Furthermore, the approach is limited to the choice of

the threshold value x (a single determined value). In the next

section, we propose a method to estimate the whole distribution

of the differences between consecutive RR intervals, d.

A. Removal of Artifacts

An important aspect to consider before proceeding with the

analysis is the process of artifacts removal. The devices that are

adopted in this study are equipped with proprietary software for

artifacts removal. However, there are some artifacts that are not

removed by the devices, but can be easily detected by observing

t and r. These can be fixed before proceeding with the analysis.

Our artifact removal procedure is illustrated in pseudocode in

Tab. I.

For every i > P

(1) Select the expected value based on the past P elements of r

r̂(i) = median(r(i−P :i−1)) .

(2) If r(i) − r̂(i) > αr̂(i) [Missing pulses detected]

add round(r(i)/r̂(i)−1) equally spaced pulse arrivals between t(i−1) and

t(i)

(3) Else If r(i) − r̂(i) < −αr̂(i) [Phantom pulse detected]

delete the pulse at t(i) if t(i+1)− t(i−1) < t(i)− t(i−2), otherwise delete
the pulse at t(i−1).

Table I
ALGORITHM TO REMOVE SOME OF THE ARTIFACTS FROM POINT PROCESS t.

The effect of phase (2) is to lower bound the heart rate

variability, since we substitute a long unrealistic interval with

two or more equally sampled intervals. We stress that these

artificial intervals are excluded from the Bayesian analysis of

the heart rate variation in Sec. IV. The effect of phase (3) is to

eliminate, where possible, a phantom pulse, thus restoring the

real length of the interval at that point.

IV. A SIMPLE BAYESIAN MODEL FOR HEART RATE

VARIATION

The heart rate signal is a nonstationary signal that can be

represented by t, r, or d, without loss of information. We can

build a model that assumes that each instance of the interarrival

time series is dependent only on the previous instance and on

the state of the model, i.e.,

p
[

r(i)|r(1:(i−1)), s(i)
]

= p
[

r(i)|r(i−1), s(i)
]

, (3)

where s(i) is the state of the system at time i. Furthermore, we

assume this process to be stationary in a short time interval, i.e.,



its state does not change in a short period of time, s(i) = s⋆

for i = 1, . . . , N . Under this assumptions we can write:

p
[

r
(1:N)|s⋆

]

=
N
∏

i=1

p
[

r(i)|r(i−1), s⋆
]

. (4)

We also assume that the differences between consecutive in-

terarrival times are i.i.d., given that the state does not change,

i.e.,

p
[

d
(1:N)|s⋆

]

=

N
∏

i=1

p
[

d(i)|s⋆
]

. (5)

Thus, it becomes possible to study the distribution of d(i),
p
[

d(i)|s⋆
]

, at least in the period in which the signal is sta-

tionary. To approximate this distribution, we adopt a standard

Bayesian estimation method that relies on two levels of in-

ference, similar to the approach detailed in [13] and applied

in [14].

A. First Level of Bayesian Inference

We choose a set of M possible competitive models

{M1, . . . ,MM}, and we rank them according to how well

they approximate the distribution of d. In particular, given

the observed process d
(1:N), as a first step we maximize the

posterior probability (Maximum A Posteriori, MAP) of the

parameters θ that describe each model, i.e., we find for each

model Mj :

θ⋆ = argmax
θ

p
(

θ|d(1:N),Mj

)

= argmax
θ

p
(

d
(1:N)|θ,Mj

)

,
(6)

where the second equivalence holds because we do not have any

prior information on the parameters distribution, i.e., p(θ|Mj)
is constant for each value of θ (non-informative prior). We

obtain the best fitting parameter set for each model Mj

considered.

B. Second Level of Bayesian Inference

In the second level of inference we select the model that best

fits the data under consideration. Maximizing in an exhaustive

way the probability of the model given the dataset is usually

computationally very intensive, so we adopt a widely-used

approximation to choose the best fitting model [15], i.e., the

Bayesian Information Criterion (BIC), that in our case can be

written as:

BIC(Mj) = ln
[

p(d(1:N)|θ⋆,Mj)p(θ⋆|Mj)
]

−
lj
2
ln(N) ,

(7)

where θ⋆ was defined in Eq. (6) and lj = size(θ⋆) is the number

of scalar parameters requested by the model Mj . The BIC

maximizes the likelihood of the data given the model and the

best fitting parameters for such model, and at the same time

it penalizes over the complexity of the model, expressed by

the number of parameters lj . In our case, under the stationary

condition in Eq. (4), and given that the prior p(θ⋆|Mj) on the

models’ parameters is non-informative, we can simplify Eq. (7)

and redefine the BIC as:

BIC(Mj) = ln

[

N
∏

i=2

p(d(i)|θ⋆,Mj)

]

−
lj
2
ln(N) . (8)

We will use such definition to rank the proposed models and

choose the best fitting one.

C. Choice of the best fitting model

We propose eight different probabilistic models to fit the heart

rate signal data that we collected in our experiments, each of

which is completely described by one or two scalar parameters

that can be calculated from the data using Eq. (6).

We have chosen the following four standard models to

represent the data d
(1:N), where each of them has a different

set of parameters θ:

• M1 = L0: a standard Laplacian model, with median µ = 0
and θ = b, the scale parameter,

• M2 = G0: a Gaussian model, with mean m = 0 and

θ = σ, the standard deviation,

• M3 = L: a standard Laplacian model, with θ = {µ, b},

the median and the scale parameter, respectively, and

• M4 = G: a Gaussian model, with θ = {m,σ}, the mean

and the standard deviation, respectively.

Since the observed distribution is significantly asymmetrical,

we have also separated the dataset in two subsets:

d<0 = {d(i) s.t. d(i) < 0} , (9)

and

d≥0 = {d(i) s.t. d(i) ≥ 0} . (10)

We propose the following models, that adopt a different distri-

bution for the two subsets. We can fit the data with:

• M5 = LL: two Laplacian models,1 with µ = 0 and θ =
{b<0, b≥0}, the two scale parameters,

• M6 = GG: two Gaussian models, with m = 0 and θ =
{σ<0, σ≥0}, the two standard deviations,

• M7 = LG: one Laplacian model for d<0 and one

Gaussian model for d≥0, with µ = m = 0 and θ = {b<0,

σ≥0}, and

• M8 = GL: one Gaussian model for d<0 and one Lapla-

cian model for d≥0, with µ = m = 0 and θ = {σ<0 ,

b≥0}.

For each model, we estimate the parameters θ, according to

Eq. (6), i.e., we find the MAP for each parameter, given that

we have non-informative priors. In particular, the parameters

that can be estimated from all the elements d(i) in the dataset

d
(1:N), are, for the Laplacian distribution, the median µ of the

points d(i), and the scalar parameter b that can be calculated

as:

b =
1

N

N
∑

i=1

|d(i) − µ| ; (11)

1The first model fits the data in d<0 with the parameter b<0, the second
model fits the data in d≥0 with the parameter b≥0; in a similar way we can
calculate the parameters for the models M6, M7, and M8.



and for the Gaussian distribution, m = 1/N
∑

d(i), and σ, the

standard distribution, calculated as:

σ =

√

√

√

√

1

N − 1

N
∑

i=1

(d(i) −m)2 . (12)

The calculation of the parameters in the case of a different dis-

tribution for the two datasets (d<0 and d≥0) is straightforward.

D. Real-time Model Update

An important feature common to all the models presented is

that they are fully described by only one or two parameters,

and it is possible to update such parameters in real time, every

time a pulse is received. We do not consider in the following

the models M3 and M4, that require also the update of the

median and of the mean, respectively.2 Specifically, we want to

approximate the parameters of the distribution at the moment

of the observation and we want to track how they evolve as a

function of time. Thus, we consider only a limited amount, Q,

of past elements, i.e., at time n we calculate the parameters of

interest using only the elements d(i), with i = n−Q+1, . . . , n.

We refer to the scalar parameter of the Laplacian distribution

calculated at time n as b(n) and to the standard deviation of the

Gaussian distribution as σ(n), while for the models considered

m = µ = 0. At time n + 1, we can update the parameter b(n)

as:

b(n+1) = b(n) +
|d(n+1)| − |d(n−Q+1)|

Q
, (13)

and the parameter σ(n) as:

σ(n+1) =

√

(σ(n))2 +
(d(n+1))2 − (d(n−Q+1))2

Q− 1
. (14)

The generalization of the real-time update to the case of a

different distribution for the two datasets (d<0 and d≥0) is

straightforward.

We observe that after the initial calculations needed to

estimate the parameters for the first time, their update requires

only simple operations whose complexity does not depend on

Q, the size of the considered dataset. This makes it possible to

implement and run these techniques in real-time in devices with

limited computation capabilities, or strong resource constraints,

such as smartphones.

V. RESULTS

In this section we exploit the mathematical framework de-

tailed in Sec. IV to find a proper model for the heart rate data

collected during our experiments. Then we will use this model

to approximate in real time the distribution of the heart rate and

to extract relevant information from this distribution. The data

has been collected during different Kundalini yoga sessions and

2The median µ can not be updated with few simple operations. We do not
deal with the real-time update of these two models, since they will not be
adopted in Sec. V-B.
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Figure 3. Empirical distribution and MAP best fitting for model M1 and for
model M2, Laplacian and Gaussian distribution with zero mean, respectively.

a Restorative yoga session, all performed at Calit2. Kundalini

yoga [16] is a traditional meditation technique that involves

controlled breathing and specific movements; it is performed

in a group guided by a professional instructor. Restorative

yoga is particularly indicated for relaxation and it is used to

trigger the parasympathetic nervous system. As an example, we

visualize the best fitting model for a single heart rate dataset

from a Kundalini yoga session in Fig. 3. In this figure we

have represented the distribution of the data collected with an

histogram, and have calculated the best parameters for model

M1 = L0 and M2 = G0. We can see from this example that

the Laplacian model seems to fit the data significantly better

than the Gaussian model, as will be confirmed by the following

experimental analysis.

A. Model Fitting

We have selected from our databases [11] a set of 34 heart

rate time series, from six sessions of Kundalini yoga and one

session of Restorative yoga. Each time series represents the

heart rate signal of one person for the duration of the yoga

session, approximately two hours. We have also analyzed two

long heart rate signals (each longer than five hours), one during

sleeping and one during an overnight flight, in order to have a

richer set of signals to analyze.

We have applied the two-levels Bayesian inference to these

time series and, for each signal analyzed, we have calculated

the BIC according to Eq. (8). In Tab. II we show the BIC

value for each dataset and for each model, averaged over all

the subjects in the dataset. From the table, we can see that

the best fitting model, for all heart rate signal sets, is the

model M5 = LL, although the difference with M1 = L0 and

M3 = L is minimal for some sets. We decided to adopt this

model because it is the model that fits best with the available

datasets, and because it gives us valuable information on the

heart rate, discriminating between the increase and decrease of



M1 = L0 M2 = G0 M3 = L M4 = G M5 = LL M6 = GG M7 = LG M8 = GL

Kundalini Yoga 1 2096 1835 2097 1834 2098 1840 1980 1958

Kundalini Yoga 2 1498 1383 1501 1382 1502 1404 1434 1472

Kundalini Yoga 3 1501 1390 1502 1390 1502 1395 1442 1454

Kundalini Yoga 4 1767 1681 1768 1680 1768 1690 1723 1736

Kundalini Yoga 5 1985 1771 1986 1771 1988 1783 1882 1888

Kundalini Yoga 6 1143 1006 1147 1006 1148 1027 1084 1091

Restorative Yoga 1301 1139 1301 1138 1302 1141 1223 1219

Long Recording 5644 5046 5645 5046 5647 5057 5319 5386

Table II
BAYESIAN INFORMATION CRITERION (BIC) AVERAGED OVER THE DIFFERENT HEART RATE SIGNALS THAT ARE COLLECTED IN EACH SESSION, AS A

FUNCTION OF THE PROBABILISTIC MODEL ADOPTED. FOR EACH SET OF SIGNALS, THE BEST FITTING MODEL IS HIGHLIGHTED (BOLD).
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Figure 4. Scalar parameters of the Laplacian distribution, M5 = LL: b<0

(in light grey) and b≥0 (in black) as a function of time during (a) rest, and (b)
a Kundalini yoga meditation session.

the heart rate frequency. The increase in the heart rate frequency

corresponds to a negative value for d(i), thus it is described by

the parameter b<0, while the decrease of the heart rate frequency

corresponds to d(i) > 0, and it is described by b≥0. The

former gives important information on the sympathetic response

of the ANS, while the latter can help us understanding how

the parasympathetic nervous system reacts. We stress the fact

that this interpretation of the physiological meaning of these

two parameters is based on the accepted hypothesis that the

increase and decrease of the heart rate are directly caused by

the sympathetic and parasympathetic branches of the ANS [1].

B. Real-time Parameters

In this section we apply the model identified in the previous

section to track the time evolution of real instantaneous heart

rate (IHR) data. Specifically, we calculate the two parameters of

the chosen model, b<0 and b≥0, for a short period of time, ∆t =
120 s, and we update the parameters each time a new pulse is

recorded using Eq. (13). In Fig. 4 we show the evolution as a

function of time for these two parameters, for the same subject

while resting and during a Kundalini yoga session, in Fig. 4-(a)

and Fig. 4-(b), respectively. During the Kundalini yoga session,

the subject was involved in activities A1, A2, and A3, which

are, in order, the Shoulder Shrug (an activity that involves a

particular movement with the shoulders and hyperventilation),

the Aad Sach Jugad Sach (an activity that involves the repetition

of a Mantra, with the entire group in unison, coordinated by

the instructor), and the Pratyhar Meditation (an activity that

involves a particular movement of both arms). In Fig. 4–(b),

we see the presence of a high peak for the parameter b≥0 (the

parameter related to the instantaneous decrease in the heart rate,

thus related to the parasympathetic influence) during activity

A1, then five peaks during the five phases of activity A2 and

finally another peak at the end of activity A3. It is important

to notice that, especially during activities A1 and A2, we are

able to detect a strong asymmetry in the increase and decrease

process. This effect is not seen when the subject is resting, in

Fig. 4-(a).

This graphical representation can be seen as a tool to monitor

the behavior of the parasympathetic (b≥0) and the sympathetic

(b<0) influences of the ANS on the heart rate, with a nonob-

trusive sensor device that can be used in everyday life and a

simple visualization tool, like a smartphone, connected to the

sensor.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a method to study the distribution

of the differences among consecutive heart pulse interarrival

times, fitting real data collected through our framework with the

best fitting distribution model. We have shown how to update in

real time the two parameters of the best fitting model, providing

a real-time distribution for the signal. Furthermore, we have

suggested a physiological interpretation of these two parame-

ters, which correspond to the influences of the sympathetic and

parasympathetic branches of the ANS.



Future works include the implementation of this model in a

smartphone to give real-time feedback to the user on the state

of his/her heart, as well as some insights on the behavior of the

ANS. Furthermore, we plan to apply such technique in a more

dynamic scenario, to study other physiological effects.
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