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Preface

ACISP2001, the Sixth Australasian Conference on Information Security and Pri-
vacy, was held in Sydney, Australia. The conference was sponsored by Informa-
tion and Networked System Security Research (INSSR), Macquarie University,
the Australian Computer Society, and the University of Western Sydney. I am
grateful to all these organizations for their support of the conference.

The aim of this conference was to draw together researchers, designers, and
users of information security systems and technologies. The conference program
addressed a range of aspects from system and network security to secure Internet
applications to cryptography and cryptanalysis. This year the program commit-
tee invited two international keynote speakers Dr. Yacov Yacobi from Microsoft
Research (USA) and Dr. Clifford Neumann from the University of Southern
California (USA). Dr. Yacobi’s talk addressed the issues of trust, privacy, and
anti-piracy in electronic commerce. Dr. Neumann’s address was concerned with
authorization policy issues and their enforcement in applications.

The conference received 91 papers from America, Asia, Australia, and Eu-
rope. The program committee accepted 38 papers and these were presented
in some 9 sessions covering system security, network security, trust and access
control, Authentication, cryptography, cryptanalysis, Digital Signatures, Elliptic
Curve Based Techniques, and Secret Sharing and Threshold Schemes. This year
the accepted papers came from a range of countries, including 7 from Australia,
8 from Korea, 7 from Japan, 3 from UK, 3 from Germany, 3 from USA, 2 from
Singapore, 2 from Canada and 1 from Belgium, Estonia, and Taiwan.

Organizing a conference such as this one is a time-consuming task and I would
like to thank all the people who worked hard to make this conference a success.
In particular, I would like to thank Program Co-chair Yi Mu for his tireless work
and the members of the program committee for putting together an excellent
program, and all the session chairs and speakers for their time and effort. Special
thanks to Yi Mu, Laura Olsen, Rajan Shankaran, and Michael Hitchens for
their help with local organization details. Finally, I would like to thank all the
authors who submitted papers and all the participants of ACISP 2001. I hope
that the professional contacts made at this conference, the presentations, and
the proceedings have offered you insights and ideas that you can apply to your
own efforts in security and privacy.

July 2001 Vijay Varadharajan
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A Few Thoughts on E-Commerce

Keynote Lecture

Yacov Yacobi

Microsoft Research, USA

Abstract. I discuss a few notions related to e-commerce, such as: trust,
privacy, and the economies of piracy and anti-piracy.

Trust

We have been using the term trust without any quantification for a long time.
We need a technical term that will capture some of its meaning and enable
quantification. The parallel may be Shannon’s quantification of Information. It
does not capture all of the meaning of information, but is useful enough. I suggest
equating the amount of trust that a system needs with the value that this system
is supposed to protect. It seems to me that we cannot get around this. We may
push trust in different directions, we may distribute it, but we cannot do without
it. For example, one important difference between symmetric and asymmetric
key cryptography, is that the latter assigns trust to potentially more trustworthy
entities.

Privacy

ID theft is the major issue; much more so than exposure of shopping patterns.
ID-theft occurs when somebody issues a credit card on my name, max it out,
and disappears, leaving me with the tedious task of salvaging my credit profile
(most of the $$ damage is eaten by the credit card company). It happens because
today when we want to prove that we know some secret, we expose it. The annual
dollar amount in damages is already in many Billions, and rapidly increasing.

Public Key cryptosystems make it possible to prove knowledge of secrets
without exposing them. Widespread deployment of PKI will solve most of this
problem.

But the privacy issue that gets the headlines is exposure of shopping patterns.
Long ago we traded this kind of privacy for credit. Credit card companies know
what, where and when we buy, in real time. They can trace us better than the
KGB in their heydays could trace citizens of the Soviet Union. We could use
cash and avoid it, but we overwhelmingly chose the convenience of credit. Later
we chose to trade even more of our location privacy, for mobility. The cell phone
companies can now trace our physical location to within a few hundred feet on
a continuous basis.

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 1–2, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 Yacov Yacobi

Now we have to choose a tradeoff between privacy and bandwidth. The band-
width bottleneck is in our heads; there is only so much that we can absorb in
a day. Some knowledge of our shopping patterns can help in targeted ads that
will alleviate this bottleneck. My bet is that if done well, and if users are free to
choose, most of them will choose to trade some privacy for this service.

On the Economies of Piracy and Anti-piracy

We consider the following players in the piracy game: Defense and offense which
is further subdivided into transmitters and receivers of piracy. We assume that
all the players are economically rational, and try to maximize their profits. With
each player we associate an inequality of the general type costs ¡ profits. We scale
the inequality per a client machine. Let v denote the average aggregate value of
protected objects on a client machine. Each offense player has a different cost of
attack per machine, which is compared to v. A system for which the inequality
holds for every player is sound. We consider active and passive protected objects
(SW and content, respectively). We consider two types of protecting systems:
open and closed systems. The former can run protected and unprotected objects.
The latter runs only protected objects. A non-protecting system is promiscuous.

Napster-like systems are covered in the sense that if the Napster offense
were economically motivated (either receivers or transmitters) then sound sys-
tems would deter them. Offenders who are not economically motivated (vandals)
would not be deterred by a sound system no matter what the delivery mechanism
is. We outline a few open problems on the way to sound anti-piracy systems.



New CBC-MAC Forgery Attacks

Karl Brincat�1 and Chris J. Mitchell2

1 Visa International EU, PO Box 253, London W8 5TE, UK,
brincatk@visa.com

2 Information Security Group, Royal Holloway, University of London, Egham, Surrey
TW20 0EX, UK,

c.mitchell@rhul.ac.uk

Abstract. This paper is concerned with a particular type of attack
against CBC-MACs, namely forgery attacks, i.e. attacks which enable an
unauthorised party to obtain a MAC on a data string. Existing forgery
attacks against CBC-MACs are briefly reviewed, together with the effec-
tiveness of various countermeasures. This motivates the main part of the
paper, where a family of new forgery attacks are described, which raise
serious questions about the effectiveness of certain countermeasures.

1 Introduction

1.1 Use of MACs

MACs, i.e. Message Authentication Codes, are a widely used method for protect-
ing the integrity and guaranteeing the origin of transmitted messages and stored
files. To use a MAC it is necessary for the sender and recipient of a message (or
the creator and verifier of a stored file) to share a secret key K, chosen from
some (large) keyspace. The data string to be protected, D say, is input to a
MAC function f , along with the secret key K, and the output is the MAC. We
write MAC = fK(D). The MAC is then sent or stored with the message.

1.2 A Model for CBC-MACs

MACs are most commonly computed using a block cipher in a scheme known
as a CBC-MAC (for Cipher Block Chaining MAC). This name derives from the
CBC ‘mode of operation’ for block ciphers, and a CBC-MAC is computed using
the same basic process. There are several variants of the CBC-MAC, although
the following general model (see [1,9]) covers most of these.

The computation of a CBC-MAC on a bit string D using a block cipher with
block length n, uses the following six steps.

1. Padding. The data string D is subjected to a padding process, involving the
addition of bits to D, the output of which (the padded string) is a bit string
of length an integer multiple of n (say qn).

� The views expressed in this paper are personal to the author and not necessarily
those of Visa International

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 3–14, 2001.
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4 Karl Brincat and Chris J. Mitchell

2. Splitting. The padded string is divided (or ‘split’) into a series of n-bit blocks,
D1, D2, . . . , Dq.

3. Initial transformation. Initial transformation I, which may be key-controlled,
is applied to D1 to give the first chaining variable H1, i.e.

H1 = I(D1).

4. Iteration. Successive chaining variables are computed as

Hi = eK(Di ⊕Hi−1)

for i := 2, 3, . . . , q, where, as throughout, K is a block cipher key, eK(X)
and dK(X) denote block cipher encryption and decryption of block X with
key K, and ⊕ denotes bit-wise exclusive-or of blocks.

5. Output transformation. The n-bit Output block G is computed as

G = g(Hq)

where g is the output transformation (which may be key-controlled).
6. Truncation. The MAC is set equal to the leftmost m bits of G.

Most CBC-MACs adhere to this model, and such MACs will be the main focus
of this paper.

1.3 Types of CBC-MAC Scheme

The latest version of the relevant international standard, namely ISO/IEC 9797-
1, [1], contains six different CBC-MAC variants. These are based on combinations
of two Initial transformations and three Output transformations.

– Initial transformation 1 is defined as:

I(D1) = eK(D1)

where K is the same key as used in the Iteration step. I.e. Initial transfor-
mation 1 is the same as the Iteration step, and is the one used in both the
original CBC-MAC, as defined in ANSI X9.9, [4], and CBC-MAC-Y (also
known as the ANSI Retail MAC), standardised in ANSI X9.19, [3].

– Initial transformation 2 is defined as:

I(D1) = eK′′(eK(D1))

where K is the same key as used in the Iteration step, and K ′′ is a block
cipher key distinct from K.

– Output transformation 1 is defined as:

g(Hq) = Hq,

i.e. Output transformation 1 is the identity transformation, and is the one
used in the original CBC-MAC, [4].
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– Output transformation 2 is defined as:

g(Hq) = eK′(Hq),

where K ′ is a block cipher key distinct from K.
– Output transformation 3 is defined as:

g(Hq) = eK(dK′(Hq)),

where K ′ is a block cipher key distinct from K. Output transformation 3 is
the one used in CBC-MAC-Y, [3].

These options are combined in the ways described in Table 1 to yield four of
the six different CBC-MAC schemes defined in ISO/IEC 9797-1, [1]. Note that
algorithms 5 and 6 do not fit the general MAC model given above; as a result
we do not consider these last two algorithms further in this paper.

Table 1. CBC-MAC schemes defined in ISO/IEC 9797-1

Algorithm
number

Input
transfor-
mation

Output
transfor-
mation

Notes

1 1 1 The ‘original’ CBC-MAC scheme.
2 1 2 K′ may be derived from K.
3 1 3 CBC-MAC-Y. The values of K and K′ shall be

chosen independently.

4 2 2 K′′ shall be derived from K′ in such a way that
K′ �= K′′.

Finally note that three Padding Methods are also defined in [1]. Padding
Method 1 simply involves adding between 0 and n−1 zeros, as necessary, to the
end of the data string. Padding Method 2 involves the addition of a single 1 bit
at the end of the data string followed by between 0 and n − 1 zeros. Padding
Method 3 involves prefixing the data string with an n-bit block encoding the bit
length of the data string, with the end of the data string padded as in Padding
Method 1.

When using one of the six MAC algorithms it is necessary to choose one of
the three padding methods, and the degree of truncation to be employed. All
three Padding Methods can be deployed with all six MAC algorithms.

In the remainder of this paper the discussions primarily apply to MAC al-
gorithms 1–4 from ISO/IEC 9797-1, used with Padding Methods 1–3. We also
use the terminology of ISO/IEC 9797-1. In fact, these algorithms cover almost
all CBC-MAC variants in common use today.
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2 Attacks on CBC-MACs

There are two main types of attack on MAC schemes.

– In a MAC forgery attack [6], an unauthorised party is able to obtain a valid
MAC on a message which has not been produced by the holders of the
secret key. Typically the attacker will need a number of valid MACs and
corresponding messages to use to obtain the forgery.

– A key recovery attack enables the attacker to obtain the secret key used
to generate one or more MACs. Note that a successful key recovery attack
enables the construction of arbitrary numbers of forgeries.

We introduce a simple way of quantifying the effectiveness of an attack. Fol-
lowing the approach used in [1], we do this by means of a four-tuple which spec-
ifies the size of the resources needed by the attacker. For each attack we specify
the tuple [a, b, c, d] where a denotes the number of off-line block cipher encipher-
ments (or decipherments), b denotes the number of known data string/MAC
pairs, c denotes the number of chosen data string/MAC pairs, and d denotes
the number of on-line MAC verifications. The reason for distinguishing between
the numbers c and d is that, in some environments, it may be easier for the at-
tacker to obtain MAC verifications (i.e. to submit a data string/MAC pair and
receive an answer indicating whether or not the MAC is valid) than to obtain
the genuine MAC value for a chosen message.

3 Simple MAC Forgeries

We start by considering three ‘simple’ types of MAC forgery. All these forgery
attacks apply regardless of the MAC algorithm in use.

– MAC guessing. The attacker selects a message and simply guesses the correct
MAC value. The probability that the guess will be correct is 2−m. Such
attacks can be avoided by making m sufficiently large.

– Verification forgery. This is a simple development of the ‘MAC guessing’
technique. The attacker chooses a message, and then works through all pos-
sible MACs, submitting the chosen message combined with each MAC value
for verification. This attack has complexity [0, 0, 0, 2m]. Thus, even if an at-
tacker only has access to a MAC verification function, selective verifiable
forgeries are possible unless m is sufficiently large.

– Trailing zeros forgery. The third attack only applies when Padding Method
1 from [1] is in use. The attack works because of the observation that, if a
padded message has final block Dq and the last ‘1’ bit appears at position i
(out of n) in Dq, then there are n+1− i (unpadded) messages which, when
padded, give the padded message. This means that, unless a message contains
a multiple of n bits and ends in a ‘1’ bit, given any message and MAC it
is possible to discover other messages with the same MAC by deleting zeros
from, or adding zeros to, the end of the message.
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The same general type of attack would apply to any scheme using a padding
method where the mapping from messages to padded messages is not injec-
tive. Fortunately, Padding Methods 2 and 3 do not suffer from this problem
— indeed, the main motivation for the design of Padding Method 2 was to
avoid this problem.

4 More Sophisticated Forgeries

We now consider further attacks which apply only to particular variants of the
CBC-MAC.

4.1 Simple Cut and Paste Attack

Suppose the MAC function in use is the ‘original’ MAC scheme, i.e. ISO/IEC
9797-1 MAC algorithm 1. Then, given two messages with valid MACs (computed
using the same secret key K), we can compute a third ‘composite’ message with
a valid MAC without knowing the key. For further details see, for example, [1]

4.2 Birthday Attack

For this attack we suppose that PaddingMethod 3 is not being used. We also sup-
pose that no truncation is employed, i.e. so that m = n. Suppose, by some means,
an attacker discovers two messages with the same MAC. That is, suppose the at-
tacker has found that the two messages with padded data strings D1, D2, . . . , Dq

and E1, E2, . . . , Er have the same MAC. Then it follows immediately that any
pair of padded messages that have the form D1, D2, . . . , Dq, X1, X2, . . . , Xt and
E1, E2, . . . , Er, X1, X2, . . . , Xt will also have the same MAC, regardless of the
choice of X1, X2, . . . , Xt.

By elementary probability theory relating to the so called ‘Birthday Paradox’
(see, for example, [9]), given a set of 2n/2 messages there is a good chance that
two of them will have the same MAC. Thus, to find such a collision requires
only approximately 2n/2 known message/MAC pairs. Armed with such a pair,
the attacker now needs only persuade the user to generate a MAC on one more
message to obtain a MAC forgery. Thus the total complexity of this attack is
[0,2n/2,1,0].

Finally note that this attack applies to all of ISO/IEC MAC algorithms 1–4,
as long as Padding Method 3 is not used. Unfortunately, Padding Method 3
does not prevent another, slightly more sophisticated, forgery attack, described
immediately below.

4.3 Van Oorschot-Preneel Attack

This attack is based on an observation of Preneel and van Oorschot, also inde-
pendently made by Kaliski and Robshaw, which is summarised as Lemma 1 in
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[9]. The attack relies on finding an ‘internal collision’ for a pair of padded mes-
sages. That is, suppose D1, D2, . . . , Dq and E1, E2, . . . , Er are two sequences of
n-bit blocks obtained as a result of applying the padding and splitting processes
to a pair of messages D and E. Suppose also that the chaining variables for the
MAC computations for D and E are Hi, (1 ≤ i ≤ q), and Ji, (1 ≤ i ≤ r),
respectively. Then an internal collision is where:

Hs = Jt

for some pair (s, t), where s ≤ q and t ≤ r.
Given knowledge of an internal collision (by some means), the attacker im-

mediately knows that the padded messages

D1, D2, . . . , Ds, F1, F2, . . . , Fu

and
E1, E2, . . . , Et, F1, F2, . . . , Fu

will have the same MAC, regardless of F1, F2, . . . , Fu. That is, given a known
internal collision, a forgery requires only one chosen MAC. Note that, if Padding
method 3 is used, then the above attack will work if and only if the values s, t
and u satisfy u = q − s = r − t.

The problem remains of finding the internal collision. If Padding Method 3
is not in use then the attack works if we set s = q and t = r and look for
MAC collisions amongst a large set of messages, i.e. the attack is the same as
the Birthday Attack (see Section 4.2). However, when Padding Method 3 is in
use, finding a ‘useful’ internal collision, i.e. one for which s < q, is a little more
difficult albeit not impossible, as we now describe.

Suppose, that the attacker obtains the MACs for a set of 2n/2 messages, all of
which agree in their final u n-bit blocks for some u > 0. As before, suppose also
that m = n. Then, there is a good chance that two of these messages will have
the same MAC. Since these two messages have their final u blocks the same,
then we know that there will be an internal collision.

Specifically, suppose we know that the MACs for the sequences of blocks
D1, D2, . . . , Dq and E1, E2, . . . , Er are the same, and suppose we also have Di =
Ei+r−q for q − u+ 1 ≤ i ≤ q. If Hi and Ji denote chaining variables (as above),
then we must have Hs = Jt where s = q − u and t = r − u.

If we regard the set of 2n/2 messages as chosen texts, then the attack has
complexity [0,0,2n/2,0], which, although large, is still more effective than the
‘simple’ MAC forgeries. However, it may be easier than this to obtain the desired
MACs, bearing in mind that many messages are highly formatted. Thus it may be
true ‘by accident’ that large numbers of messages for which a MAC is computed
all end in the same way. If this is the case then the attack complexity might more
reasonably be described as [0,2n/2,1,0], i.e. the same as the Birthday forgery
attack.

In any event it should be clear that Padding Method 3 does not protect
against forgery attacks using internal or external collisions. This point is also
made in Section III.B of [9]. Thus, to prevent such attacks, further countermea-
sures are needed. This is the subject of the remainder of this paper.



New CBC-MAC Forgery Attacks 9

5 Countermeasures

Over the past few years a number of countermeasures to various forgery attacks
have been proposed. Of course, there are certain forgery attacks which cannot
be avoided, and serve as a baseline against which other attacks can be measured.
We now review some of the proposed countermeasures.

– Truncation. Perhaps the most obvious countermeasure to the attacks de-
scribed in Sections 4.2 and 4.3, is to choose the MAC length m such that
m < n, i.e. to truncate the MAC. However, Knudsen, [5], has shown that,
even when truncation is employed, the same attacks can still be made at
the cost of a modest amount of additional effort. Moreover, if m is made
smaller, then the MAC guessing and Verification forgery attacks (described
in Section 3) become easier to mount.

– Padding Methods 2 and 3. Padding Method 2 was introduced specifically to
deal with the Trailing zeros forgery (see Section 3). Padding Method 3 was
introduced to counter certain key recovery attacks, and was also originally
believed to counter Birthday forgeries (for further details see [9]). However,
as we have seen, neither Padding Method is able, on its own, to prevent the
attack described in Section 4.3.

– Serial numbers. A further countermeasure is briefly described in [1]. The idea
is to prepend a unique serial number to data prior to computing a MAC.
That is, every time a MAC is generated, the data to be MACed is prepended
with a number which has never previously been used for this purpose (within
the lifetime of the key).
Although it is not stated explicitly in [1], it would seem that it is intended
that the serial number should be prepended to the message prior to padding.
Note also that it will be necessary to send the serial number with the message,
so that the intended recipient can use it to help recompute the MAC (as is
necessary to verify it).
It is fairly simple to see why this approach foils the attacks of Sections 4.2
and 4.3. Both attacks require the forger to obtain the MAC for a chosen data
string. However, because of the insertion of a serial number, the attacker is
now no longer in a position to choose the data string. Thus it was believed
that this countermeasure was effective against the non-trivial forgery attacks.
However, as we will show below, serial numbers do not protect against ‘short-
cut’ forgery attacks, even when combined with Padding Method 3. It is be-
lieved that this is the first time a forgery attack more efficient than the verifi-
cation attack has been demonstrated against the serial number enhancement
to CBC-MACs.

6 A New Forgery Attack

We now describe a new type of forgery attack. To simplify the presentation we
start by describing the attack as applied to MAC algorithms 1, 2 or 3 with
Padding Method 1 or 2 and no Serial Number prefix. Later we consider the
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scenario where Serial Numbers are used and lastly we consider the implications
of this attack in the case where both Padding Method 3 and Serial Numbers are
used.

6.1 The Basic Attack

We first consider the case where one of MAC algorithms 1, 2 or 3 is used together
with Padding Method 1 or 2 and where the data is not prefixed with a Serial
Number. As previously, we consider the case where there is no truncation and
the size of the chaining variable is equal to the size of the final output, this com-
mon value being denoted by n. Assume that the attacker somehow obtains the
corresponding MACs for approximately 2n/2 (padded) (r+q+1)-block messages
E′1, E

′
2, . . . , E

′
q, X, F1, F2, . . . , Fr where E′1, E

′
2, . . . , E

′
q are arbitrary n-bit blocks,

F1, F2, . . . , Fr are arbitrary but fixed n-bit blocks, and X is an n-bit block that is
different for each message. The attacker also obtains the corresponding MACs for
approximately 2n/2 padded (r+1)-block messages of the form Y, F1, F2, . . . , Fr,
with the same fixed blocks Fi, 1 ≤ i ≤ r, and a different n-bit block Y for each
message.

Using an extension to the Birthday Paradox, [7,8], given the number of MACs
obtained there is a high probability that a MAC from the set of (r+ q+1)-block
messages is equal to a MAC from the set of (r + 1)-block messages. In other
words, MAC (E1, E2, . . . , Eq, X0, F1, F2, . . . , Fr) = MAC (Y0, F1, F2, . . . , Fr) for
some particular known values of E1, . . . , Eq, X0 and Y0. Since the n-bit blocks
F1, . . . , Fr are the same for the two messages, it is an immediate consequence that
MAC ∗(E1, E2, . . . , Eq, X0) = MAC ∗(Y0), where MAC ∗(Z) denotes the compu-
tation of the MAC on the message Z without the Output Transformation. This
final relation is equivalent to

MAC ∗(E1, E2, . . . , Eq) = X0 ⊕ Y0.

As a result of this, if the attacker knows that the MAC for some (padded)
message Z, P1, P2, . . . , Pt (t ≥ 1) is equal to M , then the attacker knows that the
MAC for the message E1, E2, . . . , Eq, X0⊕Y0⊕Z, P1, P2, . . . , Pt is also equal to
M . This means that the complexity of this MAC forgery attack on a MAC algo-
rithm with an n-bit output with no truncation is approximately [0, 1, 2n/2+1, 0].
In the case of DES with no truncation, this is a forgery attack of complexity
[0, 1, 233, 0].

6.2 A Forgery Attack for the Serial Number Case

Now consider the case where Serial Numbers are used with MAC algorithm 1, 2 or
3 and Padding Method 1 or 2. Note that serial numbers are meant to be prefixed
to the messages to be MACed, that is, if P1, P2, . . . , Pt is a padded t-block
message, then the MAC is calculated on the (t+1)-block message S, P1, P2, . . . , Pt

where S is the serial number associated with the message. With this observation
we point out that the above attack described for MAC algorithms not using
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Serial Numbers works unchanged for MAC algorithms using Serial Numbers.
Only the interpretation of the first block of the various chosen texts used in the
attack is different.

Note that for the (r+ q+1)-block messages E′1, E
′
2, . . . , E

′
q, X, F1, F2, . . . , Fr

described above, the E′i’s, 1 ≤ i ≤ q were arbitrary and not necessarily fixed.
In the case of use of serial numbers, an attacker could submit (r + q)-block
messages E′1, E

′
2, . . . , E

′
q−1, X, F1, F2, . . . , Fr to be MACed. The MAC algorithm

returns the MAC for the string S′1, E′1, E′2, . . . , E′q−1, X, F1, F2, . . . , Fr where S′1
is the (unique) serial number selected by the MAC algorithm for the particular
message. For verification of the MAC, the value of S′1 has to be transmitted
with the MAC of the message — if S′1 is encrypted then this attack will not
work. Hence the attacker is assumed to know the value of S′1 for each of the 2n/2

(r+q)-block messages E′1, E′2, . . . , E′q−1, X, F1, F2, . . . , Fr. Similarly, the attacker
can submit the r-block message F1, F2, . . . , Fr 2n/2 times, each time obtaining a
(different) MAC for the string S′2, F1, F2, . . . , Fr, for a known but different serial
number S′2.

As above, there is a non-trivial probability that an (r + q)-block message of
the first type and one of the r-block submissions of the second type yield the
same MAC, that is,

MAC (S1, E1, E2, . . . , Eq−1, X0, F1, F2, . . . , Fr) = MAC (S2, F1, F2, . . . , Fr),

for some known particular values of S1, S2, E1, . . . , Eq−1 and X0. This means
that MAC ∗(S1, E1, E2, . . . , Eq−1, X0) = MAC ∗(S2) and therefore

MAC ∗(S1, E1, E2, . . . , Eq−1) = X0 ⊕ S2.

If the attacker knows that the MAC for a padded message P1, . . . , Pt (t ≥ 1)
using serial number S3 is equal to M , he also knows that the MAC for the padded
message E1, E2, . . . , Eq−1, X0 ⊕ S2 ⊕ S3, P1, P2, . . . , Pt using serial number S1 is
also equal to M . The complexity of this MAC forgery attack is the same as
before, i.e. [0, 1, 2n/2+1, 0]. The constructed block X0⊕S2⊕S3 is the reason why
the attack does not work if the serial numbers are not in the clear, since in this
case the attacker does not know S2 and S3.

6.3 Combining Serial Numbers with Padding Method 3

The attack can be generalised to cover the case where Padding Method 3 and
Serial Numbers are used in combination; there are two ways to combine these
two features, and we describe attacks for both combinations.

Firstly, suppose they are combined as implied in [1], i.e. the serial number is
prefixed before the message is padded, i.e. the length of the unpadded message
is prefixed to the padded and serial numbered message. The attacker submits
the r-block message F1, F2, . . . , Fr 2n/2 times, each time obtaining a (different)
MAC for the string L2, S

′
2, F1, F2, . . . , Fr, for a varying serial number S′2. Note

that L2 is the ‘length-encoding block’ for the message (it will be the same every
time), as inserted by Padding Method 3.
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The attacker also sends 2n/2 messages E′1, E
′
2, . . . , E

′
q−2, L2, X, F1, F2, . . . , Fr

to be MACed, where L2 is as above and X is different for each message. MACs
are computed for strings L1, S

′
1, E

′
1, E

′
2, . . . , E

′
q−2, L2, X, F1, F2, . . . , Fr where S′1

is the varying serial number, and L1 is the length encoding block. As before we
suppose that the attacker knows the values of S′1 and S′2 for each of the messages.

There is a good chance that an r-block message of the first type and an
r + q-block message of the second type yield the same MAC, that is,

MAC (L1, S1, E1, E2, . . . , Eq−2, L2, X0, F1, F2, . . . , Fr) = MAC (L2, S2, F1, F2, . . . , Fr),

for some particular values of S1, S2, E1, E2, . . . , Eq−2 and X0. This means that
MAC ∗(L1, S1, E1, E2, . . . , Eq−2, L2, X0) = MAC ∗(L2, S2) and therefore

MAC ∗(L1, S1, E1, E2, . . . , Eq−2, L2) = eK(L2)⊕X0 ⊕ S2.

So if an attacker knows the MAC for padded message (L2, S3, P1, P2, . . . , Pr)
is equal to M , (where S3 is any serial number), he knows that the MAC for the
padded message L1, S1, E1, E2, . . . , Eq−2, L2, X0⊕ S2 ⊕ S3, P1, P2, . . . , Pr is also
equal to M . The complexity of this MAC forgery attack is the same as before,
i.e. [0, 1, 2n/2+1, 0].

Secondly we consider the alternative way of combining serial numbers with
Padding Method 3, i.e. where we first pad the message, then prefix the length of
the unpadded message, and finally prefix the resulting string with the selected
serial number. That is, for a (padded) message P1, P2, . . . , Pt, the MAC algorithm
is applied to the string S, L, P1, P2, . . . , Pt, where S is the serial number block
and L is the length block of the unpadded message. We describe yet another
attack variant for this case.

Briefly, the attacker submits 2n/2 (r+ q)-block padded messages of the form
E1, E2, . . . , Eq−2, X, L2, F1, F2, . . . , Fr where E1, E2, . . . , Eq−2 are arbitrary n-
bit blocks, F1, F2, . . . , Fr are arbitrary but fixed n-bit blocks, L2 is an n-bit
block representing the length of the unpadded string F1, F2, . . . , Fr (as required
by Padding Method 3), and X is an n-bit block that is different for each message.
The attacker obtains the corresponding MACs and the particular serial number
S′1 used with each message. The attacker also submits the r-block padded string
F1, F2, . . . , Fr 2n/2 times for MACing, obtaining the corresponding MACs and
the different serial number S′2 used for each MAC obtained. There is a non-trivial
probability that a MAC for one of the (r+ q)-block messages is equal to a MAC
for the r-block message for some serial numbers S1 and S2, that is,

MAC (S1, L1, E1, . . . , Eq−2, X0, L2, F1, . . . , Fr) = MAC (S2, L2, F1, . . . , Fr).

This means that MAC ∗(S1, L1, E1, E2, . . . , Eq−2) = X0 ⊕ S2.
Suppose also that the attacker knows that the MAC for an r-block mes-

sage P1, P2, . . . , Pr, with unpadded length equal to L2 and serial number S3,
is equal to M . Then he knows that the MAC for the (r + q)-block message
E1, E2, . . . , Eq−2, X0 ⊕ S2 ⊕ S3, L2, P1, P2, . . . , Pr of unpadded length L1 and
with serial number S1 is also equal to M , or
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MAC (S1, L1, E1, E2, . . . , Eq−2, X0 ⊕ S2 ⊕ S3, L2, P1, P2, . . . , Pr) =
MAC (S3, L2, P1, P2, . . . , Pr).

Note that the complexity of the attack is as before, i.e. it is [0, 1, 2n/2+1, 0].

6.4 Implications

The published version of ISO/IEC 9797-1, [1], indicates that forgery attacks can
be avoided by using a combination of Padding Method 3 and Serial Numbers.
However, the attacks described in Section 6.3 cast serious doubt on the value of
serial numbers as a remedy to forgery attacks even when combined with Padding
Method 3.

7 Summary and Conclusions

In this paper we have surveyed some forgery attacks to which MAC algorithms
may be subjected, including new attacks which can defeat some proposed coun-
termeasures not successfully attacked before. In particular we have shown that
combining Padding Method 3 and Serial Numbers is not as effective as was
previously believed in defeating ‘shortcut’ forgery attacks.

Of course, in practice, other security features may prevent some or all of the
described attacks from being a real threat. For example, in certain banking envi-
ronments the security deployed in the access to a MAC algorithm is such that it
is extremely difficult for an unauthorised user to obtain the MAC corresponding
to even one chosen text, let alone several. Also, if the MAC scheme is used in
such a way that no key is used to compute more than a small number of MACs
then certain attacks become impossible.

The use of Padding Method 1 is not automatically excluded because of the
attack described in section 3. It is possible that in certain environments messages
are highly formatted to the extent that the length of a message to be MACed
is fixed or known from the context, and therefore a trailing zeroes forgery is not
applicable.

In general it is important for users to carefully assess the significance of the
various MAC attacks in the context of the environment in which the resulting
MAC algorithm is to be used. There may be no benefit from using certain so-
phisticated MAC systems in an environment which has other security features
in operation which make attacks against simpler MAC schemes impossible to
carry out. On the other hand, care should be taken not to assume that a MAC
which is secure in a certain environment is automatically secure in others. For
example, a 32-bit MAC which may be safely used in a banking environment
without any serious threat from a verification forgery, is possibly not safe if used
on the Internet or any other environment where large numbers of verifications
may be obtained in a short time.

The introduction and use of the AES algorithm [2], with a minimum 128-
bit cipher block length, as the encryption function to be used in block-cipher
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based MACs means that all the attacks described here would become practically
infeasible. However, this may not be the case if heavy truncation is used since,
in this case, some of the attacks described in section 3 may still be possible.

In this paper we concentrated on block-cipher based MAC algorithms as
described in [1]. It is possible that generalisations of the attacks described here
may be also applicable to other (dedicated, hash function-based or proprietary)
MAC algorithms which are based on iterated functions. Note that all practical
MAC algorithms are iterated in construction.
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Abstract. At ACISP 2000, Yoo et al proposed a fast public key cryp-
tosystem using matrices over a ring. The authors claim that the security
of their system is based on the RSA problem. In this paper we present a
heuristic attack that enables us to recover the private key from the pub-
lic key. In particular, we show that breaking the system can be reduced
to finding a short vector in a lattice which can be achieved using the
L3-lattice reduction algorithm.
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1 Introduction

Most practical public key schemes are very slow compared to symmetric key
schemes. This motivates extensive research for faster public key schemes. Several
lattice-based systems such as [1], [2] are among these schemes. Both of these
schemes, which are based on the closest vector problem and the shortest vector
problem [6] [7] are broken using the L3 lattice reduction algorithm. In fact, the
L3 algorithm was successfully used to attack many similar public key systems
[5]. Yoo et al [11] proposed a fast public key cryptosystem similar to the system
proposed in [2]. However, they claim that since the security of their scheme is
based on the RSA problem and not the lattice problems, their scheme is secure
against these lattice basis reduction attacks. In this paper we show that breaking
this system is equivalent to the problem of finding a short vector in a lattice
which can be solved using the L3-lattice reduction algorithm [4]. In particular,
our heuristic attack enables us to recover the private key from the public key
and hence represent a total break for the proposed system.
The paper is organized as follows. In section 2 we give a description for the
system proposed in [11]. In section 3, we describe our attack. Finally we give
a numerical example using the same parameters of the encryption-decryption
example in [11].
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2 Description of the Proposed Scheme

In this section we review the proposed public key scheme. Further details and
justification for the bounds on the parameters can be found in [11].
Let n be the dimension of a lattice. The basic steps to choose the parameters
are as follows:
1 Choose positive integers m̂, ê, dii, 1 ≤ i ≤ n, primes p, q and a matrix
D ∈Matn(Z) with the following conditions:
1.1 N = pq.
1.2 m̂, ê : random integers such that m̂ ≈ q0.4, ê ≈ q0.3, where m̂ and ê are
upper bounds of messages and error vectors respectively.
1.3 D : diagonal matrix such that m̂ < |dii| < q0.5, where dii, 1 ≤ i ≤ n are
diagonal entries of D.
2 Choose an invertible matrix T = (tij)1≤i,j≤n ∈Matn(Z) such that

∑n
j=1 tij <

q0.2.
3 Form the matrices R = DT and B = BqUL mod N where Bq = R−1 mod q,
L (respectively U) are uni-modular lower (respectively upper) triangular matrix
whose all entries except the diagonal entries are multiples of q.

B, ê, m̂ and N are public information. R, q and T are kept secret.
Encryption: Let M = (m1, · · · ,mn)t, 0 ≤ mi < m̂ be a message vector and

E = (e1, · · · en)t, 0 ≤ ei < ê be an arbitrary error vector. Then the ciphertext is

C = (BM + E) mod N.

Decryption: At first compute X = (x1, · · · , xn)t:

Cq = C mod q,

X = RCq mod q.

Then mi = xi(mod dii)1≤i≤n.

3 Attacking the Scheme

In this section we will present a heuristic attack that enables us to recover the
private key from the public key. In particular, this attack enables us to factor N
using the matrix B only. As mentioned in [11], once q is revealed, one can find
Bq and D and the system is totally broken. Recall that

B−1mod q = R.

The following lemma follows by noting that for N = pq and for any integer a we
have

a mod q = (a mod N) mod q.

Let V = B−1mod N . Then we have
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Lemma 1.

V mod q = (B−1 mod N) mod q = (B−1 mod q) = R.

Let rmax denote max{i,j} |rij |. Then from Section 3 in [11] we have

rmax <
q − m̂

nê
≈ q − q0.4

nq0.3
< q0.7.

Thus every element of the matrix V can be represented as

vij = aijq + rij ,

where 0 ≤ aij < p, rij < rmax, 1 ≤ i, j ≤ n.
The basic steps in the attack are as follows:

1. Calculate the matrix V = B−1 mod N .
2. Pick an m,m ≤ n2, elements from the set {vij}{1≤i,j≤n}. Let S = {si}{1≤i≤m}
denote the set formed from the elements above.
3. Use the L3 algorithm to find a reduced basis B for the (m + 1)-dimensional
lattice L which is generated by the rows of the matrix




N 0 0 · · · 0 0
0 N 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · N 0
−s1 −s2 −s3 · · · −sm 1



.

4. For each row l = (l1, l2, · · · , lm, lm+1) in B such that lm+1 	= N do the follow-
ing:
- Evaluate gcd(N, lm+1).
- If gcd(N, lm+1) 	= 1, return p = gcd(N, lm+1).
5. Return (Failure).

The following lemma is used to justify the success of the attack.

Lemma 2. The vector

x = ((a1N−ps1), (a2N−ps2), · · · , (amN−psm), p) = (−pδ1,−pδ2, · · · ,−pδm, p)

is in L and has length less than approximately (
√
m + 1 pq0.7).

Proof. The first part follows by noting that x is a linear combination of the rows
of L. The second part follows by noting that each of the elements si can be
represented as si = aiq + δi where δi < q0.7.

Note that our lattice has dimension (m+1) and volume Nm. From the lemma
above, x is short compared to the (m + 1)th root of the volume of the lattice.
Hence, there is a good possibility that the L3 algorithm will produce a reduced
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basis which include the vector x. If no solution exists then we can try another
subset of elements {vij}. Our experimental results show that the L3 algorithm
finds p with high probability.

Let {b1, b2, · · · , bm+1} denote the basis of the lattice L above. Let C ∈ R be
such that |bi|2 ≤ C for i = 1, 2, · · ·m + 1 and |bi| denote the length of the basis
bi. From [4], the number of arithmetic operations needed by the L3 algorithm is
O((m + 1)4logC), on integers of size O((m + 1)logC).

Remark 1. The lattice used in step 3 is the standard lattice used in the Simul-
taneous Diophantine Approximation (SDA) [4]. I.e., our problem can also be
formulated in terms of SDA. It was noted by Nguyen and Shparlinski [9] that
this formulation leads to unconditional provable attack provided that p and q
are much unbalanced (q > p10/3) because we would have an unusually good SDA
(See Fact 3.107 in [4]). In fact, in this case, we can easily solve the problem using
the continuous fraction approximation [3]. It was also noted in [9] that while the
attack in [8] can be applied to this cryptosystem, it is not an improvement of
our attack and our attack is much simpler in this case.

4 Numerical Example

In order to illustrate the steps in our cryptanalysis, we will use the same nu-
merical example given in [11]. Let q = 10570841 and p = 10570837. Then
N = 111742637163917. Let

D =




612 0 0 0
0 681 0 0
0 0 697 0
0 0 0 601


 ,

and

T =




5 2 3 7
4 3 1 2
4 7 1 3
2 3 4 9


 .

Then

R =




3060 1224 1836 4284
2724 2043 681 1362
2788 4879 697 2091
1202 1803 2404 5409


 .

Choose

U =




1 −10570841 10570841 −10570841
0 1 10570841 −10570841
0 0 1 10570841
0 0 0 1


 ,
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L =




1 0 0 0
10570841 1 0 0
10570841 −10570841 1 0
−10570841 10570841 10570841 1


 .

Then we have

B =




85902782524529 7783949494261 108645955098741 62082137341722
37207086894442 97811933363455 31492859166426 47829503460547
43940929239657 99629428908384 64015171957907 95852228892018
100737337377789 6871742549039 58298211039553 15913440226477


 .

Since B and N are public information, we can calculate

V = B−1mod N =



72960716256453 4761772750607 47819503708674 64505037116731
18354764339802 34264334590284 25746128923461 46666277809305
28770435964827 105706232411633 39730135919762 9119580812042
89276407646137 79398453561765 94718657144415 99534468035995




Then we arbitrarily select the set

S = {v11, v12, v13, v14} =

{72960716256453, 4761772750607, 47819503708674, 64505037116731}.
Using the L3 algorithm (See algorithm 3.101 in [4], [10] ), the basis to be reduced
is:



111742637163917 0 0 0 0
0 111742637163917 0 0 0
0 0 111742637163917 0 0
0 0 0 111742637163917 0

−72960716256453 −4761772750607 −47819503708674−64505037116731 1



.

The L3-reduced basis is:



−32346761220 −12938704488 −19408056732 −45285465708 10570837
−87078711029 39709857984 7883945327 11690435622 4385339758
−12420733475 −4968293390 −7452440085 −17389026865 182590067501
−102740951106−253999460687 146924464771 79909317394 26579009212

1917450399 −58848334744 −420915726704 231779925047 78377734153



.

Hence we get p = 10570837. Once p is revealed we calculate q = N/p. Then we
get R = V −1 mod q. After this we calculate dii = gcd(ri1, ri2, · · · rin), 1 ≤ i ≤ n.

It is worth noting that it only took us 91, 520 and 4802 seconds to break
the algorithm for the size of N = 256, 512 and 1024 bits respectively. We set
m = 10 through step 2 of the attack. We performed our experiments with Maple
V Release 5.1 running on a SUN ULTRA-80 workstation.
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Abstract. We propose a new attack on the self-shrinking generator [8].
The attack is based on a backtracking algorithm and will reconstruct
the key from a short sequence of known keystream bits. We give both
mathematical and empirical evidence for the effectiveness of this attack.
The algorithm takes at most O(20.694L) steps, where L is the key length.
Thus, our attack is more efficient than previously known key reconstruc-
tion algorithms against the self-shrinking generator that operate on short
keystream sequences.

1 Introduction

The self-shrinking generator [8] is a keystream generator for the use as a stream
cipher. It is based on the shrinking principle [2] and has remarkably low hardware
requirements. So far, it has shown considerable resistance against cryptanalysis.

In cryptanalysis of a keystream generator, the attacker is assumed to know
a segment of the keystream. The system is considered broken if the attacker can
predict the subsequent bits of the keystream with success probability higher than
pure guessing. One way to achieve this goal is to reconstruct the initial state of
the generator, which allows prediction of the remaining keystream sequence with
probability 1.

In this paper, we propose a new attack against the self-shrinking generator. It
reconstructs the initial state of the generator from a short keystream sequence,
requiring O(20.694L) computational steps. The fastest attack previously known
that operates on a short keystream sequence [8] requires O(20.75L) steps. The
only attack that has the potential to achieve a better running time [9] needs a
much longer keystream sequence.

The paper is organised as follows: In section 2, we give an introduction to
both the shrinking and the self-shrinking generator, the former providing the
working principle for the latter. Section 3 surveys some of the previous work on
cryptanalysis of the self-shrinking generator.

Sections 4-6 describe our attack and its properties. After giving a description
of the algorithm in section 4, we prove the running time to be upper bounded
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�� Supported by DFG grant Kr 1521/3-1

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 21–35, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



22 Erik Zenner, Matthias Krause, and Stefan Lucks

by O(20.694L) steps in section 5. Section 6 provides some supplementary experi-
mental results.

We conclude in section 7 by giving some design recommendations that help
in strengthening a self-shrinking generator against our attack.

2 Description of the Cipher

2.1 The Shrinking Generator

In [2, 6], Coppersmith, Krawczyk and Mansour introduced a new pseudorandom
keystream generator called the shrinking generator. It consists of two linear
feedback shift registers (LFSR) A and S, 1 generating the m-sequences (ai)i≥0

(denoted as A-sequence) and (si)i≥0 (denoted as S-sequence), respectively. The
keystream sequence (zj)j≥0 is constructed from these two sequences according
to the following selection rule: For every clock i, consider the selection bit si. If
si = 1, output ai. Otherwise, discard both si and ai.

This way, a nonlinear keystream is generated. Even a cryptanalyst who knows
part of the keystream sequence can not tell easily which zj corresponds to which
ai, since the length of the gaps (i.e., the number of ai that have been discarded)
is unknown.

In [2], the shrinking generator is shown to have good algebraic and statistical
properties. For a generalisation of some of these results, refer to [10]. Also in [2],
a number of algebraic attacks that reconstruct the initial state of A and S are
given. Note that all of them require exponential running time in the length |S|
of LFSR S.

A probabilistic correlation attack against the shrinking generator is discussed
in [4, 11]. The authors give both mathematical and empirical treatment of the
necessary computation. The resulting attack reconstructs the initial state of A,
requiring an exponential running time in the length |A| of LFSR A. Note that
in order to reconstruct the initial state of S, another search is required.

As a consequence, a shrinking generator with |A| ≈ |S| still remains to be
broken by an algorithm that is significantly more effective than the one presented
in [2] (for a description, see section 4.1).

2.2 The Self-Shrinking Generator

The self-shrinking generator is a modified version of the shrinking generator
and was first presented by Meier and Staffelbach in [8].

The self-shrinking generator requires only one LFSR A, whose length will
be denoted by L. The LFSR generates an m-sequence (ai)i≥0 in the usual way.
The selection rule is the same as for the shrinking generator, using the even
bits a0, a2, . . . as S-Bits and the odd bits a1, a3, . . . as A-Bits in the above sense.
1 The shrinking principle can be applied to any two binary symmetric sources; it is not

restricted to LFSR. All of the algebraic results on the shrinking generator, however,
are based on the assumption that LFSR are used as building blocks.
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Fig. 1. The Shrinking Generators

Thus, the self-shrinking rule requires a tuple (a2i, a2i+1) as input and outputs
a2i+1 iff a2i = 1.

The close relationship between shrinking and self-shrinking generator is shown
in figure 1. In [8], an algorithm is given that transforms an L-bit self-shrinking
generator into a 2L-bit shrinking generator. It is also shown that a shrinking gen-
erator with register lengths |A| and |S| has an equivalent self-shrinking generator
of length L = 2 · (|A| + |S|). Notwithstanding this similarity, the self-shrinking
generator has shown even more resistance to cryptanalysis than the shrinking
generator. The next section gives a short description of the most efficient key
reconstruction attacks that have been proposed in recent years.

3 Previous Work on Cryptanalysis

First, note that the attacks that have been proposed against the shrinking gener-
ator can not be transferred to its self-shrinking counterpart. The shrinking gen-
erator is best broken by attacking either LFSR A or S, thus effectively halving
the key length. The self-shrinking generator, however, has molded both registers
into an inseparable unit, namely a single LFSR. For this reason, “separation
attacks” can not be employed without major modifications.

3.1 Period and Linear Complexity

The period Π of a keystream sequence generated by a self-shrinking generator
was proven to be 2�L/2� ≤ Π ≤ 2L−1 in [8]. Experimental data seems to indicate
that the period always takes the maximum possible value for L > 3.

It was also shown that the linear complexity C is always greater than Π/2.
On the other hand, C was proven in [1] to be at most 2L−1−(L−2). If Π = 2L−1,
we have C ∈ Θ(2L−1).

As a consequence, a LFSR with length equal to C can be constructed from
about 2L keystream bits in O(22L−2) computational steps, using the Berlekamp-
Massey algorithm [7]. For realistic generator sizes of L > 100, this attack is thus
computationally unfeasible.
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3.2 Attacks Using Short Keystream Sequences

Even if the feedback logic of the LFSR is not known, there is a simple way
of reducing the key space [8]. Consider the first two bits (a0, a1) of the LFSR
(unknown) and the first bit z0 of the keystream (known). Then there are only
three out of four possible combinations (a0, a1) that are consistent with the
keystream, since (a0, a1) = (1, z̄0) is an immediate contradiction. The same rule
can be applied for the next bit pair (a2, a3), and so on. Consequently, only

3L/2 = 2(log2(3)/2)·L = 20.79L

possible initial values for the LFSR A consistent with the keystream.
The running time that is needed to search through the reduced key space can

be further reduced on average by considering the likelihood of the keys. Note
that the following holds:

Pr[(a0, a1) = (0, 0)|z0] = 1/4
Pr[(a0, a1) = (0, 1)|z0] = 1/4
Pr[(a0, a1) = (1, z0)|z0] = 1/2.

Thus, the entropy of the bit pair is

H = −(1/4) log(1/4)− (1/4) log(1/4)− (1/2) log(1/2) = 3/2.

The total entropy of an initial state consisting of L/2 such pairs is thus 20.75L.
At the same time, this is the effort for searching the key space if the crypt-
analyst starts with the most probable keys. Surprisingly, this is still the most
efficient reconstruction algorithm using short keystream sequences that has been
published.

3.3 Attack Using Long Keystream Sequences

In [9], Mihaljević presented a faster attack that needs, however, a longer part of
keystream sequence. Let the length of this known part be denoted by N . Then
the attacker assumes that an l-bit section of the keystream has been generated
by the current inner state of the LFSR. Consequently, l out of the L/2 even bits
of A must be equal to 1. The attacker guesses these bits and checks whether or
not this guess can be correct, iterating over all l-bit sections of the keystream. It
is shown that cryptanalysis is successful with high probability after 2L−l steps.

Since this procedure only makes sense for L/4 ≤ l ≤ L/2, the running time
can vary from 20.5L in the very best case to 20.75L under more unfavourable
circumstances. The efficiency of the attack depends mainly on the number of
keystream bits that are available, since the value l must be chosen such that the
following inequality holds:

N > l · 2L/2 ·
(
L/2
l

)−1
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value l: 0.25L 0.306 0.50L

Time: 20.75L 20.694L 20.5L

Bits :
L = 120 28.19 210.17 265.91

L = 160 28.81 211.37 286.32

L = 200 29.30 213.07 2106.64

L = 240 29.69 214.03 2126.91

L = 280 210.02 214.94 2147.13

L = 320 210.31 215.81 2167.32

Table 1. Number N of keystream bits required for Mihaljević attack

In order to get a feeling for the number of bits required for this attack, table 1
gives some examples of required bitstream lengths for different register sizes L.
The number of bits is given in logarithmic form in order to enhance readability.
We concentrate on three cases:

– In order to beat the best key reconstruction algorithm described above, we
need l = 0.25L, yielding a running time of 20.75L steps.

– Improving the running time to 20.694L (which is the performance of the
algorithm to be presented in section 4) requires l = 0.306L.

– In order to achieve the best possible running time of 20.5L steps, we need
l = 0.5L. Note that for realistic register lengths, the sheer amount of required
data (namely, N > L

2 · 2L/2) should make such an attack a mere theoretical
possibility.

4 The Backtracking Algorithm

The goal of our cryptanalysis is the reconstruction of an inner state of the genera-
tor that is consistent with the keystream. We assume thus that a short keystream
sequence of length ≈ L bits is known to the attacker.

We also assume that the feedback polynomial of the generator is known. Note
that none of the attacks given in section 3.2 makes use of the feedback logic. It
can be expected that the use of additional information should lead to a more
efficient attack.

4.1 Basic Idea: Attacking the Shrinking Generator

First, consider cryptanalysis of the shrinking generator. If the feedback polyno-
mials are known, an obvious way of reconstructing the inner states is as follows.

1. Guess the inner state of the control register S. From this, we can determine
as many bits of the S-sequence as required.

2. Knowing the S-Sequence and part of the keystream sequence, we can recon-
struct single bits of the A-Sequence.
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3. Each known bit of the A-sequence gives a linear equation. If we can find |A|
linear independent equations, we can solve the system and thus reconstruct
the inner state of register A.

4. We run the shrinking generator, using the reconstructed inner states for
A and S. If the keystream sequence thus generated matches the known
keystream sequence in the first |A| + |S| + ε positions (where ε is a secu-
rity margin), we have found with high probability the correct inner state.

The running time of this attack (that was also presented in [2]) is obviously
upper bounded by O(|A|3 · 2|S|), since there are at most 2|S| − 1 inner states of
register S and the solving of a system of |A| linear equations takes at most |A|3
steps.

4.2 Applying the Idea to the Self-Shrinking Generator

The principle of guessing only the S-Bits and deriving the A-Bits by solving
a system of linear equations can be applied to the self-shrinking generator as
well. It is, however, not as straightforward as with the shrinking generator, since
guessing all S-Bits in the initial state (i.e., all even bits) will not enable the
cryptanalyst to compute the rest of the S-sequence (unless the generator has a
non-primitive characteristic polynomial). Thus, we will guess the even bits one
at a time, using a backtracking approach similar to the procedure proposed by
Golić in [3] for cryptanalysis of the A5/1 stream cipher.

Before we describe the details of the attack, we give the following property
of the key (i.e. the initial state of the LFSR)2:

Proposition 1. For each key K = (a0, . . . , aL−1) with a0 = 0, there exists an
equivalent key K ′ = (a′0, . . . , a

′
L−1) with a′0 = 1.

Proof. Consider the sequence (ai)i≥0 generated by the inner state K. Suppose
the first ’1’ on an even position appears in position 2k. Then clock the register
by 2k steps, deriving the new inner state K ′ = (a2k, . . . , a2k+L−1). Obviously,
both inner states yield the same keystream sequence, since in transforming K
to K ′, no output is generated. ��

It is thus safe to assume that a0 = 1 and a1 = z0. This way, we will recon-
struct a key that is not necessarily equal to the original key, but it is equivalent
in a sense that it will create the same keystream sequence.

From now on, we will have to guess the even bits of the sequence (ai)i≥0.
This way, we obtain two different types of equations as follows:

– Every guess can be represented by a linear equation a2i = bi. These equations
will be referred to as being of type 1.

– If a2i = 1, we obtain a second equation of the type a2i+1 = zj , where
j =

∑i
c=0 a2c. These equations will be denoted as being of type 2.

This approach will be implemented using a tree of guesses as shown in figure 2.
2 The same property also holds for the shrinking generator. In this context, it was

discussed in [11].
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Fig. 2. The Tree of Guesses

As long as i ≤ 	L/2
 − 1, the development of the tree is straightforward.
We get exactly two new equations whenever we follow a ’1’ branch and exactly
one new equation when following a ’0’ branch. All of these equations are lin-
early independent, since no variable ak appears more than once. Thus, we get a
complete binary tree with height 	L/2
 − 1.

After that point, however, the tree becomes irregular, since the indices of
the new equations become larger than L − 1. Thus, the feedback recurrence
must be used to convert the simple equations into a representation using only
a0, . . . , aL−1. Depending on the equations that are already known, there is an
increasing probability that the new equations are linearly dependent of the ear-
lier ones. That means they are either useless (in case they are consistent with
the existing equation system) or lead to a contradiction. In the latter case, we
have chosen a path in the tree that is not consistent with the known keystream
sequence. We can thus ignore the current branch and start backtracking.

If we find a branch that ultimately gives us L linearly independent equations,
we can solve the equation system and derive a key candidate. This candidate is
evaluated by running the self-shrinking generator with this initial value, generat-
ing a candidate keystream of length L+ε (where ε is a small number of additional
bits). We compare the candidate keystream with the known keystream segment.
If they match, the key candidate is equivalent to the original key with high
probability.

5 Upper Bounding the Running Time

In this section, we establish an asymptotical upper bound on the running time of
our algorithm. For this purpose, we first give an upper bound CL for the number
of leaves in the tree of guesses (sections 5.1-5.3). Then, in section 5.4 we derive
an upper bound for the number NL of nodes in the tree and conclude that the
total running time of the algorithm can be upper bounded by O(L4 · 20.694L).
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5.1 Well-Formed vs. Malformed Trees

Let T denote a tree of guesses such that � linearly independent equations are
still missing in the root to allow the solving of the equation system. Note that
for the search tree given in section 4, we have � = L− 2.

In order to formally prove the maximum number C of leaves in T, we label
the nodes as follows: Each node is labelled by the number of linearly independent
equations still needed in order to solve the equation system. The root is thus
labelled by �. For technical reasons, we allow a leaf of the tree to take both the
labels 0 and −1, both meaning that the system is completely specified.

Assumption 1 For the following average case analysis, we assume that an
equation that is linearly dependent of its predecessors will lead to a contradiction
with probability 1/2.

This assumption is reasonable, since the bits a2i and a2i+1 are generated by
an m-LFSR, meaning that a variable takes values 0 and 1 with (almost) equal
probability.

Now consider an arbitrary node V of depth i− 1, i ≥ 1, and its two children,
V0 and V1 (reached by guessing a2i = 0 or a2i = 1, resp.) Let V be labelled
by j. The labelling of the child nodes depends on whether a2i and/or a2i+1 are
linearly dependent of the previous equations or not:

A) Both are independent. In this case, no contradiction occurs. The left child is
labelled j − 2 and the right child is labelled j − 1.

j

Prob = 1

j-2 j-1

B) a2i is independent, a2i+1 is not. Both children are labelled j − 1. However,
a contradiction occurs in V1 with probability of 1/2.

j j

Prob = 1/2 Prob = 1/2

j-1 j-1 j-1

C) a2i is dependent, a2i+1 is not. The left child is labelled j− 1, while the right
child is labelled j. However, a contradiction occurs either in V1 or in V0, with
equal probability.

j j

j

Prob = 1/2 Prob = 1/2

j-1
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D) Both are dependent. In this case, both child nodes have the same label as the
parent node. Due to the linear dependency of a2i there occurs a contradiction
in either V1 or V0, with equal probability. In addition, there is an additional
probability of 1/2 that a2i+1 leads to a contradiction in V1.

j j

j

j

j

Prob = 1/4 Prob = 1/2 Prob = 1/4

Definition 1. A well-formed tree T ∗ is a binary tree where only branchings
of type A occur, i.e., for every node that is not a leaf, the following rule holds:
If the label of the node is j, then the label of its left child is j − 2 and the label
of its right child is j − 1.
A malformed tree is an arbitrary tree of guesses that contains at least one
branching of a type B, C or D.

Essentially, the notion of a well-formed tree describes the tree of guesses un-
der the assumption that all linear equations (of both type 1 and 2) are linearly
independent. Note that such a tree is highly unlikely for large �. Nonetheless,
the well-formed tree plays an important role in establishing the overall number
of leaves for the tree of guesses. We proceed now to prove that on average, a
malformed tree has at most the same number of leaves as a well-formed tree.

Theorem 1. Let C∗ denote the number of leaves of a well-formed tree T ∗ . Let
C denote the maximum number of leaves in a tree T that may or may not be
malformed. Then in the average case, C ≤ C∗ holds.

Proof. The proof is by induction. Obviously, the inequality holds for C−1 and
C0, since trees T−1 and T0 consist only of a root without a child. Thus, C−1 =
C∗−1 = 1 and C0 = C∗0 = 1.
Now consider C, � ≥ 1. First note that since the theorem holds for C−1 and
C−2, it follows that

C−1 + C−2 ≤ C∗−1 + C∗−2 = C∗ . (1)

Also note that even in the worst possible branching case, we have

C ≤ 2 · C−1. (2)

for all �. Using these two facts, we can prove an upper bound for C by distin-
guishing the following cases (identical to the ones given above):

A) Let the tree TA
 be composed of a subtree with at most C−2 leaves and a

subtree with at most C−1 leaves. It follows for the maximum number CA


of such a tree that
CA

 ≤ C−2 + C−1 ≤ C∗ .
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B) The tree TB
 is composed of either one or two subtrees, having at most C−1

leaves each. Consequently, CB
 ≤ 1/2 · C−1 + C−1. Using (2), we have

CB
 ≤ C−2 + C−1 ≤ C∗ .

C) The tree TC
 is composed of only one subtree with at most C−1 or C leaves,

resp. (with equal probability). We have CC
 ≤ 1/2 · (C−1 + C), and using

(2), derive

CC
 ≤

1
2

(2C−2 + 2C−1) = C−2 + C−1 ≤ C∗ .

D) The tree TD
 has one of the forms given in case D. Then, for the average

number CD
 of leaves in this tree, we have CD

 ≤ 3
4 ·C. Using (2) repeatedly,

we get

CD
 ≤

3
2
· C−1 = C−1 +

1
2
C−1 ≤ C−1 + C−2 ≤ C∗ .

Since C = max(CA
 , C

B
 , C

C
 , C

D
 ), we have C ≤ C∗ . ��

5.2 Size of a Well-Formed Tree

We have shown that the number C of leaves in an arbitrary tree of guesses is
on average not bigger than the number C∗ of leaves in a well-formed tree. In the
next section, we will prove an estimate for C∗ and thus an upper bound for C.

Theorem 2. Let C∗ denote the size of a well-formed tree T ∗ . Then we have
a ≤ C∗ ≤ 2

aa
 for all L ≥ 1, where a = 1+

√
5

2 ≈ a0.6942419.

Proof. Note that for all � ≥ −1, C∗ satisfies the recursion C∗+2 = C∗+1 + C∗
with C∗−1 = C∗0 = 1.
Let a be the unique positive solution of x2 = x+ 1, i.e. a = 1+

√
5

2 . In this case,
the function F (�) = a also satisfies the recursion F (� + 2) = F (� + 1) + F (�)
for all � ≥ 0. Since C0 = F (0) and C1 = 2

aF (1), we have a ≤ C ≤ 2
aa

 for all
� ≥ 0. ��

Note that 2
a ≈ 1.236068. Thus, we have found the upper bound of the average

search tree to be C ≤ 2
a · 20.694 ≈ 20.694+0.306.

5.3 Worst Case Considerations

The above result can be applied directly to the tree of guesses in section 4.
Remembering that such a search tree actually has a root labelled � = L− 2, we
can upper bound the average number of leaves by CL ≤ 20.694L−0.918.

This upper bound seems to holds even for the worst case, provided that L
is large enough. Remember that assumption 1 stated that in case of a linearly
dependent equation, contradiction occurs with probability 1/2. Now remember
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from section 4.2 that linearly dependent equations do not occur before depth 	L
2 


is reached. This, in turn, means that for large L, there exists a large number
of nodes labelled j for each j < L − 	L

2 
. We can thus apply the law of large
numbers, stating that the actual number of contradictions is very close to the
expected number of contradictions. Thus, the number of leaves should be close
to the above bound not only for the average case, but for almost any tree of
guesses.

In order to give some more weight to this rather informal argument, we will
provide some empirical evidence for this conjecture in section 6.

5.4 Running Time of the Algorithm

The asymptotically most expensive single step of the backtracking algorithm
presented in section 4 is the testing of the linear dependency of new equations.
This operation in itself takes O(L3) elementary steps and has to be repeated
once or twice in each node of the tree of guesses.

Thus, we have to establish an upper bound for the maximum number of
nodes in the tree. Since the tree will be malformed, it contains nodes that have
only one child. It is thus impossible to upper bound the number of nodes by
2 · CL − 1, as could be done for a proper binary tree. We can, however, prove
that the maximum depth of the search tree is L− 1.

Proposition 2. If the linear recurrent sequence (ai)i≥0 is of maximum length,
then the tree has maximum height of L− 1. 3

Proof. In any node of depth i, we have exactly i+ 1 equations of type 1 at our
disposal (and a varying number of equations of type 2). Thus, at depth L − 1,
we have exactly L such equations, namely a0, a2, . . . , a2L−2.
By a theorem on maximum length linear recurrent sequences (see e.g. [5], p. 76),
there exists a k such that the following holds:

(ak, ak+1, . . . , ak+L−1) = (a0, a2, . . . , a2L−2)

Since ak, . . . , ak+L−1 must be linearly independent, the same holds for a0, a2, . . . ,
a2L−2. Consequently, we have L linearly independent equations of type 1 in any
node of depth L− 1, allowing us to solve the system and derive a key candidate.
Thus, no node of the tree will have depth ≥ L. ��

We can use this fact to upper bound the number of nodes. Consider the
largest binary tree (w.r.t. the number of nodes) with height L−1 and CL leaves.
This tree is a complete binary tree from depth 0 to p = 	logCL
. From depth
p+ 1 to depth L− 1, the tree has constant width of CL.

3 Note that this proposition only holds for maximum length sequences. The use of
shorter sequences, however, would be a breach of elementary design principles, since
it would facilitate a number of other attacks. It does not seem to increase resistance
against our attack either, it just makes the proof harder.
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Let NL denote the number of nodes in a search tree. It follows that NL is at
most the size of this worst possible tree.

NL ≤ (2p+1 − 1) + (L− p− 1) · CL

Note that both 2p+1 and CL are in O(CL). Ignoring all constant summands and
factors to CL, we obtain:

NL ∈ O((L − p) · CL)
= O(0.306L · 20.694L−0.918)
= O(0.162L · 20.694L)

Remembering that in each node, a linear equation has to be inserted into an
equation system, and ignoring constant factors again, we derive a total asymp-
totic running time in O(L4 · 20.694L).

6 Experimental Results

6.1 Results on the Number of Leaves

In the section 5, we have proven the number of leaves in the search tree to be
upper bounded by 20.694L−0.918 in the average case. This result leaves a number
of interesting questions open: Since we have only derived an upper bound: How
close is this value to the average number of leaves that do occur in an actual
search?4 And what about the conjecture in section 5.3? Is CL also an upper
bound for the worst case, for large L?

In order to answer those questions, the key reconstruction algorithm from
section 4 has been implemented and tested against all keys and all primitive
polynomials for L = 3, . . . , 16. The main results of this simulation are given in
the left half of table 2. Here, Cavg and Cmax denote the average and maximum
number of leaves encountered in the experiments. Cbound = 20.694L−0.918 denotes
the upper bound as calculated in section 5. For ease of comparison, all values
are given in logarithmical notation.

First observe that values Cavg and Cmax are very close; they differ by a factor
φ with 1 < φ < 1.33. Of course, this may or may not hold for larger values of
L, but for small L, the maximum number of leaves does not stray very far from
the average.

Also observe that for L > 8, Cbound seems to be a proper upper bound not
only for the average case, but also for the maximum number of leaves in the
search tree. Note especially that for L > 8, the gap between Cmax and Cbound

seems to be widening with increasing L. Nonetheless, additional empirical or
mathematical evidence for larger L might be necessary before our conjecture
from section 5.3 can be considered confirmed.
4 We must take care not to confuse the average case of the analysis with the average

number of leaves in the search tree; they are quite different mathematical objects.
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Number of leaves Number of nodes

L Cavg Cmax Cbound Navg Nmax Nbound

3 21.00 21.00 21.16 21.58 21.58 21.04

4 21.55 21.58 21.86 22.57 22.81 22.15

5 22.29 22.58 22.55 23.28 23.46 23.17

6 22.85 23.17 23.25 24.21 24.64 24.12

7 23.53 23.81 23.94 24.92 25.43 25.04

8 24.23 24.64 24.63 25.61 25.93 25.93

9 24.88 25.29 25.33 26.35 26.79 26.79

10 25.53 25.88 26.02 27.05 27.55 27.64

11 26.22 26.57 26.72 27.75 28.24 28.47

12 26.87 27.26 27.41 28.46 28.89 29.29

13 27.56 27.92 28.10 29.16 29.73 210.10

14 28.25 28.56 28.80 29.85 210.20 210.90

15 28.92 29.23 29.49 210.56 211.26 211.69

16 29.61 29.90 210.19 211.25 211.64 212.48

Table 2. Empirical Results

6.2 Results on the Number of Nodes

In the right half of the table, we give the results on the number of nodes. Again,
Navg and Nmax denote the average and maximum values encountered in the
experiments, while Nbound = 0.162L · 20.694L denotes the mathematical bound
as given in section 5.4.

It seems that for L > 7, Nbound is an upper bound for the number of nodes
in the worst possible case. As with the results on the number of leaves, the gap
between Nmax and Nbound seems to be widening with increasing L, but again,
more data for larger L would be helpful. We also note that Navg and Nbound are
very close to each other.

An interesting side observation is that Navg ≈ 2 ·Cbound, i.e. that the average
number of nodes appears to be almost exactly twice the mathematical upper
bound for the number of leaves as derived in section 5.3. This is not apparent
from the mathematical analysis in section 5 and may thus be an interesting
starting point for future research.

7 Design Recommendations

The effective key size against our attack is less than 70% of the key length.
For a register length of 120 bit, the backtracking attack runs in O(283) steps
and is probably not feasible in today’s practice. Our attack, however, is easily
parallelised, allowing an adversary to use as many parallel processors at once
as he can afford. Since each processor can operate on its own segment of the
tree (without any need of communication with the other ones), k processors
can reduce the running time by a factor of k. Thus, a generator using a shorter
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register is in real danger of being compromised. We conclude that the minimum
length of a self-shrinking generator should exceed 120 bit.

Note that our attack relies on the feedback logic of the register to be known.
If it is not, the attack has to be repeated for all primitive feedback polynomials
of length L, yielding an additional working factor of φ(2L − 1)/L. Security of
the self-shrinking generator can thus be increased significantly by following the
proposal given in [2, 8]: Use a programmable feedback logic and make the
actual feedback polynomial a part of the key.

Finally, observe that the use of sparse feedback polynomials makes our attack
slightly more effective. If the more significant bits depend on only a few of the less
significant bits, the probability of linear dependent equations increases, yielding
a tree of guesses that is more slender than the average case tree considered above.
However, as stated in section 6.2, the sizes of worst case and best case trees seem
to differ by less than the factor 2. Nonetheless, sparse feedback polynomials
should be avoided in designing most stream ciphers, the self-shrinking generator
being no exception.

Acknowledgement We would like to thank one of the anonymous referees for a
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Abstract. We describe new attacks that can be launched on some well
known signature schemes. The attacks are related to Lim and Lee’s key
recovery attacks in prime order subgroups. Several new attacking scenar-
ios are described where the group order can be either prime, composite,
or unknown. These attacks are able to compromise certain properties of
complex protocols such as identity revelation by the revocation manager
in a group signature setting, or owner tracing in fair electronic cash.
It is suggested that safe primes must be considered for use in all such
protocols, together with a proof of safe parameter selection.

1 Introduction

Many cryptographic protocols operate in a subgroup of some larger group, gen-
erally placing restrictions on the parameter selection of the larger group. In
many cases group operations are performed within a prime order subgroup of a
much larger group, whilst in others, operations occur in a group of composite
modulus within a larger group. The most obvious primitive protocols that sat-
isfy these characteristics include the Diffie-Hellman [14], Schnorr [22] and other
ElGamal-type protocols.
These well known primitives serve as the basis for signature and encryption

schemes; more complex schemes build upon these to provide additional proper-
ties such as undeniablity [12], blindness [11], and group membership [9]. Further
work has also given rise to complex protocols furnishing a variety of security
related applications, including electronic cash [5] and election protocols [13].
Many researchers have noted the usefulness of setting a protocol in a prime

order subgroup of a larger group. In this paper it is shown that, unless the larger
group takes on a specific form, then potential exists for protocol exposure. The
special form we refer to is that the order of the large group should have no
factors smaller than the order of the subgroup (with the possible exception of
the factor 2 which often cannot be avoided). For example, in a subgroup of Z∗p
of prime order q, (p− 1)/2 should have no factors smaller than q.
Lim and Lee [19] demonstrated how a key recovery attack can be launched

against many published scheme given such parameters. They also describe how
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to launch a general attack on schemes working in prime order subgroups. Their
basic idea is to employ a substitution a→ γa mod p, where γ is a generator of a
small subgroup of Z∗p; we call this the direct low order attack. They demonstrate
a direct low order attack on the undeniable signature algorithm used in Brands’
cash scheme and also show how to compromise discrete log based systems in a
prime order subgroup by obtaining a signature on γa, where the order of γ is a
factor of the order of the larger group Z∗p.
With the fundamental notion of the direct low order attack in mind, we show

in this paper several new attacks and weaknesses based on the existence of small
order elements in various multiplicative groups. Some of these attacks apply to
protocols published subsequent to the Lim and Lee attack [19], while others
apply to earlier protocols that use alternative algebraic structures, specifically
subgroups with non-prime order. Some such protocols continue to select param-
eters based solely upon primality. As these security protocols are extended to
take on additional properties the possibility exists for new attacks.

1.1 Contribution

This paper demonstrates several new attacks by extending the fundamental no-
tion of Lim and Lee [19], applied to prime order subgroups, to various different
group structures and protocols settings. Recall that a prime p is called safe if
(p−1)/2 is also prime. We show that fixing the schemes may be dependent upon
selecting parameters as safe primes (or the product of safe primes) and proofs
that they have this safe form.
We demonstrate our attacks on a group signature scheme of Camenisch and

Stadler [9]. Schemes which employ this as a primitive, such as cash, voting,
and auction protocols, may all inherit a similar exposure. Specifically, an attack
is shown where a member of a group may sign on behalf of the group in a
manner that prevents the group manager from revoking the identity of the group
member. Further attacks on specific electronic cash schemes, which make use of
various signature schemes as primitives, are also presented.
We analyse possible precautions for avoiding the attack, concluding that

selection of a safe prime is required together with a proof of such a safe selection
(required when the group order is unknown). In addition, there still exists the
need to check protocol elements due to the presence of the element of order
two. Finally, it is suggested that selection of safe primes is desirable for security
protocols in general. This is based on the evolutionary pattern that follows such
original protocols, where new properties are later devised which may possibly
be thwarted by the presence of factors in large multiplicative groups.
We regard the following as the main contributions of this paper.

– We show that attacks based on factors may be applied to various multiplica-
tive group structures1, outlining how attacks may be mounted where the
group order is prime, non-prime, or unknown.

1 Lim and Lee’s attack applies to prime order subgroups, where the prover applies the
signature key to elements supplied by another party [19].
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– We demonstrate ways to attack group signature schemes where the group
manager cannot identify the group member who generated a signature.

– We detail exposures and protocol weaknesses of some electronic cash schemes.
– We show how protocols in their original form may exhibit no exposure, but
when used as a primitive in a more complex protocol an attack can be
launched.

– We propose several techniques to avoid such attacks.

1.2 Organisation of Paper

The next section provides a background to the central observations of the attack
and the related work of attacks based on subgroups. We then outline specific
attacks that can be made on some published schemes to illustrate the exposure.
This includes a specific attack on group signature schemes, exposures to protocols
based upon these signature techniques, and some weaknesses in electronic cash
schemes. We then sketch possible ways to avoid this type of attack.

2 Background and Related Work

Attacks exploiting subgroup structures are not new, and several researchers have
used their properties to expose protocol weaknesses. Lim and Lee [19] used el-
ements of smooth order in key recovery attacks on discrete log based schemes
that use a prime order subgroup. Burmester [6] observed that a false Schnorr
public key may be issued that is able to fool verification. Each of these works
will now be reviewed.
Lim and Lee [19] outline several key recovery attacks on discrete log based

schemes operating in the large group Z∗p, or some prime order subgroup. These
attacks are able to disclose the secret key in key agreement protocols and ElGa-
mal signature schemes. The specific attacks depend on finding partial discrete
logarithms yi to the base α, where α is an element of low order. This is possible
by breaking down the discrete logarithm problem over Z∗p, into several smaller
problems as subgroups using the Pohlig-Hellman decomposition [20], defined by
low order elements of Z∗p.
Burmester [6] previously pointed out that it is possible to cheat using the

Schnorr identification scheme. Recall that the Schnorr scheme uses primes p and
q where q|p − 1, and a generator g of G of order q. The private key is x and
the public key h = g−x mod p. The prover first chooses w ∈R Zq and forwards
a = gw mod p to the verifier. The verifier generates a challenge c ∈R Zq and
the prover sends the response r = cx + w mod q. The verification equation is
gr = ahc mod p. Burmester points out that if the signer publishes some public
key h′ = β−x mod p, where β is of order 2q and x is odd, then the probability that
the verification will hold is 1/2. To achieve this the prover sends a = gw mod p
or a = gwh′ mod p (in an attempt to guess the parity of the verifier’s challenge
c), and then returns r = cx/2 + w mod q if c is even and otherwise r = x(c −
1)/2 + w mod q. The verifier will find that gr = ah′c mod p holds if the prover
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has correctly guessed the parity of the challenge; this occurs with probability
1/2. To prevent the attack the verifier should check that h′ lies within the prime
order subgroup G, by checking h′q mod p = 1. Burmester also points out an
exposure in the Fiat-Shamir [15] scheme using a composite modulus.
Recently Boudot [2] observed a weakness in the proof of security for Girault’s

scheme [17] by exploiting the element of order two in the setting of discrete
logarithm with a composite modulus.
We here detail the central observation and then show how one may construct

alternative attacks. Let G be a prime order subgroup of Z∗p of order q, where
q|p − 1 and p, q prime, and g be a generator of G. Let a ∈ G and γ ∈ Z∗p be
of order t < q. Then given an integer x ∈ Zq such that gx = a, it follows that
(γg)x ≡ a mod p when t|x. When there are no conditions on the choice of the
prime p, p − 1 will likely have many factors less than q. A similar observation
can be made regarding composite modulus systems. Note that in the case of
composite modulus systems a test for group membership may not be possible if
the order of the group is unknown. The direct low order attack of Lim and Lee
makes the transformation a→ γa, where ord(γ) < ord(a), and the signing entity
directly applies its signature key (exponent). In this paper we demonstrate how
alternative attacks may be launched on several well known protocols that use
various multiplicative group structures.

3 Attacks on Group Signature Schemes

In this section we show how an attack may work against group signature schemes
that allows a group member to sign on behalf of the group in a manner that pre-
vents the group manager from revealing the member’s identity. We then outline
a collusion attack between a group member and the group manager, showing
that the group manager must prove to each group member that the order of the
group contains no small factors.
Group signatures were introduced by Chaum and van Heyst [8]. Camenisch

and Stadler [9] designed a group signature scheme where the public key of the
group remains constant in size and complexity with an increasing group size.
Group signature schemes enable a member of a group to generate a signature
on behalf of the group. Each group member has a unique signing key, however
signed messages may be verified using the single public key for the group. There
is an additional entity, the group manager, which is able to reveal the identity
of the group member who is responsible for creating any signature on behalf of
the group. There are five operation phases of a group signature scheme.

Setup - generates the group public key and secret administration key of the
group manager.

Join - enables a member to join the group, creating a membership certificate
on her private key.

Sign - group member signs on behalf of the group using her private key.
Verify - checks the signature using the public key of the group.
Open - reveals the identity of the group member who generated a signature.
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The responsibilities of the group manager may be split into those of the
membership manager who administers the Join operation, and the revocation
manager who is responsible for the Open operation.
Camenisch and Stadler [9] stated that group signature schemes must satisfy

the property that ‘group members can neither circumvent the opening of a sig-
nature nor sign on behalf of other group members’. In the attack that follows it
is shown that the opening protocol may be thwarted: a valid group member may
generate a signature on behalf of the group in way that prevents the revocation
manager from revealing the identity of the member.
The scheme of Camenisch and Stadler relies on two ‘signatures of knowl-

edge’, known as SKLOGLOG and SKROOTLOG. The first of these provides
a signature of a messagem that proves that the signer knows the double discrete
logarithm of a given value with respect to two base values. The second provides
a signature of m that proves that the signer knows the e-th root of a discrete
logarithm of a known value for a known e and base value. Our attack is based
on the observation that these signatures may be generated in an incorrect form
if the known values are not in the subgroup G where they are intended to lie.

3.1 Preventing Opening of Signatures

The setup of the Camenisch-Stadler scheme [9] involves the selection of se-
curity parameter l by the group manager and publication of the public key
(n, e,G, g, a, λ, ν):

– RSA public and private keys [21] are (n, e) and d respectively.
– a cyclic group G = 〈g〉 of order n in which computing discrete logarithms
is infeasible. We assume that G is a subgroup of Z∗P where P is prime and
n|P − 1, as suggested by Camenisch and Stadler.

– a collision resistant hash function H which takes strings of any length to
strings of a fixed length (suggested as 160 bits by Camenisch and Stadler).

– a ∈ Z∗n of large multiplicative (unknown) order modulo both prime factors
of n.

– an upper bound λ on the length of the secret keys and a constant ν > 1.

Definition 1. A signature of knowledge, for the message m, of the double dis-
crete logarithm of z to the bases g and a is a tuple (c, s1, . . . sl) satisfying

c = H(m ‖ z ‖ g ‖ a ‖ t1 ‖ . . . ‖ tl) with ti =
{
g(asi ) if c[i] = 0
z(asi) if c[i] = 1

and is denoted SKLOGLOG[α : z = g(aα)](m).

Camenisch and Stadler state that SKLOGLOG[α : z = g(aα)](m) can only
be computed with knowledge of α = x, the double discrete logarithm of z. We
now show that this statement is not quite accurate unless additional checks are
made beyond what is in Definition 1. The following attack is a small variation
on the generation of a correct signature as specified by Camenisch and Stadler.
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1. Choose ε ∈ Z∗P of low order t, and compute z̃ = εz mod p. Finding such an
ε is not hard: first find a generator g0 of Z∗P by trial and error and then set
ε = g

P/t
0 . In general there may be many small values of t with t|(P − 1)/n,

and t = 2 will always be a possible choice.
2. Choose ri ∈R {0, . . . , 2λν − 1}, for i = 1 to l, such that ari−x mod n is a
multiple of the order t. Note that, although this property is ensured for all
i, it will only be required for around half the values, depending on the value
of c found in the next step. Of course, the attacker is not able to guess in
advance for which i values the property will be required. If t = 2, then on
average this will require two trials for each ri, so that ari−x mod n is even.

3. Next compute c = H(m ‖ z̃ ‖ g ‖ a ‖ gar1 ‖ . . . ‖ garl ) and set

si =
{
ri if c[i] = 0
ri − x if c[i] = 1

The signer now claims that (c, s1, . . . , sl) is a valid signature of knowledge
SKLOGLOG[α : z̃ = g(aα)](m). It can be seen that the verification equation
still holds since the choice of ri in step 1 has ensured that asi in Definition 1
will always be a multiple of t when c[i] = 1. Yet the signer certainly does not
know the double discrete logarithm of z̃. In fact if n is a good RSA modulus
then ε /∈ G and so no such double discrete logarithm even exists!
A very similar forgery is possible for the second signature of knowledge,

SKROOTLOG used by Camenisch and Stadler. Now we describe the group
signature setup in which these two signatures of knowledge are used.
A group member obtains her membership certificate (y+1)d mod n, by choos-

ing x ∈R {0, . . . , 2λ − 1}, computing y = ax mod n and membership key gy.
The pair (y, gy) is forwarded to the group manager whilst proving knowledge of
loga(y). When convinced the group manager returns the membership certificate
β = (y + 1)d mod n.

Signing Procedure To sign a message m the group member chooses r ∈R Z
∗
n,

computes g̃ = gr mod p, z = g̃y mod p, and forms V1 = SKLOGLOG[α : z =
g̃a

α

](m) and V2 = SKROOTLOG[β : zg̃ = g̃β
e

](m).
To mount the attack, the following steps are performed by the group member.

1. Choose r ∈R Z∗n and computes g̃ = gr, where r ∈R Z∗n.
2. Choose ε of order t < n, compute z̃ = εz.
3. Form V1 = SKLOGLOG[α : z̃ = g̃a

α

](m) and V2 = SKROOTLOG[β :
z̃g̃ = g̃β

e

](m) as shown above.

The signature consists of the tuple (g̃, z̃, V1, V2) and the verification consists
of checking that V1 and V2 are correct signatures of knowledge. The purpose of
V1 is to show that the signer is a valid group member because V1 confirms that
z̃ is of the form g̃a

α

; this proves the signer knows some value α = x. Then, since
z̃g̃ = g̃a

α+1
, then V2 proves that the signer has a membership certificate (aα+1)d

for the secret value α = x.
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At some later point, if foul play is suspected, the signature (g̃, z̃, V1, V2) may
be forwarded to the revocation manager to attempt to reveal the identity of the
group member. This is usually done by checking if g̃yi = z̃ for the key yi of each
group member i. However in this case g̃yi �= z̃ and hence the revocation manager
is unable to identify the group member.
As noted above, the simplest attack is where the order of ε is 2. This can

be varied by choosing an element of higher order, whilst ensuring that the order
t < n. A larger order, however, requires a longer running time in the signing
procedure to determine ri values that will enable the attack to succeed.
It is worth noting that Ateniese and Tsudik [1] have shown that there is a

weakness in the Camenisch and Stadler scheme, unrelated to the attack presented
here. A suggested fix, which alters the definition of the membership certificate,
does not affect the validity of our attack. The attack as described here can be
prevented if the verifier checks that z̃ is actually in the group G (as implicitly
claimed). This can be achieved at the cost of one exponentiation by verifying
that z̃n mod P = 1. However, we will see below that this check by itself is not
enough to prevent the attack in general.
An essentially identical attack to that described here may be made against the

scheme of Stadler [23] for publicly verifiable encryption of discrete logarithms.
(Indeed the SKLOGLOG is based on that scheme.) Such a scheme is designed
to ensure that any party can verify that shares of a discrete logarithm of a known
value have been correctly distributed to a set of trustees. The attack can be used
by the dealer of the secret to prevent trustees from recovering the correct shares
even though the verification equation has been checked.
In Stadler’s scheme the prover forms an ElGamal ciphertext, which is a pair

(A,B). The prover then proves to the verifier that when decrypted by the private
key of a designated party the corresponding plaintext for (A,B) will be the
discrete logarithm of a known value V . The proof is identical to the SKLOGLOG
discussed above and the same attack will work. This allows the prover to use a
value Ṽ = εV , for any low order element ε, and ‘prove’ that (A,B) will decrypt
to the discrete logarithm of Ṽ . Whether this results in a meaningful attack will
depend on the exact application for which verifiable encryption is used.
A related group signature scheme has been published more recently by Ca-

menisch and Michels [7]. In this more recent scheme it is required that the RSA
modulus used is a product of safe primes, and that it is required to be proven by
the membership manager that this is the case. Therefore the attack described
here does not apply.

3.2 Collusion Attacks

We now show a collusion attack where the membership manager and one group
member may generate a signature that once again prevents the revocation man-
ager from revealing the identity with the correct use of the revocation protocol.
Suppose that the membership manager chooses n = pqw. The manager may then
collaborate with one group member and reveal the factor w of n. The member-
ship manager can reveal w while it is still computationally infeasible for the
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group member to factorise n, and thus obtain p and q. Then, using the attack
outlined in the previous section, the group member is able to generate a group
signature on some message which prevents the identity from being revealed with
the correct use of the revocation protocol. The attack proceeds as follows:

– The membership manager selects n = pqw and generates the prime P such
that n|P − 1.

– The membership manager reveals w to one group member but not to any
other party (including the revocation manager).

– The membership manager generates g to be an element of order pq and
publishes the usual parameters including g.

– The group member finds an element ε or order w. This can be achieved
with high probability by choosing a random element δ ∈ Z∗P and setting
ε = δn/w mod P .

– At signature time the group member replaces z with z̃ = εz and the attack
proceeds as above.

In distinction to the previous attack, checking that z̃ ∈ G in this instance will
not reveal any problem. This is because the small order element is now actually
in the group that it is supposed to be in. A means to detect this attack is to
insist that the group manager publishes a proof that n is the product of only
two primes. Efficient methods for such a proof are known [18].

4 Electronic Cash Schemes

Many electronic cash protocols employ as primitives one or more of the signature
schemes discussed above, and hence may be exposed. Techniques which may be
used to repair or avoid the attacks shown here are discussed in Section 5.

4.1 Traoré’s Scheme

Traoré [24] proposes an innovative electronic cash scheme based upon group
signatures where the customers form a group. We show that the above attack
may be extended to work against the scheme2.
In Traoré’s scheme the RSA primes are chosen to be safe but the large group

Z
∗
P may contain many small factors. P is chosen by first generating n = pq, where

p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ are all prime) and then choosing P by
searching for P = kn+1, where k is an integer. In this case it is very likely that
P − 1 will contain many small factors and hence there are small order elements
easily found in the large group Z∗P. Now, it is possible to devise a similar attack
to the group signature scheme of Camenisch and Stadler [9], although there are
a few extra details to consider.
Traoré’s scheme requires users to obtain a license which is a pair of integers

which must be used during each coin withdrawal and ‘embedded’ in each coin
2 A revised protocol with repairs against this attack is detailed by Traoré [25].
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withdrawn. A license is obtained through a protocol executed with the group
manager during which the member proves that he knows the discrete log of a
value IDUi which will be later used to revoke anonymity if necessary. This uses
a proof of knowledge called ProofLOG+RANGE . In the following l1, l2 and ε > 1
are constants; α is a quadratic residue in a different multiplicative group Z∗N
where N is a product of different safe primes and lN is the bit-length of N .
Finally, k is a security parameter.

Definition 2. A proof of knowledge of the discrete logarithm of h with respect
to g and of δ with respect to α, which also proves that logg h = logα δ and that
logg h is in [2l1 − 2ε(l2+k)+1, 2l1 + 2ε(l2+k)+1] is a pair (c, r) satisfying

c = H(g ‖ h ‖ α ‖ δ ‖ gr−c2l1
hc ‖ αr−c2l1

δc)
r ∈ [−(2k − 1)(2l2 − 1), 2ε(l2+k)]

and is denoted ProofLOG+RANGE(g, h, α, δ, l1, l2, lN , ε, k).

The attack works when a group member is able to obtain a license from the
group manager in a way that prevents the group manager from revoking the
identity of the user. The idea is similar to the attack in the last section in that
the proof is accepted even though the attacker does not possess the knowledge
claimed. This is achieved in the following steps:

1. During the license generating protocol, the group member obtains a license
(X, δ) by sending various parameters and two proofs to the group manager.
One of these proofs contains identifying information for the user using two
strings IDUi = gxi and idUi = αxi . The required proof is as follows.

ProofLOG+RANGE(g, IDUi , α, idUi , l1, l2, lN , ε, k)

The malicious user can forge this proof by introducing the low order element
ε in the following:

IDUi = εgxi

idUi = αxi

To construct ProofLOG+RANGE the prover chooses a ∈R {0, 1}ω(l2+k), com-
putes

c = H(g||IDUi ||α||idUi ||ga||αa)
and then computes r = a−c(xi−2l1). In general, a proof constructed in this
way will fail verification by the group manager with a probability of 1/ord(ε).
Therefore (for 100% success) it is necessary to determine a correct value for
c by choosing a and evaluating c until ord(ε)|c. This may be performed off-
line with minimal computation. When the desired value of c is found the
verification ga = gr−c2

l1 (IDUi)c will be satisfied as required for the proof.
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2. During the withdrawal and payment protocols the group member would gen-
erate coins using gxi , rather than εgxi, and these would still pass verification
by the merchant. During withdrawal the customer must supply an ElGamal
encryption of gxi using the revocation manager’s public key hR. This is the
pair (gxihz, hzR) and is included in the coin. This value is checked by the
merchant at payment time.

3. When necessary, the revocation manager attempts to reveal the identity
using the owner tracing string ot = hzR which has been included in the coin.
To do this the manager first decrypts the ElGamal ciphertext to obtain gxi .
Then the group manager attempts to determine the identity of the group
member’s identity IDUi = gxi by performing a search on the registered
group members. However, the group manager will find no ID′Ui

equal to
IDUi , since IDUi = εgxi mod P .

4.2 An Anomaly in Brands’ Cash Scheme

An anomaly in Brands’ original electronic cash scheme [5] is now outlined. It is
related to the observation of Lim and Lee [19] that a customer is able to double
spend coins while avoiding identity revocation, as long as the bank never checks
that the customer’s identity element is in the correct group during registration3.
The attack of Lim and Lee was based upon the prover applying her secret key to
some supplied element, so the customer must interact with the bank to mount the
attack. In contrast we show how the customer can mount an alternative attack
by himself, through the selection of blinding invariants. In the initial remark
that follows the customer is easily detected; however different assumptions must
be made regarding the security of the scheme. Consequently the overall protocol
must be altered to accommodate the detection of false coins.
Recall that in Brands’ scheme computations take place in a subgroupG of Z∗p

of prime order q. Three independent generators of G, denoted g, g1 and g2, are
made public. A coin consists of a pair (A,B) and a signature σ(A,B) issued by
the bank. The signature is a 4-tuple (a, b, z, r) which is valid if the two verification
equations gr = hH(A,B,z,a,b,))a and Ar = zH(A,B,z,a,b,))b where h(= gx) is the
bank’s public key. During the withdrawal phase the customer obtains (A,B)
blindly in such a way that he knows the representation of (A,B) with respect
to (g1, g2). At payment time the customer supplies the coin and engages in an
interactive protocol designed to prove that he knows this representation.
In the ‘attack’, the customer substitutes A with εA mod p during the with-

drawal where, as before, ε is an element of low order t, such that t|p − 1. The
attack may be applied to Brands’ scheme using the following steps.

1. During coin withdrawal the customer chooses blinding invariant s ∈R Zq as
normal and chooses ε such that ord(ε) = t.

2. The customer computes A = (gµ1 g2)s mod p as normal.

3 It seems that this check was proposed by Brands [4] before the publication of Lim
and Lee [19].
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3. The customer sets α = εA mod p and replaces A by α in the calculation of
c′ = H(α,B, z′, a′, b′).

4. At payment time the customer presents (α,B) and the bank’s signature
σ(α,B) to the merchant as a valid coin.

The customer will obtain a valid bank signature σ(α,B) in the case that
αr

′
= Ar′ , where r′ is the exponent calculated during withdrawal. Since this

element is chosen randomly this will happen with probability 1/t. In practice the
customer could examine the response to confirm whether merchant verification
of the false coin will pass with the derived response r′, thus guaranteeing that
verification will succeed during payment. In addition, the representation check
will pass with probability 1/t since d will also be of the required value 1/t of the
time.
When the merchant deposits the coin, the bank is equally likely to accept

the coin as valid. If the coin fails the representation check, then the coin is
rejected. It is interesting to note that in Brands original paper he suggests that
the customer may in fact determine d, reducing the payment to a single move
protocol. In this case the customer is able to spend an invalid coin with a 100%
success rate; as suggested above during the withdrawal protocol the customer
is able to check that an appropriate value r is provided that will enable a false
coin to pass verification using r′ = ru+ v mod q.
Regardless of this, the question remains of any real exposure. The answer is

negative, since if the customer spends a second instance of α, or even A itself, he
must supply r values during payment that pass the representation criterion. Since
these values encode the customer’s true identity the customer will be caught. So
this observation is rather an anomaly of the scheme, where an invalid coin (α,B),
such that α /∈ G and B ∈ G, may be in circulation. But to be able to spend
these invalid coins the customer must have taken part in the withdrawal protocol.
Since the customer’s account is debited during withdrawal and double spending
will reveal the identity there is no incentive to fool the system.
It should be pointed out that this observation invalidates theorems pre-

sented by Brands [5]. For it can be seen that a customer can present a coin
(α,B), σ(α,B), and not know the representation of α with respect to (g1, g2).
The following formal statements are made [5] with reference to a customer U .

Lemma. If U in the payment protocol can give correct response with respect to
two different challenges, then he knows a representation of both A and B with
respect to (g1, g2).

Corollary. U can spend a coin if and only if he knows a representation of it.

From the results above it is clear that the lemma and corollary have been in-
validated. The customer cannot possibly know a representation of α with respect
to (g1, g2), since α /∈ G and (g1, g2) are both generators of G.
In order to prevent the customer from spending invalid coins, the merchant

should check that the value A lies in the group G. This is an added expense in
performing the check Aq mod p = 1. Due to the existence of the element of order
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2, even when p is a safe prime, it will always be necessary to allow that either
(A,B) or (−A,B) is a valid coin.
We now show how other schemes, such as fair electronic cash [16], that extend

the Brands protocols are susceptible to some attacks. This reinforces the obser-
vation that, whilst the original protocol may exhibit no real exposure, extended
versions may be compromised. This viewpoint is in contrast to the suggestion
by Brands [3] that if the secret key is not applied by the prover to base numbers
supplied by other parties then the issue may be avoided [3]4. Whilst this position
is reasonable for the original form of the protocol [5], we suggest that a more
prudent approach is to ensure safe parameter selection in the first instance to
ensure that extensions remain secure.

4.3 Fair Off-Line Cash

Frankel, Tsiounis and Yung [16] show how Brands’ scheme may be extended into
a fair electronic cash protocol by providing owner tracing and coin tracing. The
subgroup exposure shown above can be modified so that the additional property
of owner tracing can be thwarted in their scheme. Once more, this exposure is
due to the selection of primes p and q such that p = γq + 1, where γ is a small
integer [16].
We first note that the customer may again spend invalid coins as in Brands’

scheme. The only difference between the withdrawal in Brands’ scheme and that
of Frankel et al. is that the B value is split into two parts, B1 and B2, with
B = B1B2. The customer performs the following modified steps in order to
withdraw the false coin.

1. Choose blinding invariant s ∈R Zq, and ε where ord(ε) = t.
2. Compute A = (gµ1 g2)s mod p.
3. Set α = εA mod p, B1 = gx1

1 and B2 = gx2
2 .

4. Calculate c′ = h(α,B, z′, a′, b′), where B = [B1, B2].

When the customer spends a coin the following modified payment ensues.

1. A1 = gµs1 , A2 = gs2.
2. Set α1 = εA1.
3. Present α1, A2, A,B1, B2 and σ(α,B) to the merchant as a valid coin.

When the merchant validates the coin he will find that α = α1A2, and will also
find the signature will be valid (since this may be checked at withdrawal time
by the customer to ensure that the derived value r is a multiple of order of ε).
As in the attack on Brands’ scheme, the representation check will work with
probability 1/t.
To provide owner tracing, Frankel et al. added messages in the payment

protocol. These messages assume the existence of a trustee T whose public key
4 Moreover, the attacks we outline are based upon the use of blinding invariants by
the customer.
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f2 = gXT
2 is known to all concerned parties. The additional messages include

an ElGamal encryption of the identity of the customer using f2 and a proof by
the customer that this is the same identity as that hidden in the coin in the
component A. We now show how the above attack may be extended to thwart
the additional property of owner tracing. The customer proceeds as follows.

1. Forms the ElGamal encryption of I as D1 = Ifm2 , D2 = gm2 where m ∈R Zq.
2. Sets δ1 = εD1 where ε is of small order t.
3. Presents δ1, D2 to the merchant as an encrypted identity during payment.

To verify the encryption, the merchant selects s0, s1, s2 ∈R Zq, and computes
D′ = δs01 gs12 Ds2

2 and f ′2 = fs02 gs22 and sends these two values to the customer.
The value V = H1((D′)s/(f ′2)ms) is returned by the customer and the merchant
checks that V = H1(αs01 As1

2 ). This verification will succeed as long as t|s0 which
occurs with probability 1/t.
It should be noted that Frankel et al. [16] assume that D′ ∈ Gq and f ′2 ∈ Gq,

hence their proofs are correct from this standpoint. However, as shown above,
in practice one cannot necessarily assume that this is the case without the ap-
propriate checks in place. If follows that when the trustee attempts to decrypt
the ciphertext, the trustee is unable to obtain the true identity of the customer.

δ1

DXT
2

= εI �= I mod p

5 Methods to Avoid Exposures

In this section we briefly consider some techniques that may be employed to
avoid the attacks described.

Testing each element. Explicitly test that each presented element is within
the group. In some cases this will be effective, but when working in the
large multiplicative group Z∗P , this will not protect schemes. Moreover, if
P − 1 contains many factors then a test for elements within the group will
not overcome any problems. For example, this approach is ineffective against
the collusion attack in Section 3.2 because a membership check on a supplied
element a, using the group order n will yield a positive result.

Restricting Exponents. Another approach is to avoid exponents which are
multiples of the factors of the group order. This ensures that any element
outside the correct group G will remain outside after exponentiation. The
exponent must be prime with respect to all factors of the large group. One
may use prime exponents, but this greatly restricts the range available for
randomised exponents.

Safe Primes for Multiplicative Groups. The most appropriate solution is
to ensure that factors do not exist. If p is a safe prime then the multiplicative
group Z∗p has no subgroups, except the subgroup of order 2. Thus use of safe
primes can avoid these attacks except that it may be necessary to modify
the protocols to check for the factors ±1.
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In the schemes of Camenisch and Stadler [9] and the scheme of Traoré [24]
the prime P must be chosen in such a way that (P − 1)/n has as few small
factors as possible. In the best case P − 1 = 2n; primes of this form can be
generated by first generating n and checking if 2n+ 1 is prime.

Proving Composite is the Product of Two Safe Primes. When using a
composite modulus, the number of subgroups is minimised by choosing the
modulus to be a product of safe primes. Camenisch and Michels [10] have
provided a protocol to prove that an RSA modulus is the product of two
safe primes. This protocol is not as efficient as would be desirable if it has to
be checked at each use of the modulus but can be checked by a certification
authority in a one time registration procedure. This can then prevent the
collusion attack presented in Section 3.2.

6 Conclusions and Summary

There exist a number of protocols that operate in some subgroup of Z∗p, where
the order is prime or non-prime, with no extra restrictions on p. We have shown
that it is possible to attack some of these systems, compromising one or more
properties. We show that more elaborate attacks may be mounted that operate
in various known and unknown group structures, exploiting weakneses either
within the subgroup or within the larger group of the scheme. It is also shown
that whilst these schemes may possess no true weakness in their original form, as
these protocols are extended (perhaps with additional properties) the potential
for exposure is also extended. We suggest that using safe primes together with a
proof that this is the case is a sensible precaution even if the specific requirement
is not apparent. Finally, it may be necessary that the protocol be modified to
cater for elements of order 2.
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Abstract. In this paper, we examine a classification of conference key
distribution protocols proposed in [4] and show that no known protocol
satisfies the security requirements in class 4, the highest security class
of this classification. We show two new attacks on protocols that were
believed to belong to the highest security class and show that both pro-
tocols in fact belong to class 3. This motivates us to propose a refinement
of this classification to allow separating protocols with different security
properties while maintaining the classification framework.

1 Introduction

A conference key distribution protocol (CKDP) establishes a common key among
a number of users forming a conference. Security analysis of CKDP raises security
issues that did not exist in two-party key distribution protocols (KDP)[4] . In
particular, in addition to attacks from outsiders that must be considered in
both types of protocols, in CKDP there are attacks from malicious insiders with
the aim of changing the structure of the conference. For example, a subgroup
of participants may attempt to share different keys with different participants,
eliminate a participant Ui from the conference or even make other participants
believe that Ui is participating in the conference, while the latter is unaware of
the conference.

In [4], Saeednia and Safavi-Naini proposed a general framework for defin-
ing and classifying security properties of CKDPs. The highest security class in
this classification is class 4 security, and requires assurance that no collusion of
malicious insiders can break authenticity of the conference key without other
participants (outside the coalition) detecting the fraud.

In this paper we show that this requirement is too strong and is not satisfied
by any of the examined protocol. We also point out that it is unlikely that the
requirement be satisfiable by any other protocol. A result of this is that a broad
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range of protocols with varying levels of security are put in the same class. In
particular, we examine two protocols proposed in [4] and show that none of
them achieve the claimed level of security and must be put in the same lower
class. We propose a modification of class 4 security that provides a more refined
classification of CKDP.

2 Overview of the Proposed Classification

In this section we briefly recall the security classification proposed in [4]. The
basic approach is to define properties that must be satisfied by a CKDP, and
classify protocols depending on the properties that they satisfy when different
types of adversaries are considered. We omit the details of the lower level classes
since they are not relevant to this paper.

A conference C is defined by a subset {U1, . . . , Um} of participants from a set
U . Participants in C are called insiders while those in U\C are called outsiders.
A CKDP may satisfy one or more of the following properties.

A. All insiders must be able to compute the conference key KC.
B. KC must be fresh.
C. No outsider, having access to messages of previous runs of the protocol and

the corresponding keys, can calculate KC or share a key with each insider.
D. Every insider can be sure that either he is sharing the same key with all

the conference participants, or no two participants share a common key.

Properties A to C are all required to ensure that a protocol functions correctly
and produces “good keys” in presence of both passive and active outsiders. They
constitute the properties that are shared between KDPs and CKDPs. Property
D, however, is only relevant to CKDP and not to two-party protocols. This is
true because in these protocols there are exactly two participants and property
D reduces to assurance about the sameness of the key computed by the other
participant that is always achievable by an extra handshake protocol using the
distributed key. This means that KDPs that satisfy properties A to C guarantee
confidentiality of the information which in the extreme case could mean messages
encrypted by one participant not being readable by anyone else, including other
valid recipients.

In a CKDP the situation is different. A protocol that satisfies A to C cannot
be considered secure because the protocol might result in subgroups of partic-
ipants to share a common key different from the conference key. In this case,
an encrypted message is readable by one subset without them knowing who is
able/unable to read the message and so the protocol cannot be considered secure.
This means that D is an essential property of a secure CKDP.

In general we can consider two kinds of adversaries: outsiders and insiders. It
is important to distinguish between the two types as security risks in each case
is different and a protocol that is secure against attackers of the first kind may
not be secure against attackers of the second kind.

Because of this, property D is split into two, resulting in two different classes
of security:
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D1. It is infeasible for an active outsider to break authenticity of the conference
key by tampering with the messages without insiders detecting the fraud.

D2. It is infeasible for any coalition of malicious insiders to break authenticity of
the conference key by tampering with the messages with no insider outside
the coalition detecting the fraud.

Now security classes 3 and 4 are defined as the classes containing proto-
cols satisfying A, B, C and D1, and protocols satisfying A, B, C, D1 and D2,
respectively.

In the following, we show that because of property D2, we cannot distinguish
between a protocol in which a group of malicious insiders can force one, or a
subgroup of, participants to calculate a different conference key while no other
participant, who is neither a colluder nor a victim, detect it, and a protocol
in which a group of insiders can establish a subliminal channel [5,2] between
themselves. Both these attacks are captured by D2, while they actually have
very different implications.

3 Identity-Based Protocols and Attacks

In [4], two identity-based CKDPs have been proposed that were based on the
broadcast protocol of [1] and were claimed to be of class 4. In this section we
recall these protocols and show attacks that allow a subliminal key other the
conference key to be computed by a subgroup of participants.

3.1 Protocol 1

In this protocol, users’ keys are chosen by a Trusted Third Party (TTP) that in
the initialization phase chooses

– an integer n that is a product of two large distinct random primes p and q
such that p−1 = 2p′ and q−1 = 2q′, where p′ and q′ are also prime integers,

– two bases α and β �= 1 of order r = p′q′;
– a large integer u < min(p′, q′), and
– a one-way hash function f .

TTP makes α, β, u, f and n public, keeps r secret and discards p and q
afterward.

Each user, after his identity is verified by the TTP, receives a pair of public
and private keys. The TTP does the following:

– prepares the user’s public key, ID, by hashing the string I corresponding to
his identity: that is, ID = f(I);

– computes the user’s secret key as the pair (x, y) and x = αID−1
(mod n),

y = β−ID−1
(mod n) and ID−1 is computed modulo r.

The protocol is executed in three steps and has two broadcasts by each user.
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1. Each Ui, i = 1, . . . ,m, randomly selects ti ∈R Zu, computes zi = αti

(mod n) and broadcasts it.
2. Each Ui, i = 1, . . . ,m, computes c = f(z1||z2|| . . . ||zm) (“||” denotes the

concatenation), and then broadcasts vi = (zi+1/zi−1)ti (mod n) and wi =
yc

i · xf(vi)ti

i (mod n).
3. Each Ui, i = 1, . . . ,m, checks whether wIDj

j · βc ?= z
f(vj)
j (mod n); j =

1, . . . , i− 1, i+ 1, . . . ,m. If so, computes the conference key as

Ki = zmti

i−1 · v(m−1)
i . . . v2

i−3 · vi−2 (mod n).

The common key computed by Ui is

KC = αt1t2+t2t3+...+tmt1 (mod n).

The pair (zi, wi) constitutes a signature of vi and a witness of the knowledge
of ti, as well as Ui’s secret key. Since with a very high probability c is different
in each runs of the protocol, the freshness of the signatures can be guaranteed.
This means that no signature (for the same vi and zi) will be valid twice. Such
signature provides assurance about the origin of vi and zi and makes it infeasible
to impersonate a user by replaying message of a previous session, or eliminate
a user from the conference while other participants believe that the user has
computed the same key as them. However, it is possible to establish a subliminal
key, as we will see in the following subsection.

3.2 Attack on Protocol 1

We show how a colluding group of participants may share a key other than the
conference key computed by everyone, without others detecting it. For simplicity,
we describe the attack by m − 1 colluders against Uj . It is easy to modify the
attack to work for m − k colluders against the remaining k participants. We
assume that attackers can completely control the view of the cheated participant.
This means that, it is possible to broadcast a message in such a way that Uj

cannot receive it. This is denoted by broadcast(\Uj). Also, no participant can
distinguish between a received broadcasted message and a message sent only to
him.

1. Each Ui, i = 1, . . . ,m, selects ti ∈R Zu, computes zi = αti (mod n) and
broadcasts it.

2. Each Ui, i �= j − 1 and j + 1, computes vi = (zi+1/zi−1)ti (mod n) and
wi = yc

i · xf(vi)ti

i (mod n) and broadcasts them.
2’. Uj−1 and Uj+1 send to Uj , (vj−1, wj−1) and (vj+1, wj+1) that they have

computed following step 2 of the protrocol, compute

v′j−1 = (zj+1/zj−2)tj−1 (mod n)

v′j+1 = (zj+2/zj−1)tj+1 (mod n)

and broadcast(\Uj) them (as vj−1 and vj+1), respectively. In addition, they
broadcast(\Uj) vj−1 and vj+1 (those they have sent to Uj) as wj−1 and
wj+1, respectively.
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3. Uj checks validity of all wk’s he has received and computes the key KC =
αt1t2+t2t3+...+tmt1 (mod n). Other Ui, knowing that they are colluding to
exclude Uj , do not check the validity of wk’s, but first compute

K∗ = αt1t2+...+tj−1tj+1+...+tmt1 (mod n)

using vk’s they have received (excluding vj), and second

KC = αt1t2+t2t3+...+tmt1 (mod n)

using values broadcasted(\Uj) by Uj−1 and Uj+1 as wj−1 and wj+1, respec-
tively.

Now, the colluders can use the key K∗ to communicate (excluding Uj) and
also use KC when they need to send a message that should also be readable by
Uj .

3.3 Protocol 2

This protocol is the Burmester-Desmedt protocol with key confirmation. It uses
the same parameters and keys as protocol 1, but instead of signatures on the
pair vi and ti, each participant computes a signature on the conference key. The
validity of this signature will be verified by all other participants.

1. Each Ui, i = 1, . . . ,m, selects ti ∈R Zu, computes zi = αti (mod n) and
broadcasts it.

2. Each Ui, i = 1, . . . ,m, computes c = f(z1||z2|| . . . ||zm) and then computes
and broadcasts vi = (zi+1/zi−1)ti (mod n).

3. Each Ui, i = 1, . . . ,m, computes the conference key as

Ki = zmti

i−1 · v(m−1)
i . . . v2

i−3 · vi−2 (mod n)

and then computes ki = f(Ki) and wi = yi ·xtiki

i (mod n), and broadcasts
them.

4. Each Ui, i = 1, . . . ,m, verifies whether wIDj

j · β ?= zki

j (mod n), for j =
1, . . . , i−1, i+1, . . . ,m. If they hold, then Ui accepts, otherwise rejects and
halts.

3.4 Attack on Protocol 2

Here again, we describe our attack against a given participant Uj , but it can
straightforwardly be generalized to exclude any number of participants.

1. Ui, i = 1, . . . ,m, selects ti ∈R Zu, computes zi = αti (mod n) and broad-
casts it.

2. Ui, i �= j−1 and j+1, computes vi = (zi+1/zi−1)ti (mod n) and broadcasts
it.
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2’. Uj−1 and Uj+1 send to Uj, the values vj−1 and vj+1 that they have com-
puted following step 2 of the protocol, and compute

v′j−1 = (zj+1/zj−2)tj−1 (mod n)

and
v′j+1 = (zj+2/zj−1)tj+1 (mod n)

and broadcast(\Uj) them (as vj−1 and vj+1), respectively.
3. Uj computes the key KC = αt1t2+t2t3+...+tmt1 (mod n). Other Ui’s (i =

1, . . . ,m, i �= j, j − 1 and j + 1) compute

K∗ = αt1t2+...+tj−1tj+1+...+tmt1 (mod n)

using vk’s they have received (excluding vj), and Uj−1 and Uj+1 compute
both keys.

3’. Uj−1 and Uj+1 broadcast(\Uj) KC (instead of their signature on the con-
ference key) and send to Uj

wi−1 = yi−1 · xti−1KC
i−1 (mod n)

and
wi+1 = yi+1 · xti+1KC

i+1 (mod n)

respectively.
3”. Ui, i �= j − 1 and j + 1, computes wi = yi · xtiKC

i (mod n) and broadcasts
it.

4. Uj verifies the correctness of wk and is convinced that other participants
have computed the same key as him. Other participants do nothing.

Once again, the colluders can use the key K∗ to communicate (excluding Uj)
and also use K when they need to send a message that should be readable by
Uj .

4 Refining the Classification

The above attacks show that none of the protocols in [4] are in class 4 as col-
lusion of malicious insiders can break authenticity of the key. Here, “breaking
authenticity of the key” means that property D is not satisfied and so with this
requirement none of the analyzed protocols is in class 4.

Establishing subliminal channels might not need an active attack. Rather,
it could use correctly constructed messages of the protocol in a different com-
putation planned by the colluders. An example is the case when participants
in the protocol send messages of the form αti at some stage of the protocol.
This allows two participants, Ui and Uj, to establish a Diffie-Hellman key, αtitj

[3] and use it to communicate through a subliminal channel1. A similar type
1 In star based and cyclic systems, any participant may learn the value sent by each
participant to another by eavesdropping the communication.
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of computation can be also performed by a group of participants resulting in a
subliminal channel among the group. This type of channel that could always be
established among passive colluding insiders, is called inherent subliminal chan-
nel. To establish such channels the attackers correctly follow the protocol and
it is not necessary for them to modify or suppress any of the messages. In this
case, since calculating the conference key uses messages of a correct and untam-
pered run of the protocol, the result is a correct conference key. However some
of the participants also follow another pre-agreed computation and calculate a
subliminal key and there is no way for other participants to be sure that such a
computation has not been performed. Subliminal channels are studied by Sim-
mons [5] and Desmedt et al [2]. It is an open question if it is possible to construct
conference key protocols that are subliminal free, that is, protocols that do not
allow establishment of these kinds of subliminal channels.

This has motivated us to refine property D so that while it can be used to
distinguish between the more secure protocols and the less secure ones.

To clarify this, we compare the Burmester-Desmedt protocol with the proto-
cols in sections 3.1 and 3.3. As shown in [4], Burmester-Desmedt protocol is only
secure against outsiders’ attacks and no security is provided against malicious
insiders: malicious insiders can impersonate other users, or eliminate a number
of them from the conference without any other participant that is not part of
the colluding group or the victim group, being able to detect the subversion of
the protocol.

The protocols analyzed in sections 3.1 and 3.3 only allow a collusion of in-
siders to share a subliminal channel (inherent or not), but there is no known
attack that leaves out at least one of the participants outside both the col-
luder group and the victim group. Nevertheless, with the current classification,
all these protocols belong to class 3 despite some resistance that they provide
against insiders’ attacks.

We propose an intermediate class to differentiate between the two types of
protection offered. We separate attacks that leaves out at least one participant
outside the group of colluders and the group of victims. This is reasonable be-
cause when a group of colluders impersonate or eliminate a participant Uj , their
goal is to make other participants believe that user Uj is involved in the con-
ference while Uj is either impersonated or has computed a wrong key without
being aware of it. The attack divides the conference into three subgroups: col-
luders, victims and others, where the latter two subgroups are both cheated by
the colluders, though not in the same way.

In contrast attacks that aim at creating a subliminal channel break the con-
ference into two subgroups: colluders and the victims with colluders’ aim being to
have private communication among themselves. So property D2 can be rewritten
as follows.

D’2. No colluding subgroup G ∈ C can impersonate a subgroup G′ ∈ C such
that G ∩ G′ = ∅ and G ∪ G′ �= C, or force them to compute a wrong
key. Here we require that in this fraud there is at least one participant
U ∈ C \ {G ∪G′} who cannot detect this fraud.
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D”2. No colluding subgroup G ∈ C can share a subliminal key other than the
conference key.

We note that an inherent subliminal channel between two participant can be
extended to a subliminal channel among a group of participants as follows: if
user Ui shares a subliminal key K1 with Uj and K2 with Uk, then it can encrypt
K2 with K1 and send it to Uj . In this way all three users share K2. This can be
extended to any number of users.

We define the new classes as follows.

– Class 3 contains protocols that satisfy A, B, C and D1.
– Class 4 contains protocols that satisfy A, B, C, D1 and D’2.
– Class 5 contains protocols that satisfy A, B, C, D1 and D’2 and D”2.

Now, the above protocols belong to the new class 4, while less secure protocols
such as the Burmester-Desmedt remain in class 3.

5 Conclusions and Further Works

We argued that the classification of CKDPs given in [4] is very restrictive. We
showed attacks on two CKDPs that were previously believed to belong to the
highest security class in this classification. We noted that many conference key
distribution protocols have inherent subliminal channels and in fact we are not
aware of any CKDP that is free from such channels. We argued that there is no
reason to separate protocols based on the type of the attack, active or passive,
used for establishment of the channel.

However we separate attacks that aim at establishing a subliminal channel
and those that remove the assurance that each user can compute the same con-
ference key with all other participants (although he might be excluded from
some subliminal discussions). By replacing class 4 in the classification given in
[4] with two new classes, 4 and 5, we can retain the original framework and at the
same time differentiate between protocols that have different resistance against
insiders’ attacks. The construction of a CKDP that satisfy the requirements of
class 5 remains an open and challenging problem.
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Abstract. We examine the security of block ciphers on the view point
of pseudorandomness. Firstly we show that the four round (unbalanced)
MISTY-type and the three round dual MISTY-type transformations are
pseudorandom permutation ensembles. Secondly we prove that the three
round KASUMI is not a pseudorandom permutation ensemble but the
four round KASUMI is a pseudorandom permutation ensemble. We pro-
vide simplified probability-theoretic proofs for non-adaptive distinguish-
ers.

Key words: Distinguisher, (Super-)Pseudorandom permutation ensemble,
MISTY-type transformation, KASUMI.

1 Introduction

The notion of pseudorandomness has applied to a method of analyzing prov-
ably the security of block ciphers together with the provable security against
differential and linear cryptanalysis. Luby and Rackoff[5] introduced a theoreti-
cal model for the security of block ciphers by using the notion of pseudorandom
and super-pseudorandom permutations.

A block cipher can be regarded as a family of permutations on a message
space indexed by a secret key. That is, one secret key determines a permutation
on the given message space. A pseudorandom permutation can be interpreted as
a block cipher that no attacker with polynomially many encryption queries can
distinguish between the block cipher and the truly random permutation. We call
a block cipher is a super-pseudorandom permutation if no attacker with poly-
nomially many encryption and decryption queries can distinguish between the
block cipher and the truly random permutation. Maurer[8] presented a simplified
proof of Luby-Rackoff’s results for non-adaptive distinguishers and provided new
insight into the relation between complexity-theoretic and probability-theoretic
results. Naor and Reingold[9] proposed the revised construction by showing that
the two round Feistel-type transformation was sufficient together with initial and
final independent permutations to be a super-pseudorandom permutation. Iwata
and Kurosawa[3] proved that the five round RC6 and the three round Serpent
were super-pseudorandom permutations for non-adaptive distinguishers.
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In [5], Luby and Rackoff used the Feistel-type transformation of DES in or-
der to construct a pseudorandom and super-pseudorandom permutation from a
pseudorandom function. They showed that the Feistel-type transformation with
three rounds yielded pseudorandom permutation and with four rounds yielded
super-pseudorandom permutation under the assumption that each round func-
tion was a pseudorandom function.

In this paper we examine the pseudorandomness of the MISTY-type transfor-
mation which is not a Feistel-type and apply this results to analyze the pseudo-
randomness of the 3GPP block cipher KASUMI. Sakurai and Zheng[10] showed
that the three round MISTY-type transformation is not a pseudorandom permu-
tation ensemble. We prove that the four round (unbalanced) MISTY-type and
the three round dual MISTY-type transformations are pseudorandom permu-
tation ensembles. The overall structure of KASUMI is a Feistel-type structure,
but its round function doesn’t seem to be a pseudorandom function. Thus we
cannot straightforwardly apply the Luby-Rackoff’s result to KASUMI. We prove
that the three round KASUMI is not a pseudorandom permutation but the four
round KASUMI is a pseudorandom permutation. Through out this paper we use
the simplified probability-theoretic proofs for non-adaptive distinguishers.

Recently, Iwata et al.[4] proved that the five round MISTY-type transforma-
tion was super-pseudorandom and Gilbert and Minier[2] showed that the four
round MISTY-type and three round dual MISTY-type transformations were
pseudorandom and the five round MISTY and dual MISTY-type transforma-
tions were super-pseudorandom. These two results included some parts of ours,
however ours is obtained found independently and our results about the pseu-
dorandomness of the 3GPP block cipher KASUMI is new.

2 Preliminaries

2.1 Definitions

Let Im denote the set of all m-bit strings and Ωm be the set of all permutations
from Im to itself where m is a positive integer. That is,

Ωm = {π : Im → Im | π is a bijection} .

Definition 1 Ωm is called a TPE(truly random permutation ensemble) if all
permutations in Ωm are uniformly distributed. That is, for any permutation π ∈
Ωm, Pr(π) = 1

2m! .

We consider the following security model. Let D be computationally un-
bounded distinguisher with an oracle O. The oracle O chooses randomly a per-
mutation π from Ωm or from a permutation ensemble Ψm ⊂ Ωm. For an m-bit
block cipher, Ψm is the set of permutations obtained from all the secret keys. The
purpose of the distinguisher D is to distinguish whether the oracle O implements
Ωm or Ψm.
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Definition 2 Let D be a distinguisher, Ωm be a TPE, and Ψm(⊂ Ωm) be a
permutation ensemble. The advantage AdvD of the distinguisher D is defined by

AdvD =
∣∣pΩm − pΨm

∣∣ ,

where
pΩm = Pr(D outputs 1 | O ← Ωm)

and
pΨm = Pr(D outputs 1 | O ← Ψm) .

Assume that the distinguisher D is restricted to make at most poly(m) queries
to the oracle O, where poly(m) is some polynomial in m. We call D is a pseudo-
random distinguisher if it queries x and the oracle answers y = π(x), where π is
a randomly chosen permutation by O. We say that D is a super-pseudorandom
distinguisher if it is a pseudorandom distinguisher and also allowed to query y
and receives x = π−1(y) from the oracle O.

Definition 3 A function h : N → R is negligible if for any constant c > 0 and
all sufficiently large m ∈ N ,

h(m) <
1
mc

.

Definition 4 Let Ψm be an efficiently computable permutation ensemble. We
call Ψm is a PPE(pseudorandom permutation ensemble) if AdvD is negligible for
any pseudorandom distinguisher D.

Definition 5 Let Ψm be an efficiently computable permutation ensemble. We
call Ψm is a SPPE(super-pseudorandom permutation ensemble) if AdvD is neg-
ligible for any super-pseudorandom distinguisher D.

In Definition 4 and 5, a permutation ensemble is efficiently computable if
all permutations in the ensemble can be computed efficiently. See [9] for the
rigorous definition of this. It is reasonable assumption that Ψm is an efficiently
computable permutation ensemble if it is obtained from an m-bit block cipher.
Hence we assume that any permutation ensemble obtained from a block cipher
is efficiently computable. Throughout this paper, we consider a non-adaptive
distinguisher which sends all the queries to the oracle at the same time.

2.2 Some Basic Lemmas

Before we proceed to the main results, we state simple but useful lemmas.

Lemma 1. Let π be a permutation chosen in a TPE Ωm. Then for any x, y ∈
Im, Pr(π(x) = y) = 1

2m .
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Proof. The assertion is straightforward since

Pr(π(x) = y) =
#{π ∈ Ωm | π(x) = y}

#(Ωm)
=

(2m − 1)!
2m!

=
1
2m

.

��
Lemma 2. Let π1 and π2 be two permutations independently chosen from a
TPE Ωm. Then for any x1, x2, y ∈ Im,

Pr (π1(x1)⊕ π2(x2) = y) =
1
2m

,

where ⊕ denote the bitwise exclusive-or.
Proof. Let Γ be the event of π1(x1)⊕π2(x2) = y and Ai be the event of π1(x1) =
wi for 1 ≤ i ≤ 2m, where Im = {w1, · · · , w2m}. Then Ωm = ∪2m

i=1Ai is a disjoint
union and

Pr(Γ ∩Ai) = Pr(π1(x1)⊕ π2(x2) = y, π1(x1) = wi)
= Pr(π1(x1) = wi) · Pr(π2(x2) = y ⊕ wi) ,

since π1 and π2 are independently chosen. Hence by Lemma 1, we obtain that

Pr(Γ ) =
2m∑
i=1

Pr(Γ ∩Ai)

= 2m ·
(

1
2m

)2

=
1
2m

.

��
Lemma 3. Let π be a permutation chosen from a TPE Ωm. Then for any x1 �=
x2, y ∈ Im,

Pr(π(x1)⊕ π(x2) = y) =
{

1
2m−1 if y �= 0 ,
0 otherwise.

Proof. Let Γ be the event of π(x1)⊕π(x2) = y and Ai be the event of π(x1) = wi

for 1 ≤ i ≤ 2m, where Im = {w1, · · · , w2m}. If y = 0, Pr(Γ ) = 0 since x1 �= x2

and π is a bijection. So we consider the case of y �= 0. Observe that

Pr(Γ ∩Ai) = Pr(π(x1)⊕ π(x2) = y, π(x1) = wi)
= Pr(π(x1) = wi, π(x2) = y ⊕ wi)

=
(2m − 2)!

2m!
=

1
2m(2m − 1)

.

Thus if y �= 0, we obtain that

Pr(Γ ) =
2m∑
i=1

Pr(Γ ∩Ai) = 2m · 1
2m(2m − 1)

=
1

2m − 1
.

��
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Lemma 4. Let π1 and π2 be two permutations independently chosen from a
TPE Ωm. Then for any a, b, c, d, y ∈ Im, such that a �= b and c �= d,

Pr (π1(a)⊕ π1(b)⊕ π2(c)⊕ π2(d) = y) <
1

2m−1
, for m ≥ 2.

Proof. Let Γ be the event of π1(a) ⊕ π1(b) ⊕ π2(c) ⊕ π2(d) = y and Aj be the
event of π1(a) ⊕ π1(b) = wj for 1 ≤ j ≤ 2m, where Im = {w1, · · · , w2m}. Then
by Lemma 3, we obtain that

Pr(Γ ∩Aj) = Pr(π1(a)⊕ π1(b) = wj) · Pr(π2(c)⊕ π2(d) = y ⊕ wj)

≤
(

1
2m − 1

)2

.

Therefore

Pr(Γ ) =
2m∑
j=1

Pr(Γ ∩Aj)

≤ 2m ·
(

1
2m − 1

)2

<
1

2m−1
, for m ≥ 2.

��

3 Pseudorandomness of the MISTY-Type Transformation

Matsui[6] introduced another structure of block ciphers with provable security
against differential and linear cryptanalysis which was different from Feistel-
type. This structure was applied to the block cipher MISTY[7] and KASUMI[1]
later, so we call this as MISTY-type transformation. In this section we examine
the pseudorandomness of the MISTY-type transformation.

Definition 6 For any n-bit permutation f ∈ Ωn, 2n-bit MISTY-type permuta-
tion Mf ∈ Ω2n is defined by

Mf(L,R) = (R, f(L)⊕R) , where L,R ∈ In .

Definition 7 For any n-bit permutation g ∈ Ωn, 2n-bit dual MISTY-type trans-
formation DMg ∈ Ω2n is defined by

DMg(L,R) = (g(L⊕R), L) , where L,R ∈ In .

Note that DMf−1 is the inverse permutation of Mf . Sakurai and Zheng[10]
showed that Mf3 ◦Mf2 ◦Mf1 was not a 2n-bit PPE though each fi is n-bit PPE.
We show that Mf4 ◦Mf3 ◦Mf2 ◦Mf1 is a 2n-bit PPE under the assumption
that each fi(i = 1, 2, 3, 4) is an n-bit PPE.
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Theorem 1 If f1, f2, f3, and f4 are independently chosen from an n-bit PPE,
then the four round MISTY-type transformation Mf4 ◦Mf3 ◦Mf2 ◦Mf1 is a
2n-bit PPE.

Proof. Without loss of generality, we assume that fi’s are independently chosen
from the TPE Ωn. Let Ψ2n be the set of all permutations over I2n obtained
from Mf4 ◦Mf3 ◦Mf2 ◦Mf1 and the i-th round output of this permutation is
defined by (Li, Ri) for i = 1, 2, 3, 4 where (L,R) is the 2n-bit input. That is,
(Li, Ri) = (Mfi ◦ · · · ◦Mf1)(L,R).

We assume that the distinguisher D makes t calls to the oracle O. In the
i-th oracle call, D sends a query (L(i), R(i)) to O and receives the corresponding
output (Y (i)

L , Y
(i)
R ) = π(L(i), R(i)), where π is the randomly chosen permutation

by O from Ω2n or Ψ2n.
Let AL denote the event that L(1)

2 , · · · , L(t)
2 are all distinct and AR denote

the event that R(1)
2 , · · · , R(t)

2 are all distinct. If AL occurs, then we can see
that L(1)

4 , · · · , L(t)
4 are completely random since L(i)

4 = f3(L
(i)
2 ) ⊕ R(i)

2 and the
outputs of f3 are completely random. Similarly, if AR occurs, then R(1)

4 , · · · , R(t)
4

are completely random. Therefore, if AL and AR occur, then AdvD is bounded
above as follows:

AdvD ≤ 1−Pr(AL ∩AR) ≤
∑

1≤i<j≤t

Pr(L(i)
2 = L

(j)
2 ) +

∑
1≤i<j≤t

Pr(R(i)
2 = R

(j)
2 ) .

Now we estimate Pr(L(i)
2 = L

(j)
2 ) and Pr(R(i)

2 = R
(j)
2 ) for any 1 ≤ i < j ≤ t.

Fix (L(i), R(i)) �= (L(j), R(j)) arbitrarily. We have the following three cases.
Case 1: L(i) �= L(j) and R(i) = R(j) = R0. Observe that L

(i)
2 = f1(L(i))⊕R0

and L(j)
2 = f1(L(j))⊕R0. Then we obtain by Lemma 3 that

Pr(L(i)
2 = L

(j)
2 ) = Pr(f1(L(i)) = f1(L(j))) ≤ 1

2n − 1
,

since f1 is a truly random permutation. By similar process we also obtain that

Pr(R(i)
2 = R

(j)
2 ) ≤ 1

2n − 1
.

Case 2: L(i) = L(j) = L0 and R(i) �= R(j). In this case it is easy to see that

Pr(L(i)
2 = L

(j)
2 ) = Pr(R(i) = R(j)) = 0

and by Lemma 3,

Pr(R(i)
2 = R

(j)
2 ) = Pr(f2(R(i))⊕ f2(R(j)) = R(i) ⊕R(j))

≤ 1
2n − 1

,

since f2 is a truly random permutation.
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Case 3: L(i) �= L(j) and R(i) �= R(j). Observe that by Lemma 3,

Pr(L(i)
2 = L

(j)
2 ) = Pr(f1(L(i))⊕ f1(L(j)) = R(i) ⊕R(j))

≤ 1
2n − 1

and by Lemma 4,

Pr(R(i)
2 = R

(j)
2 ) = Pr(f1(L(i))⊕ f1(L(j))⊕ f2(R(i))⊕ f2(R(j)) = R(i) ⊕R(j))

<
1

2n−1
for n ≥ 2 .

Hence, for any case,

Pr(L(i)
2 = L

(j)
2 ) ≤ 1

2n − 1
and Pr(R(i)

2 = R
(j)
2 ) <

1
2n−1

hold for n ≥ 2. Therefore we obtain that for all n ≥ 2,

AdvD <
t(t− 1)

2
· 1
2n − 1

+
t(t− 1)

2
· 1
2n−1

<
t2 − t
2n

.

Consequently, AdvD is negligible, since t = poly(n). ��
Theorem 2 The two round dual MISTY-type transformation DMf2 ◦DMf1 is
not a 2n-bit PPE though f1 and f2 are chosen from the n-bit TPE Ωn.

Proof. Let Ψ2n be the set of all permutations over I2n obtained from DMf2 ◦
DMf1 . Consider a distinguisher D such as follows;

1. D chooses two queries (L(1), R(1)) and (L(2), R(2)) such that L(1) = R(1) = 0
and L(2) = R(2) = S �= 0.

2. D sends these two queries to the oracle O and receives the corresponding
answers (Y (1)

L , Y
(1)
R ) and (Y (2)

L , Y
(2)
R ) from the oracle.

3. D outputs 1 if and only if Y (1)
R = Y

(2)
R .

If the oracle implements the TPE Ω2n, then for any fixed x(1) = (L(1), R(1))
and x(2) = (L(2), R(2)), we obtain that

Pr(D outputs 1 | O ← Ω2n) =
#{π ∈ Ω2n | π(x(1))|R = π(x(2))|R}

#(Ω2n)

=
22n · (2n − 1) · (22n − 2)!

22n!
≤ 1

2n
,

where x|R denotes the right half n-bit of 2n-bit vector x.
On the other hand, if O implements Ψ2n, then for x(1) = (0, 0) and x(2) =

(S, S),
Pr(D outputs 1 | O ← Ψ2n) = 1 ,

since Y (1)
R = g1(0) = Y

(2)
R .
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Consequently we obtain that

AdvD =
∣∣pΩ2n − pΨ2n

∣∣ ≥ 1− 1
2n

,

which is non-negligible. ��

Theorem 3 Let g1, g2, g3 be independently chosen from an n-bit PPE. Then
the three round dual MISTY-type transformation DMg3 ◦ DMg2 ◦ DMg1 is a
2n-bit PPE.

Proof. It suffices to show the assertion under the assumption that g1, g2, g3
are independently chosen from the n-bit TPE Ωn. Let Ψ2n be the set of all
permutations over I2n obtained from DMg3 ◦DMg2 ◦DMg1 and the i-th round
output of this permutation is defined by (Li, Ri) for i = 1, 2, 3 where (L,R) is
the 2n-bit input.

We assume that the distinguisher D makes t calls to the oracle O. In the
i-th oracle call, D sends a query (L(i), R(i)) to O and receives the corresponding
output (Y (i)

L , Y
(i)
R ) = π(L(i), R(i)), where π is the randomly chosen permutation

by O from Ω2n or Ψ2n.
Let A be the event that L(1)

1 ⊕ R(1)
1 , · · · , L(t)

1 ⊕ R(t)
1 are all distinct. If A

occurs, then we can see that L(1)
3 , · · · , L(t)

3 are completely random since

L
(i)
3 = g3(L

(i)
1 ⊕ g2(L(i)

1 ⊕R(i)
1 ))

and the outputs of g2 and g3 are completely random. Similarly, we can see that if
A occurs, then R(1)

3 , · · · , R(t)
3 are also completely random. Therefore, if A occur,

then AdvD is bounded above as follows:

AdvD ≤ 1− Pr(A) ≤
∑

1≤i<j≤t

Pr(Bij) ,

where Bij is the event of L(i)
1 ⊕R(i)

1 = L
(j)
1 ⊕R(j)

1 .
We estimate the value of Pr(Bij) for any fixed 1 ≤ i < j ≤ t. We have the

following three cases as in the proof of Theorem 1.
Case 1: L(i) �= L(j) and R(i) = R(j) = R0. Observe that L

(i)
1 = g1(L(i) ⊕R0)

and L(j)
1 = g1(L(j) ⊕ R0). Then we obtain by Lemma 3 that

Pr(L(i)
1 ⊕R(i)

1 = L
(j)
1 ⊕R(j)

1 ) = Pr(g1(L(i) ⊕R0)⊕ g1(L(j) ⊕R0) = L(i) ⊕ L(j))

≤ 1
2n − 1

,

since g1 is a truly random permutation.
Case 2: L(i) = L(j) = L0 and R(i) �= R(j). We can see easily that

Pr(L(i)
1 ⊕R(i)

1 = L
(j)
1 ⊕R(j)

1 ) = Pr(g1(L0 ⊕R(i))⊕ g1(L0 ⊕R(j)) = 0) = 0 .



68 Ju-Sung Kang et al.

Case 3: L(i) �= L(j) and R(i) �= R(j). If L(i) ⊕R(i) = L(j) ⊕R(j), then

Pr(L(i)
1 ⊕R(i)

1 = L
(j)
1 ⊕R(j)

1 ) = Pr(L(i) = L(j)) = 0 .

Otherwise, by Lemma 3, we obtain that

Pr(L(i)
1 ⊕R(i)

1 = L
(j)
1 ⊕R(j)

1 )

= Pr(g1(L(i) ⊕R(i))⊕ g1(L(j) ⊕R(j)) = L(i) ⊕ L(j))

≤ 1
2n − 1

.

Therefore for any case, we obtain that Pr(Bij) ≤ 1
2n−1 . Thus

AdvD ≤ t(t− 1)
2

· 1
2n − 1

=
t2 − t

2n+1 − 2
,

which is negligible, since t = poly(n). ��

From Theorem 1 and 3, we obtain the following result.

Theorem 4 If f1, f2, f3, and f4 are independently chosen from an n-bit PPE,
then the four round MISTY-type transformation Mf4 ◦Mf3 ◦Mf2 ◦Mf1 is a
2n-bit SPPE for any non-adaptive distinguisher.

4 Pseudorandomness of KASUMI

In this section we investigate the pseudorandomness of the 3GPP algorithm
KASUMI[1]. KASUMI is a block cipher that forms the heart of the 3GPP
confidentiality and integrity algorithms. KASUMI is based on the block cipher
MISTY1 which is provable secure against differential and linear cryptanalysis.
We can classify the permutation of KASUMI into the following three stages;

– The overall permutation of KASUMI is a 64-bit permutation composed of
the eight round Feistel permutation with the two round permutation FO
and FL.

– FO function is a 32-bit permutation composed of the three round MISTY-
type transformation with the round permutation FI.

– FI function is a 16-bit permutation which is composed of the four round
unbalanced MISTY-type transformation obtained from 7-bit S-box S7 and
9-bit S-box S9.

By the similar argument as the proof of Theorem 1, we can easily obtain the
fact that FI function is a 16-bit PPE since S7 and S9 are bijective. On the
other hand we know that FO function is not a PPE, so it doesn’t seem that
the three round Feistel permutation of KASUMI is a PPE as the Luby-Rackoff
cipher. Since the pseudorandomness of KASUMI is guaranteed by FO function
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mainly, we omit FL function in this paper. On the reasonable assumption that
FI function is a PPE, we show that the four round KASUMI is a PPE.

We define two unbalanced MISTY-type transformations to examine accu-
rately the pseudorandomness of FI function.

Definition 8 Let n and m be two positive integer such that m ≤ n. Then for
any n-bit permutation f and m-bit permutation g, two (n +m)-bit unbalanced
MISTY-type transformation M̃f ∈ Ωn+m and M′

g ∈ Ωn+m are defined by

M̃f (L,R) = (R, f(L)⊕ R̃) ∈ Im × In , ∀(L,R) ∈ In × Im
and

M′
g(L,R) = (R, g(L)⊕R′) ∈ In × Im , ∀(L,R) ∈ Im × In ,

where for any n-bit vector x, x′ denotes the m-bit value obtained by discarding
the n −m most-significant end and for any m-bit vector y, ỹ denotes the n-bit
value obtained by adding n−m zero bits to the most-significant end.

Theorem 5 Let for any positive integer n and m such that m ≤ n, f1, f3 ∈ Ωn

and f2, f4 ∈ Ωm be independently chosen from two n-bit and m PPEs, respec-
tively. Then the four round unbalanced MISTY-type transformation M′

f4
◦M̃f3 ◦

M′
f2
◦ M̃f1 is an (n+m)-bit PPE.

Proof. By the similar process as the proof of Theorem 1, we can obtain that

ADvD ≤ (t2 − t)
(

1
2n+1 − 2

+
1
2m

)
.

Then the assertion follows easily, since t is a polynomial in n and m. ��

From Theorem 5, it becomes a reasonable assumption that FI function of
KASUMI is a PPE. In order to investigate the pseudorandomness of KASUMI,
we use a simplified figure of KASUMI. The four round simplified KASUMI is
illustrated in Figure 1, where x = (x1, x2, x3, x4) denotes a 4n-bit input value,
w = (w1, w2, w3, w4), y = (y1, y2, y3, y4), and z = (z1, z2, z3, z4) denote corre-
sponding outputs of the two, three, and four round KASUMI, respectively. Each
of xi, wi, yi, and zi is an n-bit value. We first prove the following theorem.

Theorem 6 The three round simplified KASUMI is not a 4n-bit PPE though
fi’s(i = 1, · · · , 9) of Figure 1 are independently chosen from an n-bit PPE.

Proof. Let Ψ4n be the set of all permutations over I4n obtained from the three
round simplified KASUMI. Consider a distinguisher D such as follows;

1. D chooses four 4n-bit queries x(1), x(2), x(3), and x(4) such that

x(1) = (0, 0, x3, x4) , x(2) = (x1, 0, x3, x4) ,

x(3) = (0, x2, x3, x4) , x(4) = (x1, x2, x3, x4) ,

where x1 �= 0 �= x2 and x3, x4 are fixed n-bit values.
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Fig. 1. Simplified four round KASUMI

2. D sends these four queries to the oracle O and receives the corresponding
answers (Y (i)

1 , Y
(i)
2 , Y

(i)
3 , Y

(i)
4 )(i = 1, 2, 3, 4) from the oracle.

3. D outputs 1 if and only if

Y
(1)
2 ⊕ Y (2)

2 ⊕ Y (3)
2 ⊕ Y (4)

2 = 0 .

If the oracle implements the TPE Ω4n, then we obtain that

Pr(D outputs 1 | O ← Ω4n) ≤ 24n(24n − 1)(24n − 2)23n(24n − 4)!
24n!

=
23n

24n − 3
≤ 1

2n−1
.
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On the other hand, if O implements Ψ4n, then for x(1) = (0, 0, x3, x4), x(2) =
(x1, 0, x3, x4), x(3) = (0, x2, x3, x4), and x(4) = (x1, x2, x3, x4), we can see from
Figure 1 that the corresponding 2n-bit inputs of the second round are

(F1(x3, x4)|L, F1(x3, x4)|R) , (F1(x3, x4)|L, x1 ⊕ F1(x3, x4)|R) ,
(x2 ⊕ F1(x3, x4)|L, F1(x3, x4)|R) , (x1 ⊕ F1(x3, x4)|L, x2 ⊕ F1(x3, x4)|R)

respectively, where F1 = Mf3 ◦Mf2 ◦Mf1 and (x|L, x|R) denote the left and
right n-bit block of 2n-bit value x. Thus we obtain by the similar argument of
Sakurai-Zheng[10] that

y
(1)
2 ⊕ y(2)

2 ⊕ y(3)
2 ⊕ y(4)

2 = 0

with probability 1.
Consequently we obtain that

AdvD =
∣∣pΩ4n − pΨ4n

∣∣ ≥ 1− 1
2n−1

,

which is non-negligible. ��
Theorem 7 If fi’s(i = 1, 2, · · · , 12) in Figure 1 are independently chosen from
an n-bit PPE, then the four round KASUMI is a 4n-bit PPE.

Proof. Assume that fi’s are independently chosen from the TPE Ωn. Let Ψ4n

be the set of all permutations over I4n obtained from the four round KASUMI.
Suppose that the distinguisher D makes t calls to the oracle O. In the i-th oracle
call, D sends a 4n-bit query x(i) = (x(i)

1 , x
(i)
2 , x

(i)
3 , x

(i)
4 ) to O and receives the

corresponding output

(Z(i)
1 , Z

(i)
2 , Z

(i)
3 , Z

(i)
4 ) = π((x(i)

1 , x
(i)
2 , x

(i)
3 , x

(i)
4 )) ,

where π is the randomly chosen permutation by O from Ω4n or Ψ4n.
Let Awj denote the event that the j-th block of the outputs of two round

KASUMI w(1)
j , · · · , w(t)

j are all distinct for j = 1, 2, 3, 4(see Figure 1). If Aw3

occurs, then we can see that z(1)
2 , · · · , z(t)

2 are completely random since the out-
puts of f8 are completely random. Furthermore we also see that z(1)

3 , · · · , z(t)
3 are

completely random because the outputs of f10 and f12 are completely random.
Similarly, if Aw4 occurs, then z(1)

1 , · · · , z(t)
1 and z(1)

4 , · · · , z(t)
4 are completely ran-

dom due to f7(f9) and f11, respectively. Therefore, if Aw3 and Aw4 occur, then
AdvD is bounded above as follows;

AdvD ≤ 1−Pr(Aw3∩Aw4 ) ≤
∑

1≤i<j≤t

Pr(w(i)
3 = w

(j)
3 )+

∑
1≤i<j≤t

Pr(w(i)
4 = w

(j)
4 ) .

We estimate the summands Pr(w(i)
3 = w

(j)
3 ) and Pr(w(i)

4 = w
(j)
4 ) for any

1 ≤ i < j ≤ t. Fix x(i) = (x(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 ) and x(j) = (x(j)

1 , x
(j)
2 , x

(j)
3 , x

(j)
4 )

arbitrarily. We separate the following four cases.
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Case 1: x(i)
1 �= x

(j)
1 . Consider the path x1 → f5 → w4. Then w

(i)
4 and w(j)

4

behave randomly since f5 is a truly random. So we obtain that Pr(w(i)
4 = w

(j)
4 ) =

1
2n . Similarly we also obtain that Pr(w(i)

3 = w
(j)
3 ) = 1

2n by considering the path
x1 → f5 → w3.

Case 2: x(i)
2 �= x

(j)
2 . Consider the path x2 → f4 → f6 → w3. Then w

(i)
3 and

w
(j)
3 are completely random. Thus Pr(w(i)

3 = w
(j)
3 ) = 1

2n holds. For w4, consider
the path x2 → f4 → w4, then we obtain that Pr(w(i)

4 = w
(j)
4 ) = 1

2n .
Case 3: x(i)

3 �= x
(j)
3 . Consider the path x3 → f2 → f4 → f6 → w3. Then

we can see that w(i)
3 and w(j)

3 are completely random. By considering the path
x3 → f2 → f5 → w4, also we know that w(i)

4 and w(j)
4 are completely random.

Hence we obtain that

Pr(w(i)
3 = w

(j)
3 ) = Pr(w(i)

4 = w
(j)
4 ) =

1
2n

.

Case 4: x(i)
4 �= x

(j)
4 . In this case by considering the two paths x4 → f1 →

f3 → f5 → w4 and x4 → f1 → f4 → f6 → w3, we obtain that

Pr(w(i)
3 = w

(j)
3 ) = Pr(w(i)

4 = w
(j)
4 ) =

1
2n

holds as the above three cases.
Therefore, for any case, we obtain that

Pr(w(i)
3 = w

(j)
3 ) = Pr(w(i)

4 = w
(j)
4 ) =

1
2n

.

This implies that AdvD ≤ t(t−1)
2n , which is negligible since t = poly(n). ��

Since the pseudorandomness of the inverse transformation of Feistel-type is
very similar to that of Feistel-type transformation, we get also the following fact.

Corollary 1. If fi’s(i = 1, 2, · · · , 12) in Figure 1 are independently chosen from
an n-bit PPE, then the four round KASUMI is a 4n-bit SPPE for any non-
adaptive distinguisher.

5 Conclusion

We examined the pseudorandomness of the (unbalanced) MISTY-type and dual
MISTY-type transformations, and by applying these results, also investigated
the pseudorandomness of the 3GPP block cipher KASUMI. We showed that the
four round (unbalanced) MISTY-type transformation is a pseudorandom permu-
tation ensemble. We also proved that the three round KASUMI is not a pseudo-
random permutation ensemble but the four round KASUMI is a pseudorandom
permutation ensemble. In this paper we provided simplified probability-theoretic
methods for non-adaptive distinguishers. By applying these proving methods to
another block ciphers, we expect to obtain easily some useful results related to
the pseudorandomness.
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Abstract. We show how to use ideal arithmetic in the divisor class
group of an affine normal subring of K[X, Y ] generated by monomials,
where K is a field, to design new public-key cryptosystems, whose secu-
rity is based on the difficulty of the discrete logarithm problem in the
divisor class group of that integral domain.

1 Introduction

The security of many cryptographic systems has been based on the difficulty
of several number theoretic problems. Prominent examples are the factoring
problem for integers [17,16] and the discrete logarithm problem (DLP) in the
multiplicative group of a finite field [15], in the class group of an order of a
quadratic field [4], in the group of points on an elliptic curve over a finite field
[12], in the group of points on a hyperelliptic curve over a finite field [13], and
others. There is, however, no guarantee that those problems remain difficult to
solve in the future. On the contrary, as the experience with the factoring problem
shows, unexpected breakthroughs are always possible. Therefore, it is important
to design cryptographic schemes in such a way that the underlying mathematical
problem can easily be replaced with another one.

This paper shows how to use ideal arithmetic in the divisor class group of an
affine normal subring of K[X,Y ] generated by monomials, where K is a field, to
design new public-key cryptosystems, whose security is based on the difficulty of
the discrete logarithm problem in the divisor class group of that integral domain.
We believe that our DLP is much more difficult than that of the class group of
an order of a quadratic number field.

2 Mathematical Background

Let R be an integral domain with quotient field K. If a is an integral ideal of
R, then any subset of K of the form 1

da, where d is a nonzero element of R, is
called a fractional ideal of R. If a and b are fractional ideals, then their product

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 74–83, 2001.
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ab = {
∑
finite

αβ | α ∈ a, β ∈ b}

is again a fractional ideal of R. The set F(R) of all nonzero fractional ideals of
R forms a commutative semigroup with identity R. A fractional ideal a is said
to be invertible if ab = R for some fractional ideal b of R. Clearly every nonzero
principal fractional ideals are invertible. The (residual) quotient of a over b

a : b = {α ∈ K | αb ⊆ a}
is a fractional ideal. For a fractional ideal a of an integral domain R with quotient
field K, av is defined as the fractional ideal R : (R : a) = (a−1)−1. A fractional
ideal a is called a divisorial ideal or v-ideal if av = a. The set D(R) of divisorial
ideals is a commutative semigroup with identity R under the v-product a ∗
b = (ab)v. Of course, D(R) is a group if and only if R is completely integrally
closed. In this case, the quotient group Cl(R) := D(R)/P(R) is called the divisor
class group of R, where P(R) is the subgroup of D(R) which consists of all
nonzero principal fractional ideals of R. Note that if R is a Dedekind domain
(equivalently, a one-dimensional Krull domain), for example, a maximal order of
a quadratic number field, then the definition of the divisor class group is equal to
that of the usual class group. Elements of Cl(R) will be denoted by [a]. Clearly,
if b ∈ [a], then b = αa for some α ∈ K. In this case we say that a and b are
equivalent, written a ∼ b.

Let α1, . . . , αs be elements in an integral domain R. Then we set

〈α1, . . . , αs〉 = {
s∑

i=1

βiαi | β1, . . . , βs ∈ R}.

Note that 〈α1, . . . , αs〉 is an ideal of R. We will call 〈α1, . . . , αs〉 the ideal gen-
erated by α1, . . . , αs. We say that an ideal a is finitely generated if there exist
α1, . . . , αs ∈ R such that a = 〈α1, . . . , αs〉, and we say that α1, . . . , αs is a basis
of a. Recall that an integral domain R is said to be Noetherian if it satisfies
the ascending chain condition on ideals. It is well-known that R is Noetherian if
and only if every ideal of R is finitely generated. Any unexplained notation or
terminology is standard like in [8].

The following results are easy to prove (or well-known) and we will use them
frequently without mention.

Proposition 1. Let R be an integral domain with quotient field K and let a, b,
and c be nonzero fractional ideals of R. Then

(1) (i) 〈α〉v = 〈α〉 for each 0 = α ∈ K; a ⊆ av.
(ii) If a ⊆ b, then av ⊆ bv.
(iii) (αa)v = αav; (av)v = av.

(2) (avb)v = (avbv)v = (ab)v.
(3) (a : b) : c = a : bc.
(4) If a is divisorial, then a : b = a : bv.
(5) If a is invertible, then ab : c = a(b : c) and b : ac = a−1(b : c).



76 Hwankoo Kim and SangJae Moon

Recall that an integral domain R is called a Mori domain if it satisfies the
ascending chain condition on divisorial ideals. Clearly the class of Noetherian
domains is contained in that of Mori domains.

Proposition 2. Let R be an integral domain with quotient field K.

(1) R is completely integrally closed if and only if a : a = R for each nonzero
fractional ideal a of R.

(2) R is a Krull domain if and only if it is a completely integrally closed Mori
domain.

(3) If R is completely integrally closed and a and b are divisorial, then a ∼ b if
and only if a : b is a principal fractional ideal.

Proof. (1) and (2) are well-known. (3) Assume that a ∼ b. Then a = αb for some
α ∈ K. Thus a : b = αb : b = α(b : b) = αR since R is completely integrally
closed. Conversely, assume that a : b is fractional principal, say, a : b = βR,
where β ∈ K. Then we have a = a : R = a : (bb−1)v = a : bb−1 = (a : b) : b−1 =
βR : b−1 = β(R : b−1) = βbv = βb, since R is completely integrally closed and
a is divisorial. Thus a ∼ b.

3 Computational Aspects

Let K be any field and let K[x1, . . . , xm] be a polynomial ring. Denoted by

Tm = {xs1
1 · · ·xsm

m | si ∈ N, i = 1, . . . , n}

the set of power products. Sometimes we will denote xs1
1 · · ·xsm

m by xs, where
s = (s1, . . . , sm) ∈ Nm . By a term order (or monomial order) on Tm we mean a
total order < on Tm satisfying the following two conditions:

(i) 1 < xs for all xs ∈ Tm,xs = 1;
(ii) if xs < xt, then xsxu < xtxu, for all xu ∈ Tm.

Note that every term order on Tm is a well-ordering [1, Theorem 1.4.6].
To introduce the concept of a Gröbner basis for the ideal, we fix some no-

tation. First we choose a term order on K[x1, . . . , xm]. Then for all 0 = f ∈
K[x1, . . . , xm], we may write

f = a1xs1 + a2xs2 + · · ·+ arxsr ,

where 0 = ai ∈ K,xsi ∈ Tm, and xs1 > xs2 > · · · > xsr . We will always try to
write our polynomials in this way. We define:

• lp(f) = xs1 , the leading power product of f ;
• lc(f) = a1, the leading coefficient of f .

We also define lp(0) = lc(0) = 0.
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Definition 1. A set of nonzero polynomials G = {g1, . . . , gt} contained in an
ideal a of the polynomial ring over a field, is called a Gröbner basis for a if and
only if for all f ∈ a such that f = 0, there exists i ∈ {1, . . . , t} such that lp(gi)
divides lp(f).

Buchberger’s Algorithm to compute Gröbner bases is given in [1, Algorithm
1.7.1] and many computer algebra systems including Macaulay 2 [9] implement a
version of Buchberger’s Algorithm for computing Gröbner bases. It is well-known
that if G = {g1, . . . , gt} is a Gröbner basis for the ideal a, then a = 〈g1, . . . , gt〉
[1, Corollary 1.6.3].

Definition 2. A Gröbner basis G = {g1, . . . , gt} is said to be reduced if, for all
i, lc(gi) = 1 and no nonzero term in gi is divisible by any lp(gj) for any j = i.

Theorem 1. [1, Theorem 1.8.7] Fix a term order. Then every nonzero ideal a
has a unique reduced Gröbner basis with respective to this term order.

Let R be an integral domain and let a and b be integral ideals of R. Then

a :R b = {r ∈ R | rb ⊆ a}
is also an ideal of R.

We show that if R = K[x1, . . . , xm] is a polynomial ring over a field K, a
(Gröbner) basis for the ideal a : b (resp., av) can be computed using a computer
algebra system. The following useful proposition relates the quotient operation
to the other operations:

Proposition 3. Let a, ai, b, bi and c be ideals in an integral domain R for 1 ≤
i ≤ r. Then

( r⋂
i=1

ai

)
:R b =

r⋂
i=1

(ai :R b), (1)

a :R
( r∑

i=1

bi

)
=

r⋂
i=1

(a :R bi), (2)

(a :R b) :R c = a :R bc. (3)

The actual computation can be carried out as follows:

Proposition 4. [18, Proposition 2.2.1] Let R be an integral domain with quo-
tient field K and let a = 〈a1, . . . , am〉 and b be integral ideals of R. Then:

R : a = (〈a1〉 :R 〈a2, . . . , am〉)a−1
1 (4)

b : a =
( m⋂

i=1

b(a1 · · · âi · · · am)
)
(a1 · · · am)−1. (5)
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Let R = K[x1, . . . , xn] be a polynomial ring over a field K. If 0 = f ∈ R and
a an ideal of R, we often write a :R f instead of a :R 〈f〉. Note that a special
case of equation (2) is that

a :R 〈f1, . . . , fr〉 =
r⋂

i=1

(a :R fi). (6)

We now turn to the question of how to compute generators of the ideal quotient
a :R b given generators of a and b. The following observation is the key step.

Theorem 2. [5, Theorem 4.4.11] Let a be an ideal and g an element of R =
K[x1, . . . , xn]. If {h1, . . . , hp} is a basis of the ideal a∩〈g〉, then {h1/g, . . . , hp/g}
is a basis of a :R 〈g〉.
• Theorem 2, together with an algorithm for computing intersections of ideals [1,
Section 2.3] and equation (6), immediately leads to an algorithm for computing
a basis of an ideal quotient a :R b and hence a basis of the divisorial closure av

of a by equation (4).
• Equation (5), together with an algorithm for computing intersections of ideals,
immediately leads to an algorithm for computing a basis of an ideal quotient
b : a

Let R be an affine normal(= integrally closed) subring of T = K[X,Y ]
generated by monomials with R ⊆ T integral, where K is a field. Then R is
isomorphic to either T or Rn,j := K[Xn, XY j , X2Y 2j , . . . , Xn−1Y (n−1)j , Y n],
where 0 < j < n, gcd(j, n) = 1, and m denotes the smallest representative
in N of the congruence class of m modulo n [2, Theorem 2.5]. Note that Rn,j

is a two-dimensional Noetherian Krull domain which is Z+ × Z+-graded by
degX iY j = (i, j). The following result is due to D. F. Anderson [2, Theorem
4.4].

Theorem 3. Let Rn,j := K[Xn, XY j , X2Y 2j , . . . , Xn−1Y (n−1)j , Y n],
where K is a field, 0 < j < n, gcd(j, n) = 1, and m denotes the smallest
representative in N of the congruence class of m modulo n. Then Cl(Rn,j) ∼=
Z/nZ.

Let
p1 = 〈Xn, XY j , X2Y 2j , . . . , Xn−1Y (n−1)j〉

and
p2 = 〈XY j , X2Y 2j , . . . , Xn−1Y (n−1)j , Y n〉.

Then from the proof of Theorem 3 we know that Cl(Rn,j) can be generated by
either [p1] or [p2].

We do not know whether it is possible to compute a Gröbner basis of a
nonzero ideal of K[Xn, XY j , X2Y 2j , . . . , Xn−1Y (n−1)j , Y n]. However, at least
we can compute a (reduced) Gröbner basis of a nonzero ideal of the following
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special ring: Rn,1 = K[Xn, XY, Y n], whereK is a computable field, for example,
Q or a finite field. Indeed, it is not difficult to see that Rn,1

∼= K[x, y, z]/〈zn−xy〉,
where x, y, and z are indeterminates. Since we can compute this isomorphism
using a computer algebra system, we may assume that Rn,1 = K[x, y, z]/〈zn −
xy〉. An explicit method for computing the sum and product operations in the
quotient ring Rn,1 is given in [5, section 5.3].

Since most algebraic properties of the ideal are easily (i.e., in polynomial
time) deduced from a Gröbner basis, the complexity of Gröbner basis algorithm
is an important problem. In [19], F. Winkler gave an upper bound for the degrees
of the polynomials which appear during the computation of a Gröbner basis of
an ideal in K[x, y, z]. This bound is (8D+1)2d, where D (resp. d) is the maximal
(resp. minimal) degree of the members of the initial system of generators. How-
ever, as mentioned in [19], this minimal degree usually drops during the Gröbner
basis computation, thus giving better and better bounds for the actual result of
the computation.

In the next section, we show that each divisor class of divisorial ideals of
Rn,1 contains a “representative” ideal. Indeed, its proof immediately leads to an
algorithm for finding such a representative ideal. This can then be used as the
basis of our new public-key cryptosystems.

4 The New Cryptosystem

Let ā be a nonprincipal divisorial ideal of Rn,1. Then ā = a/〈zn − xy〉 for
some ideal a of K[x, y, z]. Thus by Theorem 1 there exists a unique reduced
Gröbner basis {g1, . . . , gm}. Now we can compute the greatest common divisor
of g1, . . . , gm as in [1, section 2.3]. Let g = gcd(g1, . . . , gm). Then for each i we
have gi = gg′i for some g′i ∈ K[x, y, z]. Set a′ = 〈g′1, . . . , g′m〉. Then {g′1, . . . , g′m}
is the unique reduced Gröbner basis for a′. Note that gcd(g′1, . . . , g′m) = 1. We
define Red(ā) = a′/〈zn − xy〉 and we say that ā is reduced if Red(ā) = ā. Note
that Red(ā) is a nonprincipal divisorial ideal of Rn,1 and [Red(ā)] = [ā]. Now
we show that there exists only one reduced ideal in every divisor class. To do
this end, it suffices to show that if b̄ is a nonprincipal divisorial ideal of Rn,1

such that b̄ ∈ [ā], then Red(ā) = Red(b̄). Let b ⊂ K[x, y, z] be an ideal such that
b̄ = b/〈zn−xy〉. Then again by Theorem 1 there exists a unique reduced Gröbner
basis {h1, . . . , hl} for the ideal b. Since b̄ ∈ [ā], we have b = fa for some f . Note
that {fgg′1, . . . , fgg′m} is also a reduced Gröbner basis for b. By the uniqueness
of the reduced Gröbner basis for b, we have l = m. Let h = gcd(h1, . . . , hm).
Then for each i, hi = hh′i, where each h

′
i ∈ K[x, y, z]. Let b′ = 〈h′1, . . . , h′m〉. Then

gcd(h′1, . . . , h
′
m) = 1 andRed(b̄) = b′/〈zn−xy〉. Note that {hh′1, . . . , hh′m} is also

a reduced Gröbner basis for b. Since {fgg′1, . . . , fgg′m} = {hh′1, . . . , hh′m} again
by the uniqueness of the reduced Gröbner basis for b, we have fg = h by the
uniqueness of the greatest common divisor. Thus {g′1, . . . , g′m} = {h′1, . . . , h′m}
and so a′ = b′. Hence Red(ā) = Red(b̄).
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We identify each divisor class of the divisor class group with the unique
reduced ideal. Hence we define the operation in the class group as ideal v-
multiplication followed by reduction, i.e., all arithmetic will be performed with
reduced ideals.

The security of our proposed public-key cryptosystems is based on the diffi-
culty of the DLP in the divisor class group of an affine normal subring ofK[X,Y ]
generated by monomials, whereK is a field. We believe that this problem is much
more difficult than the DLP in the class group of an order of a quadratic field,
because the ideal (ax)v is “masked” by the operation v. That is, it is also very
difficult to calculate ax from (ax)v.

Discrete Logarithm Problem in Divisor Class Groups. Given divisorial
ideals a and b, compute x ∈ N such that

[b] = [a]x (i.e., b ∼ (ax)v),

if such an x exists.

Although we can obtain analogs of well-known public-key cryptosystems
based on the (original) DLP, we present here only an analog of the ElGamal
encryption and of the Diffie-Helman key exchange system employing the divisor
class group of the integral domain Rn,1.

4.1 Analog of ElGamal

Let n be any positive integer such that the DLP in Cl(Rn,1) is intractable and
let a be a reduced ideal of Rn,1 such that [a] is a primitive element of Cl(Rn,1).
Let b = Red

(
(aa)v

)
. Let m be the plaintext, where m is a reduced ideal of Rn,1.

For a secret random integer k (1 ≤ k < n), define

E(m, k) = (c1, c2),

where

c1 = Red
(
(ak)v

)
and c2 = Red

(
(mbk)v

)
.

For two reduced ideals c1 and c2, define

D(c1, c2) = Red
((

c2(ca1)
−1
)
v

)
.
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Verification. The decryption of the above algorithm allows recovery of original
plaintext m since

DE(m, k) = D
(
Red

(
(ak)v

)
, Red

(
(mbk)v

))

= Red
((
Red

(
(mbk)v

)((
Red

(
(ak)v

))a)−1
)

v

)

= Red
(((

mbk
)
v

(
((ak)v)a

)−1
)

v

)

= Red
((

m
(
bk(bk)−1

)
v

)
v

)

= Red
(
(m)v

)

= Red(m)
= m.

4.2 Analog of the Diffie-Helman Key Exchange

We now set up a method similar to that of [7] for a secret key exchange. Two
users Alice and Bob select a positive integer n such that the DLP on Cl(Rn,1)
is intractable and a reduced ideal a of Rn,1. The integer n, the integral domain
Rn,1, and the ideal a can be made public.

(1) Alice selects a random integer x and computes a reduced ideal b such
that

b ∼ (ax)v.

Alice sends b to Bob.
(2) Bob selects a random integer y and computes a reduced ideal c such that

c ∼ (ay)v.

Bob sends c to Alice.
(3) Alice computes a reduced ideal k1 ∼ (cx)v and Bob computes a reduced

ideal k2 ∼ (by)v.

Verification. Since k1 ∼ (cx)v ∼ (((ay)v)x)v = (((ax)v)y)v ∼ (by)v ∼ k2, Alice
and Bob have a common secret key k1 = k2.

4.3 Security Aspects

The security of our proposed public-key cryptosystems is based on the difficulty
of the DLP in the divisor class group of the integral domain Rn,1. For our
proposed public-key cryptosystems, we can choose any positive integer n and
any computable field K as a coefficient ring such that the DLP in Cl(Rn,1) is
intractable. Thus, to avoid brute force attack, we have to choose a sufficiently
large positive integer n. We do not know the key size for a secure system yet.
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In [14,10], a subexponential-time algorithm for computing class groups of
imaginary quadratic orders in number fields was invented by J. L. Hafner and
K. S. McCurley and it was shown how to use this algorithm and the index-
calculus method to calculate discrete logarithms. The improved algorithms for
computing class groups to simplify the index-calculus algorithm in class groups
were presented in [3,11]. To the best of our knowledge, there is no subexponential-
time algorithm for computing discrete logarithm in our divisor class groups.
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Abstract. We show for the first time how to implement cryptographic
protocols based on class groups of algebraic number fields of degree > 2.
We describe how the involved objects can be represented and how the
arithmetic in class groups can be realized efficiently. To speed up the
arithmetic we present our new method for multiplication of ideals. Fur-
thermore we show how to generate cryptographically suitable algebraic
number fields. Besides, we give a numerical example and analyse our run
times.

1 Introduction

Succesful e-business requires secure authentication and binding communication.
To reach this goal one uses digital signature schemes. Basically, the public key
cryptosystems (including the signature schemes) used today in practice are based
on the following two families of computational problems:

1. the integer factoring problem and the discrete log problem in finite fields
(e.g. RSA or DSA)

2. the discrete log problem in the group of points of an elliptic curve over a
finite field (e.g. ECDSA)

But it is absolutely unclear whether these problems remain difficult in the future.
On the contrary, in the last 15 years there was very big progress regarding
the development of efficient factoring algorithms and discrete log algorithms for
finite fields ([21]). Furthermore, the crypto community found again and again
algorithms that solve very efficiently the discrete log problem for families of
elliptic curves over finite fields such that these are useless for cryptography ([27,
15, 36, 37]). Therefore, a major task of today’s public key cryptography
is the search for new computational problems which can be used for
the construction of secure and efficient public key cryptosystems.

In [9] the discrete log problem in class groups of algebraic number fields
(NFDL) was suggested. Recently the root problem was introduced as special
case of NFDL [7]: Given a class group Cl of an order of an algebraic number
field, a prime number p which does not divide the order of Cl, and a group
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element α, find the pth root of α. The NFDL and the root problem seem to
be computational problems as desired: The best known algorithms require the
solution of an index calculus problem and many shortest vector problems in
lattices. Firstly the complexity is therefore subexponential in the binary length
of the discriminant and exponentially in the degree of the number field (see [9]).
Secondly solving NFDL hence is independent of the basic problems in public key
cryptography used today.

In practice, however, many problems remained to be solved. Since no efficient
algorithm is known for computing the class number (i.e. the order of the class
group), the well known signature protocols (such as DSA, ElGamal, RSA) are
not applicable over number fields. Very recently, modifications of these protocols
resulted in protocols which can be used in number fields. They were introduced
and analysed in [6, 7]. It was shown why the root problem in class groups of
algebraic number fields proves difficult. Note that optimized implementations of
signature schemes over imaginary quadratic number fields (degree of the number
field is 2) are more efficient than implementations of the RSA signature scheme
([7]). In this paper we consider number fields of degree > 2. The root problem of
these number fields is even harder than in the imaginary quadratic case (see [9]).
But number fields of degree > 2 raise further problems: As far as the arithmetic
is concerned, deciding equality of ideal classes is far from being trivial. Another
difficulty arises from the generation of cryptographically suited class groups,
since in general, class groups of number fields of degree > 2 are very small
whereas we need large class groups.

Although approaches to these problems are known in theory, no implementa-
tion of a cryptosystem based on class groups of algebraic number fields of degree
> 2 was done so far. In this paper, we describe our first implementation of such
a cryptosystem (signature scheme). Besides, we explain our new method for the
multiplication of ideals which leads to a faster signing and verification procedure.

This paper is organized as follows:
In section 2 we will explain our representation of the mathematical objects

and the arithmetic in number fields and class groups. Particularly, we shall ex-
plain our new method for the multiplication of ideals and describe our imple-
mentation of equality decision in class groups.

In section 3, we shall discuss some requirements on cryptographically good
orders of algebraic number fields. We will suggest instances of cryptographically
good orders.

In section 4, we will present the RDSA signature scheme. Besides we shall
give an explicit example and run times.

In a final section 5, we shall argue that cryptosystems based on algebraic
number fields do have the potential to become practical in the future.

2 Efficient Arithmetic for Algebraic Number Fields

In the sequel we use the following notation: Let K be an algebraic number field
(in the following only called ”’number field”’) of degree n with signature (r, s)
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and with generating polynomial f . By σ1, . . . , σr we denote the real embeddings
and by σr+1, σr+1, . . . , σr+s, σr+s the nonreal embeddings of K into C. Let O
be the maximal order of K. (Fractional) ideals are called a, b, c, . . . , for prime
ideals we typically use pi. By Cl and by h = |Cl| we denote the class group and
the class number of K. For an ideal a we denote its equivalence class in the class
group by [a]. Finally, let ∆ be the discriminant of the number field K. For a
general introduction into the theory of number fields see for instance [2].

We explain in this section how to represent the mathematical objects that
we use in our implementation of cryptographic protocols. Some of the material
was already presented in [29]. Furthermore, we describe the basic algorithms we
need for implementing the cryptographic protocols. Besides, we explain our new
(faster) method for the multiplication of ideals and how we decide the equality
of ideal classes.

2.1 Representation of the Objects

Representing Number Fields and Orders. The key for representing number
fields and orders is the need to describe the multiplication of two algebraic
numbers in the field or the order. So we represent the algebraic number field
by its generating polynomial f . Computation in the number field then is the
same as polynomial arithmetic mod f . Therefore, we can represent an algebraic
number α by a polynomial mod f , i.e. we have α = 1

d

∑n−1
i=0 aix

i with d, ai ∈ ZZ.
Moreover, this implicitely represents the order ZZ[x]/(f) consisting of those

numbers with denominator d = 1. However, in general we do not want to com-
pute in this specific order but rather in the maximal order, which cannot always
be represented in this way. For this reason we additionally store a transformation
matrix T ∈ ZZn×n and a denominator d to describe the order with an ZZ ba-
sis (ω0, . . . , ωn−1) = (1, x, ..., xn−1) · 1dT , where ωi ∈ ZZ[x]/(f). Arithmetic could
then be done by using the matrices T and T−1 and doing polynomial arithmetic.
However, we do this only if T = In, otherwise we use an additional multiplica-
tion table which describes how two elements of the basis are multiplied, i.e. we
store wi,j,k, 0 ≤ i, j, k < n, with ωi · ωj =

∑n−1
k=0 wi,j,kωk. Such a multiplication

table is also sufficient to describe the order or number field, thus we can even
omit the polynomial in this case.

Representing Algebraic Numbers. We store algebraic numbers as a coef-
ficient vector with respect to a given ZZ basis and a denominator, where all
coefficients and the denominator are numbers in ZZ, i.e. α = 1

d

∑n−1
i=0 aiωi is

represented by the tuple (d, (a0, . . . , an−1)). Then addition and subtraction can
be done componentwise (once we found the common denominator of the two
numbers involved) and multiplication and division can be done using either
polynomial arithmetic or the multiplication table mentioned above.

Representing Ideals. (Fractional) ideals of the maximal order O can be repre-
sented by an ZZ basis that contains n algebraic integers. Choosing the coefficient
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vector in Qn to represent an algebraic integer and extracting the common de-
nominator, one can represent an ideal a by a n × n matrix A with integers
entries whose absolute value is bounded by |∆| and a denominator in ZZ. This is
the commonly used ZZ basis representation of ideals ([10]). We now explain our
more efficient method: We can determine the exponent of such an ideal, i.e. the
smallest positive number e ∈ ZZ with eO ⊂ a. Then the ideal can be represented
by e and Ā, where Ā is a matrix with entries in ZZ/eZZ obtained from A by
reducing each entry mod e. We store Ā as a reduced matrix – preferably with
as few columns as possible as described in [29]. There is a way to represent a by
a uniquely determined Ā first described by Howell [18], but this method maxi-
mizes the number of columns of Ā. Instead we use heuristics to try to have an Ā
with fewer columns. This leads to a representation that is not unique. Moreover,
computing e consumes some time and is not always needed, as any multiple of e
will do as well in this representation, possibly at the cost of having more columns
in Ā than necessary. In the following we shall call this representation the LiDIA
representation of ideals ([23]).

Equality of two ideals is then decided by first determining the true exponent
of both ideals and then computing the unique representation of the module
generated by the columns of Ā as described by Howell.

Representing Prime Ideals. For efficiency reasons, prime ideals are repre-
sented in a different way, as we know that in our applications prime ideals are
typically used to compute power products of prime ideals. Furthermore, when
dealing with class groups, we typically have to handle many prime ideals. Thus
we optimize for space efficiency and for an optimized computation of power prod-
ucts: We represent a prime ideal p by a prime p ∈ ZZ and an algebraic integer
π, such that p = pO + πO. Thus, an ideal a can be multiplied by p by adding
pa and πa, and powers of p can also easily be computed (pk = p�k/z�O + πkO,
where z denotes the ramification index of p at p).

Representing Ideal Classes. Ideal classes are represented by any of the LLL-
reduced ideals (see below), that are members of the class. Therefore, an ideal
class is represented by (e, Ā) where the positive integer e is the exponent of an
LLL-reduced ideal in the given ideal class (1 ≤ e ≤ |∆|) and Ā is a n× r matrix
(1 ≤ r ≤ n) with entries in ZZ/eZZ. (The LLL-reduced ideals can roughly be
seen as the equivalent of “small” remainders in computations modulo an integer.)
Note that this representation is not unique.

2.2 Basic Algorithms in Number Fields

Let K be an number field, O an order of K and a, b two ideals of O.

The Group Operation. As explained in the previous subsection, we represent
group elements (ideal classes) by one of its reduced representatives. Thus, we
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realize the group operation [a] · [b] by multiplying the representing ideals and
LLL-reducing the resulting ideal ab.

Reducing an Ideal. Ideal reduction is done as follows: Determine Minkowski’s
embedding which leads to a lattice. Using the LLL algorithm calculate a short
vector of this lattice. This is the representation of an LLL-reduced ideal in the
ideal class [a].

Ideal Multiplication. For ideal multiplication we use different algorithms depend-
ing on the type of ideal. If we multiply by an prime ideal we can use the method
mentioned above; in general we need to determine a matrix whose columns gen-
erate the product. That matrix will have n2 columns in the worst case and then
needs to be reduced to a matrix with at most n columns as described in [29].
In the following section we will introduce a new faster multiplication for ideals
which we will use in our signature scheme for signing a message.

Note that using the algorithm for group multiplication we can realize efficient
exponentiation in the group [28].

Determining the Maximal Order. For computing the maximal order, even
the simple Round 2 algorithm, as described e.g. in [10] is sufficient.

Choosing a Group Element at Random.

Theorem 1 ([1]). Let K be an number field with discriminant ∆. Under the
generalized Riemann hypothesis (GRH), the set of all prime ideals (more exactly,
of their classes) with norm ≤ 12(ln |∆|)2 form a generating system of the class
group of K. Depending on the signature of the field there are better bounds for
the norm known, e.g. the set of all prime ideals with norm ≤ 6(ln |∆|)2 in the
case of imaginary quadratic number fields.

Thus in this situation, we can choose an ideal class at random as follows:

1. Precomputation: Compute a generating system consisting of prime ideals
due to Bach’s theorem: {p1, . . . , pk}

2. Choose an exponent vector at random: (e1, . . . , ek) where 1 ≤ ei ≤ |∆|.
3. Compute a =

∏k
i=1 p

ei

i and return [a].

In practice we can use much smaller bounds than that given in Bach’s theo-
rem for determining a generating system. For example, Neis [30] succeeds in his
experiments using norm bounds of size O((ln |∆|)1.5) for class groups of number
fields of degree 3, 4, 6. Further experiments are needed: The larger the set the
larger is the probability of getting a generating system. The smaller the set the
more efficient the determination of a power product, but the less random the
result.
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Probability Distribution of the Pseudo–Random Element Choice Algorithm. We
show that the described algorithm for pseudorandomly choosing an element of
the class group of an number field leads to a distribution that is “almost” uni-
form.

Proposition 1. (Theorem 5.2 of [22]) Consider the imaginary quadratic num-
ber field K with discriminant ∆ ∈ ZZ<0, its class group Cl, and its class number
h = |Cl|. Let G be a generating system of Cl, [a] ∈ Cl. Then the number of
vectors r = (r([p]))[p]∈G ∈ {1, 2, . . . , |∆|}|G| solving

∏
[p]∈G[p]

r([p]) = [a] equals

|∆||G|
h
· exp(ε) ,

where ε ∈ IR, |ε| < h
|∆|−h < 1. For sufficiently large |∆| we have |ε| ≤ ln 2.

We would have a uniform distribution, if the number of such exponent vectors
r did not depend on the special choice of an ideal class [a] ∈ Cl. The difference
between our distribution and the uniform distribution is characterized by the
constant exp(ε) which depends on [a]. The closer exp(ε) is to 1, the more uniform
the resulting distribution is. For sufficiently large |∆| we have |ε| ≤ ln 2, i.e.
0.5 ≤ exp(ε) ≤ 2.

By analogy with the proof of the proposition above one can prove:

Theorem 2. Proposition 1 holds for all number fields K.
Thus as we have shown, the described algorithm for pseudorandomly choosing

an element of the class group of an number field leads to a distribution that is
“almost” uniform.

2.3 Advanced Algorithms in Number Fields

More Efficient Ideal Multiplication.

The Two-Element Representation of Ideals. Each fractional ideal a of the max-
imal order O of K has a two-element representation

a = aO + αO
where a ∈ ZZ>0 ∩ a, α ∈ a ([31]). Note that this representation of an ideal only
needs n+1 integers instead of n2 integers regarding the ZZ basis representation
and n · r integers (1 ≤ r ≤ n) regarding the LiDIA representation from the
previous subsection.

Determining Two-Element Representations. Given an ideal a in LiDIA rep-
resentation we want to determine one of its two-element representations. We
proceed as follows: We determine a ZZ basis representation of a. After, we
choose as first generator the integer a = N(a). Then we test for all α ∈{∑n−1

i=0 biαi : bi ∈ {−1, 0, 1}
}

whether aO + αO = a. Since aO + αO ⊆ a it
is sufficient to check whether N(aO+αO) = N(a). In this case we actually have
aO+αO = a. Note that although this algorithm is probabilistic it works fine in
practice.
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Efficient Ideal Multiplication. Given an ideal a in LiDIA representation (e, Ā)
and an ideal b = bO+βO in two-element representation we can determine their
product in LiDIA representation very efficiently using the equation

ab = a · b+ a · β .
For determining a · b we multiply all entries of Ā and the module e with the

integer b. For determining a · β we firstly multiply the algebraic integer β with
all columns of the ZZ generating system ( Ā︸︷︷︸

r

| e · In︸ ︷︷ ︸
n

) of a. Secondly, we reduce

the resulting matrix of n+ r columns to a matrix with at most n columns using
the Hermite normalform (HNF) computation (see [10, 40]). For adding a · b and
a ·β we substantially concatenate the columns of the representations of a · b and
a · β and reduce the resulting matrix of at most n + r columns to at most n
columns using the HNF computation. For the details we refer to [29].

The Tables 1,2,3 compare the run times for the multiplication of two ideals in
LiDIA representation with the run times for the multiplication of the same ideals
where one is given in LiDIA representation, the other is given in two-element
representation. We calculated in these experiments in Stender fields of degrees
n = 3, 4, and 6:

K = Q( n
√
Dn + 1) D ∈ ZZ≥1010

Stender fields shall prove to be suitable for cryptographic purposes, see section
3.2. We multiplied pseudo-random LLL-reduced ideals. The last column shows
the speed-up factor of the new method for ideal multiplication (”LiDIA repres.
∗ Two-Elt repres.”) compared with our usual method (”LiDIA repres. ∗ LiDIA
repres.”). All run times are given in milliseconds on an average (100 iterations).
The run times were made on a Celeron 433 MHz processor. The run times
show that our new method for the multiplication of ideals leads to a speed-
up of factor 4.5, 8, 14 for degrees of number fields 3, 4, 6, resp., compared with
the usual method. Note that the classical ideal multiplication using ZZ basis
representations of ideals are even slower why we had used originally the LiDIA
representation of ideals (see [30] for comparing run times).

Table 1. Run times for ideal multiplication, degree n = 3

D LiDIA ∗ LiDIA LiDIA ∗ Two-Elt factor

∼ 1010 6.205 1.54 4.02922

∼ 1020 6.575 1.547 4.25016

∼ 1030 6.630 1.364 4.8607

∼ 1040 6.746 1.434 4.70432

We shall explain in section 4 how we can use this faster multiplication method
for our cryptosystem.
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Table 2. Run times for ideal multiplication, degree n = 4

D LiDIA ∗ LiDIA LiDIA ∗ Two-Elt factor

∼ 1010 18.387 2.911 6.31639

∼ 1020 18.765 3.109 6.0357

∼ 1030 20.188 2.264 8.91696

∼ 1040 20.601 2.423 8.50227

Table 3. Run times for ideal multiplication, degree n = 6

D LiDIA ∗ LiDIA LiDIA ∗ Two-Elt factor

∼ 1010 104.850 7.797 13.4475

∼ 1020 111.676 8.037 13.8952

∼ 1030 116.265 9.427 12.3332

∼ 1040 126.866 8.285 15.3127

Deciding Equality of Ideal Classes.
Let a and b be two ideals in the maximal order of a fixed number field K of
degree n. We explain now how to decide whether or not [a] = [b].

First, let n = 2. If K is an imaginary quadratic field, there exists exactly
one reduced ideal in each ideal class, and there is a polynomial time reduction
algorithm. Reduce the given ideals a and b. We have [a] = [b] if and only if the
reduced ideals are equal. Alternatively, we can take the following approach and
decide the equivalence of two ideals with a test for a principal ideal: [a] = [b] if
and only if [ab−1] = [O], i.e. if ab−1 is a principal ideal αO with α ∈ K.

If K is a real quadratic field, the number of reduced ideals equivalent to O
can in practice efficiently be computed, provided the regulator of K is small (see
for instance [10]). In this case the principal ideal test consists of the reduction
of ab−1 followed by a table lookup.

A similar method is applied for number fields of degree larger than 2; however,
determining all reduced principal ideals is much more complicated and is the
most difficult problem when implementing cryptographic schemes in class groups
of number fields of degree > 2.

We will explain the terms introduced above more precisely: If a is a (frac-
tional) ideal in O, then we call a number µ ∈ a a minimum of a if there is no
element α �= 0 in a such that |σi(α)| < |σi(µ)| for 1 ≤ i ≤ m. The ideal a is called
reduced if the smallest positive rational integer in a is a minimum of a. The set of
all reduced ideals in [a] is called cycle of reduced ideals in the class of a (despite
the fact that its structure is in general much more complicated than in the case
of real quadratic fields where one really has a “cycle”). Its cardinality is finite
and called period length of a. It was proven in [5] that the period length is O(R),
where R denotes the regulator of K. Indeed, the cycle of reduced ideals is only
effectively computable if R is small. It is easy to see that those number fields
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whose maximal order has period length 1 are especially suited for our purposes.
In the next chapter, we will give instances of such fields.

We have implemented an efficient version of an algorithm for computing all
reduced principal ideals. The algorithm is a number geometric generalization of
Lagrange’s continued fraction algorithm and was presented by Buchmann [3]. It
was primarily designed for computing fundamental units, but it also allows to
compute the set of all reduced ideals in any given ideal class. Among the major
difficulties when implementing the algorithm was the correct handling of the pre-
cision for approximations of real numbers, and the efficient calculation of short
vectors in integer lattices. With the information computed by this algorithm, we
are able to decide the equality of ideal classes in arbitrary number fields.

3 Cryptographically Good Orders of Number Fields

In this section we discuss in a first part conditions for orders whose class groups
are to be used to implement the RDSA signature scheme from [7]. The statements
hold for the cryptographic schemes presented in [6], too. Therefore, a lot of
signature schemes could be implemented over algebraic number fields in the same
way. In a second part of this section we present families of orders of number fields
which fulfill the requirements listed before.

3.1 Requirements for Good Orders

The security of RDSA is based on the root problem. There are polynomial time
reductions from the root problem to the order problem (find a non zero multiple
of the order of a given group element) and from the order problem to the discrete
logarithm problem [7]. Therefore, as necessary conditions for the security of
RDSA those problems must remain intractable in our (class) group, particularly
under the usage of the known algorithms solving those problems. Given a prime p
and a finite abelian group extracting the p-th root of a group element α is to our
knowledge only possible if a multiple of ordα is known, for example the group
order. Therefore we must ensure that the known algorithms for determining the
group order (class number) and discrete logarithms in class groups of orders
of number fields will fail. Note that the calculation of the class number h is a
very hard computational problem. Its complexity is subexponential in the binary
length of the discriminant and exponential in the degree of the number field [9].
In the special case of imaginary quadratic number fields, computing the class
number or computing discrete logarithms is at least as difficult as factoring
integers [35].

Our analysis leads to the following necessary conditions for the class number
h of such orders:

– h must be large, i.e. the regulator R should be small.
This condition prevents the success of the following algorithms for determin-
ing the class number or discrete logarithms: The exhaustive search method,
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Pollard’s Rho method [33], Shanks’ Baby-Step-Giant-Step-algorithm [10] in-
cluding all variants (e.g. [8]), the Hafner-McCurley algorithm [26, 16], and
the index-calculus-algorithms (e.g. COS [14] or NFS [41]).
From the Brauer–Siegel–Theorem (see for instance [19]) we know that for
sufficiently large absolute values |∆| of the discriminant the product of regu-
lator and class number is of the order of magnitude of

√|∆|. As our experi-
ments show, we already have hR ∼√|∆| for discriminants of a few hundred
bits, which is the order of magnitude we are interested in. Unfortunately, the
regulator is typically large and the class number is small (see [11, 12, 13]).
There are, however, infinite families of number fields with small regulators,
thus with large class numbers, as we will see in the next subsection.

– h must have sufficiently large prime divisors.
We have to prevent a Pohlig-Hellman attack for the following DL-problem:
Given elements α, β ∈ Cl chosen at random such that β is in the subgroup
generated by α, determine an integer x such that αx = β.
If the class number can be determined, it is therefore necessary that the
order of α has a sufficiently large prime divisor such that the discrete log
algorithms mentioned above do not succeed in the cyclic subgroups of the
group generated by α. This happens with very high probability as long as
the class number has a sufficiently large prime divisor ([7, Th. 4]).
If the class number cannot be determined in practice (which is the typical
case), it seems to be a (weaker) sufficient condition that the class num-
ber (thus with high probability the element order as well) contains several
primes of medium size whose product is greater than some large bound (see
the appendix for details). This prevents the success of the following discrete
log algorithm: First determine a multiple of ordα using a method similar
to Pollard’s p − 1 factorization method ([32], see also [20]). Then apply
the Pohlig-Hellman algorithm. The first step does not succeed in our situ-
ation because of a combinatorical explosion since ordα has several primes
of medium size. Namely, given a group element α, for finding a multiple of
the B-smooth integer ord α one needs O(B · lnm/ lnB) group operations,
provided that an upper bound m for the element order ord α is known (see
[20]).

3.2 Constructing Good Orders

We consider briefly the special case n = 2. Imaginary quadratic number fields
always have regulator R = 1, thus large class numbers h (if the discriminant
is large in absolute terms). In [6], it was shown why their maximal orders are
suitable for cryptographic applications. Examples for suitable maximal orders of
real quadratic number fields are given in [6], too.

In this paper we are interested in number fields of degree > 2 because we
want to take advantage of the complexity of the NFDL and the root problem
which is exponential in the degree n of the number field. In the following we
present several examples for suitable families of orders of number fields.



94 Andreas Meyer, Stefan Neis, and Thomas Pfahler

Stender Fields. Stender [39] considers number fields

K = Q( n
√
Dn ± d), (1)

with defining polynomial f(x) = xn− (Dn±d) where n ∈ {3, 4, 6}, D, d ∈ ZZ>0,
and d satisfies some further condition. We call them Stender fields. Stender
explicitly determines a system of fundamental units of K which leads to the
exact value for the regulator. The bounds of Table 4 (see [7, 25]) and the explicit
examples from [7] show that the class numbers of Stender fields (at least in the
special case d = 1) are large while their regulators are small. (Note that for n = 3
we assume in the table that D3±1 ≥ 3 ·104 is cube-free). Furthermore, it can be
deduced from the heuristics of Cohen and Martinet [12, 13] the class numbers
seem to contain a large prime divisor. that the class numbers of number fields
with small regulator have at least one large prime divisor. The experiments of
Neis [30] confirm this.

Table 4. Bounds for regulator and class number of Stender fields, d = 1, D > 16,
(for details about the constant c, see [38])

Degree Upper bound for the regulator Lower bound for the class number

n = 3 R ≤ 2
3
ln(3 · (D3 ± 1)) h ≥ 1

6

s
D3 ± 1

ln3(3 · (D3 ± 1))

n = 4 R < 4 · (ln(
√

3 ·D))2 h >
c

136π
· D3

(ln(
√

3 ·D))2

n = 6 R < 9324 · ln(2D) h >
c

35812448 · π2
· D10

ln(2D)

Stender fields appear to have another advantage in the context of effective
computations in class groups: For n = 3 and d = 1, with the exception of
very few, but easily checkable cases, the period length of the maximal order
is exactly 1 (i.e. O is the only reduced principal ideal, see section 2.3) if D �≡
0 mod 3 [42]. For n ∈ {4, 6} we conjecture that there are infinite classes of
Stender fields with period length 1, too; our experiments seem to confirm this
conjecture (more detailed results will be published in a subsequent paper). As
this property greatly simplifies the equivalence test for ideals, such number fields
might prove especially useful for cryptographic applications.

Buchmann’s Number Fields of Degree 4. Let K = Q( 4
√−D), D = 4k4 +d,

k ∈ ZZ>0, d ∈ ZZ where 0 < |d| ≤ 4k. We consider the order O = ZZ( 4
√−D) of

K.
Depending on the values of d and k Buchmann [4] has determined the funda-

mental unit of O and the set of all minimas of O. Buchmann’s result is valuable
for us for two reasons: Firstly, with the knowledge of the fundamental unit of O
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we can see that the regulator of O is very small, thus the class number is large.
Secondly, the inverses of the minimas are the generators of the reduced principal
ideals. According to [4] the number of reduced principal ideals is very small in
all cases:

Case # reduced principal ideals in O
d = 1 1
d > 1 2
k ≥ 2 and d = −1 2
k ≥ 2 and d < −1 and d | 4k 4

Therefore, using the order O of the number field mentioned above we can
easily compute the cycle of reduced ideals in O and, thus, decide equality of
ideal classes. Obviously, the most efficient choice is d = 1.

Real Cubic Number Fields. Let ρl be the uniquely determined real root of
the irreducible polynomial f(X) = X3 + lX − 1 (l ∈ ZZ≥1) and let K = Q(ρl).
Then εl := 1

ρl
is a fundamental unit [25] and we have l < εl < l + 1.

Choose l such that 32-l and p2-∆l = 4l3+27 for all primes p ≥ 5. (E.g. choose
l such that the absolute value ∆l of the discriminant of K is prime.) According
to [25], the maximal order of K is O = ZZ[εl] and for ∆l ≥ 2 · 105 we have

h ≥ ∆l

20ln2∆l
.

Totally Imaginary Number Fields of Degree 4. Let K = Q(i,
√
δ) where

δ = m2+4i is square-free in ZZ[i],m = a+ib ∈ ZZ[i] with a > b ≥ 0, a �≡ b mod 2.
Let D := |δ|2. Then we obtain from [24]:

R ≤ ln(
√
D) and h ≥ 1

17

√
D

ln2D
for D ≥ 2 · 109 .

Note that |∆| = 16D. Therefore the class number grows sufficiently quickly.
Instances for such fields can be found for example by choosing p > 2 prime

where 5 - p2 + 1, a = 2p, b = p, m = a+ bi, δ = m2 + 4i.

4 Computational Results

4.1 The Signature Scheme RDSA

Using the representations and algorithms of section 2 we implemented RDSA, a
variant of the ElGamal signature scheme which does not require the knowledge
of the group order. During the signature and verification process the exponents
here are reduced modulo a large prime instead of the group order. This variant
was described in [7]. Many well known signature schemes can be modified such
that they can be implemented without knowledge of the group order, e.g. in class
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groups of number fields (see [6]). Here, we describe the RDSA signature scheme
in terms of a multiplicatively written finite abelian group G. In the description
A is the signer, B is the verifier, and M ∈ {0, 1}∗ is the message to be signed.
Moreover, for x, y ∈ {0, 1}∗ we denote by x‖y the concatenation of x and y.
We also use a cryptographic hash function h which map strings in {0, 1}∗ to
{0, 1, . . . , p − 1} for some positive integer p. In our situation, G is the class
group of one of the orders of number fields presented in section 3.2.

1. Key generation
A randomly selects an element γ ∈ G and a prime p;
A randomly selects an integer a where 1 < a < p and computes α = γa;
A’s public key is (G, γ, α, p), the private key is a.

2. Signature
A randomly selects an integer k such that 0 ≤ k < p;
A computes 4 = γk;
A computes x = a+ kh(M ||4);
A computes nonnegative integers s and 5 such that x = 5p+s with 0 ≤ s < p;
A computes λ = γ�;
the signature of the message M is S = (s, 4, λ).

3. Verification
B accepts if and only if 1 ≤ s < p and γs = α4h(M||�)λ−p.

4.2 Example

To illustrate the algorithm, we give a small example:

Key generation. We use the number field K = Q( 3
√

1233 + 1). Its maximal
order has period length 1, i.e. there is exactly one reduced principal ideal.
We set p = 731921033138277435612152393899, and choose the ideal γ with
ZZ basis

(
115956 77304 110668

0 38652 20224
0 0 1

)

and a = 458967366586392074529404946651. Then we compute α = γa, the
public key, which is in the ideal class of the ideal with ZZ basis

(
65564 0 9000

0 65564 63680
0 0 1

)
.

Signature. We generate the signature for the message “Hello World!” by
choosing k = 485477408517287794924521196370 and computing the ideal
ρ as described above. In our implementation, we use the SHA-1 algorithm
for hashing; thus we yield s = 267317238294110283157650658417 and the
ideal λ with an ZZ basis

(
360587 0 323678

0 360587 328756
0 0 1

)
.
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Verification. Finally, in the verification step, both sides of the equation evalu-
ate to

(
302076 0 193186

0 151038 85726
0 0 1

)
.

4.3 Implementation and Run Times

The Implementation. We implemented the RDSA signature scheme over class
groups of orders of algebraic number fields using C++ and LiDIA [23]. Thereby,
we used the SHA-1 algorithm for hashing. We precomputed all required 16-powers
of the base element (ideal class) γ and stored them in the two-element represen-
tation of LLL-reduced ideals. So, we could use our new fast method for multi-
plication of ideals (see section 2). We combined our new multiplication method
with the fixed base windowing exponentiation method where we used the base 16
(see [28]). As LLL-reduction for ideals we used the variant of Schnorr-Euchner
[34].

In practice, the users of the RDSA signature scheme would obtain the public
key of the sender of a signed message as well as these precomputed 16-powers of
γ. Note that each user would use the same class group G, base element γ, thus
the same 16-powers for its own signatures.

Run Times. The run times of our implementation (see Table 5) were measured
on a Celeron processor at 433MHz.

We remark that our implementations were completely general in the sense
that it did not include any optimization for number fields of degree 3.

Table 5. Run times for signature generation

number field (defining polynomial) log2(∆) period length signature ideal mult.

x3 − (1025 + 1)3 − 1 500 1 2.5 s 10.5%

x3 − (1027 + 1)3 − 1 540 1 2.6 s 10.4%

x3 − (1030 + 1)3 − 1 600 1 3.0 s 10.3%

x3 − (1035 + 1)3 − 1 699 1 3.9 s 8.8%

x3 − (1040 + 1)3 − 1 799 1 4.6 s 9.2%

Complexity. Computing a RDSA signature requires two exponentiations in the
class group. The verification takes three exponentiations, two multiplications and
a table look-up for an equality check. For all exponentiations 160 bit exponents
are used.
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We now focus on the signature step. The two exponentiations using the base
ideal class γ take almost 100% of the time we have to spend to generate a
signature. We just had precomputed all required 16-powers of γ: γ, γ161

, γ162
, . . . .

Using the fixed base windowing exponentiation method with the base 16 we have
to perform on average 50.5 group operations for a 160 bit exponentiation, in the
worst case 53 group operations ([28]). For the precomputation we require memory
for 40 group elements.
Remember that one group operation consists in our context of

1. the multiplication of two ideals (one of them given in two-element represen-
tation, the other one given in LiDIA representation).

2. LLL-reducing the resulting ideal.

Note that we optimized the multiplication step (see section 2.3), whereas no
optimization was done concerning the reduction step. In the example of the
Stender field of degree 3 with the defining polynomial f(x) = x3−(1025+1)3−1
and 500 bit discriminant (see above) we need 1900 milliseconds (msec) for one 160
bit exponentiation. Thereby the ideal multiplication steps take 10.5% (199 msec),
whereas the ideal reduction steps take 89.5% (1701 msec). Detailed timings for
other Stender fields confirm these time percentages (see Table 5).
Conclusion: From now on any speed-up of more than 10.5 % for the RDSA

signature scheme must be done by optimizing the reduction step or by reducing
the number of group operations to be performed.

Security Level. The size of the mathematical objects (ideal classes) is deter-
mined by the degree n of the number field and the discriminant ∆. Therefore,
we can compare the role of n,∆ with the modulus in the RSA scheme. Table 6
shows a very pessimistic comparing of a RSA modulus and a RDSA discriminant
∆ for a degree of number field n > 2 in order to get the same security levels for
the RSA and RDSA signature schemes. We followed the argumentation of [17]
where this table was determined for imaginary quadratic number fields (n = 2).
If one takes into account that the complexity of the root problem (the problem to
break RDSA) grows with the degree of the number field one will get even shorter
binary lengths for the discriminant. We shall work out a corresponding more re-
alistic comparing of the sizes of a RSA modulus with a RDSA discriminant in a
subsequent paper.

5 Conclusions and Open Questions

From the theoretical point of view, cryptosystems based on the discrete log
(NFDL) or on the root problem in number fields are alternatives for the cryp-
tosystems used today. As the complexity of NFDL and the root problem seem
to be exponential in the degree of the number field, it is interesting to use num-
ber fields of degree > 2. In this paper we have shown for the first time how
to implement a cryptographic protocol over such fields. The run times of our
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Table 6. Corresponding key lengths (bits) for the same security levels

RSA modulus RDSA discriminant

675 500

768 540

850 600

1024 687

1044 699

1230 799

1536 958

2048 1208

3072 1665

4096 2084

first implementations show that the new signature scheme RDSA is much less
efficient than the popular cryptosystems of today. Note that the cryptosystems
used today in practice (e.g. RSA and elliptic curve cryptosystems) originally
were also inefficient. The common research of a lot of people made these systems
step by step efficient.

The improvement of the arithmetic in number fields of degree > 2 towards
a very efficient implementation of cryptosystems like RDSA is now subject of
further research. We have shown in this article in which area any optimization
must be done for a significant speed-up of the RDSA scheme. In the case of
imaginary quadratic fields (n=2) recent speed-ups have led to a RDSA imple-
mentation of the same efficiency as the RSA signature scheme ([7]). There are a
lot of possibilities for a speed-up of number field based cryptosystems. Therefore,
we believe cryptography based on algebraic number fields shall be one day also
in practice an alternative for the cryptosystems used today. Currently, we are
working on the following strategies:

– Better cryptosystems. We try to design cryptosystems that involve less group
operations.

– More efficient ideal reduction. The bottle-neck regarding one group operation
in class groups now is the reduction of ideals. We search for a speed-up.

Besides, this paper raises the following interesting research problems:

– Are there more infinite families of orders of number fields of degree > 2 with
short period length, i.e. with small number (ideally: 1) of reduced principal
ideals?

– How can we implement the RDSA scheme in non-maximal orders of number
fields of degree > 2?
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– How large must the discriminant∆ (depending on the degree n of the number
field) be in order to get to the knowledge of today the same security as RSA
512 bit, 768 bit, 1024 bit, . . . ?
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A Requirements for Good Orders (Appendix)

Let (G, ·) be a finite abelian group with group order |G| =∏p p
e(p). Let S be a

set of prime numbers which divide |G|.
Conjecture. Let γ ∈ G be chosen at random with equidistribution. If |G|

is unknown and can not be determined in practice and
∏

p∈S p
e(p) ≥ 1055 and∑

p∈S
1

pe(p) ≤ 10−8 then the discrete log problem γx = δ (where γ, δ are given
and the integer x was chosed at random) can not be solved in practice using
a generic algorithm, i.e. an algorithm that works in an arbitrary finite abelian
group.

Our conjecture is based on

Theorem 3. Let γ ∈ G be chosen at random with equidistribution. Then

Pr


∏

p∈S

p | ordG γ


 ≥ 1−

∑
p∈S

1
pe(p)

Proof. Let F be the set of prime divisors of |G|. As finite abelian group G is the
inner direct product of his p-Sylow groups Sp:

G =
∏
p∈F

Sp

where for each p ∈ F the set Sp consists of all group elements with prime power
pi as element order for some i ∈ {0, . . . , e(p)} and each γ ∈ G has a unique
representation γ =

∏
p∈F γp where γp ∈ Sp. Note that ord γ = lcm{ord γp : p ∈

F}. We can choose a group element γ ∈ G at random with equidistribution by
choosing elements γp ∈ Sp at random with equidistribution for all p ∈ F and by
building the product γ =

∏
p∈F γp. Therefore we have

Pr

"Y
p∈S

p | ord γ

#
= Pr[p | ord γ for all p ∈ S]

= 1− Pr[p-ord γ for at least one p ∈ S]

=

(
1−Pp∈S Pr[p-ord γ] if |S| = 1

1−
�P

p∈S Pr[p-ord γ]− Pr[p-ord γ for all p ∈ S]
�

if |S| > 1

For each p ∈ S there exists exactly one element in Sp whose order is not divisible
by p (the neutral element of the group). Thus we have

Pr


∏

p∈S

p | ord γ

 =

{
1−∑p∈S

1
pe(p) if |S| = 1

1−∑p∈S
1

pe(p) +
∏

p∈S
1

pe(p) if |S| > 1

which shows the claim.
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Example.

1. Suppose that |G| has a prime divisor p with p ≥ 2160. Then the probability
for the order of a randomly chosen group element to be divisible by that
prime is at least 1− 2−160 which is almost 1.

2. Suppose that |G| has prime divisors p1, p2 ≥ 109 where p1 · p2 ≥ 1055. Then
the probability for the order of a randomly chosen group element to be
divisible by p1 · p2 is at least 1− ( 1

p1
+ 1

p2
) ≥ 1− 2 · 10−9 which is almost 1.
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Abstract. In this paper, the Bell Labs key recovery scheme is exten-
sively modified to enable a user to request on-line key recovery service
when the file decryption key is forgotten or lost. New practical and im-
portant requirements of key recovery are also considered in the proposed
schemes, for example, the key recovery server and any intruder over the
communication channel should not learn the key to be reconstructed.
Furthermore, the necessary authenticity and secrecy between a user and
the key recovery server should be provided.

Keywords: Active attack detectability, Cryptography, Dictionary attack, Key
escrow, Key recovery, Off-line attack, On-line attack.

1 Introduction

Since 1994, the topic of key escrowed encryption and communication has been
widely noticed and studied [1,2,3,4,5]. However, this technique has never been
widely employed because of the privacy issue. Until 1996, some researchers
changed their attention on escrowed encryption into the commercial applications
in an alternative scenario, say the commercial key recovery [6,7,8]. The topic of
commercial key recovery is not only nonconflicting but also can be identified as
a necessary component for the applications of data security service. Evidently, it
is a very important and practical issue of how to get survive when using a hard
to remember (and to guess) password in a real security system.

1.1 The Classification of Keys

Here we classify passwords (or keys) to be remembered by a person into three
different types depending on the complexity required to recover them by the
attacker and the difficulty required to remember them by the owner.

simple password : This category of passwords are more easy to remember by
the owner, but they are still difficult to be guessed by nonprofessional at-
tacker. However, a professional hacker may sometimes figure out the weak

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 104–114, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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password Pa (if it is poorly chosen) with some probability via the off-line
dictionary attack if a copy of f(Pa) is accessible where f() is any one-way
function. In this paper, a simple password means a password that should at
least be resistant with large probability against the guessing and matching
attack from some collected dictionaries. Tools for preventing poorly chosen
weak password from guessing attacks, i.e., to filter out fatal or inappropriate
weak passwords, are available in [9,10,11]. In [9], it was reported that prior
to the experiment, it is believed to find a large percentage of the collected
passwords (selected by a novice) in the dictionaries and common word lists.
However, surprisingly, only 1 out of 5 passwords were found in the dictionar-
ies. The standard dictionary used in [9] has about or more than 25000 words.
So, it is expected that each of the matched passwords needs 25000

2 compar-
isons with words in the dictionary before been identified. Notice that while
an off-line guessing approach may be feasible, an on-line approach however
will cause an unreasonable delay and most of the time this attack will be
easily detected. Evidently, the cost of on-line (and off-line) guessing attack
on an already sieved (using the above mentioned tools) simple password will
be extremely high since a much larger dictionary and more sophisticated
manipulation will be necessary.

strong password : Theoretically, passwords of this category are selected to be
random numbers. So, they are basically be quite difficult to be figure out by
the attacker but they are also quite hard to remember by the owner.

pseudo strong password : A password “pass” for practical and high security
requirement usage often falls into this category which can be considered as
a mixture of the above two categories of passwords. It avoids or at least
complexes greatly the off-line dictionary attack against professional hackers
but it also brings the risk of forgetting the passwords to the owner. Another
typical approach of selecting a pseudo strong password is by concatenating
two or more simple passwords and it is sometimes called a passphrase.

1.2 Review of the Bell Labs Key Recovery Scheme

To compromise with the requirement of using more secure pseudo strong pass-
words or keys and the requirement of recovering any forgotten passwords or keys,
Maher at Bell Labs developed a crypto key recovery scheme [6].

• The protocol
In the Bell Labs key recovery scheme [6], the key recovery server has its secret
key xs and the related public key ys = αxs mod P , where P is a large prime.
Each user, say A, registers to this server through a physical manner and will be
given the server’s public key.

The working key generation and working key recovery protocol can be briefly
reviewed as follows. Here the working key refers to the file encryption key or any
login password used in a remote login procedure.



106 Sung-Ming Yen

(1) A: Each time user A wishes to encrypt his important file, he computes the
file encryption key K (it is assumed to be a strong password) as

K = h(αpass mod P ||ypass
s mod P )

where h() is any secure one-way hash function, e.g., [12,13,14], and “pass”
is the password (it is assumed to be a pseudo strong password) selected
by the user. Besides the ciphertext EK(M), αpass mod P is also stored. The
encryption function E() is assumed to be performed by using any symmetric-
key cipher.

(2) A→ S: When the user A forgets his password, he tries to recover the file
encryption key K by delivering αpass mod P to the key recovery server.

(3) A← S: The recovery server computes T = (αpass)xs mod P and sends the
result T to the user.

(4) A: The file encryption key K can be recovered by the user as h(αpass mod
P ||T ).

• Some remarks on the Bell Labs protocol
Two important but overlooked issues of the above Bell Labs protocol are given
below.

(a) In the step (2), the value αpass mod P should be delivered to the recovery
server by A through an authenticated channel.

(b) In the step (3), the value T should be sent back to user A via a secure
channel.

However, no solution has been provided in the original protocol to meet the
above two important and necessary requirements. Otherwise, a physical face-to-
face approach will be necessary for each query and this reduces the practicality
of commercial key recovery.

In the Bell Labs protocol, the recovery server will learn the password or key
K to be reconstructed. Therefore, multiple recovery servers will be necessary and
the file encryption key K can be computed as a combination of many subkeys Ki

(e.g., K = K1 ⊕K2 ⊕K3 for i = 1, 2, 3) and each of which should be recovered
when the user forgets his password. The above development aims to prevent
any single server or a subset of servers in collusion to obtain the key K. To
have a satisfying security level, the number of servers should at least be three.
There are two drawbacks for this arrangement. First, system performance may
be worse than its original scheme. The second drawback, the more critical issue
for the case of using multiple key recovery servers, is that the applicability of
the key recovery will be reduced. Based on the above construction, when one
of the servers is not accessible or becomes faulty, then the forgotten key K can
theoretically never be reconstructed.

Another issue to be pointed out is that in the step (1) of file encryption
key generation procedure, K can be generated as either h(αpass mod P ) or
h(ypass

s mod P ) when ypass
s mod P or αpass mod P , respectively will be stored

with the ciphertext EK(M).
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2 The Model of a Practical Key Recovery

Since the problem of how to recover a forgotten password or key is basically
a practical issue. Therefore, a practical consideration of what a key recovery
scheme should provide is necessary. From the view point of practicality, the
requirements of a good key recovery scheme are identified and listed in the
following.

(1) The key recovery protocol should be performed at the user’s location through
an on-line process interacted with the recovery server. For this purpose, the
on-line process must also provide both secrecy and authenticity.

(2) The key recovery server should not know the exact passwords or keys to be
recovered by the user. This implies that a simple key backup approach does
not match the requirement of a good key recovery.

(3) An attacker cannot try to impersonate to be a specific valid user without
being detected and recovers that user’s passwords or keys via the assistance
from the key recovery server which acting as an oracle. In another word,
any on-line impersonating and guessing attack should be detectable by the
recovery server.

(4) In the real world of using digital systems, any user may have many passwords
or keys to remember, however the user does not have to keep a cleartext
backup of them in order to prevent forgetfulness.

(5) Even if the user loses his local copy of the most important personal secret
information, the key recovery scheme should also enable the server to as-
sist the user to recover his password or key. Although, in this situation, it
maybe requires the user to return back to the recovery server physically and
performs the recovery process.

The requirement (1) implies that the user can request a key recovery service
through an on-line process performed from a remote location instead of returning
back to the recovery server physically. To realize this useful functionality, a key
recovery scheme itself should also provide both authenticity and secrecy in order
to avoid impersonation (to be discussed in the requirement (3)) and to protect
the recovered passwords or keys.

As to the requirement (2), since the secret information to be recovered may
be a password to log into a computer system connected to the Internet. It is not
reasonable to enable the server to know the exact secret information.

The requirement (3) is crucial because that the stored information (e.g., the
value of αpass mod P in the Bell Labs scheme) in the user’s machine used to
recover the forgotten password or keys may be accessible to an internal attacker
in some situations. However, it is not reasonable for an attacker with access to
the above stored information to recover the passwords or keys via the assistance
from the trusted recovery server. This will open a backdoor of a key recovery
system. Therefore, this suggests that the stored information for key recovery to
be user specific or under the protection by using an important password or key
of the specific user in order to avoid impersonation. Furthermore, since a remote
key recovery process will be performed, any on-line guessing attack if happen
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should be detectable by the recovery server. The key recovery scheme should
guarantee that the recovery server will not be used as an oracle by an attacker
impersonating to be a specific valid user without being detected and trying to
recover that user’s passwords or keys.

The requirement (4) says that key recovery server should provide promising
service to its users to help them to reconstruct important information. Otherwise,
a trivial solution that each user keeps a backup of all his passwords or keys in a
secret (although it is difficult to define precisly) place is enough.

The requirement (5) is to make the scheme be robust enough. After regis-
tering to the recovery server, each user may select or receive some long term
personal secret information which will be used to help recovering the working
passwords or keys. However, it is not reasonable that the passwords or keys
cannot be recovered forever if that long term personal information is lost.

Some issues of chosing and using passwords and keys are described in the
following. Usually it is strongly suggested that a person should not keep only
a single password or key and uses this same password for every system that
he has access. Often, it is suggested that a lift cycle of a password should not
exceed three or four months, especially for remote login passwords used to enter
a system that does not have strong intrusion detection measures. At the same
time, people are educated to avoid of using poorly chosen weak passwords. For
the problem of file protection, people sometimes use different passwords or keys
for files of different security classifications. Therefore, each person will have a
moderately amount of pseudo strong passwords or keys to remember. In this
paper, we focus our attention on considering the problem of how to recover any
of such pseudo strong passwords or keys if they will be forgotten under the above
mentioned practical environment.

3 The Proposed Key Recovery Scheme – KRS-1

In this section, the first proposed key recovery scheme, named the KRS-1, is
given to modify the Bell Labs scheme in order to enhance both security and
functionary.

3.1 The Protocol of KRS-1

The key recovery server S has its secret key xs and the related public key ys =
αxs mod P , where P is a large prime and α is a primitive root of P . For security
reasons, P is often selected to be a safe prime of the form P = 2q + 1 where
q is also a large prime. A prime where P − 1 has only small factors is called
smooth. Smooth primes should be avoided because they allow a much faster
discrete logarithm computation [15].

When each user, say A, registers to the server, he selects a personal long
term password Pa and gives it to the server S. Noticeably, the password Pa is
assumed to be a simple password. This will enable the user to remember his
long term password in a more easy way and makes the key recovery scheme be
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robust enough. The server stores each user’s identity and the related personal
long term password in a secure table and gives the above server’s public key to
the user. The server’s public key and its certificate can also be retrieved through
the network when required.

The working key (it can be a file encryption key or a login secret to access a
remote machine) generation and recovery protocol goes as follows.

(1) A: Each time user A wishes to encrypt his important file, he computes the
file encryption key K (it is assumed to be a strong password) as

K = h(ypass
s mod P )

where h() is any secure one-way hash function, e.g., [12,13,14], and “pass”
is a file accessing password selected by the user for a specific classification
of files.
As previously described, pass should be a pseudo strong password so that
an off-line dictionary attack is infeasible or at least with excessive cost that
will make the attack meaningless. Besides the ciphertext EK(M),

R = EPa(αpass mod P )

(or just as R = (αpass mod P )⊕Pa) is also stored. Of course, if two or more
files share a common encryption key K (or file accessing password pass),
then the value of R can also be shared.

(2) A→ S: When the user A forgets his file accessing password pass, he tries
to recover the file encryption key K by retrieving αpass mod P from R using
his long term personal password Pa and computes

V = αpass · αr1 mod P

where r1 is a random integer selected by user A. User A then computes


c1 = αr2 mod P
c2 = yr2

s · V mod P
h(V, Pa)

where r2 is a random integer selected by A and {c1, c2} are the ciphertext of
V produced by using the ElGamal encryption scheme [16]. Finally, the user
sends c1, c2, and h(V, Pa) along with his identity IDa to the recovery server.

(3) A← S: The key recovery server first decrypts V from {c1, c2} by using its
secret key xs and checks the data integrity and originality via the assistance
of h(V, Pa). If the above verification is correct, then the key recovery server
computes

T = V xs mod P
= (αpass · αr1)xs mod P
= ypass

s · yr1
s mod P.

The server then returns T to the user.
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(4) A: Since A knows the random integer r1, he can recover

ypass
s ≡ T · y−r1

s (mod P ),

then the file encryption key K can be recovered as h(T · y−r1
s mod P ).

3.2 Security Analysis of the KRS-1 Protocol

The reason of sending V in the ciphertext version instead of the cleartext version
is to counteract the following off-line verifiable text attack on the long term
password Pa (it is a simple password). If the passive attacker can intercept
both V and h(V, Pa), then he can perform an off-line dictionary attack trying to
recover Pa if Pa is poorly chosen. In the above protocol, the attacker can intercept
T = V xs mod P from the step (3), however to derive V from the intercepted
value T requires the server’s secret key xs.

An interesting problem for the above protocol is that if the user A still
remembers his long term password Pa, then why not just storing the encrypted
version of a working key as EPa(K) or EPa(pass) using Pa as the protection
key? Therefore, the file encryption key K or file accessing password pass can be
recovered when required without the assistance from the recovery server.

Recall that Pa is a simple password. If the above approach is employed, then
the attacker who has access to both the ciphertext EK(M) and the encrypted
version of key EPa(K) can conduct an off-line exhaustive search and test on the
possible long term password Pa.

On the other hand, in the proposed key recovery protocol, when an active
attacker has both the knowledge of EK(M) and R = (αpass mod P )⊕Pa he has
to conduct the following on-line password guessing attack. However, the attack
can be detected and can be prevented by some precautions. The attacker should
try a guessed long term password P ′a and computes

G = R⊕ P ′a = (αpass mod P )⊕ Pa ⊕ P ′a.

The attacker then computes V = G · αr mod P and its ciphertext {c1, c2} and
the keyed hash h(V, P ′a). Finally, the attacker sends IDa, {c1, c2}, and h(V, P ′a)
to the recovery server. If the guessed P ′a is identical to Pa, then the integrity
check will be correct and the server will return T , otherwise the active attack
will be detected and the recovery server will take some suitable countermeasures.
Possible countermeasures include: (1) to keep a log file and to delay the following
attempts; (2) to advise the legal user to change his Pa. It should be emphasized
that for a simple password based protocol, the on-line password guessing attacks
are always possible. The main concern is that the protocol should be active attack
detectable.

In fact, the above on-line guessing attack can be modified to send IDt,
{c1, c2}, and h(V, Pt) to the recovery server where IDt and Pt are the iden-
tity and the personal password, respectively of the active attacker. The server
will not detect the existence of an attack. If the recovered h(T · y−r

s mod P ) is
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equivalent to h(ypass
s ) and can be used to decrypt EK(M) correctly, then the

guessed P ′a is correct and now the recovery server acts like an oracle.
However, the above scenario is not exactly the case of a usual on-line guess-

ing attack. First, the attacker now conducting an unusual (in terms of its high
frequency) service request will reveal its identity. Different application environ-
ments may take their own appropriate countermeasures, e.g., to reveal the at-
tacker’s identity or to restrict the number of service provided within a predeter-
mined period of time. Second, a large amount of service request (each itself will
cost the attacker some service charge) will be necessary in order to figure out
the possible Pa. Recall that even a password chosen by a novice it can only be
identified with a probability of about 0.2 [9] and it will take a huge amount of
on-line test, say on average 25000

2 . As suggested previously, Pa should be sieved
by some tools to rule out poorly chosen passwords. This precaution may complex
the on-line guessing attack extensively. Therefore, such kind of on-line attack will
be extremely unreasonable for commercial key recovery since the total amount
of cost (paid to the recovery server) may exceed the profit of the attack or the
cost to find pass via an exhaustive search.

4 The Key Recovery Scheme Based on RSA – KRS-2

In this section, the second proposed key recovery scheme, named the KRS-2, is
given which is based on the blinding of the RSA system.

4.1 The Protocol of KRS-2

The key recovery server S selects two large secret primes p and q, and publishes
n = p · q. Also, the server chooses a base number α with order φ(n). The server
publishes its RSA [17] public encryption exponent e and keeps privately the
decryption exponent d such that e · d ≡ 1 (mod φ(n)) where φ(n) = (p − 1) ·
(q−1). When each user, say A, registers to the server, he selects a personal long
term password Pa and his identity IDa such that gcd(IDa, φ(n)) = 1. When
encoded into an integer, the identity should be unique. Alternatively, a random
number (often called a salt) is chosen for each identity and an extended identity
is computed by using a cryptographic hash function on the identity and the salt
to obtain a unique IDa. The details of generating unique identity numbers are
out of the scope of this paper. It is the same as in the KRS-1 that the password
Pa is assumed to be a simple password. The server stores each user’s identity
and the personal long term password in a secure table.

The working key generation and recovery protocol goes as follows.

(1) A: Each time user A wishes to encrypt his important files, he computes
the file encryption key K as

K = h(αpass mod n)
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where pass is a pseudo strong file accessing password selected by the user.
Besides the ciphertext EK(M),

R = αpass·IDa mod n

is also stored. Of course, if two or more files share a common encryption key
K (or file accessing password pass), then the value of R can also be shared.

(2) A→ S: When the user A forgets his file accessing password pass, he com-
putes

V = αpass·IDa · rIDa
1 mod n

where r1 is a random integer in [1, n−1] selected by userA so that gcd(r1, n)=
1. The user then computes

{
re
2 mod n
h(V, r2, Pa)

where r2 is a random integer in [1, n − 1] selected by the user A. User A
then sends V , re

2 mod n, and h(V, r2, Pa) along with his identity IDa to the
recovery server.

(3) A← S: The recovery server first decrypts r2 using the decryption key d
and checks the integrity and data originality via h(V, r2, Pa). If the above
checking is correct, then the key recovery server computes

T = V ID−1
a mod n

= (αpass·IDa · rIDa

1 )ID−1
a mod n

= (αpass · r1) mod n

where ID−1
a is the multiplicative inverse of IDa modulo φ(n). The server

then returns T to the user.
(4) A: Since A knows the random integer r1, he can recover

αpass ≡ T · r−1
1 (mod n),

where r−1
1 is the multiplicative inverse of r1 modulo n. Then, the file encryp-

tion key K can be recovered as h(T · r−1
1 mod n).

4.2 Security Analysis of the KRS-2 Protocol

One major difference to the previous KRS-1 protocol is that in the KRS-2 pro-
tocol the value of V is delivered to the recovery server in the cleartext ver-
sion. The reason of not sending V e mod n is that V can be easily obtained via
V = T IDa mod n, where T can be intercepted from the step (3).

If the protocol is modified to remove the inclusion of r2 such that V is sent
in the ciphertext version as V e mod n, the integrity and originality check value
h(V, Pa) is sent in the step (2), and T is protected by t = (T · Pa) mod n when
received from the recovery server in the step (3). The protection of T is to
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avoid the direct derivation of V by computing V = T IDa mod n. However, it
can be easily verified that an off-line verifiable text attack still applies to the
above modified protocol. The attacker tries a guessed long term password P ′a
and computes T = (t · P ′−1

a ) mod n. Based on this T , the attacker obtains
V = T IDa mod n, then the intercepted integrity and originality check value
h(V, Pa) can be employed to verify the correctness of P ′a.

Alternatively, in the KRS-2 protocol, the inclusion of random integer r2 is to
prevent the possible verifiable text attack. Because the random integer r2 selected
by user A is sent in the ciphertext version, therefore it disables the attacker to
guess and verify a possible Pa via the assistance of intercepted h(V, r2, Pa). To
have a successful guess, the attacker should try both r2 and Pa at the same time.
However, since r2 is a random integer in [1, n − 1] and this makes the off-line
guessing attack infeasible.

The situation of having the recovery server acting as an oracle in order to de-
rive other person’s long term password Pa (in fact, it has already been described
on how to prevent this drawback) can be avoided in the KRS-2 protocol. In the
KRS-2 protocol, in order to recover the working key K = h(αpass mod n) from
the value R = αpass·IDa mod n, the active attacker can only pretend to be user
A by sending IDa, V , re

2 mod n, and h(V, r2, P ′a) to the recovery server. This
will however enable the server to identify a possible attack if h(V, r2, P ′a) is not
correctly computed because of an incorrect P ′a.

5 Conclusions

From the view point of security engineering, commercial and even non-commer-
cial key recovery is a necessary key management function in order to provide a
complete and sound security application environment. Without a satisfying and
practical key recovery solution, any research of strong cryptography can be in
vain for many situations. This is especially true for the cases where tamper proof
hardware for storing passwords or keys are not accessible. Furthermore, access
of the tamper proof hardware also needs passwords. Because strong and secure
cryptography always needs strong passwords or keys to apply and this implies
a high risk of losing anything valuable if the keys are lost or forgotten. This
situation applies to both individual requirement and organization requirement.

Since key recovery is considered to be a practical issue. Practical and impor-
tant requirements of key recovery are first pointed out in this paper. Then, two
commercial key recovery schemes based on these identified requirements are pro-
posed. In the future research, other key recovery requirements for more complex
environments or largely different applications will be considered. Key recovery
schemes based on these different models will also be developed.
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Abstract. New techniques have been discovered to find the secret keys
stored in smart-cards. These techniques have caused concern for they
can allow people to recharge their smartcards (in effect printing money),
or illegally use phone or digital TV services. We propose a new processor
design which will counteract these techniques. By randomising the in-
struction stream being executed by the processor we can hide the secret
key stored in a smartcard. The extension we propose can be added to
existing processors, and is transparent to the algorithm.

1 Background

Modern cryptography is about ensuring the integrity, confidentiality and authen-
ticity of digital communications. As such it has a large number of applications
from e-commerce on the Internet through to charging mechanisms for pay–per-
view-TV. As more and more devices become network aware they also become
potential weak links in the chain. Hence cryptographic techniques are now be-
ing embedded into devices such as smart cards, mobile phones and PDA’s. This
poses a number of problems since the cryptographic modules are no longer main-
tained in secure vaults inside large corporations. For a cryptographic system to
remain secure it is imperative that the secret keys used to perform the required
security services are not revealed in any way.

The fact that secret keys are now embedded into a number of devices means
that the hardware becomes an attractive target for hackers. For example if one
could determine the keys which encrypt the digital television transmissions, then
one could create decoders and sell them on the black market. On a more serious
front if one could determine the keys which protect a number of store valued
smart cards, which hold an electronic representation of cash, then one could
essentially print money.

Since cryptographic algorithms themselves have been studied for a long time
by a large number of experts, hackers are more likely to try to attack the hard-
ware and system within which the cryptographic unit is housed. A particularly
worrying attack has been developed in the last few years by P. Kocher and
colleagues at Cryptography Research Inc., [12,13]. In these attacks a number of
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physical measurements of the cryptographic unit are made which include power
consumption, computing time or EMF radiations. These measurements are made
over a large number of encryption or signature operations and then, using sta-
tistical techniques, the secret key embedded inside the cryptographic unit is
uncovered.

These attacks work because there is a correlation between the physical mea-
surements taken at different points during the computation and the internal
state of the processing device, which is itself related to the secret key. For ex-
ample, when data is loaded from memory, the memory bus will have to carry
the value of the data, which will take a certain amount of power depending on
the data value. Since the load instruction always happens at the same time one
can produce correlations between various runs of the application, eventually giv-
ing away the secret of the smart card. The three main techniques developed by
Kocher et. al. are timing attacks, simple power analysis (SPA) and differential
power analysis (DPA). It is DPA which provides the most powerful method of
attack which can be mounted using very cheap resources.

Following Kocher’s papers a number of people have started to examine this
problem and propose solutions, see [3], [4], [8,14]. Goubin and Patarin [8] give
three possible general strategies to combat DPA type attacks:

1. Introduce random timing shifts so as to decorrelate the output traces on
individual runs.

2. Replace critical assembler instructions with ones whose signature is hard to
analyse, or reengineer the crucial circuitry which performs the arithmetic
operations or memory transfers.

3. Make algorithmic changes to the cryptographic primitives under considera-
tion.

The last of these approaches has been proposed in a number of papers, and
various examples have been given. For example [8] suggests essentially splitting
the operands into two and duplicating the work load. However, this leads to at
least a doubling in the computing resources needed to perform the cryptographic
operation. This is similar to the defence proposed by Chari et.al [3], who propose
to mask the internal bits by splitting them up and processing the bit shares in
such a way that on recombination we obtain the correct result. In this way
the target bits for the DPA selector function are not exposed internally to the
processor and so will hopefully have no effect on the power trace.

Kocher et.al [13] recommends using a level of blinding, especially when ap-
plied to algorithms such as RSA. This again increases the computing time needed
to implement the operation and also modifies the original cryptographic prim-
itive in ways which could lead to other weaknesses being uncovered. This is a
popular approach which is mentioned by a number of authors and in private
communications.

The second approach has been studied, for example in [12], where the appli-
cation of balanced architectures is described. They balance the Hamming weights
of the operands, and propose physical shielding or adding noise circuitry.
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It is the first approach which we consider to be the most promising, but one
which the current literature has only considered in a passing way. We end this
section by noting that we are not addressing the problem of making the hardware
or software tamper resistant. This is an important area which also needs to be
taken into consideration to produce secure microprocessors or micro-controllers,
see [1] and [2].

2 Prior Work

Essentially the defence to DPA we have in mind is an instance of what Kocher
et.al call “temporal misalignment of traces”. This is a way to introduce noise
which can prevent the use of DPA type techniques.

Kömmerling and Kuhn [14] mention various techniques that introduce a cer-
tain amount of non-determinism into the processor. An example of this is ran-
domised clocking which puts an element of non-determinism into the instruction
cycle. However, they state that this does not provide enough of a defence, since
attacks can use cross correlation techniques to remove the effect of the ran-
domised clock.

Kocher et.al [13] mention that randomising execution order can help defeat
DPA, but can also lead to other problems if not done carefully. Kömmerling
and Kuhn mention the idea of randomised multi-threading at an instruction
level. They describe this with a set of essentially shadow registers. The auxiliary
threads could then execute random encryptions, hence hoping to mask the cor-
rect encryption operation. This has its draw back as the processor is required to
perform tasks which are in addition to the desired computation, hence increasing
computational costs considerably.

Chari et.al [3] mention a number of counter measures to DPA type attacks.
Including the creation of balanced hardware, clock cycles of varying lengths and
a randomised execution sequence. They mention that for randomised execution
sequence to be effective then the randomisation needs to be done extensively.
For example they mention that if only the XORs in each DES [6] round are
randomised then one can still perform DPA by taking around eight times as
much data. In addition no mechanism is provided which would enable aggressive
randomised execution.

Hence for randomised execution order to work it needs to be done in a highly
aggressive manner which would preclude the type of local randomisation implied
by the descriptions above. In addition this cannot be achieved in software since
a software randomiser would work at too high a level of abstraction. The ran-
domised multi-threading idea is close to a solution but suffers from increased
instruction count and requires a more complex processor with separate banks of
registers, one for each thread.

We have designed simple additions to a processor with either single or multi-
ple execution units which allow for aggressive randomised execution of instruc-
tions on an instruction by instruction basis, with the added bonus that every
instruction executed is required by the algorithm. No extra execution time or
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power are required. In addition our randomisation process requires no alteration
to the source code, since the randomisation is done by the processor itself. Hence
we require no modifications to the basic cryptographic primitives.

In addition we have introduced two assembly instructions which allow for
even greater levels of randomised execution, especially when combined with our
basic hardware modifications. We have called this processor architecture NDISC
for Non-Deterministic Instruction Stream Computer.

Our new architecture will make optimal use of algorithms that have high
instruction-level parallelism. Clapp [5] gives an analysis of some cryptographic
algorithms from this perspective. Hence, algorithms that are optimised for use
on current processors with multiple concurrent execution paths, as found in
superscalar [9,10,19], parallel and VLIW architectures [7], will be particularly
suitable for our new processor.

In the following discussions we shall focus on examples such as DES [6] and
integer multiplication, which is used in RSA [17] and EC-DSA [11] [16]. However,
it is clear that these techniques can be applied to any cryptographic algorithm.
Or indeed to any algorithm where it is desirable to limit the environmental
impact of the processor, for example in reducing resonances in small computing
devices.

3 Non Deterministic Processors

In order to prevent attacks based on correlating data, we have designed a simple
addition to standard processors that randomises instruction issuing.

Crucially, an attack works because two runs of the same program give compa-
rable results; everything compares bar the data that is the part where the attack
comes in. By changing the data even slightly the attacker will get a knowingly
different trace, and by correlating the traces, one builds a picture of what is
happening inside.

Our protection scheme removes correlation between runs, thereby making the
attack much harder. Our observation is that a conventional processor executes
a sequence of instructions deterministically; it may execute instructions out-of-
order, but it will always execute instructions out-of-order in the same way. If the
same program is run twice in a smart card, then the same instruction trace will
be executed. By allowing the processor at run time choose a random instruction
ordering, we get multiple possible traces that are executed.

Naively viewed, if there are 10 instructions without dependencies, then there
are 10! = 3628800 different ways of executing those instructions. Of course not
all instructions are independent, however our experiments indicate that there
are sufficient execution traces to efficiently hide the data trace. In addition, we
can decrease the number of dependencies using the techniques described below
in Section 3.2.

Relating this to existing processor design: like superscalar processors, we se-
lect a number of independent instructions that can be executed in any order,
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Time 1

Time 2

Single Pipeline Processor Non-Deterministic ComputingTwo Pipeline Processor

ADD R0,R1,R1 XOR R4,R5,R5ADD R0,R1,R1

XOR R4,R5,R5

ADD R0,R1,R1 or XOR R4, R5, R5

XOR R4, R5, R5 or ADD R0,R1,R1

Fig. 1. Simple comparison of how a Non-deterministic processor executes two
instructions as opposed to other processors

and then randomly select instructions to be executed. Unlike superscalar pro-
cessors, we do not execute the instructions in parallel. Instead we use available
parallelism to increase non determinism.

In addition, there are instruction sequences that cannot be executed in paral-
lel on a superscalar, but that can be executed in a non-deterministic manner. For
example, the instruction sequence ADD R0, R7, R7 ; ADD R1, R7, R7 (which
first adds R0 to R7 and then adds R1 to R7) can be executed either order; even
though the instructions cannot be executed in parallel on a superscalar.

3.1 Random Issuing

In single pipeline processors a sequence of instructions is executed in the order in
which they are fetched by the processor. There is a little out-of-order execution
to help with branch prediction but this all occurs on a very small scale. On
multiple pipeline processors there are a number of execution units through which
independent instructions can be passed in parallel. For example, if a processor
has a logic pipeline and an integer-arithmetic pipeline, then the following two
instructions

ADD R0, R1, R1
XOR R4, R5, R5

may be executed in parallel in the two pipelines. One pipeline will execute the
ADD, the other will execute the XOR.

Our idea is the following: like a superscalar we identify instructions that can
be issued independently, but instead of using this information to issue instruc-
tions in parallel, we use this information to execute instructions out-of-order,
where the processor makes a random choice as to issue order. We call this pro-
cess Instruction Descheduling. This creates a level of non-determinism in the
internal workings of the processor. This is illustrated in Figure 1.

If such a system introduces large amounts of non-determinism then this could
produce a significant breakthrough in reducing the effectiveness of DPA. The
reduction in the effectiveness of DPA results from the fact that the power trace
from one run will be almost completely uncorrelated with the power trace from
a second run, since on the two runs different execution sequences are used to
produce the same result. For example, a program that adds the values found in
four memory locations may consist of the following 8 instructions:
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I0: LOAD [R1], R8
I1: LOAD [R2], R9
I2: ADD R8, R9, R10
I3: LOAD [R3], R11
I4: LOAD [R4], R12
I5: ADD R11, R12, R13
I6: ADD R10, R13, R14
I7: STORE R14, [R5]

The instruction LOAD [R1], R8 executes by first reading the value of R1, us-
ing that as an index into memory to read a value, X , and writing X into R8.
The ADD instruction sums the values found in the first two operands into the
third operand; the STORE operation stores a register-value at a specified memory
location.

One way of executing this program is by executing instructions [I0, I1, ...,
I7] in order, but another, equally valid execution path will execute [I1, I0, I3,
I4, I5, I2, I6, I7]. Indeed, there are 80 different ways of executing these 8 in-
structions that will all produce the same result. Instruction descheduling means
that at run time the processor will select, at random, an instruction to execute,
thereby randomising the instruction stream, and randomising the access pattern
to memory caused by both data and instruction streams.

Clearly at the start and end of the program there is no non-determinism, It
is the execution of the program which will be non-deterministic and not the final
output of the program.

Random Instruction Selection The random instruction selection unit selects
instructions from the instruction stream that are executable. That is, the instruc-
tion does not depend on any result that is not yet available, and the instruction
does not overwrite any data that is still to be used by other instructions that
are not yet executed, or instructions that are in execution in the pipeline.

The implementation of this closely follows the implementation of multi-issue
processors. There is a block of logic that determines conflicts between instruc-
tions, resulting in a set of instructions that is executable. From this set we select
an instruction at random. Given a random number generator, which will nor-
mally be constructed from a pseudo random number generator that is reseeded
regularly with some entropy, we select one of the executable instructions and
schedule it for execution.

Conditional Branches As with superscalar processors, conditional branches
cause a problem. The non-determinism in the code is reduced if the issue unit
is drained on a conditional branch and filled up immediately after the branch
is taken. As with superscalars, one solution is to employ branch prediction and
speculative execution.

A neater solution is to split the branch instruction into two instructions:
settarget and leap [18]. The settarget instruction (conditionally) sets the
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Fig. 2. Sample implementation of random issue unit

target address for the leap instruction. As soon as a leap instruction is loaded
into the random-issue unit, the random-issue unit executes the instruction by
loading the prefetch program counter with the target address.

Memory Accesses Memory accesses can be scheduled out-of-order, unless they
interfere. Loads can be scheduled completely out-of-order if they access memory
rather than I/O devices. Stores can be issued out of order provided that memory
consistency is preserved. Again, this is a problem addressed in previous research
on load-store units for superscalar processors.

Example Implementation of a Random-Issue Unit A possible implemen-
tation of a random-issue unit is shown in Figure 2. The instructions are read
and stored in the instruction prefetch register. The operands of the instruction
are decoded (we have assumed three operand instructions, although the scheme
will also work with two and one operand instructions), and the dependencies of
the operands are analysed using bitmasks to record dependencies:

– A bit-mask stores the use-dependencies of each register. Each register that
this instruction needs to read is looked up, and the bits are or-ed together.

– A bit-mask stores the define-dependencies of each register. Each register that
this instruction needs to write is looked up, and the bits are or-ed together
with the previous bit-mask.

– The bit-mask that is created is stored in a free slot of the random issue
buffer, together with the instruction.

In parallel, a slot of the random issue buffer for which all dependency bits are
zero is selected at random. This instruction can be executed because it does
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not have any define- or use-dependencies. Then all dependencies for the selected
instruction are cleared so that dependent instructions become executable.

A possible implementation of a random selection unit is given in Figure 3
[15]. This unit only selects one from the 2k bits that have a value 0. Instructions
progress as follows through this implementation of the random-issue unit:

– An instruction is read into the instruction register and split into its compo-
nents including the registers used in the operands.

– Each operand is looked up in the defined-by and used-by tables. Bit-masks
are read indicating whether source operand registers to this operation are the
result of a previous instruction, and if the destination register may overwrite
a value used by previous instructions.

– The values of these bit-masks are or-ed, resulting in a new bit-mask that
specifies the instructions on which this instruction depends. This bit-mask
is stored in an empty slot of the random issue table, and the instruction is
stored in an associated slot in the instruction table.

Instructions are selected for execution as follows:

– For each instruction, all bits in the dependency mask are or-ed, resulting in
a ‘0’ if there are no dependencies for this instruction.

– From all instructions where the or results in a ‘0’, one is selected at random.
This selected instruction is sent off into the execution pipeline. For a multi-
issue machine 2 or more ready instructions can be chosen and executed.
The enable signal of the random-issue unit is fed from a mode-bit which
allows the programmer to disable random-issue so that non-determinism
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can be switched off to debug a program. For production systems, the enable
input should be hard-wired to 1.

– The dependency-column for that particular instruction is erased; indicat-
ing that any instruction that was waiting for this instruction can now be
executed.

This process is repeated ad infinitum.

Random Issuing in Superscalar Processors Random issuing works both on
pipelined and superscalar processors. For the sake of simplicity we only describe
it in terms of single pipeline processors. In order to illustrate the effects of non-
determinism on a superscalar machine, consider the following instructions:

ADD R0, R1, R1
ADD R2, R3, R3
XOR R4, R5, R5
XOR R6, R7, R7

On a 2 processor with 2 execution unit (logic + arithmetic) these instructions are
normally executed as follows. In the first clock-cycle the first ADD and the first
XOR are executed; in the second clock-cycle the second ADD and second XOR
are executed. Although the instructions are independent, it is still completely
deterministic in that the ADD instructions will pass through the integer unit
one after the other, and the XOR instructions will pass through the logic unit.
A non-deterministic version of this superscalar processor would in execute one
of the ADD operations and one of the XOR operations in the first clock-cycle,
and the remaining ADD and XOR in the next clock-cycle. This way, there are
four possible execution traces.

A non superscalar random issue processor would take twice as long to execute
this program, but would execute one of 12 possible execution paths. There is
a trade-off between the number of possible execution paths and the amount
of parallelism exploited. For maximum non-determinism, the processor should
execute instructions in a single pipeline.

3.2 Techniques for Increasing Non-determinism

Non-deterministic processing opens up new challenges in processor and instruc-
tion set design. In the following sections we examine a number of these.

In many common cases code is generated which contains unnecessary restric-
tions on the order in which instructions can be issued. For example, consider
that we want to XOR 4 numbers, R1⊕ R2⊕R3⊕ R4. The fastest way to per-
form this on a machine which can XOR two integers in parallel is by computing
(R1⊕R2)⊕ (R3⊕R4):

I0: XOR R1,R2,R5
I1: XOR R3,R4,R6
I2: XOR R5,R6,R5
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In a non-deterministic machine with a single pipeline there would be two le-
gal execution paths: [I0,I1,I2] and [I1,I0,I2]. However, there are actually more
ways of computing this result, for example: (R1⊕R3)⊕ (R2⊕R4), which gen-
erates another power trace. We discuss two assembly instructions to increase
non-determinism, multi-source reduction operations and Ignore/Depend instruc-
tions.

Multi-source Reduction Operation Many operations have a number of pos-
sible ways of executing them. This is mainly because they involve executing a
single operation on a set of data. An easy, and often used example, is when the
operation involved is both associative and commutative. This happens in the
case of addition, multiplication and XOR.

For example, consider XORing four values in registers R1, . . . , R4 This could
be done in a number of ways, all of which give the same result, but all of which
would have different power outputs.

((R1⊕R2)⊕R3)⊕R4 = (R1⊕R2)⊕ (R3⊕R4)
= ((R1⊕R3)⊕R4)⊕R2

. . . . . .

= (R3⊕R2)⊕ (R1⊕R4)
= ((R4⊕R3)⊕R2)⊕R1.

In standard assembly language on standard computers this would be executed
in only one way, using a sequence such as

XOR R1,R2,R5
XOR R3,R4,R6
XOR R5,R6,R5

which corresponds to the first of the descriptions above.
The crucial point about these multi source operations is that although the

input and output are fixed the actual calculation steps are non-deterministic.
There are several way in which this non-determinism can be achieved. The in-
struction can be interpreted in microcode randomly picking registers to add, the
instruction can be translated by the compiler into a sequence of instructions that
can be reordered at run time, or the instruction can be translated at run-time
into a sequence of instructions.

A reduction instruction could be of the form

XOR R1,R2,R3,R4, R5

The disadvantage of this kind of instruction is that we introduce a different
addressing scheme, with, in this case, 5 address, or even N address operations.
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Ignore Depend Another way to increase parallelism without having to add
extra operands to instructions it to introduce two extra instructions, IGNORE
and DEPEND, which inform the instruction issue unit that a reduction sequence
is to be processed. As an example, IGNORE and DEPEND will be used as follows
to allow non-deterministic execution of R1⊕R2⊕R3⊕R4:

LOAD #0,R5
IGNORE R5
XOR R5,R1,R5
XOR R5,R2,R5
XOR R5,R3,R5
XOR R5,R4,R5
DEPEND R5

In such a block the Instruction Descheduler is told to ignore the dependencies
on R5 between the three XOR instructions. This allows the Instruction Descheduler
to execute the three XORs in any order. The advantage of this solution is that we
can use a conventional three address instruction set, and just add two operations
IGNORE and DEPEND.

Once an IGNORE instruction on a particular register has been fetched, the
processor will start delaying dependencies on that register; it will effectively
ignore any dependencies, but store them for future reference in a second bit
mask. When the DEPEND instruction is fetched, the dependency mask used will
consist of all the delayed dependencies. The DEPEND instruction will therefore
not complete until the dependencies have been completed.

Note that we defined IGNORE here in such a way that any number of IGNORE
instructions can be outstanding; one per register in the architecture. Also, in-
structions not related to the IGNORE register can be issued between an IGNORE/
DEPEND pair, which will be executed as normal.

3.3 Compiler Techniques

Standard compiler techniques to increase concurrency by minimising dependen-
cies between instructions can be employed to increase non-determinism. Ran-
dom issue processors will have a limited window to look for instructions that
can be executed non-deterministically. The window of instructions may be large
(eg 16) but it will by its nature be limited. The size of the window may limit
non-deterministic execution. Consider the following example code:

LOAD I, R0
ADD #1, R0, R0
STORE R0, I
LOAD J, R1
ADD #1, R1, R1
STORE R1, J

If the random issue window is two instructions wide, then the first two instruc-
tions executed will be:
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LOAD R0, I and ADD R0, R0, #1

In this case the first three instructions depend on each other. Only when the
window advances to the second LOAD instruction can the processor choose
between the LOAD and STORE instruction. The number of execution paths is
therefore limited to 4.

However, if we resequence the original program, then the number of execution
paths can be increased to 13 even with the 2 instruction issue window:

LOAD I, R0
LOAD J, R1
ADD #1, R0, R0
ADD #1, R1, R1
STORE R0, I
STORE R1, J

Hardware register renaming [15] can remove more dependencies. Instruction re-
sequencing does not compromise performance or power consumption. Note that
compilers for superscalars do not perform all necessary reorderings: they only
perform the reorderings needed to increase instruction level parallelism. How-
ever, there are segments of code where no parallelism can be gained but where
extra non-determinism is available. An example are reduction operations: even
though there is only limited parallelism in a reduction operation, any order of
operations produces an equally valid result.

4 Experiments

In order to verify that a non-deterministic processor makes a DPA attack more
difficult, we have built a simulator that outputs a power trace. We emulate a
Sparc-like processor at instruction level, and produce a power trace. The power
trace is based on the operands of the instructions, the type of instructions, and
the memory/register addresses involved. We split the power consumption into
static and dynamic component [20]:

– The Hamming weight of all addresses, operands, and instructions involved
(which models the static power consumption)

– The Hamming weight of the changes in registers, busses, and the ALU (this
models the dynamic power consumption)

This model closely follows the model constructed by researchers performing DPA
on real processors [3,4,13].

The power trace that we produce is, obviously, not a real trace but it is suf-
ficient to show whether we can perform differential power analysis. Our trace
shows a worst-case situation where the power trace of a real processor con-
tains considerable background noise caused by, for example, prefetching logic or
random cache-replacement. Our trace is worst case in that it contains all the
information that allows for a DPA attack, and none of the noise. Therefore, if it
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is difficult to perform a DPA attack on our trace, it will be even more difficult
on the real processor.

With this simulator we have executed a DES program, and performed DPA
on both the deterministic and non-deterministic versions. We used DES as a test
example since this is the easiest algorithm to break using DPA.

In Figure 4 we show the simulated DPA output using four guesses for a
certain six-bit subkey in the DES algorithm (there are 64 guesses, we show only
4 not to clutter the paper). The large peak on the bottom right hand graph
corresponds to the correct subkey being chosen.
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Fig. 4. Standard processor:DPA attack on DES

Using exactly the same DES source code and power model on a processor
with our method of random issuing of instructions produces the DPA outputs
shown in Figure 5. The peaks have disappeared in the noise, because there is
little correlation left. The noise contains many peaks, but none of them flags the
correct subkey.

From simulation data we have also calculated the total number of execution
paths through the program. The total number of execution paths in our DES
program is approximately 10176, however, only the last (or first) of the 16 rounds
is susceptible to attack, which leaves 1011 different execution traces. We think
that we can further increase the number of paths by introducing more compiler
analysis.
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Fig. 5. NDISC processor:DPA attack on DES

5 Conclusion and Future Work

We have shown how one can use ideas from superscalar architectures to produce
a randomised non-deterministic processor. This idea essentially allows a single
instruction stream to correspond to one of an exponential number of possibly
executed programs, all of which produce the same output. Since attacks such as
differential power analysis rely on the correlation of data across many execution
runs of the same program, the idea of a non-deterministic processor can help to
defeat such attacks.

Further research still needs to be carried out, yet we feel that the proposed
solution to differential power analysis gives a number of advantages; such as
the fact that program code does not need to be modified and neither speed nor
power consumption are compromised. The simulated results show that the DPA
attack is spoiled.
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Abstract. With the majority of security breaches coming from inside
of organizations, and with the number of public computing sites, where
users do not know the system administrators, increasing, it is dangerous
to blindly trust system administrators to manage computers appropri-
ately. However, most current security systems are vulnerable to malicious
software modification by administrators. To solve this problem, we have
developed a system called sAEGIS, which embraces a smartcard as per-
sonal secure storage for computer component hashes, and uses the hashes
in a secure booting process to ensure the integrity of the computer com-
ponents.

1 Introduction

With the rapid integration of information technology into society, the demand
for computer system security is soaring. Despite decades of extensive research on
information security, computer systems remain vulnerable to malicious modifica-
tions. This trend reflects prevalent, but inaccurate, assumptions about computer
systems: that they are trustworthy. For the purpose of this paper, we define a
trusted computer as “a computer system that behaves as its users intend, with-
out damaging or leaking the resource or information”.1 A major problem today
is that modern commodity computers are not trustworthy because (1) they tend
to overlook or ignore physical security issues, and (2) they are vulnerable to
the exploitation of software bugs. Once an adversary compromises a computer
by one of the above two methods, he can install a malicious modification that
defeats any security mechanism on the computer. For example, consider a Ker-
beros client that steals a user’s password [4], an SSL client that leaks plain text
1 This definition is narrower than the one used in the US Trusted Computer Security

Evaluation Criteria [19], in which the word “trusted” includes access control, covert
channel analysis, etc. Our definition is closer to the ones used by Neumann [18],
Brewer et al. [5], Goldberg et al. [9], and Loscocco et al. [16]
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packets [5, 16], or a loadable kernel module that redirects system calls to fool a
system integrity checker [1, 10].

Conventionally, the problem of trusted computing has been tackled by ap-
proaches such as access control mechanisms [6], layered architecture [17], sand-
boxing [9, 23], and application-level integrity checking [12]. However, all of these
approaches trust the underlying hardware and operating system kernels, and are
of little use if any of these components are compromised. Furthermore, many of
the approaches require custom operating systems, which increases management
and operational problems.

To counter this problem, Arbaugh et al. have developed a high assurance
bootstrap process called AEGIS [2, 3]. AEGIS ensures that a valid and autho-
rized operating system kernel is started by verifying the integrity and authoriza-
tion of every component that comprises the bootstrap process through the use
of digital signatures and authenticity certificates. When it boots an operating
system, AEGIS guarantees that the boot process takes a valid path (in terms of
integrity and authorization) from the initial power-on event to the login prompt
through an inductive process [2].

Although AEGIS significantly improves the security of personal computers,
it has drawbacks. First, users must trust their system administrator to autho-
rize, i.e., digitally sign, the trusted operating systems and applications. However,
because (1) security threats often come from inside of organizations, and (2) in
public computing sites, such as Internet cafes and libraries, system administra-
tors are unknown, the user may choose not to trust the administrators. Second,
AEGIS is inflexible: it is difficult to change the hardware configuration of a host,
and it can boot only FreeBSD.

To solve these problems, we have developed sAEGIS, which integrates a
smartcard into the bootstrap process. In sAEGIS, we use a smartcard to store
the set of component hashes that the holder of the smartcard authorizes, pushing
control over the selection of approved components from the system administrator
to the user. We also have ported AEGIS to support GRUB [8], a free and flexible
boot loader, which supports a larger set of operating systems.

The remainder of the paper is structured as follows. First, we provide a brief
review of AEGIS. Next, we present the design of sAEGIS and analyze its security.
Then, we describe the implementation and provide performance benchmarks for
sAEGIS. Finally, we conclude the paper and provide details of our future work.

2 Background: AEGIS Secure Bootstrap Process

Here we review AEGIS to provide background for understanding sAEGIS.
AEGIS is a secure bootstrap process, whose goal is to provide a trusted

foundation on a computer system. As described in Section 1, a modern computer
system cannot usually be trusted because of the lack of physical security, and
an untrusted initialization process. One way of addressing this problem is to
ensure the integrity of a computer system. A system is said to possess integrity
if no unauthorized modification has been made to it. Denning defines integrity
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similarly for communication [7]. AEGIS assures integrity of a personal computer
at boot time, through a process called chaining layered integrity checks, which
uses induction and digital certificates.

AEGIS works as follows:

1. A system administrator, or other authorized party generates a hash, H, of a
bootstrap component, and creates a certificate, C, which includes a unique
component identifier, an expiration date, and H.

2. The authorized party signs C with her private key.
3. C is then stored in the component if possible, and, if not, then in a data

block of the flash memory device on the host’s motherboard.
4. Execution control is passed to the component if and only if:

(a) The certificate, C, has not expired.
(b) The signature of C is valid, and
(c) The hash value stored in the certificate matches the computed value of

the component under consideration.

It is important to note that AEGIS provides integrity guarantees only for
starting a system. Once a system is running, AEGIS does not provide any guar-
antees that the integrity of the OS remains valid.

As described in Section 1, AEGIS has two problems. First, the user is forced
to trust the system administrator because the certificates are stored in the com-
ponent or the BIOS, both of which are controlled by the administrator. The
administrator can create and install malicious software by simply creating and
signing a component certificate. AEGIS cannot detect the malicious software
because the component passes all of the validity tests described earlier. The sec-
ond problem is the lack of flexibility. The bootloader used in AEGIS can boot
only FreeBSD. Furthermore, hardware re-configuration on AEGIS requires the
creation and installation of new device certificates. Because of its size limitation,
BIOS (which is in a flash memory chip) cannot store file system drivers, and is
unable to access data on the hard disk.

Readers interested in the further details of AEGIS are advised to refer to
articles [2, 3].

3 Design

3.1 Design Goals

The goal of sAEGIS is as follows:

– Personalization
In AEGIS, it is a system administrator’s responsibility to manage certifi-
cates and MACs. By embracing a smartcard as a personal storage of MACs,
sAEGIS hands the control to the users.
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– Authentication
In AEGIS, a user who attempts to boot a computer is not authenticated.
That is, anyone who can invoke the boot process, for example, by hitting
the reset button, may boot it. sAEGIS boots an operating system only if
a correct smartcard and associated PIN are presented by a user. This two-
factor authentication (what-you-have and what-you-know) makes theft of a
mobile computer less threatening, as the thief cannot use the computer.

– Operating System Flexibility
The only operating system the AEGIS prototype is able to boot is FreeBSD.
In contrast, sAEGIS employs a free, flexible boot loader called GRUB [8] to
boot several operating systems, namely, Linux, FreeBSD, NetBSD, OpenBSD,
Windows 9*, NT, and 2000.

– Hardware Configuration Flexibility
In AEGIS, the certificates are stored in a flash memory chip, which is hard to
configure. In sAEGIS, because the smartcard access library is small enough
to fit into the flash chip, the hardware configuration information, certificates,
and MACs can be moved to the smartcard, which is more easily configured
than the flash chip.

In the above four goals, the first three were achieved in our sAEGIS pro-
totype. The reason why the last goal was not achieved is discussed in Section
7.

3.2 Design Overview

In a nutshell, sAEGIS = AEGIS + GRUB + smartcard + verify. That is, (1)
sAEGIS relies on AEGIS to boot GRUB securely, (2) GRUB boots an operating
system kernel securely using a smartcard for verification, and (3) the kernel
checks the integrity of daemons with an application called verify.

The basic idea behind sAEGIS is as follows: if a lower layer verifies the
integrity of all higher layers before booting them, the system integrity is ensured.
Therefore, to comprehend the design of sAEGIS, it is essential to understand
which component verifies and boots which, and how. The bootstrap process of
sAEGIS is summarized in the following events, in chronological order.

1. Power on Self Test (POST). The processor checks itself.
POST is invoked by either applying power to the computer, hardware reset,
warm boot (ctrl-alt-del under DOS), or jump to the processor reset vector
invoked by software. This starts the bootstrap process.

2. BIOS section 1 verifies itself and BIOS section 2, and boots section 2.
In sAEGIS, BIOS is divided into two parts, section 1 and section 2. The
former contains the bare essentials needed for integrity verification, such
as a cryptographic hash function (MD5 and SHA1), a public key function
(RSA), and the public key certificate of a trusted third party. The integrity
of this part is assumed, i.e., it is assumed to never be modified. Discussion
about this assumption is in Section 4.3.
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BIOS section 1 reads the certificate of itself from the flash chip, and verifies
itself.
BIOS section 1 reads the binary and certificate of BIOS section 2 from the
flash chip, and verifies the binary. If the check goes through, it boots section
2.

3. BIOS section 2 verifies the ROM of extension cards, and executes them.
BIOS section 2 reads the programs stored in the ROM of extension cards,
reads the associated certificates from the flash chip, and verifies the pro-
grams. If the check goes though, it executes them.

4. BIOS section 2 verifies GRUB stage 1, and boots it.
GRUB is divided into two parts, stage 1 and stage 2, because an Intel-
compatible personal computer requires a primary boot loader to be no more
than 512 bytes long. Stage 1 is booted by BIOS section 2; and stage 2 is
booted by stage 1.
BIOS section 2 reads the binary of GRUB stage 1 from a floppy disk, reads
the certificate from the flash chip, verifies the binary, and boots it.

5. GRUB stage 1 verifies GRUB stage 2, and boots it.
GRUB stage 1 reads the binary and certificate of GRUB stage 2 from a
floppy disk, verifies the binary, and boots it.

6. GRUB stage 2 verifies the kernel and the verification tools, and boots the
kernel.
GRUB stage 2 mounts the file system (typically on a hard disk) that stores
a kernel, verify, and a shell script that invokes verify (e.g.,
/etc/rc.d/init.d/inet on UNIX). It reads these files from the file system,
reads the MACs from a smartcard, and verifies the files. If the check goes
through, it boots the kernel.

7. The kernel uses the verify application to verify the important files, and
starts the system daemons that pass the check.
verify is invoked by the kernel at boot to check important files. If the check
fails, the kernel does not start the related daemons. The important files are
system daemons (e.g., login, logind, ssh, and sshd should be verified on
UNIX to detect a password sniffer), configuration files (e.g., SYSTEM.INI
should be verified on Windows to detect a Trojan horse), and shared li-
braries (e.g., GINA.DLL should be verified on Windows NT / 2000 to detect
a password sniffer).

The bootstrap process is depicted in Figure 1.

3.3 Smartcard Communication Protocol

In step 6 of the list presented above, a workstation and a smartcard carry out a
protocol to (1) authenticate the smartcard and (2) verify the hash presented by
the workstation. The protocol is shown in Figure 2, and is described as follows.
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Boot
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Fig. 1. Bootstrap Process
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r:      random number
{}Kpub: RSA encryption
{}Kprv: RSA decryption

{m,r}Kpub

{OK ,r, m}Kprv, or
{Err,r, m}Kprv

Fig. 2. Smartcard - Workstation Communication Protocol
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Workstation:

– obtain PIN from the user
– compute the hash of the kernel : m = SHA1{kernel}
– generate a random challenge : r

– encrypt {m, r} with public key : {m, r}Kpub
– send {m, r}Kpub to the smartcard, along with the PIN

Smartcard:

– check PIN; if the PIN does not match, set ANSWER to ERR
– decrypt {m, r} with private key
– compare m to the stored hash, and set ANSWER to OK or ERR
– sign {ANSWER, r, m} with Kprv : {ANSWER, r, m}Kprv
– send it to the workstation

Workstation:

– encrypt {ANSWER, r, m}Kprv with Kpub
– make sure it is signed by the smartcard.
– if (ANSWER == OK and r == original r and m == original m) continue

with boot, otherwise, halt the boot process

4 Security Consideration

In this section, we discuss the security of our design.

4.1 Model

We start with constructing a model of the system. The model consists of the
following participants:

Alice (A) A legitimate user who wants to boot and use a personal computer.
She owns a smartcard.

Smartcard Alice’s smartcard. It stores a private key, Kprv, and MACs. It is
PIN protected, i.e., a secret number must be presented before it is used. It
blocks itself if a wrong PIN is typed for n consecutive times.

Mallory (M) An adversary.
Personal Computer (PC) An Intel-compatible personal computer to be ver-

ified and booted. It consists of BIOS section 1 and 2, extension cards, GRUB
boot loader stage 1 and 2, an operating system kernel, verify, and the other
files.
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4.2 Claims

Here we claim the security properties of sAEGIS.

System integrity after boot
When a PC is booted using sAEGIS, the integrity of the following compo-
nents of the PC are ensured; BIOS, extension cards, GRUB boot loader,
operating system, and the other files that are verified.

User authentication
When a PC is booted using sAEGIS, it has been booted by a legitimate user.

4.3 Assumptions

We make the following assumptions in our model.

1. BIOS section 1 is integral.
We assume that the BIOS section 1 is not modified. This guarantees that
section 1 starts up the sAEGIS bootstrap process every time the PC is
booted.
The security property of the entire sAEGIS system relies on this assumption
because BIOS section 1 is the base of the secure bootstrap. If BIOS section 1
is modified maliciously, BIOS section 2 may not be verified correctly, result-
ing in a compromised section 2. This leads to a compromised GRUB stage
1, stage 2, and finally, a compromised operating system kernel. This defeats
the goal of sAEGIS.
We believe this assumption is reasonable. A portion of Intel’s latest genera-
tion of flash ROM can be write-protected by setting one of the PINs (RP#)
to high [11]. Although this protection can still be compromised by setting
one of the jumper switches on a chip set, this attack can be countered by
storing BIOS in ROM, prohibiting any modification.

2. Mallory can read anything in the PC, but nothing in the smartcard.
Mallory can read any data stored in the PC. However, she cannot read any
data in the smartcard. This is a reasonable assumption because it is usually
easy to physically open a PC and access data storage in it. In contrast, a
smartcard is tamper-resistant. While a smartcard suffers from newly devel-
oped attacks [13, 14], we ignore such attacks in this paper because (1) a
smartcard is still much harder to compromise than a PC, and (2) smartcard
developers are devising countermeasures to the new attacks.

3. Mallory can write anything in the PC except in BIOS section 1. She cannot
write anything in the smartcard.
Similarly to Assumption 2, Mallory can write anything in the PC except in
the protected region. However, she cannot write anything in the smartcard.

4. Cryptographic functions are strong.
We assume that cryptographic hash functions (MD5 used in BIOS, and SHA1
used in GRUB stage 2) are collision-free. We also assume that the random
number generator used in the protocol given in Section 3.3 is unpredictable.
Finally, we assume that our principal cipher, RSA, is impossible to compro-
mise in a reasonable amount of time.
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5. Mallory does not know Alice’s private key.
6. Mallory can snoop and modify messages on the serial port in which the PC

and the smartcard are communicating.

4.4 Attacks

Modification to PC’s Components By Assumption 3, Mallory can modify
anything she wants in the host except the BIOS section 1. However, if she does,
Alice will notice it at the next boot because sAEGIS verifies every byte of code
executed during the bootstrap process. By Assumption 1, a correct bootstrap
process will be invoked every time Alice boots the PC. By Assumption 4, Mallory
cannot forge a certificate or a MAC without knowing Alice’s private key, and
this does not happen, by Assumption 5.

Modification to PC’s Components after Boot Being a secure bootstrap
system, sAEGIS makes no attempt to protect the PC after it is booted. Mallory
can modify the system maliciously, e.g., install Trojan horse or a sniffer. However,
Alice can always restore the integrity the PC by rebooting it.

Unauthorized Boot Attempt Mallory may steal the PC and try to use it.
This is impossible unless Mallory obtains Alice’s smartcard and PIN, as the au-
thentication protocol presented in Section 3.3 prevents such an attempt. Without
knowing Alice’s private key, Kprv (Assumption 2 and 5), Mallory cannot produce
{OK, r, m}Kprv, because the random number generator is strong (Assumption
4).

Mallory may try to replay an OK message {OK, r, m}Kprv, but this does
not work either because of the random nonce, r.

Mallory may try a man-in-the-middle attack, i.e., modifying the kernel and
replacing the message from the host, {m’, r}Kpub, with {m, r}Kpub. The smart-
card, not knowing the hash value was altered, sends an OK message. However,
the workstation notices the attack because the hash values m and m’ do not
match.

Serial Cable Wiretapping By Assumption 6, Mallory can read and write
messages on the serial cable connecting the PC and the smartcard. However, she
cannot produce {OK, r}Kprv.

PIN Theft Mallory may obtain Alice’s PIN by breaking into the PC, or by
sniffing the serial cable. This is a common problem for today’s smartcard sys-
tems because a PIN is entered on the keyboard of the PC, and is transmitted
to the smartcard through a serial cable. This problem can be addressed by a
smartcard reader with a built-in PIN pad. For example, SPYRUS produces such
a smartcard reader [22]. Another approach to this problem is to use a one-time
pad for PINs, thus making replay of a PIN meaningless.
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Mallory as System Administrator Mallory may be Alice’s malicious system
administrator, and may try to compromise her secrets. For example, consider a
case in which Mallory tries to read Alice’s e-mail. Alice may encrypt her e-mail
with a secure mail tool, e.g., PGP. However, without a system like sAEGIS,
Mallory can modify the executable code of PGP to leak information. sAEGIS
prevents this by detecting such modifications. If the operating system and appli-
cation software vendors publish the signatures of their software, Alice can store
the signatures in her smartcard, and can check the system.

It is still unclear whether we can counter all the possible attacks mounted
by system administrators because security software usually is written with the
assumption that system administrators are trustworthy, and attacks by system
administrators have not been well studied. However, we believe that sAEGIS is
the first step to counter such attacks.

5 Implementation

We describe the sAEGIS prototype, which is an implementation of the design
described in Section 3. It is implemented on an ASUS P55T2P4 Pentium moth-
erboard, running a 233 MHz AMD K6 processor.

The prototype is based on the AEGIS prototype by Arbaugh et al. We do
not go into the details of the AEGIS implementation. sAEGIS uses GNU GRUB
0.5.93.1. Interested readers should consult with GRUB’s website [8] for details.

5.1 GRUB Stage 1

GRUB stage 1 is modified to verify GRUB stage 2 before jumping to it. Stage
1 tells AEGIS where stage 2 starts (0x800:0) and how large it is, and calls the
AEGIS interrupt (0xc2).

5.2 GRUB Stage 2

GRUB stage 2 is modified to carry out the protocol described in Section 3.3.
First, to communicate with a smartcard through a serial port, the smartcard

communication library is implemented by replacing the system-dependent part
of the sc7816 library [21] with modified serial console access routines
in OpenBSD-2.4 (/usr/src/sys/dev/ic/com.c).

Then, it needs some cryptographic functions. SHA1 routines in GRUB are
ported from Kerberos version 5-1.0.5 distributed by MIT. RSA routines are taken
from PGP 2.6.2.

In this prototype, random number generation is not implemented. It is re-
placed with a constant.

The kernel command in the GRUB user interface loads a kernel from a file
system to main memory. This command is modified to invoke the verification
protocol before letting GRUB boot the kernel. Another command, updatehash,
is added to update the SHA1 hash so that files can be verified in addition to the
kernel.
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5.3 verify

verify is a C program that reads a given file, computes its hash, verifies it with
a hash stored in a file, and returns the result of verification. An example use of
verify is as follows. In this example, verify makes sure inetd is not modified
before it is started.

/etc/rc.d/init.d/inet:

/boot/verify /usr/sbin/inetd
/boot/hash-table.txt &&
daemon /usr/sbin/inetd

In future implementation, verify should use hashes stored in a smartcard.

5.4 Smartcard-Side Code

The program in the smartcard is implemented in a Schlumberger Cyberflex
Access smartcard with Java. Cyberflex Access is the only smartcard we know
that offers both programmability and cryptographic functions (DES, RSA, and
SHA1).

The smartcard reads 128 byte input from GRUB, decrypts it with the RSA
private key. It then compares the hash value with the one previously stored in
its memory and determines whether the kernel image is unmodified. It concate-
nates its reply (0x8080808080808080 if OK, 0x4040404040404040 if not) with
the random key and signs the resulting string with the RSA private key. Finally,
it sends the result to GRUB.

In this prototype, the kernel hash is not included in the message sent from the
smartcard to the host because the necessity for checking this value was identified
after the prototype was implemented. In addition, a smartcard can hold only one
SHA1 hash value. This should be improved to allow more flexibility.

6 Performance Evaluation

To evaluate the efficiency of sAEGIS, the boot process is timed. The following
is the amount of time elapsed from the time that a PC is powered up until
an operating system starts the last system daemon. In addition, the smartcard
access time (the time spent in the protocol in Section 3.3) is measured, as it is
one of the most expensive components.

Measurement was carried out on Linux 2.2 (RedHat 6.2) with a 233 MHz
AMD K6 processor. We used the RDTSC instruction to obtain the number of
ticks after the processor powers up. All the numbers are in seconds, and are
averages of 5 trials each. Variance is small.
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time (sec)
boot with sAEGIS 69.55
boot without sAEGIS 57.88
difference 11.67

time (sec)
smartcard access 5.54

The result shows that sAEGIS adds 11.67 seconds to the bootstrap process.
About half of the added cost is for accessing the smartcard. The other half
includes the following:

– Code checking, which involves MD5 hashing and RSA operations. More de-
tails about this are available [2].

– Loading GRUB, which is 77KB, from a floppy disk, takes more time than
loading the much smaller (4.5KB) Linux boot loader, LILO, from a hard
disk.

Adding 11.67 seconds to the bootstrap process, which already takes 1 minute,
is acceptable in many environments.

7 Discussion

7.1 Key Management

To use sAEGIS effectively, it is essential to manage the private key in the smart-
card appropriately. We describe two ways of managing private keys.

First, if the computer to be protected is personal, e.g., a laptop computer,
one computer is associated with one owner. Therefore, the private key should be
unique, and should be known only to the owner of the computer (i.e., should be
only in the owner’s smartcard). sAEGIS can prevent an adversary from booting
the computer, thus discouraging theft of the computer. This approach may cause
a problem when a smartcard is lost, broken, or stolen because the associated
computer is no longer usable. Some kind of key escrow system is needed to
address this problem.

Second, if the computer to be protected is public, e.g., in a library, or in an
Internet cafe, one computer is associated with many users. The current sAEGIS
prototype cannot provide such multi-user authentication because it has only one
key pair between the smartcard and the computer. To achieve this, some multi-
user authentication mechanism is necessary, e.g., a certificate-based mechanism
with revocation, or a symmetric key-based mechanism such as Kerberos. An
alternative to this is not to authenticate users at boot time, let anyone boot
the computer, and rely on application level authentication. sAEGIS can achieve
this by assigning the same private key for multiple users. The trade-offs between
these two approaches are under discussion.
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7.2 Future Direction

Fix Implementation Limitations Four implementation limitations described
in Section 5 should be fixed, namely, (1) no random number generator, (2)
verify does not use a hash in the smartcard, (3) kernel hash, m, is not included
in the message the smartcard sends to the workstation, and (4) the smartcard
holds only one hash.

Smartcard Access from BIOS To achieve Goal 4 described in Section 3.1, it
is necessary to move the smartcard access library into BIOS. The library is 11
KB, so the size should not be a problem for the 1M flash BIOS.

Unfortunately, one of the authors who was responsible for smartcard pro-
gramming did not have permission to access the BIOS source code. Instead of
working out licensing issues, we decided to implement a prototype, and to wait
until open-source BIOS projects are mature enough to be used as the next plat-
form [15, 20].

8 Conclusion

We have implemented a personal, secure bootstrap process, sAEGIS, which is an
extension to AEGIS. Advantages of sAEGIS over AEGIS are: (1) the smartcard
lets users control what they use, (2) the smartcard serves as an authentication
token, and (3) it is more flexible than AEGIS.

The following two aspects highlight the value of this work.

– Improvement to important software
As attacks that modify an operating system itself are becoming more com-
mon, secure bootstrap, such as AEGIS, is strongly demanded. One of the
problems of AEGIS is the lack of flexibility: it can only boot the FreeBSD
kernel, and it requires reprogramming of a flash chip when the hardware
configuration is changed. We solved the former problem, and proposed a
solution to the latter.

– Idea of personalization
sAEGIS suggests a system in which the user does not have to trust system
administrators. We believe it is a huge security gain because many attacks
come from inside organizations.
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Abstract. Recently the demand to make software resistant to manipu-
lation is increasing. Similarly the demand to hide operation of software
or to hide secret used in software is increasing. Software possessing such
properties is called tamper-resistant software. One of methods to real-
ize tamper-resistant software is obfuscation of software, and evaluating
such software objectively and quantitatively has been an important re-
search subject. One of the known objective and quantitative methods
is the method using a parse tree of a compiler proposed in [GMMS00].
This method takes into account the complexity in one module of soft-
ware but not the complexity originated from relationships among mod-
ules. We propose at first several obfuscation methods to create a compli-
cated module structure which violates the structured programming rules.
Then, we propose a new evaluation method which can measure the diffi-
culty caused by complicated structure among modules. Its effectiveness
is proven through experiments. One of experiments shows the grades ob-
tained by the proposed evaluation well reflects the actual reading time
required by analysts.

1 Introduction

Tamper-resistance is a property such that secret object hidden inside is hardly
observed or modified from the outside. Software/hardware with such attribute
is called tamper-resistant software/hardware. Tamper-resistant hardware intrin-
sically requires a special physical device so that there are problems of cost and
handling. In contrast, tamper-resistant software [Auc96, MTT97, MMO98] is
expected to require less production cost. Also, due to no physical limitation, it
can be delivered through electronic network. If we can create promising tamper-
resistant software, we can replace a certain type of tamper-resistant hardware
with its software version.

There is high demand for tamper-resistant software in the electronic com-
merce systems and agent systems. For example, a bank wants to prevent cus-
tomers from modifying its software for handling electronic money. Customers
succeeding in the modification may be able to cheat merchants as well as the
bank. Similarly, mobile agents should not be modified in a remote place. If
tamper-resistant software has enough strength against analysis and manipula-
tion, its users have no choice but to obey the process designated by the software.

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 145–158, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Obfuscation is one of approaches to generating tamper-resistant software. In
this approach the description of software is converted into another one which
analysts cannot easily read. Analysts who cannot understand the algorithm of
software fail to properly modify the software. We can consider obfuscation in
different levels of language, e.g. assembly language and high-level language like
C. Software is often distributed in a binary form, but it is sometimes distributed
in source code. One can imagine free application software for UNIX and codes
written in script languages like Perl and Java Script for such distribution. Mean-
while, even software distributed in a binary form may be transformed into source
code by reverse engineering. Therefore, obfuscation of source code has its own
importance.

There are several known methods for making software hard to read. For exam-
ple, several basic operations such as dummy code insertion, code replacement and
code shuffling are proposed for the assembly language in [MMO98]. Modification
of class files into a complicated form is proposed for Java in [CTL97, KM00].
Modification of the structure of loop into a complicated form and separating
source code into modules are proposed for the C language in [MTT97] and in
[TOM97], respectively.

In order to produce reliable tamper-resistant software, it is necessary to eval-
uate the difficulty of reading tamper-resistant software. So far the following eval-
uation methods are known. In [MTT97] a subject is requested to read tamper-
resistant source code of C language and its reading time is counted. Without
doubt this method is affected by the skill and subjectivity of each analyst. Thus
an alternative objective and quantitative evaluation method should be estab-
lished. There are several evaluation methods which are regarded to be objective
and quantitative. In [MMO98] the distribution of opcodes is observed for evalu-
ating the assembly language. In [GMMS00] the depth and weights of a parse tree
created by a compiler is counted for evaluating the high-level language. There
is another approach of [AM00] which tries to evaluate the complexity of finding
out a secret hidden inside tamper-resistant software. In this method data of a
block cipher appearing in memory is observed and time required for identifying
a secret key out of the data is counted.

In this paper we seek to objectively and quantitatively evaluate the diffi-
culty of reading tamper-resistant software written by a high-level language. As
explained above, there is a proposal of [GMMS00] for such evaluation. How-
ever, the method proposed in [GMMS00] solely evaluates the complexity of the
internal structure of a module, and does not take into account the complex-
ity originated from relationship among modules. Therefore, we examine i) how
to create a complicated structure among modules and ii) how to evaluate the
complexity originated from relationship among modules. Regarding the second
subject we give experimental results on the validity of our measure in compar-
ison with the actual reading time required by analysts. Such a comparison was
not examined in [GMMS00].

This paper is organized as follows. After the introduction, we explain in Sect.2
notations, definitions and the evaluation method used in [GMMS00], which is
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also used in our paper. In Sect.3, we explain new obfuscation methods. Then in
Sect.4, we propose an evaluation method which can measure the difficulty caused
by the obfuscation method in the previous section. In Sect.5, we conduct exper-
iments and show evidence on the effect of our evaluation. Finally, conclusions
are given in Sect.6.

2 Preliminaries

2.1 Notations and Definitions

Since we improve the evaluation method proposed in [GMMS00], we use their
notations and definitions.

An algorithm T to generate tamper-resistant software converts a source code
c(f) of an algorithm f into another source code TRC(f) of tamper-resistant
software of f , where TRC is the acronym of Tamper-Resistant Code.

Given parameters (t, s), (t, s)-tamper-resistant software satisfies the following
conditions.

1. Let Pc and PTRC be an executable program of c(f) and TRC(f), respec-
tively. Let tc and tTRC be computational time of Pc and PTRC , respectively,
and sc and sTRC be program size of c(f) and TRC(f), respectively. For
given parameters (t, s), parameters tc, tTRC , sc, and sTRC satisfy

tTRC

tc
< t,

sTRC

sc
< s.

2. Pc and PTRC output the same value for the same input. In other words, Pc

and PTRC are software performing in the same way.

Although the definition given in [GMMS00] sets a condition on memory, de-
scription on memory is omitted in the above definition. We do not use it in our
analysis.

2.2 Evaluation Using Parse Tree

Computer uses a compiler for translating high-level language like FORTRAN,
PASCAL and C into machine language which computer can directly execute.
Conceptually, a compiler operates in the following phases one by one: lexical
analysis, syntax analysis, semantic analysis, intermediate code generation, code
optimization and code generation. The translation of a compiler is regarded as a
sequential operation of reading, analyzing and understanding a source language.
Especially, the compiler analyzes and understands a source language syntacti-
cally in the syntax-analysis phase. Such an operation is exactly what a human
performs in case of reading source code. Therefore, a parse tree obtained in the
syntax-analysis phase is used in [GMMS00] for evaluating the difficulty of read-
ing tamper-resistant software. In the parse tree, the root of a parse tree, each
leaf and each interior node are labeled by a start symbol, a terminal symbol,
and a nonterminal symbol, respectively.
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The evaluation rules used in [GMMS00] are as follows:

Rule 1: Weigh edges of a parse tree by the following sub-rules.

Rule 1.1: Set an initial weight into all edges of parse trees both for original
source code c(f) and tamper-resistant code TRC(f).

Rule 1.2: Only for tamper-resistant code TRC(f), change weight of edges
of its parse tree depending on the algorithm used for generating TRC(f).

Rule 2: Output the maximum weight, called points, among all sums of weight
from the root to each leaf of a parse tree.

The grades of a tamper-resistant code is defined as the difference between the
points of the tamper-resistant code and the points of the original source code. In
order to assess the grade of a conversion algorithm to generate tamper-resistant
software, such grades is computed for each of multiple source codes. At last, the
grades of a conversion algorithm is computed by processing a set of grades by
some statistical method like arithmetic mean.

From the experimental results shown in [GMMS00] modification of loop con-
tributes to the obfuscation more than dummy code insertion and replacement
of function do. Modification of loop increases the depth of nest so that a parse
tree of a converted code becomes deeper. Hence modification of loop marks high
grades.

However, the method described above only evaluates the complexity origi-
nated from the internal structure of a module, and fails to evaluate the complex-
ity originated from relationship among modules. This is because functions are
dealt with as a terminal symbol in the parse tree. Since the relationship among
modules does contribute to the difficulty of reading software, the evaluation
method should measure such complexity.

3 Proposal of Obfuscation Methods

Structured programming rules are famous programming rules allowing easy anal-
ysis and maintenance of programs. Such property conversely implies that we can
obtain a complicated program by destroying the structured programming rules.
In this section we explain at first structured programming rules proposed by
Dijkstra et. al. [DDH72]. Then we show two obfuscation algorithms, decompo-
sition algorithm and composition algorithm, which destroy the structured pro-
gramming rules.

3.1 Structured Programming Rules

In order to allow a programmer to easily analyze and maintain programs, Di-
jkstra et. al. have proposed in [DDH72] the following structured programming
rules:
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Decomposed Composed

:  Function

:  The left function calls the right function

Fig. 1. Change of the structure among functions

1. A program is composed of three basic structures, concatenation, selection
and repeat. Here concatenation means a sequence of statements. Selection
means “if condition then statement 1 else statement 2” and “case-of.”
Repeat means “while condition do statement” and “repeat statement until
condition.” In other words, a program should be go-to less.

2. A program is composed of modules which can be programmed independently
and revised with no, or reasonably few, implications for the rest of the sys-
tem.

3. Modules are designed by the stepwise refinement.

Program design is conducted in two steps. The first step is to divide function-
alities of a program. Each corresponding piece of program is called module. A
good module satisfies the second rule described above. There are several ways to
create modules. A top-down design is one of them. In this design functionality
of program is refined stepwise, which is described in the third rule.

The second step is the design of the inside of modules. Structured program-
ming rules are particularly useful in this regards. The first rule contributes to
expressing flow of a program clearly, and the third rule contributes to giving
a designer a method to think in a structured way and to reducing the risk of
including errors in programs.

When a large system is designed, one should follows the following rule.

4. In a large system the division process is executed step by step, and a divided
functionality is further divided afterwards. So a hierarchy of functionalities
should be created.

Essentially, the fourth rule can be achieved by the stepwise refinement of the
third rule.

3.2 Idea of the Proposed Obfuscation Method

In the C language a program is a set of functions, and a module is represented
by a function. Among the structured programming rules,
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(a) the first rule and a part of the third rule are set as rules for dealing with one
function, and

(b) the second rule, a part of the third rule and the fourth rule are set as rules
for dealing with relationship among functions.

We design a program difficult to read by destroying the structured programming
rules. Rules for the case (a) can be destroyed by frequently using go-to statement.
Rules for the case (b) can be destroyed by making the structure among functions
very complicated. Related to the latter method, we propose two obfuscation
algorithms, decomposition algorithm and composition algorithm.

Before explaining these algorithms, we give an example of changing the struc-
ture among functions in Fig.1. In this figure a directed graph represents rela-
tionship among functions. A function is shown as a vertex and a functional call
is shown as an edge from a calling function to a called function. The directed
graph on the left is a graph of the original program. The directed graph in the
middle is a graph of a program converted by the decomposition algorithm. The
directed graph on the right is a graph of a program further converted by the
composition algorithm.

3.3 Obfuscation through Decomposition

i=0;
if(i<n) function1();

function1(){
  process1(i);
  function2();
  function3();
}

function2(){
  process2(i);
  i++;
}

function3(){
  process3(i-1);
  if(i<n) function1();
}

for(i=0;i<n;i++){
  process1(i);
  process2(i);
  process3(i);
}

Fig. 2. Example of decomposition

A program can be obfuscated by a decomposition algorithm. The decomposition
algorithm replaces loops generated by for statement and while statement with
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a cycle of functions, which is composed of if statement and multiple component
functions. In this conversion, at first, data and variables used in a loop are defined
externally. Then processes in a loop are divided into multiple parts, and each part
is represented by a function. Finally, each of created functions is designed to call
some of other functions in such a way that the loop can be replaced with created
functions. When a condition of if statement is not satisfied, a functional call
is stopped and the cycle ends. Obviously the decomposition algorithm deviates
from the structured programming rules, especially the third condition, more
precisely the fourth condition. The decomposition is expected to contribute to
the obfuscation. An example of the decomposition is shown in Fig.2.

Conducting this conversion needs care for the value of variables. If the value
of a variable in a function are changed outside the function, the value of the
variable should be accordingly changed inside the function. In Fig.2 a variable i
of function 3 is added outside function 3, i.e. in function 2. So, i− 1 is used in
function 3 instead of i.

The increase of the number of functional calls, substitution and other oper-
ations leads to speed down of the execution. Therefore, it is better to adopt a
conversion which does not increase the number of these operations very much.

3.4 Obfuscation through Composition

void composedfunc(){
  if(c){
    process1.1;
  }else{
    process2.1;
  }

  if(!c){
    process2.2;
  }else{
    process1.2;
  }

}

f(f1,f2)f1

void function1(){
  process1.1;
  process1.2;

}

void function2(){
  process2.1;
  process2.2;

}

f2

. . . 
. . . . . . 

Fig. 3. Example of composition

A program can be obfuscated by a composition algorithm. The composition al-
gorithm combines multiple functions performing different processes into a single
function. In this conversion, at first, more than two functions having the same
type for parameters and also for returned value are randomly selected. Then
selection statements like if statement and switch statement are used for exclu-
sively executing one of functions. In this way, a generated function is composed
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of selection statements and selected functions. Since the composition algorithm
deviates from the structured programming rules, especially the second rule, it is
expected to contribute to the obfuscation.

An example of the composition is shown in Fig.3. Two functions f1 and f2

are combined into one combined function f(f1, f2). In the combined function
f(f1, f2) processes of one out of f1 and f2 are selected based on the if statement
concerning a variable c. Naturally speaking we can further increase the difficulty
by changing the condition on c into a more complicated one.

3.5 Decreasing Slow Down

The decomposition and composition algorithms sometimes introduce overhead
and leads to slow down. This is because these algorithms increase the number of
calling functions after the creation of cycles of functions, and also because the
composition algorithm particularly increases the number of selection statements.
In order to avoid unacceptable slow down in generated codes, we should adopt
the following strategy for using these obfuscation algorithms. As explained above
subsection, the decomposition and composition algorithms modify the syntac-
tical structure of algorithms, and the difficulty of a code generated by these
algorithms is not affected by the number of repetitions of a loop existing in the
program. Since the overhead introduced by these algorithms is accumulated in
every repetition of loop, we should apply the obfuscation algorithms to loops
with less repetitions.

4 New Evaluation Method

As explained in subsection 2.2, The evaluation method proposed in [GMMS00]
does not take into account the complexity originated from relationship among
modules. So it cannot properly measure the difficulty of programs created by
the decomposition and composition algorithms described in subsections 3.3 and
3.4. Therefore, we propose a new evaluation method which can deal with such
complexity. Although we can consider different algorithms which produce the
same output but perform in a different way, we examine only the difficulty
originated from difference of representation of the same algorithm as done in
[GMMS00].

Cycles of functions created by the conversion algorithms described in subsec-
tions 3.3 and 3.4 violate the fourth rule, which similarly means the third rule, of
the structured programming rules. Just as a loop creates a nest in a parse tree
and contributes to the obfuscation, we can regard cycles of functions as a kind
of nest which is effective for the obfuscation.

We define by equivalent cycles multiple cycles containing exactly the same
functions in the same calling order among them.
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Fig. 4. Application of the new rule

Additional rule:
Step 1: Draw a directed graph on the structure among functions and find out

all cycles containing more than two functions. If there are equivalent cycles,
only one cycle is used out of all equivalent cycles.

Step 2: In each of the found cycles, add one to the weights of all edges of a parse
tree of each function contained in the cycle.

A drawing method of the directed graph is explained in subsection 3.2.
In place of the cycle, we may be able to use two different values for the

evaluation: the number of edges in the directed graph or the number of vertices
in the directed graph. However, these values are easily increased just by adding
functions. That means we can obtain a higher grades simply by refining functions
in a stepwise way based on the structured programming rules.

On the other hand, let an upper function be a function lying in the upper
layer in the hierarchical structure of functions. For instance, when f1 calls f2 and
f2 calls f3, f1 and f2 lies in upper layers of f3. We may be able to increase only
the weights of edges of the upper function in place of all functions contained in a
cycle as defined in our evaluation rule. However, functions other than the upper
function are ignored in this evaluation. Since analysis of any function contained
in the cycle needs the knowledge on all of other functions contained in the cycle,
it is not appropriate to increase only the weights of edges of the upper function.

The new evaluation rule is exemplified in Fig.4. In the figure the tree on the
bottom is a parse tree of a program and the graph depicted above the tree is a
directed graph of the same program. There are two cycles, one between f2 and
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Table 1. The grades of tamper-resistant codes of program 1 (The points of the
original source code is 25.)

Alone T1 T2 T3 T4 T5

T1 26(1) 27(2) 28(3) 39(14) 42(17) 31(5)
(1.03,1.21) (1.00,1.48) (1.03,2.02) (1.03,1.33) (1.08,1.80) (1.05,1.71)

T2 29(4) 30(5) 31(6) 43(18) 45(20) 35(10)
(1.02,1.91) (1.04,2.19) (1.04,2.75) (1.04,2.02) (1.14,2.49) (1.13,2.45)

T3 38(13) 41(16) 43(18) 52(27) 44(19) 53(28)
(1.02,1.12) (1.03,1.66) (1.04,2.02) (1.02,1.26) (1.07,1.60) (1.04,1.66)

T4 40(15) 42(17) 45(20) 57(32) 51(26) 56(31)
(1.08,1.59) (1.07,1.80) (1.14,2.49) (1.08,1.75) (2.14,2.13) (2.17,1.95)

T5 30(5) 31(6) 35(10) 44(19) 60(35) 46(21)
(1.05,1.54) (1.03,1.83) (1.13,2.45) (1.09,1.69) (1.09,1.97) (1.11,1.81)

f3 and the other between f2 and f4. Therefore, the weights W of all edges of a
parse tree of f2 becomes 3 and that of f3 and f4 becomes 2.

5 Experimental Results

We have conducted experiments for confirming the validity of the proposed eval-
uation. Conversion algorithms used are as follows.

1. Dummy code insertion, T1,
2. Replacement of function, T2,
3. Modification of loop, T3,
4. Decomposition of functions, T4,
5. Composition of functions, T5.

Each of or two out of these algorithms have been applied to three programs,
program 1, program 2, and program 3. Program 1 is a program for factoring.
Program 2 is a program for computing the greatest common divisor. Program 3
is a program for the shell sort. These programs are relatively small programs
with about 30 lines.

When we apply Ti at first and then Tj to a program pk a corresponding algo-
rithm of this sequential operation is expressed as TjTi, and a generated tamper-
resistant code is expressed as TRCjTRCi(pk). When the same conversion algo-
rithm Ti is applied n times, we express T n

i and TRCn
i (pk) for a corresponding

algorithm and a generated tamper-resistant code.
Using a lexical analyzer lex and a syntax analyzer yacc, we have implemented

an evaluation program.

5.1 The Grades of Tamper-Resistant Software

Table 1 shows the grades of tamper-resistant code of program 1 generated by
combinations of 5 conversion algorithms. An algorithm in the raw is applied at
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first and then an algorithm in the column is applied. In this case the points of the
original source code is 25 and the grades expressed between parentheses in the
upper raw is derived by adding −25 to the points expressed without parentheses.

The execution time and the program size of the original source code of pro-
gram 1 are 0.1544 seconds and 182 bytes, respectively. The execution time is
computed by arithmetic mean after 100 trials under Soralis 7, Sun Ultra 10,
Ultra SPARC-IIi/333MHz. File size does not count return and the space. A
pair of values shown in the lower raw represents parameters (t, s) mentioned
in subsection 2.1. The maximum value (2.17, 2.75) of (t, s) is the underlined in
Table 1. That means the results for 25 tamper-resistant codes in Table 1 can be
considered as the results for (2.17, 2.75)-tamper-resistant software.

In Fig.5 we show the structure among functions of program 1. A directed
graph in the middle represents a graph of tamper-resistant code converted by
T4 twice. A directed graph on the right represents a graph of tamper-resistant
code generated by the experiment in the next subsection. It is converted by T4

twice and then by T5 twice.

main

main main

W     : Weights

: Function

: The left function calls the right function
: Composed Function

W=3

W=3

W=2

W=2

W=2 W=2

c(p ) TRC  TRC   (p )TRC   (p )2
4

2
4

2
51 1 1

Fig. 5. Modifying the structure among functions into a complicated form

Figure 6 shows the grades of conversion algorithms with respect to pro-
gram 1, 2 and 3. This figure implies that conversion algorithms composed of
modification of loop T3, decomposition of functions T4 and composition of func-
tions T5 mark high grades. As mentioned in subsection 2.2, the original eval-
uation method in [GMMS00] can evaluate only the difficulty originated from
modification of loop. The result shown in Fig.6 indicates that the proposed im-
provement is effective for evaluating the complexity originated from the structure
among functions, either.



156 Hideaki Goto et al.

T1
T2

T3
T4

T5

T1
T2

T3
T4

T5

0

10

20

30

40

First
Alone Second

GRADES

Fig. 6. The grades of tamper-resistant software with respect to program1,2,3

5.2 Relationship between the Grades and the Reading Time

Since the proposed evaluation method does not involve analysts, it is considered
to be objective. However, we do not know how the computed grades relates to
the actual reading time of analysts. In order to obtain an evidence of the valid-
ity of our evaluation, we have conducted experiments for clarifying relationship
between the grades obtained by the proposed evaluation and the actual reading
time required by analysts.

Let pk be a program k for k = {1, 2, 3}. For a program k, an original
source code c(pk), tamper-resistant codes TRC2

i (pk) for i ∈ {1, 2, 3, 4} and
TRC2

5TRC2
4 (pk) are evaluated. In the evaluation, a subject is given a source

code and data, and answers what is the output of the program. If the answer
is wrong, the subject continues to read it until the subject reaches the right
answer. The time until the subject answers correctly is counted.

The number of subjects is 6. The following assignment of source codes follows
the idea adopted in [MTT97]. One source code is selected from each of three
categories, c(pk) and TRC2

1 (pk), TRC2
2(pk) and TRC2

3(pk), and TRC2
4(pk) and

TRC2
5TRC2

4 (pk). Note that there are 6 source codes in each of these categories.
Selected 3 source codes are analyzed by a subject. With this assignment, subjects
do not read multiple source codes generated by the same conversion algorithm.
So they do not become familiar with the program. At the same time, source
codes converted from the same original program pk are not assigned to the
same subject. With this assignment, subjects do not become familiar with the
program, either.
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for analysis

The relationship between the average grades and the average relative time
for the analysis is shown in Fig.7. Relative time means difference between the
actual reading time of a tamper-resistant code and that of the original source
code. We can observe that source codes possessing high grades require longer
time for analysis. It is fair to say that the grades reflects the actual reading time
of analysts.

From Fig.7 the grades of T 2
5 T 2

4 is the highest among all examined conversion
algorithms. Its rough reason in case of program 1 would be as follows. The
directed graph of a tamper-resistant code of program 1 generated by T 2

5 T 2
4 is

shown in Fig.5. A composition function belongs to two cycles of functions and
the weights of edges of its parse tree is increased to 3. Such increase provides
high grades. Moreover, the increase of the number of selection statements after
the conversion by T5 results in the increase of nests, which also provides high
grades. We can observe the similar property in cases of program 2 and 3.

From the results of experiments in the previous subsection and this sub-
section, we can conclude our evaluation method is effective in evaluating the
complexity originated from relationship among modules.

6 Conclusions

Based on the idea to make a program deviate from the structured programming
rules, we have developed two obfuscation methods to make the module structure
complicated. Two obfuscation algorithms are the decomposition algorithm and
the composition algorithm. The decomposition algorithm replaces loops with a
cycle of decomposed functions. The composition algorithm combines multiple
functions performing different processes into a single function.



158 Hideaki Goto et al.

On the other hand, in order to overcome the incompleteness of the evaluation
method proposed in [GMMS00], we have proposed a new objective and quantita-
tive evaluation method which can measure the difficulty of programs caused by
complicated structure among modules. Relationship among modules is shown by
a directed graph, and we have estimated that cycles appearing in the graph con-
tribute to the obfuscation, and used them for evaluation. Experimental results
show that the difficulty originated from the structure among modules is evalu-
ated in the proposed method. We have also examined the relationship between
the grades and the actual reading time required by analysts. A corresponding
result tells that the grades obtained by the proposed method well reflects the
actual reading time.
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Abstract. This paper describes the design of a model as well as an
architecture to provide support for distributed advanced workflow trans-
actions. We discuss the application of transaction concepts to activities
that involve integrated execution of multiple tasks over different pro-
cesses. This kind of applications are described as transactional workflows.
The classical commit protocol, used in many commercial systems, is not
suitable for use in multilevel secure distributed workflow database sys-
tems that use a locking protocol for concurrency control. We choose to
develop formal framework for secure distributed workflow architecture
since we are actively involved in building a prototype of such a system.
We strive to develop a practical logical characterization of multilevel se-
cure (MLS) distributed workflow for the first time using the inherently
difficult concept of non-monotonic reasoning.

1 Introduction

Many technical and nontechnical issues hinder enterprise-wide workflow man-
agement. Because workflow types cannot always be fully predefined, they often
need to be adjusted or extended during operation. Distributed workflow exe-
cution across functional domains is necessary, but distribution transparency is
currently impossible because, different types of Workflow-Management-Systems
(WFMSs) implement different WFMS metamodels.

One possible way to enable distributed workflow execution is to build a
workflow-management infrastructure integrating different and heterogeneous
workflows. Users would have access to total funcionality because they access the
workflow-management underlying infrastructure, not individual WFMSs. The
resulting architecture is general and can accommodate as many WFMSs as re-
quired.

Transaction concepts have begun to be applied to support applications or ac-
tivities that involve multiple tasks of possibly different types - including, but not
limited to transactions, and executed over different types of entities - including
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DBMSs. Generally we will refer to such applications as multi-system transactional
workflows.

The recent trend to distribute workflow executions requires an even more ad-
vanced transaction support system that is able to handle distribition. Workflow
applications are long-duration applications since the duration of a workflow can
range from a few hours to a few months.

To summarize, the new aspects of our approach to security in distributed
workflow database management systems include the following researh contribu-
tions. The novel approach to the development of a practical logical characteriza-
tion of multilevel secure (MLS) distributed workflow for the first time using the
inherently difficult concept of non-monotonic reasoning. Distinguishing feature
of the workflow transaction support system proposed is the ability to manage the
arbitrary distribution of business processes over multiple workflow management
systems. We also derived general theorem which must be active when classifying
every item of information.

1.1 Outline of the Paper

We have planned the presentation of the current research as follows. We first
present a brief introduction to work on workflow transaction models and discuss
extended – relaxed approach to handle workflow transactions in section 2. Section
3 covers related aspects of workflow distribution and heterogeneity. A number of
relaxed transaction models in workflow contexts that have been defined recently
permitting a controlled relaxation of the transaction isolation and atomicity to
better match the requirements of various workflow applications are discussed
in section 4. In section 5 we develop a formal model and some axioms related
to multilevel secure distributed workflow object-relational model are given from
which theorems regarding secure workflow database models are derived. Section
6 concludes the paper with a summary and a short discussion of future research.

2 Related Work

The traditional transactions are usually characterized by the atomicity, con-
sistensy, isolation and durability requirements, called the ACID properties of
transactions. Some known examples of extended transaction models include
nested and multi-level transactions. Some examples of extended – relaxed trans-
action models are reported in [1, 2].

In the WIDE project [3], a workflow is supported at two transaction levels:
global and local. At the global level, the SAGA - based model offers relaxed
atomicity through compensation and relaxed isolation by limiting the isolation
to the SAGA steps. Some researchers in workflow systems have proposed the
notion of transactional workflow [4]. In transactional workflow environment, addi-
tional correctness requirements can be specified on top of traditional workflow
specifications.
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The Workflow Management Coalition has specified a standard interface to
facilitate the interoperability between different WFMSs [5]. However, they do
not address transactional issues with the exception of writing an audit log.

The transaction model used in the Exotica project [6] is based on the SAGA
model, but relies on statically computed compensation patterns. As a result, its
functionality is limited compared to the work presented in this research paper.

Finally, most commercial products are designed around a centralized database.
This database and the workflow engine attached to it — in most cases there is
a single workflow engine are a single point of failure which quickly become a
bottleneck and are not capable of providing a sufficient degree of fault tolerance.

Very often, a WFMS processes data for which high standards must be set
with respect to privacy and data security. Most of the workflow transaction
management theory for multilevel secure database systems has been developed
for workflow transactions that act within a single security class. In our research
work, we look at workflow transactions that act across security classes, that
is, the workflow transaction is a multilevel sequence of database commands,
which more closely resemble user expectations. We propose a formal model and
semantics for interpreting security issues in a workflow architecture which can
incooperate a multilevel deductive database.

3 Workflow Distribution and Heterogeneity

Workflow distribution introduces additional level of requirements. Because dis-
tributed workflow execution across heterogeneous WFMSs is currently not pos-
sible in a transparent way, we must to consider the problem of workflow fun-
cionality isolation.

A workflow is distributed when at least two of its objects reside in two dif-
ferent WFMS installations. This is relevant to workflow definitions as well as
workflow instances. An often-cited situation is subworkflow distribution, where
subworkflows are subject to excution on remote WFMSs. Some variants are pos-
sible, such as executing a subworkflow synchronously or asynchronously to the
invoking workfow. One of the typical variant involves executing some part of a
workflow on one WFMS, and continuing on another (see Fig.1).

If the associated WFMSs, do not know about each other, it’s indirect dis-
tribution. In this case, the WFMSs do not implement distribution natively, and
system designer must attach distribution functionality to the associatedWFMSs.
A recognised way is to establish communication buffers between the WFMSs,
such as a database or persistent file stores. Fig. 2 shows an example workflow def-
inition with one distribution task. The distribution task invokes an application
for buffer communication. Typically, workflow types can be distributed, too.

3.1 An Architecture for Multilevel Secure Workflow Interoperability

Global information management strategies based on a sound distributed ar-
chitecture are the foundation for effective distribution of complex applications
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WFMS 1 WFMS 2
WFMS 3

WFMS 4

Fig. 1. Workflows Division across different WFMSs

that are needed to support ever changing operational conditions across security
boundaries. What we need is a new MLS distributed computing paradigm that
can assist users at different locations and at different security levels to cooperate.

We present the fully distributed architecture for implementing a Workflow
Management System (WFMS). An MLS workflow distributed database consists
of a set N of sites, where each site N ∈ N is an MLS database. The sites in
the workflow system are interconnected via communication links over which they
can communicate. The WFMS architecture operates on top of a Common Object
Request Broker Architecture (CORBA) implementation. A CORBA’s Interface
Definition Language (IDL) is used to provide a means of specifying workflows.
Also we assume that communication links are secure — possibly using encryp-
tion. This distributed workflow transaction processing model describes mainly
those components necessary for the distribution of a transaction on different
domains.

Application for buffer - communication
policy

Distribution task

Fig. 2. The Distribution Task Invokes an Application for Buffer Communication

Domain is a unit of autonomy that owns a collection of flow procedures and
their instances. In practical terms, a domain might define the scope of a depart-
ment or division in an organization. Therefore, flows are grouped by domains,
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and each domain also manages a set of flow procedures installed in the domain.
A domain is not defined or limited by networks, processors, or peripherals. The
manager of resources can, however, be designed in any fashion, they are ex-
clusively responsible for the ACID properties on their data records. Solely the
interface to the components of the distributed workflow model must exist.

If a transaction should be dstributed on several domains — a global transac-
tion, in every domain there must exist the following components, (see Fig.3).
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Fig. 3. Distributed Workflow Architecture

– TM - Transaction--Manager. The transaction manager plays the role of the
coordinator in the respective domain. If a transaction is initiated in this
domain, the TM assigns a globally unique identifier for it. The TM monitors
all actions from applications and resource managers in its domain. In every
domain involved in the distributed workflow transaction environment there
exists exactly one TM.
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– CRM - Communication--Resource--Manager. Multiple applications in the
same domain talk with each other via the CRM. This module is used by
applications but also other management components for inter-domain com-
munication. CRM is the most important module with respect to the transac-
tional support for distributed workflow executions. Our model specifies the
T*RPC as a communication model, which supports a remote procedure call
(RPC) in the transactional environment.

– RM - Resource--Manager. An accountable performer of work. A resource can
be a person, a computer process, or machine that plays a role in the workflow
system. This module controls the access to one or more resources like files,
printers or databases. The RM is responsible for the ACID properties on
its data records. A resource has a name and various attributes defining its
characteristics. Typical examples of these attributes are job code, skill set,
organization unit, and availability.

– AMS - Administration--Monitoring--Service. The monitoring manager is used
to control the workflow execution. In our approach, there is no centralized
scheduler. In the figue, each Task Manager - designated as TSM, is equipped
with a conditional fragment of code which determines if and when a given
task is due to start execution. The scheduler communicates with task man-
agers using CORBA’s asynchronous Interface Definition Language(IDL) in-
terfaces. Task managers communicate with tasks using synchronous IDL
interfaces as well. AMS module is also responsible for the coordination of
the different sites in case of an abort that involves multiple sites. Individual
task managers communicate to monitoring manager their internal states, as
well as data object references - for possible recovery.

The distributed architecture suits the inherent distributional character of
workflow adequately in a natural way. This approach also eliminates the bottle-
neck of task managers having to communicate with a remote centralized sched-
uler during the execution of the workflow. This architecture also posseses high
resiliency to failures — if any one node crashes, only a part of the workflow is
affected.

4 Relaxed Transaction Models in Workflow Contexts

A number of relaxed transaction models have been defined recently that
permit a controlled relaxation of the tranaction isolation and atomicity to better
match the requirements of various workflow applications. Usually, we will refer
to such applications as multi-system transactional workflow. This area has been
also influenced by the concept of long running activities.

As has been pointed out in [7], WFMSs lack the ability to ensure the cor-
rectness and reliability of the workflow execution in the presence of concurrency
and failures.
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4.1 Transactional Workflows

Support for workflow applications has been addressed by researchers focusing on
workflow systems and transaction systems. Our approach falls in the category
of transactional workflows [4] where additional correctness requirements can be
specified on top of traditional workflows specifications. Flexible transactions
work in the context of heterogeneous distributed multidatabase workflow envi-
ronments [8]. In such workflow environments, each database acts independently
from the others. Because a local database can unilaterally abort a transaction, it
is not possible to enforce the commit semantics of global transactions. Therefore,
flexible transaction were designed to address this problem.

4.2 The Functionality of Flexible Transactions in Workflow Systems

A flexible transaction is specified by providing: the precondition of the global
transaction, a set of subtransactions, the externally visible states of each sub-
transaction and the possible transitions among these externally visible states,
preconditions and postconditions for the possible transitions of each subtrans-
action, and the postcondition of the global transaction.

To better support workflow operational environment, the flexible transac-
tion model relaxed the isolation and atomicity properties. This approach is the
direct result of our believe, that tying a workflow system to a particular trans-
action model, will result in major restrictions that will limit its applicaility and
usefulness as a workflow tool.

4.3 A Formal Model of Flexible Transactions

From a user’s point of view, a transaction is a sequence of actions performed on
data items in a database. Flexible transaction model proposed for the distributed
workflow environment will increase the failure resiliency of global transactions
by allowing alternate subtransactions to be executed when a local database fails
or a subtransaction aborts. The approach supports the concept of varied trans-
actions allowing compensatable and noncompenstable subtransactions to coexist
within a single global transaction. The concurrency control of global transac-
tions require, that each global transaction has at most one subtransaction at
each local site [9]. Following [8, 10], the definition of flexible transactions takes
the form of a high-level specification. The flexible transaction model supports
flexible execution control flow by specifying two kinds of dependencies among
the subtransactions of a global transaction:

– Execution ordering dependencies between two subtransactions.
– Alternative dependencies between two subsets of subtransactions.

In what follows, we shall formally describe the flexible execution control in
the flexible transaction model.

Let Ω = {t1, t2, . . . , tn} be a collection of subtransactions and Π(Ω) the
collection of all subsets of Ω. Let ti, tj ∈ Ω and Ti, Tj ∈ Π(Ω). Two types of
control flow relations are defined on the subsets of Ω and on Π(Ω), namely:
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– precedence ti ≺ tj if ti precedes tj (i �= j);
– preference Ti B Tj if Ti is preferred to Tj (i �= j). If Ti B Tj , we also declare
that Tj is an alternative to Ti.

Both of the above relations, precedence and preference are irreflexive and
transitive or more formally, for each ti ∈ Ω, ¬(ti ≺ ti); and for each Ti ∈ Π(Ω),
¬(Ti B Tj). If ti ≺ tj and tj ≺ tk, then ti ≺ tk; if Ti B Tj and Tj B Tk, then
Ti B Tk.

From he above definitions, we can see than, the precedence relations deter-
mines the correct parallel and sequential execution ordering dependencies among
the subtransactions, while the preference relation determines the priority depen-
dencies among alternate sets of subtransactions for selecting in completing the
execution of Ω.

Now a flexible transaction can be defined as follows:

Definition 1. Flexible transaction A flexible transaction Ω is a set of related
subtransactions on which the precedence (≺) and preference (B) relations are
defined.

The semantics of the precedence relation refers to the execution order of
subtransactions. For example, t1 ≺ t2 may imply that t2 cannot start before
t1 finishes or that t2 cannot finish before t1 finishes. By the same token, the
preference relation defines alternative choices and their priority. For example,
{ti} B {tj , tk} may imply that tj and tk must abort when ti commits or that
tj and tk should not be executed if ti commits. In this environment, {ti} is of
higher priority than {tj, tk} to be chosen for execution.

We consider that a workflow database state is consistent if it preserves work-
flow database integrity constraints. As it is the case for traditional transactions,
the execution of a flexible transaction as a single unit should map one consis-
tent multidatabase workflow state to another. We designate relation (Ti,≺i) as
a partial order of subtransactions. (Ti,≺i) is a representative partial order, if the
execution of subtransactions in Ti represents the execution of the entire flexi-
ble transaction Ω. From the above it is clear that, if (Ti,≺i) is a representative
partial order, then there are no subsets Ti1 and Ti2 of Ti such that Ti1 B Ti2.
Because each global transaction has at most one subtransaction at a local site,
each representative partial order of a flexible transaction must have at most one
subtransaction at a local site. In our workflow execution environment, for flexi-
ble transactions, the above definition of consistency requires that the execution
of subtransactions in each representative partial order must map one consistent
workflow multidatabase state to another.

4.4 Scheduling of Flexible Transactions

Since the flexible transaction model was proposed, much research has been de-
voted to its application. The availability of visible prepare–to–commit states in
local database systems is the basic assumption underlying this work. Also, time
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used in conjunction with subtransaction and global transaction can be exploited
in transaction scheduling.

A schedulable subtransaction may be submitted for execution to the transac-
tion module. The scheduler first has to check for satisfaction of the preconditions
for execution of each subtransaction — it determines whether a subtransaction
is schedulable. This entails the specification of the execution dependency among
the subtransactions of a global transaction. Execution dependency [4], is a re-
lationship among subtransactions of a global transaction which determines the
legal execution order of the subtransactions. To support the specification of the
execution dependency, we define a transaction execution state as follows:

Definition 2. The transaction execution state x for a global transaction T with
m subtransactions, is an m− tuple (x1, x2, . . . , xm) where:

xi =





E if ti is currently being executed;
N if subtransaction ti has not been

submitted for execution;
S if ti has successfully completed;
F if ti has failed or completed without

achieving its objective;

Under normal operational circumstnces transaction execution state is used to
keep track of the execution of the workflow subtransactions. It is also used to
determine if a global workflow transaction has achieved its objectives. When a
subtransaction ti complete the corresponding execution state, xi is set to S if the
subtransaction has achieved its objective, and to F , therwise. At a certain point
of execution, the objectives of the global workflow transaction may be achieved.
At that point, the global transaction is considered to be successfully completed
and can be committed.

A number of approaches can be used to assure global serializability which
constitutes a satisfactory correctness criterion for concurrent execution of multi-
database workflow transactions, if there is a lack of additional information about
their semantics. The objective of concurrency control is to assure that the serial-
ization order of multidatabase workflow transactions should be the same, at all
sites they execute. It was shown in [8, 11], that the above condition is sufficient to
assure global serializability. However, in our workflow operational environment
this requirement can be relaxed to require that the relative serialization order of
Workflow Transactions should be the same only at those nodes where they con-
flict. This would lead to a weaker notion of serializability; calledWT-serializability,
which will be used as our correctness criterion for concurrent execution of Work-
flow Transactions. We define conflict among workflow transactions if they
execute at the same (local) site, and they are not commutative. The conflict re-
lation is transitive, and therefore determines a set of equivalence classes, which
can be named as conflict classes. In our workflow environment they are used to
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determine the granularity of locking. In order to define workflow transaction se-
rializability; WT-serializability, let us consider two workflow flexible transactions
WTα andWTβ, and conflict classes, i and j. A global schedule is WT-serializable

if for any subtransactions STα
i and STα

j ∈WTα, and ST
β
i and ST β

j ∈ WTβ such
that conflict (STα

i , ST
β
i ) and conflict (STα

j , ST
β
j ), ST

α
i ≺ ST β

i ⇒ STα
j ≺ ST β

j ,
at all sites they conflict. In our workflow environment the ≺ relationship is de-
fined in terms of local serializability. WT-serializability establishes a partial order
among all workflow flexible transactions. The submission order at each system,
can be used to determine the execution and, consequently, the serialization order
at each site. Therefore, the concurrency control mechanism of the local system
will assure that the transactions that are submitted to the local system will be
executed correctly with respect to the local concurrency control. As a result,
the lock held by a subtransation can be released as soon as the subtransaction
completes its submission phase. Therefore, we will have several transactions that
are executing concurrently at each local site.

5 A Formal Approach to Support Workflow Security

An MLS distributed workflow management system should support functionality
equivalent to a single-level workflow management system from the perspective
of MLS distributed workflow users who design, implement and utilize multilevel
secure distributed workflows.

A number of models for secure workflow have been proposed. These mod-
els differ in many respects. Despite heavy interest in building model of secure
workflow management systems, there is no clear understanding regarding what
a multilevel secure data model exactly is.

5.1 A Logic – Based Semantics for Multilevel Secure Workflow

In a multilevel secure workflow database management system users cleared to
different security levels access and share a database consisting of data items at
different sensitivity levels.

As a part of our research work, we introduce a belief-based semantics for
multilevel secure workflow databases that supports the notion of declarative
belief and belief reasoning in multilevel security scheme (MLS) in a meaningful
way. We strive to develop a practical logical characterization of MLS workflow
databses for the first time using the inherently difficult concept of non-monotonic
reasoning.

Recent research shows that users in the MLS workflow model have a ambigu-
ous view and confusing belief of data [12]. Multilevel security implements the
policy of mandatory protection defined in [13] and interpreted for computerized
systems by Bell and LaPadula [14]. In this research paper we assume the
representation and execution of MLS rules obey the Bell-LaPadula “no read up,
no write down” principles. Many multilevel data models have been proposed
in the literature, just to mention a few: SeaView [15, 16]; also models proposed



A Strategy for MLS Workflow 169

by Sandhu-Jajodia [18, 19]; and by Smith-Winslett [20] and many others. Some
of these models has its strong points (e.g., the belief-based semantics of the
Smith-Winslett model, etc.). However, we argue that most of these proposals
are not completely satisfactory, in particular, if the workflow database may be
polyinstantiated.

5.2 Multilevel Workflow Database

The majority of proposals for multilevel workflow secure relational (MLS) data-
bases have utilized various syntactic integrity properties to control problems
that arise under very strict security, such as polyinstantiation and proliferation
of tuples resulting from updates, with only some partial success. We propose
modal logic as a natural vehicle for reasoning about security. Because much
security is dependent on the concept of what a subject knows, logic allows us to
reason about knowledge, one of the fundamental concept of computer security.

We are interested in our research in workflow databases which enforce the
multilevel security policy. Lets designate by Level a finite set of security lev-
els. The set Level is assumed to be a lattice associated with a partial order
relation denoted by < . This directly implies that, the least upper bound and
greatest lower bound are determined. To describe that, we shall employ two func-
tions lub and glb. Assuming that l1 and l2 are two security levels, then lub (l1, l2)
and glb (l1, l2) are respectively the upper bound and greatest lower bound of l1
and l2. There are also two distinctive levels, the one which is lower than all
other levels, designated by ⊥ and the other level which is higher than all other
levels, designated by �. We view the global multilevel database as a set of par-
titions, where each partition accomodates single–level database associated with
one particular security level. We can formally represent this as follows. A multi-
level database DB is represented by a set of databases {DBi, i ∈ Level}. Every
DBi is a partition containing a finite set of propositional formulae whose clas-
sifications are equal to i and which are satisfiable but not necessarily complete.
We assume that the integrity constraints are classified at level ⊥ because there
is a single set of integrity constraints which is common to every single–level
database DBi, i ∈ Level. We wish to remove this restriction, therefore we have
to consider that we partition the global set of integrity constraints into subsets
Ii associated with each single–level database DBi. For example, let us assume
that the following integrity constraint i1 is stored at the unclassified level:

– ∀x, ∀y, Emp(x) ∧ Earn(x, y)→ y ≤ 80, 000

i.e. an employee must not earn more than $80, 000.
However, let us assume that there are employees who can earn up to $99, 000

but this data must be kept secret. Inductively, we can proclaim the following
integrity constraint i2 at the secret level:

– ∀x, ∀y, Emp(x) ∧ Earn(x, y)→ y ≤ 99, 000



170 Vlad Ingar Wietrzyk, Makoto Takizawa, and Vijay Varadharajan

However, two different sets of integrity constraints Ii and Ij may be con-
flicting, i.e. I∗i ∩ I∗j = Ø, therefore we might suggest using so called [23] the
trusted approach. We need to observe that data stored in each single–level work-
flow database generally correspond to a partial view of the universe by users at
the corresponding security level. This is induced from our assumption that each
single–level workflow databaseDBl only contains data classified at level l. There-
fore, in the trusted approach, the view at a given level l is obtained by merging
the single–level workflow database at level l with all the lower single–level work-
flow databases. For example, if a workflow database at level lk−1 is consistent
with a workflow database at level lk, then DBlk−1 can completely flow to level lk
— as in the additive approach [23]. Lets describe, V iew at level l as the view of
the multilevel workflow database for users at level l. Therefore, we can use the
trusted approach to derive the set of integrity constraints Integrity at level lk
which apply to the security level lk:

– (Integrity at level l1)∗ = I∗l1
– (Integrity at level lk)∗ =
I∗lk � (Integrity at level lk−1)∗

To be realistic, we shall assume that the global workflow multilevel database
may be polyinstantiated. We define this as follows: a workflow multilevel database
DB is polyinstantiated if and anly if there are two security levels i and j such
that DB∗i ∩ DB∗j = Ø.

Formally, a multilevel relation consists of two parts: scheme and instances,
defined below.

Definition 3. Relation Scheme Let A1, . . . , An be data attribute names over do-
main Di, each Ci is a classification attribute for Ai and TC is the tuple-class
attribute. The domain of Ci is specified by a range [Li, Hi] which defined a sub-
lattice of access classes ranging from Li to Hi. Let the domain of TC be the
range [lub1{Li : i = 1, . . . , n}, lub{Hi : i = 1, . . . , n}].

Definition 4. Relation Instances Let R(A1, C1, A2, C2, . . . , An, Cn, TC) be a
multilevel relation scheme. This collection of state-dependent relation instances
one for each access class c in the given lattice is designated by Rc. Then each
instance of a multilevel relation is a set of distinct and ordered tuples of the form
(a1, c1, a2, c2, . . . , an, cn, tc) where each ai ∈ Di or ai = null, and tc = lub{ci :
i = 1, . . . , n}. If ai �=⊥ (null value) then ci ∈ [Li, Hi]. We also require that ci
be defined even if ai is null - a classification attribute cannot be null or more
formally, ci �=⊥ for ∀ ai.

Similarly to classical relations, multilevel workflow relations are required to
satisfy several integrity properties. Since multilevel workflow relations have dif-
ferent instances at different access classes, the definition of keys becomes unclear
because a relation instance is now a collection of sets of tuples rather than a sin-
gle set of tuples.
1 Least upper bound
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5.3 The Necessity for Semantics in Secure Workflow Databases

The problem of polyinstantiation arises because of different views of a single
entity in the real world at different security levels by two subjects. Also the
above problem generally occurs through the avoidance of a covert channel. If
for example a user inserts a relation instance—tuple with key K1, a user from
a lower security level cannot be prevented from inserting a different tuple with
key K1 later on, as rejecting the later insertion would open a covert channel. As
a direct result of this operation, MLS workflow relations can contain multiple
tuples with the same key value — polyinstantiated tuples. This problem has
been indicated in some previous models by means of syntactic integrity proper-
ties, which control the extent and nature of polyinstantiation—e.g., Jajodia and
Sandhu [18, 19] and Jukic and Vrbsky [12].

Our contention is that both these models of asserting user beliefs about se-
curity are incomplete and somewhat stringent.

The Jukic-Vrbsky model is too restrictive and has only fixed interpretations.
On the other hnd, Jajodia-Sandhu model is too basic where users are left to
discover the truth. Users in these frameworks really do not have any reasoning
capabilities as the interpretations are already given.

The paucity of attempts aimed at developing a logical characterization for
MLS models evidences that MLS workflow deductive databases are realy at
their embryonic state. While there were proposals such as [17] that addressed the
general issue of authorization in a deductive framework, only Cuppens addressed
the issue of querying MLS deductive databases [21].

We believe a middle ground is warranted where the user is given the choice
to reason and theorize about the beliefs of others and decide how he wants
to believe information visible to him. To support that approach, we assert that
users should be given linguistic tools to view data as well as to construct meaning
of the visible data. In such environment, the user may take a firm view of the
data and insist that whatever is created at his security level only are correct and
believable data. Thus lower level data are of no value.

5.4 Inference Control Theorems of MLS Workflow Database

We argue that any proposed model of MLS workflow database, under either
discretionary or mandatory security, should incorporate at least the following
elemants:

– A formally defined model of the MLS including all the security propeties
that databases under this model will possess.

– Classification of any piece of information at any given classification level,
should be enforced by powerful inference control rules

– A formal definition—semantics for databases under the proposed model,
which can represent the beliefs about the state of the world held by the users
at a chosen security level
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The axiomatics of the language L, which we consider is based on classical
axiom schemas of first order logic with equality, augmented with appropriate ax-
ioms of our theory related to the multilevel workflow object–relational database.
The subset of our language L is universally consistent with any language based
on first order logic with equality [21]. What follows is a set of some axioms,
which are relevant to a set of integrity constraints to be enforced by the multi-
level workflow object-relational database:

– If a is an attribute of the object o then o is an object.
∀a∀o, OA(o, a) → Object(o) (A)

– If m is a method of the class c then c is a class.
∀m∀c,Method(c,m) → Class(c) (B)

– If a is an attribute of the class c then c is a class.
∀a∀c, CA(c, a) → Class(c) (C)

– Any object attribute has a value.
∀a∀o, OA(o, a) ↔ ∃v, V al(o, a, v) (D)

– The value of an object attribute is unique.
∀a∀o∀v∀v′ , V al(o, a, v) ∧ V al(o, a, v′)→
(v = v′) (E)

– Any object is instance of at least one class.
∀o, Object(o) → ∃c, Instance(o, c) (F)

– If o is an instance of c then o is an object and c is a class.
∀o∀c, Instance(o, c)→ Object(o)
∧ Class(c) (G)

In this section we also present the general constraints that should be enforced
when classifying the workflow database content. Those constraints must be sat-
isfied when classifying Class− c, containing objects o and attributes a at level l
and Class(c) at level l̂. The language that we propose to represent the multilevel
workflow database is an extension of the above defined language combined with
the acclaimed Datalog language which is also augmented with the predicates
of the Logic Data Language – LDL, resulting in powerful combination of the
expressive power of a high-level, logic-based language (such as Prolog) with the
nonnavigational style of relational query language, where the system is expected
to devise an efficient execution strategy for it. For each predicate P of an arbi-
trary n used to represent the non-protected workflow database content, there is
a predicate P̂ of arity (n+ 1) used to represent the MLS workflow database.

It is generally acknowledged that when classifying any piece of information
at a given level, the following inference control rule must be active:

Definition 5. Rule - 1 Let x1, . . . , xn be tuples of variables consecutively com-
patible with the arity of predicates P1, . . . , Pn. Let y be another tuple of variables
compatible with the arity of Q. For simplicity we assume that each variable in
tuple y appears in at least one of the tuples x1, . . . , xn. therefore if:

∀x1, . . . ,∀xn, P1(x1)∧, . . . ,∧Pn(xn)→ Q(y)
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is an axiom of the non-secure object oriented database, then by following the
similar approach as in [21], we can derive the following theorem in relation to
the multilevel workflow object oriented database:

∀x1 . . .∀xn ∀ l1 . . . ∀ ln ∀ l, P̂1(x1, l1) ∧ . . .
∧ P̂n(xn, ln) ∧ Q̂ (y, l)→ l ≤ lub(l1, l2, . . . , ln)

If the above rule 1 is not complied with, then a subject cleared at level
lub(l1, . . . , ln) can access every Pi(xi) and use the above defined axiom to derive
Q(y). On the other hand if the classification of Q(y) is not lower or equal to
lub(l1, . . . , ln), then an inference passage enabling prohibited information to
be disclosed is opend. By combining the above derived rule 1 with some more
axiomatic of our language, we can derive more useful theorems2.

For example by combining rule - 1 with axiom (D), we can derive the fol-
lowing theorem:

– ∀a∀o∀v∀l∀′l, V al′(o, a, v, l)
∧OA′(o, a, l′)→ (l′) (H)

Which can be described as follows: the sensitivity of “v is a value of the
attribute a in object o” dominates the sensitivity of “a is an attribute of object
o”.

This model includes the possibility to hide some parts of the multilevel work-
flow database schema and to deal with rules in the database. Therefore, it may
also be used as a formal semantics for multilevel workflow deductive databases.

When classifying any data of information at a given sensitivity level [22], the
following control rule must be operational if one wants to protect the existence
of secure information:

Definition 6. Rule - 2 Let x1, . . . , xn and y1, . . . , yp be tuples of variables con-
secutively compatible with the arity of predicates P1, . . . , Pn and Q1, . . . , Qp and
let y be another tuple of variables. For simplicity we assume that each variable
in tuple y appears in at least one of the tuples y1, . . . , yp and each variable in
tuples y1, . . . yp appears in at least one of the tuples x1, . . . xn, y. If:

– ∀x1 . . . ∀xn, P1(x1) ∧ . . . ∧ Pn(xn)→ ∃y,
Q(y1) ∧ . . . ∧Q(yp) (L)

is an axiom of the non–protected workflow object–relational database, then, the
following theorem can be derived related to the workflow multilevel object–rela-
tional database:

– ∀x1 . . . ∀xn∀l1 . . . ∀ln, P ′1(x1, l1)
∧ . . . ∧ P ′n(xn, ln)→ ∃y∃l′1 . . .∃l′p, Q′(y1, l

′
1)

∧ . . . ∧Q′(yp, l
′
p) ∧ lub(l′1, . . . , l′p)

≤ lub(l1, . . . , ln) (M)

2 Detailed demonstration on how similar theorems can be established can be found
in [23]
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In case, when Rule - 2 is not satisfied, then a subject cleared at level
lub(l1, . . . , ln) can access every Pi(xi) and use the axiom (L) to derive the ex-
istence of the secure data (facts) Q(y1), . . . , Q(yp) some of them being classified
higher than lub(l1, . . . , ln). As the result, effectively a signaling channel is cre-
ated, which enables the existence of prohibited information within the workflow
repository to be disclosed.

6 Conclusion

The impetus for our current research is the need to provide an adequate frame-
work for belief reasoning about security in MLS distributed workflow manage-
ment systems. The notions of correctness for transaction processing that are
usually proposed for multiuser databases are not necessarily suitable when these
databases are parts of a multilevel secure workflow systems. We believe, that
the best approach will depend upon the characteristics of the multilevel secure
workflow database and the applications. It is incumbent upon those who develop
multilevel secure database systems to ensure that the user’s needs and expecta-
tions are met to avoid misunderstandings about the system’s functionality.

The insight developed in the current research serves as the basis for a com-
plete logical synthesis of SecureLog, the language which we are currently de-
veloping as an orthogonal extension of the work contained in this paper in the
direction of F-logic [24].

We choose to develop formal framework for secure distributed workflow ar-
chitecture since we are actively involved in building a prototype of such a system.
We strive to develop a practical logical characterization of MLS distributed work-
flow for the first time using the inherently difficult concept of non-monotonic rea-
soning. We also derived general theorem which must be active when classifying
every item of information.
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Abstract. Deploying security services is hard. Security services are more
readily integrated when they can be added at a single point in a network
or at a single layer in the protocol stack. Most of today’s widely de-
ployed security tools are deployed in this manner. Unfortunately this
kind of deployment significantly limits the kinds of security policies that
can be enforced.
The end-goal of security is to control access to information. Many ap-
plications require that access be controlled to pieces of information that
are only delineated at the application layer. Enforcement of these poli-
cies requires application cognizance of security, and today this means
that applications and application protocols must be modified.
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authorization will be described that allows application developers to fo-
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etc.) to be enforced through the API without specific knowledge or un-
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Dr. Neuman will additionally suggest that the policies themselves adapt
to perceived network threat conditions, possibly affected by the receipt
of audit data at other processes. The use of such policies can assist in de-
tecting and responding to intrusion and misuse and lead to more efficient
utilization of all security services.
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Abstract. Trojan-horses are hard to detect since they pretend normal
programs [14]. This paper proposes ‘SKETHIC (Secure Kernel Exten-
sion against Trojan Horses with Information-carrying Codes)’, an anti-
Trojan method based on resource access information attached to codes.
This information serves as criteria for users’ decision on installation of
programs and forms access control policies for the runtime monitoring
system. Compared to the previous approaches, SKETHIC introduces a
way of reducing the users’ decision-making overhead. To show clearly
how it keeps a host secure from Trojans, we describe the mechanism in
a formal way.

1 Introduction

A ‘Trojan horse’ program, or a ‘Trojan’ is a program that pretends to be a normal
code but does something unwanted, like stealing passwords and destroying files
[14]. One can have Trojan-horses usually through the Internet and E-mails, and
due to hackers’ intrusion. It is easy for a dishonest developer to deceive users to
accept a Trojan with a reasonable name and documents.

This paper introduces a new anti-Trojan mechanism called ‘SKETHIC (Se-
cure Kernel Extension against Trojan horses with Information-carrying Codes)’.
To detect unknown Trojans, SKETHIC focuses on the gap between users’ expec-
tations for a code and its actual behaviors. However, in contrast to existing anti-
Trojan monitoring tools, SKETHIC allows users free from describing expected
access rights necessary for an unacquainted code. Instead, they just examine the
information attached to the code, called a resource access list, to decide whether

� This work is supported by Brain Korea 21 project and by National Security Research
Institute (NSRI).
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to accept it or not. Execution is permitted only for the code looking honest. Dur-
ing the execution of the code, the monitoring system is watching the process,
to check if it follows its resource access list. When the process tries to access a
resource beyond the list, appropriate responses will be given.

The rest of the paper is organized as follows. In section 2, we review the
previous anti-Trojan approaches, and we show an abstract view of SKETHIC in
section 3. In section 4, the mechanism used in SKETHIC is described in a formal
way. Also we show how it keeps a host secure from Trojan horses. In section 5,
the proposed mechanism is compared with other approaches and discussed in
detail. In section 6, we give a conclusion and future works.

2 Previous Anti-Trojan Approaches

Conventional anti-Trojan tools are classified into three categories – static code
scanners, runtime monitoring systems and integrity checkers.

In the static scanning approach, a code is deemed to be a Trojan if it has
the features of a known Trojan horse. For example, some tools scan suspicious
codes to find out any signature of the known Trojan horse [5,13]. With its tight
dependence on information about the known Trojans, this approach does not
seem to be promising in the current situation where lots of malicious codes
appear.

In runtime monitoring systems, which SKETHIC also follows, a code is exe-
cuted in an environment with confined resources, called a ‘sandbox’ [1,2,3,7,12].
Similarly to the mechanism for Java applet security [11], a monitoring tool au-
dits and controls the processes based on a policy. However, sandboxes defined
by policy specification need to be fine-grained enough to cover the various kinds
of Trojans with different properties [1]. This induces the access control models
for the anti-Trojan policies to be based on concrete behaviors of the codes, for
instance, the lists of allowed system calls [2,7] and state transition machines
[3,12]. The main advantage of this approach is the ability to deal with unknown
Trojans. However, because of the complexity and the number of codes on a host,
it would be hard for users to develop suitable behavioral description especially
for unacquainted codes [1].

Finally integrity checkers are helpful to detect the Trojan horses generated
by modification of normal programs. They let users know whether an important
code has been changed or not, by comparing the actual integrity data on the
code with the original value kept in a database [4,6].

3 The Suggested Approach

As mentioned in the previous section, SKETHIC adopts the runtime monitor-
ing system approach, which enables to detect unknown Trojan. However, not to
burden users with describing the access rights for unacquainted codes, code de-
velopers are supposed to attach resource access information to their codes. This
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requires cooperation of the three subjects – developers, users and the reference
monitor. Things that each of them has to do in SKETHIC are listed as follows.

– A Developer: He/she distributes his/her code together with the information
on possible resource accesses by the code, called the ‘resource access list’.
A program is defined as p = 〈m, c, l〉, where m ∈ M is the identifier of the
program such as a name, c ∈ C is the code, and l ∈ L is the resource access
list.

– A User and a System Administrator: He/she decides on the acceptance of a
given program 〈m, c, l〉, by examining the resource access list l. If l contains
suspicious operations that do not meet user’s expectation for the code, the
program is deemed a Trojan and simply discarded. Otherwise, the program
is accepted to be executable.

– The Monitoring System: During the execution of the code c, all the attempts
to access a resource are monitored. If any attempt to access beyond the list
l is detected, appropriate responses will be given such as terminating the
process, removing the program from the system and notifying to users what
is happened. Note that it is not the user, but the developer who described
the list l the policy for monitoring the process behaviors.

The proposed mechanism of SKETHIC is depicted in Figure 1. The developer
distributes a program accompanied with a resource access list. Based on this list,
the user makes decision whether to install the program. During the execution, the
monitoring system intercepts the system calls of the process asking for system
resources. As long as the request follows the resource access list, the monitoring
system considers it safe and enables the operation to proceed.

One of the main advantages of the proposed system is the ability to detect
unknown Trojans, without users’ burden of developing access policies. Let us
consider a malicious code like navidad.exe[8]. Users would not accept the code
if it is delivered with the resource access list implying file destruction. With a
legitimate but dishonest list, however, the users would be easily deceived. But at
runtime, the monitoring system would detect the pretence during the execution.

4 Formal Description

Formal description is useful for viewing the advantages and the limitations of a
mechanism [14]. In this section, we start by clarifying the terms ‘Trojans’ and
‘safety from Trojans’, and then describe the proposed mechanism. Finally, we
show how SKETHIC keeps the host safe from Trojans.

4.1 Definition of the Problem

Let U and R denote the set of users and the set of the states of the system
resource, respectively. O represents the set of operations, and Q means the set
of ‘operation execution sequences’, or ‘execution sequences’, indicating possible
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Fig. 1. Anti-Trojan Mechanism in SKETHIC

sequences of operations performed while a program is running. Note that a pro-
gram may have more than one execution sequence. For the programs without
termination, the maximum length of the execution sequence is assumed to be
infinite.

Definition 1. An operation execution sequence, or execution sequence q = o1;
. . . ;on ∈ Q s.t. oi ∈ O and 0 < n ≤ ∞ is defined as an ordered list of operations
performed in sequence while a program is running.

A code is defined the set of all the possible execution sequences of a program.
For the endless programs, the maximum number of execution sequences is infinite
as above. We use the term ‘code’ and ‘program’ mixed in Section 4.1 where the
meanings of them make no big differences.

Definition 2. A code c is {q1, q2, . . . , qn} ∈ C such that qi ∈ Q and 0 < n ≤ ∞.

The function operations : C �→ ℘(O) maps each code cto the set of all the
operations possibly performed during the execution of c. That is, operations(c) =
{o | ∃q ∈ c s.t. o ∈L q }, where ‘∈L’ is used as the list-inclusion symbol. A system
s is defined as 〈{c1, . . . , cn}, r〉 ∈ S such that c1, . . . , cn ∈ C and r ∈ R, that is,
the pair of a set of programs and a state of system resources.

All operations in a code fall into two groups: the ones making effects on the
system and the remains. What an ‘effect’ here means changing the system state
or stealing information from the host.

Definition 3. An effective operation e ∈ E is the operation which changes the
system state, or steals information from the host.

In this paper, the only interesting kinds of operations are those that possibly
influence security. We consider that effective operations and security holes as
such operations, and call them ‘problematic’.

Definition 4. A problematic operation is an effective operation or a security
hole.
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Further classification of operations is given by the following functions. Note
that they take the user u as well as the code c as their inputs, since users’
expectation is crucial to the decision on Trojans.

Definition 5. Function overt : U × C �→ ℘(O) maps a user u and a code c to
the set of operations that belong to operations(c) and u also expects as such.

Definition 6. Function hcovert : U × C �→ ℘(O) maps a user u and a code c
to the set of problematic operations that belong to operations(c) whereas u does
not expect them for c. (hcovert means a harmful covert operation) .

Definition 7. Function hlcovert : U × C �→ ℘(O) maps a user u and a code c
to the set of non-problematic operations that belong to operations(c) whereas u
does not expect them for c. (hlcovert means a harmless covert operation) .

hcovert and hlcovert are collectively called ‘covert’, for the operations per-
formed beyond u’s expectation. Note that overt is not divided into somethings
like ‘hovert’ and ‘hlovert’. We assume that all the operations that the user ex-
pects to be performed are harmless. Then a Trojan-horse is defined as the code
c with harmful operations, hcovert(u, c).

Definition 8. Given a user u, a Trojan-horse or Trojan is the code c such that
hcovert(u, c) = ∅.

A ‘safe’ system from Trojans is the one free from Trojans. In addition, one can
maintain a system safe from Trojans by disallowing new installation of Trojans.
We can formalize these as below.

Definition 9. The system s = 〈cs, r〉 is safe from Trojans when for every user
u, there is no Trojan t in cs.

Theorem 1. For a non-Trojan c ∈ cs and an initial system s = 〈cs, r〉 safe
from Trojan, the system 〈cs ∪ {c}, r〉 is also safe from Trojans.

Proof. It is clear by Definition 8 and Definition 9. ��

4.2 Definition of SKETHIC

Here, we give a formal description of the proposed anti-Trojan mechanism. A
program in SKETHIC is defined as a triple of the identifier, the code and the
resource access list as mentioned in the previous section. This also requires re-
definition of the term ‘Trojan horse’.

Definition 10. A program p is 〈m, c, l〉 ∈ P = M × C × L, where M denotes
the set of identifiers for programs.
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Definition 11. A Trojan horse is a program p = 〈m, c, l〉 such that
hcovert(u, c) = ∅ for some user u.

An operation is implied by a resource access list if the list indicates the
possibility of the execution of the operation. We use the symbol ‘⇒’ for this
implication.

Definition 12. For l ∈ L and o ∈ O, a resource access list l implies o, or
‘l ⇒ o′, if l indicates that the operation o might be executed at runtime. In
addition, for l ∈ L and os ∈ ℘(O), ‘l ⇒ os’ means that l ⇒ o for every o ∈ os.
We assume that the operations irrelevant to resource access are implied by every
resource access list in L.

It is desirable for a resource access list to imply all the operations in opera-
tions(c). In addition, a good resource access list should not imply incorrect and
harmful behaviors. This motivates following definition.

Definition 13. For a code c ∈ C, a correct resource access list l ∈ L is defined
as follows.

– l ⇒ operations(c) and
– There is no o ∈ O such that l ⇒ o and o ∈ hcovert(u, c) but o ∈

operations(c).

We assume that every resource access list from a well-intended developer is
always correct, whereas it does not hold for Trojans.

The proposed mechanism is described by states and operations. A SKETHIC
state ti is defined as 〈u, d, k, s, fmc, fml, x1; . . . ;xn〉 ∈ T = U×D×K×S×Fmc×
Fml×List(X). Here, u, d, k and s mean a user, a developer, a monitoring system,
and a system, respectively. fmc ∈ Fmc : M �→ C and fml ∈ Fml : M �→ L are
functions mapping a program identifier to a related code and a related resource
access list, respectively. List(X) is the set of lists of SKETHIC operations in X .

A SKETHIC operation x ∈ X = {INSERT,DELETE,EXECUTE,Run}
changes the SKETHIC state, or performs code operations in O. INSERT (u, p)
means that a user u inserts a new program p into the system.
DELETE(u,m) represents removing the program identified by m from the host.
EXECUTE(u,m) denotes the execution of the code of m. Run(k, o) performs a
code operation o in the kernel k. Currently, we assume that a user can run only
the codes installed by him/herself, but believe that the description in this paper
is easily extended to general cases. The meaning of the SKETHIC operations
is described as rules explaining their ways of changing the SKETHIC states, as
follows;

〈previous state〉� 〈next state〉 if 〈conditions〉
It reads that, under the given 〈conditions〉, 〈previous state〉 is changed

into 〈next state〉 after executing the head of the SKETHIC operation list in
〈 previous state〉.
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SKETHIC prohibits installation of a new program p = 〈m, c, l〉 if l indicates
any execution of operations in hcovert(u, c) (see [INSERT III] below). Other-
wise, p is installed with appropriated changes on cs, fmc and fml of the state
〈u, d, k, 〈cs, r〉, fmc, fml, INSERT (u, p);Ops〉 (see [INSERT I] and [INSERT II]
below). The symbol ‘f [y/x]’ means substituting or expanding the function f
with the value y for x. Opsis a list of SKETHIC operations like x1; . . . ;xn. [IN-
SERT II] is for the case that a pre-existing program already has the identifier
m.

[INSERT I] 〈u, d, k, 〈cs, r〉, fmc, fml, INSERT (u, 〈m, c, l〉);Ops〉
�〈u, d, k, 〈cs ∪ {c}, r〉, fmc[c/m], fml[l/m], Ops〉

if ¬(l ⇒ hcovert(u, c)) ∧ ¬(∃c′ s.t. 〈m, c
′〉 ∈ fmc)

[INSERT II] 〈u, d, k, s, fmc, fml, INSERT (u, 〈m, c, l〉);Ops〉
�〈u, d, k, 〈cs− {c′} ∪ {c}, r〉, fmc[c/m], fml[l/m], Ops〉

if ¬(l ⇒ hcovert(u, c)) ∧ ∃c′ s.t. 〈m, c
′〉 ∈ fmc

[INSERT III ] 〈u, d, k, s, fmc, fml, INSERT (u, 〈m, c, l〉);Ops〉
�〈u, d, k, s, fmc, fml, Ops〉

if l⇒ hcovert(u, c)

The execution of a program will be completed only when if it exists in the sys-
tem and each operation making up the code is implied by its resource access list
(see [EXECUTE I] below). Since the execution sequence to be performed varies
according to the resource states of the system, we use the function selected(s, c)
for the execution sequence of the code c under the system s. Run(k, o) denotes
performing each code operation in O by the kernel k. The meaning of Run,
the semantics of k, is beyond this paper. We only assume that Run does not
change a SKETHIC state. EXECUTE(u,m) cannot be completed, either when
the runtime monitoring system detects an operation not implied by the corre-
sponding resource access list (see [EXECUTE II] below), or when it cannot find
a program identified by m in the current system (see [EXECUTE III] below).

[EXECUTE I] 〈u, d, k, s, fmc, fml, EXECUTE(u,m);Ops〉
�〈u, d, k, s, fmc, fml, Run(k, o1);Run(k, on);Ops〉

if fmc(m) = c ∧ selected(s, c) = 〈o1, , on〉∧
fml(m)⇒ oi for all oi s.t. 1 ≤ i ≤ n

[EXECUTE II] 〈u, d, k, s, fmc, fml, EXECUTE(u,m);Ops〉
�〈u, d, k, s, fmc, fml, Run(k, o1);Run(k, oI−1);

DELETE(u,m);Ops〉
if fmc(m) = c ∧ selected(s, c) = 〈o1, , on〉∧
∃oi.1 ≤ i ≤ n s.t. ¬(fml(m)⇒ oi)∧
I = min{j : 1 ≤ j ≤ n ∧ ¬(fml(m)⇒ oj)}

[EXECUTE III] 〈u, d, k, s, fmc, fml, EXECUTE(u,m);Ops〉
�〈u, d, k, s, fmc, fml, DELETE(u,m);Ops〉

if ¬(∃c s.t. fmc(m) = c) ∨ ¬(∃l s.t. fml(m) = l)

For the moment that a program execution is failed, SKETHIC needs the op-
eration DELETE(u,m), which removes information on m from the SKETHIC
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state (see [DELETE I] below). If there is no code identified by m, the
DELETE(u,m) is simply ignored (see [DELETE II] below).

[DELETE I] 〈u, d, k, 〈cs, r〉, fmc, fml, DELETE(u,m);Ops〉
�〈u, d, k, 〈cs− {c}, r〉, fmc − {〈m, c〉}, fml − {〈m, l〉}, Ops〉

if ∃c s.t. 〈m, c〉 ∈ fmc ∧ ∃l s.t. 〈m, l〉 ∈ fml

[DELETE II] 〈u, d, k, s, fmc, fml, DELETE(u,m);Ops〉
�〈u, d, k, s, fmc, fml, Ops〉

if ¬(∃c s.t. 〈m, c〉 ∈ fmc) ∨ ¬(∃l s.t. 〈m, l〉 ∈ fml)

The sequence of execution of SKETHIC operations is denoted by ‘��’, the
reflexive and transitive state-transition based on ‘�’. The inductive definition is
provided as follows.

Definition 14. For SKETHIC states t1 and t2, ‘t1 ��t2’ if any of followings
is satisfied;

(i) t1 = t2
(ii) t1 � t2
(iii) t1 ��t3 and t3� t2, for some t3 ∈ T

4.3 Safety

In 4.1, a safe system from Trojans is defined as a Trojan-free one. According
to this definition, a safe system needs to exclude Trojan horses before program
installation, but it is too hard especially for unknown Trojans to check binary
codes. Here, we give a less strict definition of safety from Trojans as follows;

Definition 15. A state 〈u, d, k, 〈cs, r〉, fmc, fml, Ops〉 is safe from Trojans
when, if there exists a Trojan 〈m, t, l〉 in cs according to a user u, none of
o ∈ hcovert(u, t) can be executed.

Now, let us show how SKETHIC keeps the host safe from Trojans. Before
proceeding further, we show two useful properties of SKETHIC, in the following
lemmas.

Lemma 1. 1 If a Trojan 〈m, t, l〉 exists in the SKETHIC state, then l does not
imply any o ∈ hcovert(u, t).

Proof. Suppose that there is a Trojan 〈m, t, l〉 such that an operation
o ∈ hcovert(u, t) is implied by l. It must be installed by the operation
‘INSERT (u, 〈m, t, l〉)’, since INSERT is the only operation inserting a pro-
gram into a SKETHIC state. Due to the existence of o ∈ hcovert(u, t) such that
l ⇒ o, INSERT (u, 〈m, t, l〉) follows the rule [INSERT III], which, however, re-
sults in the failure of insertion. Thus, it is impossible for a SKETHIC state to
have the Trojan 〈m, t, l〉 with an operation in hcovert(u, t) implied by l. This
completes the proof. ��
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Lemma 2. Let t1 = 〈u, d, k, 〈cs, r〉, fmc, fml, Ops〉 and t2 = 〈u, d, k, 〈cs′
, r

′ 〉,
f

′
mc, f

′
ml, Ops

′〉. For all m, if r = r
′
, fmc(m) = f

′
mc(m) and fml(m) = f

′
ml(m),

then the execution of EXECUTE(u,m) at t2 is exactly the same as that at t1.

Proof. According to [EXECUTE I], [EXECUTE II] and [EXECUTE III], among
the elements composing t2, only m, k, f

′
mc(m), f

′
ml(m), and r

′
make effects on the

execution of EXECUTE(u,m) at t2. These elements are same in t1 and in t2,
so is the execution of EXECUTE(u,m). ��

Now we show that a safe system remains safe after insertion of a non-Trojan
program. The proof is based on the fact that inserting a new program is almost
independent of the existing programs.

Lemma 3. Suppose t1 = 〈u, d, k, 〈cs, r〉, fmc, fml, Ops〉 is changed to t2 =
〈u, d, k, 〈cs′

, r
′〉, f ′

mc, f
′
ml, Ops

′〉 by the execution of INSERT (u, 〈m1, c, l〉).
Then for all m2 in M such that m2 = m1, the execution of EXECUTE(u,m2)
at t2 is just the same as that at t1.

Proof. According to the semantic rules, INSERT (u, 〈m1, c, l〉) changes only
cs, fmc(m1) and fml(m1) which results in that r = r

′
, fmc(m2) = f

′
mc(m2) and

fml(m2) = f
′
ml(m2). Thus, by Lemma 2, the proof is completed. ��

Lemma 4. (Safety after Insertion of a Non-Trojan) If the state t1 = 〈u, d, k, s,
fmc, fml, Ops〉 is safe from Trojans, then so is t2, the state right after a non-
Trojan p = 〈m, c, l〉 is inserted at t1.

Proof. When t2 has no Trojans this lemma is clearly hold. Suppose that t2 has a
Trojan pt = 〈mt, t, lt〉. We know that pt = p, since pt is a Trojan while p is not.
That is, pt is one of the programs that have already been in the system before the
insertion of p. Since t1 is safe from Trojan, execution of o ∈ hcovert(u, t) will
fail at t1 by Definition 15. We want to show that execution of o ∈ hcovert(u, t)
will also fail at t2. There are two possible cases;

(i) If t1 has no program identified by m : This implies that the identifier of
pt is not m, that is, mt = m. We know that, by Lemma 3 the execution
of EXECUTE(u,mt) at t2 is equivalent to that at the safe state t1. This
means that the execution of o ∈ hcovert(u, t) will fail at t2.

(ii) If t1 has a program identified by m : If mt = m, INSERT (u, p) follows the
rule [INSERT II], which changes s = 〈cs, r〉 and fmc into 〈cs− {t} ∪ {c}, r〉
and fmc[c/mt], respectively. Thus, there remains no way to perform any
execution sequences of t at t2, and moreover the operations in hcovert(u, t).
If mt = m, the proof is similar to that of above (i).

By (i) and (ii), we have shown that execution of o ∈ hcovert(u, t) will also fail
at t2, if t2 has a Trojan pt = 〈mt, t, lt〉. By Definition 15, this completes the
proof. ��
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Even after insertion of a Trojan program, a safe system remains safe. Before
proving this, we show that if a Trojan 〈m, t, l〉 is installed at a safe state, then
none of the operations in hcovert(u, t) can be performed.

Lemma 5. Let t1 = 〈u, d, k, s, fmc, fml, Ops〉 be a safe state and t2 = 〈u, d, k,
s
′
, f

′
mc, f

′
ml, Ops

′〉 be the state right after a Trojan p = 〈mt, t, l〉 is installed at t1.
Then, EXECUTE(u,mt) at t2 cannot perform any operation o ∈ hcovert(u, t).

Proof. Clearly, Lemma 5 holds for the case that selected(s
′
, f

′
mc(mt)) = 〈o1, , on〉

does not include any oi ∈ hcovert(u, t). Suppose that selected(s
′
, f

′
mc(mt)) =

〈o1, , on〉 has oi ∈ hcovert(u, t). We know that ¬(l ⇒ oi) by the Lemma 1, which
leads EXECUTE(u,mt) at t2 to follow the rule [EXECUTE II]. This implies
that only o1 and oI−1 are performed by Run, where I = min{j : 1 ≤ j ≤
n ∧ ¬(l ⇒ oj)}. Because I ≤ i, oi cannot be performed at t2 and this completes
the proof. ��

Lemma 6. (Safety after Insertion of a Trojan) If the state t1 = 〈u, d, k, s, fmc,
fml, Ops〉 is safe from Trojans, then so is t2, the state right after a Trojan
p = 〈m, c, l〉 is installed at t1.

Proof. It is clearly hold if t2 has no Trojans. Let us suppose that t2 has a Trojan
pt = 〈mt, t, lt〉. If pt = p, o ∈ hcovert(u, t) cannot be executed at t2, by Lemma
5. If pt = p, the proof is similar to that of Lemma 4. ��

Deletion of a program is almost independent of other programs. Based on this
property, we show that a safe system remains safe after deletion of a program.

Lemma 7. Suppose that t1 = 〈u, d, k, 〈cs, r〉, fmc, fml, Ops〉 is changed to t2 by
the execution of DELETE(u,m1). Then, for all m2 in M such that m2 = m1,
the execution of EXECUTE(u,m2) at t2 is the same as that at t1.

Proof. According to the semantic rules, DELETE(u,m1) changes only cs,
fmc(m1) and fml(m1). Thus, by Lemma 2, the proof is done. ��

Lemma 8. (SafetyafterDeletion) If the state t1 = 〈u, d, k, s, fmc, fml, Ops〉 is
safe from Trojans, then so is t2, the state right after a program p identified by
m is deleted from t1.

Proof. It is clearly true if t2 has no Trojans. Suppose that t2 has a Trojan pt =
〈mt, t, lt〉.
(i) If t1 has no program identified by m : By the definition, DELETE(u,m)

does not change the state. Thus, by Lemma 2, the execution of o ∈
hcovert(u, t) will fail at t2.

(ii) If t1 has a program identified by m : Since the information on m is deleted
by DELETE(u,m), mt must not be m. We know that by Lemma 7, the
execution of o ∈ hcovert(u, t) will fail at t2.
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By (i) and (ii), we have shown for each case that if t2 has a Trojan pt =
〈mt, t, lt〉, the execution of o ∈ hcovert(u, t) will fail at t2. Thus, by Defini-
tion 15, the proof is done. ��

Now we are prepared to show that SKETHIC keeps the host safe from Tro-
jans.

Theorem 2. 2 (Safety after an Operation) A safe SKETHIC state remains
safe from Trojans, after any SKETHIC operation execution.

Proof. We prove this Theorem for each SKETHIC operation. Suppose t1 =
〈u, d, k, 〈cs, r〉, fmc, fml, Ops〉 is a safe state from Trojans and t2 is the state
right after a SKETHIC operations performed at t1. By Lemma 6 and Lemma
8, t2 is safe from Trojans after INSERT or DELETE at t1. Since for any
Trojan pt = 〈mt, t, lt〉 EXECUTE and Run do not change r, fmc or fml, their
execution at t2 is not different from those at t1 either by Lemma 2. This implies
that no operation o ∈ hcovert(u, t) can be executed after EXECUTE and after
Run, which completes the proof by Definition 15. ��

Theorem 3. (Safety Maintained by SKETHIC) If an initial state is safe from
Trojans, SKETHIC maintains it always safe from Trojans.

Proof. The proof is easily done by Theorem 2 and induction on the number of
‘�’s involved from the initial state to a given state. ��

5 Comparisons and Discussions

It is a well-known approach to attach security information to codes. Developers’
signatures and integrity values are commonly delivered along with mobile codes
[11]. With a proof-carrying code (PCC) [9], correctness of accompanied proof is
checked mechanically before running the codes [9]. In contrast, SKETHIC en-
sures the correctness of a resource access list by the runtime monitoring system.

Note that SKETHIC also examines a resource access list before execution, but
for the agreement with the user’s expectation for the code, not for its correctness.
This concept is similar to the approaches in some mobile agent systems, which
check the accompanied data before the execution of the codes to see if expected
resource consumption agrees with the capability of the local host [10].

SKETHIC transfers the burden of generating policies from users to program
developers. We believe that developers’ overhead will be relatively small, since
they know their own programs better than the users. In addition, automatic
extraction of information from source codes is easier than that from binary
codes delivered to hosts [5,15].

It is possible that a well-intended code is mistaken for a Trojan by SKETHIC
with an incorrect resource access list. We expect that it can be avoided by
support of intelligent tools helping the extraction of resource access information
from codes. We also hope that the proposed mechanism encourages developers to
use minimal system resources, making it easier to discriminate between honest
programs and Trojans.
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6 Summary and Future Works

We proposed SKETHIC (Secure Kernel Extension against Trojan Horses with
Information-carrying Codes), an anti-Trojan mechanism based on the data called
the ‘resource access list’, attached to the codes. Before the execution the user
checks the resource access list to ensure that a code is not a Trojan. During
the execution the monitoring system at runtime checks the correctness of the
attached data.

One of the main advantages of SKETHIC is to reduce the users’ burden of
developing access policies for codes. This paper also formalizes the SKETHIC
mechanism and shows how SKETHIC keeps a system safe from Trojans.

Currently, we are developing the prototype on Windows 2000, and studying
on resource access list models. Especially, the proposed mechanism can employ
rather complex models of access policies without difficulties, since access policies
are not specified by users but by program developers who we believe have more
intelligence. We are also interested in developing tools supporting automatic
extraction of information from codes or helping users decide on acceptance of
codes.
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Abstract. With the rapid growth of broadband infrastructure, it is thought that
the bottleneck for video-on-demand service through Internet is being cleared.
However, digital video content protection and consumers privacy protection
emerge as new major obstacles. In this paper we propose an online video
distribution system with strong content security and privacy protection. We
mainly focus on the study of security and privacy problems related to the
system. Besides presenting the new system, we intensively discuss some
relevant cryptographic issues, such as content protection, private information
retrieval, super-speed encryption/decryption for video, and PKC with fast
decryption etc. The paper can be viewed as one that proposes practical solutions
to real life problems, as well as one that presents applied cryptography research.

1 Introduction

Television has been elected as one of the greatest inventions in the last century. Public
demand on video-based communication, entertainment and education has been the
driving force for many technologies, such as broadband network and video
compression. Nowadays, people are no longer satisfied with the fixed TV programs.
They want to watch what they love to watch, and pay for that, i.e. personalized video
service like the services provided in restaurants. To meet this need, Video-on-Demand
(VoD) has been studied for many years. [Minoli] is a good reference for the academic
and industrial effort for VoD technologies. Researchers have been focusing on how to
stream the video to an online Internet consumer without dropping of critical frames.
SMIL is ironed out to serve as a standard for synchronized integration of multimedia
streams by W3C. It is claimed in [Jai99] that industries have even moved far ahead of
academies in this field to step into the new frontier.

With the rapid growth of broadband infrastructure, it is thought that the bottleneck
for video-on-demand service through Internet is cleared. Digital content security
emerges as a new challenge. Up to now, online video consumers (OVCs) have very
limited choice of online video contents, as video content providers (VCPs) hesitate to
put their contents in digital format in the network. VCPs are not comfortable with the
level of content security provided by the current technology [GMDS98]. On the other
hand, online consumers also concern about their privacy being disclosed.

In this paper, we propose an online video distribution scheme that protects VCP�s
video contents and the consumer�s privacy simultaneously. The content protection in
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our scheme is based on the public key cryptography implemented in a tamper-
resistant hardware, which is not a new idea. But we focus more on security discussion
and analysis. We also study some cryptographic issues arising from the scheme. The
privacy protection is based on a simple PIR(private information retrieval) scheme.

The organization of the paper is as follows. In Section 2 we describe our online
video distribution system. In Section 3 we discuss the advantages of using public key
cryptography in tamper-resistant hardware for content protection. In Section 4 we
study the privacy protection issue in our online video system. The system features are
displayed in Section 5. In Section 6, we propose a general method to construct the
symmetric key ciphers that have super-speed for video encryption. In Section 7 we
propose a public key cryptosystem with fast decryption, which is motivated by
implementing decryption in a hardware device with cheap processors. We present the
design and analysis of two concrete super-high speed ciphers for video encryption in
the Appendix, which can be excluded from the paper.

2 System Description

2.1 Outline of the System

In our online video system there are four parties.
VCP---Video Content Provider,
OVW---Online Video Warehouse,
OVC---Online Video Consumer,
THM---Tamper-resistant Hardware Manufacture

An OVW is an online storage service provider that may support several VCPs. A
VCP encrypts its different videos by different secret keys and puts the encrypted
videos at an OVW. An OVC can freely download the encrypted videos in his/her
favor. The OVC can only watch the video after he/she pays the VCP for the secret key
to decrypt the video.

However, the secret key should not be given to OVC plainly for content protection.
That key should be given to OVC in the encrypted form and be decrypted in a tamper-
resistant hardware device (produce by THM) as described in the following.

2.2 System Description in Detail

The system has three encryption algorithms:
1. Symmetric Key Cryptosystem I (SKC I)---SKC I is a fast cipher as studied in

Section 6.
2. Symmetric Key Cryptosystem II (SKC II)---SKC II is a commutative cipher as

studied in Section 4 and Appendix A.
3. Public Key Cryptosystem (PKC)---PKC can be any public key cryptosystem. A

PKC with fast decryption as presented in Section 7 may be favored for this
application.
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System Description:
1. A VCP has n videos V1, V2, �,Vn. The VCP chooses n secret keys K1, K2, �,Kn

and encrypts V1, V2, �,Vn with SKC I, respectively. Denote the n ciphertexts
by K1(V1), K2(V2), �, Kn(Vn).

2. The VCP also chooses a key S and encrypts K1, K2, �,Kn by S with SKC II.
Denote the ciphertexts by S(K1), S(K2), �, S(Kn).

3. Suppose an OVC wants to watch Vi. He downloads S(Ki)|| Ki(Vi) and chooses a
key R for SKC II and encrypts S(Ki). Denote the ciphertext by W=R(S(Ki)).

4. Decryption of W by key S is denoted by S-1(W).
5. PKj/SKj is a pair of public/private key generated by THM. SKj is embedded into

the j-th tamper-resistant hardware. PKj is certified by THM and is given
together with the certificate to the OVC who buys the hardware device.

6. When a VCP receives a PKj, the VCP should check whether the PKj  is legal.

                                                         S(K1)||K1(V1)
                                                         � �
                                                         S(Kn)||Kn(Vn)

                                  W,  PKj, Certificate
                                                                                       Free download   S(Ki)||Ki(Vi)

 PKj(S-1(W))

                                PKj(S-1(W))
                                                              R                        Ki(Vi)

                                                                                                            To TV

VCP

K1 for encrypting V1
�
Kn for encrypting Vn

Master secret key S

     OVW

S(K1)||K1(V1)
�
S(Kn)||Kn(Vn)

           OVC

Randomly choose R
Compute W=R(S(Ki))

SKj

                   S-1(W)                           Ki                       Vi

The j-th tamper-resistant device

decrypt decrypt decrypt
MPEG

decoding
and convert
to analog
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3 Content Protection

3.1 A Brief Review of Content Protection Technologies

Content protection is the key security issue for e-commerce of digital goods, no
matter the transacted digital object is a picture, a video, an audio or a piece of news. It
is commonly recognized that a digital content provider is hard to survive without
certain means of protection. In online distribution of video, the content protection is
the issue about how to prevent the illegal users (who do not pay) from watching a
video. Content protection for digital goods is a very difficult problem from the
technology angle. So far no fully satisfactory solution exists. Available technologies
for content protection include follows.
Watermarking Technology

Watermarking technology has been considered to be a key technology for
multimedia content protection. There have been so many research papers addressing
watermarking technology in the past several years. Readers are referred to [CL97,
CMY96, ZK95] and the references therein.

There are two sorts of watermarking. The first one is for ownership. The second
one is for tracing illegal users. The technique of the second sort is also called
fingerprinting in some references. The first sort of watermarking is to embed an
identical watermark into every copy of the digital object. Hence, it cannot be used to
distinguish who is the user who has distributed the illegal copy. The technology is to
deter the large-scale resale. There are a lot of research publications in this area.

The second sort is to embed different watermarks into different copies. It can be
used to trace the illegal users. But this sort of watermarking has certain difficulties.
One is how to efficiently resist colluding attacks [BS95]. Another one is, as pointed
out in [PS96], that there is actually no lawful basis for the content provider to sue the
illegal user. This is because the provider himself possesses the watermarked digital
object. Hence there is no way to distinguish who actually disclosed the copy.
Asymmetric fingerprinting was proposed to solve this problem, see [PS99] and the
references therein. However, it seems that the technique is not ready for practical use
due to its complicated and interactive implementation.
Tamper-Resistant Software

This technology is to prevent the decryption party from accessing the decryption
key in software. Combining with other techniques, the technology can be used to
prevent making illegal copies. This is advantageous over watermarking technology at
the point that watermarking is used to catch illegal copy while the tamper-resistant
technology is used to prevent illegal copy. Tamper-resistant software, in principle, is
to hide some secret information in a software program. It is based on anti-reverse-
engineering. The current status of the technology is more like know-how and the
technology is more studied within industry community than within academic
community. There are quite a number of patents but rare publications in this area. It
seems that there is no solid theoretical foundation for this technology.
Tamper-Resistant Hardware

Tamper-resistant hardware has been studied for many years. This technology has
already been used in many realistic applications such as cable TV and DVD etc. In
this paper, we take tamper-resistant hardware as our basis for content protection. The
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tamper-resistant hardware in our system contains a private key that is used to decrypt
the ciphertext of the secret key of a video.

There have been various attacks against tamper-resistant hardware devices, such
as fault-differential attack [BDL97, JQBD97], timing attack, differential power attack
[Kocher], and probing attack [AK97, HPS99], etc. Researchers find that any
information leakage in the procedure of the computation may lead to the secret key
compromised. On the other hand, various counter measures have been proposed.
Counter measures against fault-differential attack can be found in [BDL97]. Methods
to resist differential power attack are presented in [Cor99, Kocher].  [WBYD00]
presents some counter measures against probing attack. But in general, the attitude
toward tamper-resistant hardware from academic is negative. This is because the fact
that it might be hard to absolutely prevent the leakage of side-channel information
[CKN01], which would cause key-compromising.

Industry, whereas, has the different view on tamper-resistant devices, which have
been running well in the reality. One example is cable TV box, which is insecure from
whatever angle in researchers� eyes. But it does make good business. There is a big
gap between academic and industry in the recognition of security. The former tends to
consider �absolute security� based on complexity assumptions while the latter usually
concerns more about �relative security� with respect to the costs. We do not believe
that tamper-resistant devices could be relied upon as the security basis for military or
government secrecy. But we think it should be qualified for small-valued business. In
addition, it is commonly recognized that tamper-resistant hardware is much more
reliable than tamper-resistant software.

3.2 The Content Protection Based on Public Key Cryptosystem

Why Use Public Key Cryptosystem The most important and essential discipline
for a content protection system is that component-compromising must not cause the
whole system crashing. If we only use symmetric key cryptosystem in the tamper-
resistant hardware devices, we have two choices. First, we can install a master secret
key into every tamper-resistant hardware device. This choice is apparently not secure
since breaking one device may cause the master key compromised, and therefore, the
whole system is broken. The second choice is to install different secret keys into
different devices. In this case all the VCPs must know all the secret keys (otherwise
they cannot do encryption). This is also dangerous since once a VCP is compromised,
all other content providers are exposed beyond any protection. The whole system
crashes. Using public key cryptosystem perfectly solves above problems. The system
proposed in this paper meets the discipline that component-compromising does not
cause the whole system crashing.

Protection of Private Keys The private key installed in each tamper-resistant
hardware device is very important. The manufacturer of the hardware (THM) must be
very cautious on these private keys. A suggestion is to destroy the keys once they are
installed into the hardware devices. The manufacturer is a trusted party like the CA in
PKI. Actually, the manufacturer is required to maintain a revocation list as done by a
CA. Once a device is found to be broken, its serial number should be put into the list
to prevent its use any more.

Tamper-Resistant Technology In this paper we do not discuss how to build up
tamper-resistant hardware devices. There has been research on this technique for
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many years. What we want to emphasize here is that in our system the tamper-
resistant technique can be focused on the private key. It is the critical clue. Once the
private key is destroyed, the device is completely useless. So the guideline to build
tamper-resistant property should be that once the device is tampered or opened, the
private key is automatically erased or modified. Protection techniques may include,
for example, hiding a photoelectric cell inside the device, which is touched off (once
the device is opened) to erase/change the private key. Another technique is a kind of
careful wiring from inside so that the device is hard to be opened without breaking off
the wire, which would also cause the private key erased. Of course, there must be
multiple levels of protection.

Business Consideration In the proposed system, every OVC must buy a hardware
device. This is the disadvantage of hardware solutions compared with software
solutions. But from another angle, hardware solutions are not excluded here since a
video has a comparatively high value. A DVD movie usually costs about 20 US
dollars, while online video may cost much less as long as the content is perfectly
protected. If an online video costs only one dollar for example, the attraction for a
customer to buy a hardware device is considerably large. More specifically, such a
tamper-resistant hardware device is not expensive since the processors to conduct
decryption and D to A converting are not very expensive. Another choice is to build
such hardware device into home appliances like VCD/DVD players. Then there is
only a small additional cost while the player has a new function used together with the
home PC. That is very alluring.

4 Privacy Protection

A VCP may provide a large number of videos with various categories. This is also the
attractive point of online video. Therefore, privacy is another concerned issue. A
customer may not like to let others know what video he/she is watching or is in favor.
Such privacy should be guaranteed as long as the online video is a charged service.
From another viewpoint, if two VCPs are providing same video at same price, the one
who guarantees privacy is more competitive.To retrieve a message from a database
without revealing which message is actually being retrieved has been theoretically
studied under the term PIR (private information retrieval) [CGKS95, CG97, KO97,
CMS99]. However, the computational costs of these solutions are very large due to
their bit-by-bit processing manner. All those schemes need at least computation of
O(N) operations for retrieving only one bit, where N is the number of bits of the
whole database. All the previous PIR schemes are aiming at reducing communication
complexity. The scheme of [CMS99] can even achieve a communication complexity
of poly(logN). However, those schemes can hardly be accepted for practical use. In
this section we propose a simple and efficient scheme for privacy protection in the
online video system. The scheme is not a PIR scheme from a strict viewpoint. We
describe the scheme in the way as describing a PIR scheme for simplicity.
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A Simple PIR Scheme
In Appendix A, we will present our scheme in detail and give cryptanalysis. Here

only its principle is given. Let E be a symmetric-key encryption algorithm that has
commutative property, i.e., for any pair of keys K1, K2 and for any message m, we
have

E(K1, E(K2, m))=E(K2, E(K1, m))
Denote the decryption algorithm of E by D. Suppose that the Database has n files

denoted by M1, M2, �, Mn (possibly with different lengths) and the User wants Ms.
By the following scheme the User can get Ms without Database knowing what s is.

Database                                                                                                       User

Randomly choose n keys K1, �, Kn
for a symmetric encryption, say , DES.
Encrypt Mi by Ki, Ci=DES(Ki, Mi)
Randomly choose a key r for E,
Encrypt Ki by r, hi=E(r, Ki)
                                                       h1||C1, h2||C2, �, hn||Cn

                          Randomly choose key w for E.
Compute W=E(w, hs)

                                                                W
Compute U=D(r, W)

                                                                U
                                                                                               Ks=D(w, U)

                                                                                               Ms=DES-1(Ks, Cs)

The Database has no way to know which message the User can get, no matter how
maliciously Database performs. Meanwhile the User can only get one message by
implementing the scheme once. In [BDF00], a concrete E and the security analysis of
the protocol were presented.

It is easy to see that the above PIR scheme processes messages file-by-file. It does
not get communication complexity reduced if it is regarded as a PIR scheme. But it
fits our online video scheme very well because of the following reasons.

The customer�s downloading can be anonymous. When the customer downloads
the encrypted video from OVW, he need not show his personal information such as
membership or credit card number etc. If the download is through some specific
proxy, the customer’s IP address can be hidden. Or if the download is through dial-up,
the IP address changes every time. Some companies, such as
www.zeroknowledge.com and www.anonymizer.com, provide service for anonymous
download. On the other hand, the communication between the customer and the VCP
cannot be anonymous since the VCP must know whom he is dealing with. When the
VCP decrypts the secret key for the customer, the service is a charged service. Either
the membership authentication or a payment is needed, which would disclose certain
information about the customer.
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5 System Features and Discussions

The system proposed in this paper has many good features.
1. The system is flexible. There may be multiple VCPs and OVWs. An OVW can

support multiple VCPs. Each OVC can enjoy services from multiple VCPs
with only one hardware device.

2. No VCP holds any secret of any OVC (the secret of his hardware device);
therefore, if a VCP is compromised or becomes malicious, the other VCPs are
not effected.

3. The OVCs’ privacy is guaranteed no matter how malicious a VCP performs. At
most a VCP can let an OVC receive no service, but can never get to know
which video the OVC is trying to watch. On the other hand, VCP can still get
statistical data on frequency of videos being downloaded from OVW (this
seems necessary for business).

4. Low requirement on download speed. Unlike streaming VoD, where the network
speed must be faster than the speed of video playing, in this system an OVC
can download the encrypted video at the speed slower than that of video
playing. The download can also be in off-peak hours.

5. Cheap computations. The system exploits some cryptosystems. But the crypto
operations required in the system are light.

Compared with DVD The DVD encryption scheme is not robust: all the videos are
encrypted by one secret key (for each zone) and the secret key is stored in all DVD
players. Disclosing the secret key causes the whole scheme cracked. Our video
distribution scheme is designed to be robust. In our scheme, the private keys in
different hardware devices are independent from each other. In case one hardware
player is cracked, the other hardware devices are not affected. Even if the hacker
makes the cracked key public, the damage would be limited: the VCPs just refuse to
provide service to that device any more.

Payment Choice and Privacy There are two ways of payment for online video. The
first one is like membership. An OVC can subscribe to a VCP and the VCP will
always serve the OVC (there may be a limit on number of videos for the OVC per
month). For this payment manner, the OVC’s privacy is perfectly protected. The
second payment way is pay-per-video. For this payment manner, the privacy can only
be guaranteed among all the videos with the same price. In this case the system needs
a slight modification. The master key S in Section 2.2 should be replaced with a set of
master keys, each key for one group of videos with same price.

Flexible Distribution Means In reality there may be more means to distribute the
encrypted videos. The VCPs encourage the distribution of the encrypted videos
among video fans. Another possibility is by CD. The CD with huge storage capability
is going to emerge in a few years. We believe that the storage media is much cheaper
than the stored content. A CD containing many encrypted movies can be very cheap
in the future.
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6 Fast Symmetric Key Encryption Scheme

It is well known that symmetric key encryption schemes are much faster than PKC
schemes. For example, DES can achieve speed 20-30 Mb/s on a 233 MHz Pentium II
Processor [Dai]. That speed is sufficient for video play. However, the decryption of
the video may be conducted on a resource-limited chip. In our system, the speed of
the processor in the tamper-resistant hardware device may be much slower than a 233
MHz Pentium II Processor. So it is better if we have faster encryption algorithms. We
show that there is a large room to increase the speed of a symmetric key encryption
algorithm while maintaining its security as long as the encrypted file is very large.

It is widely believed that there is a tradeoff between the speed and security
strength of a cipher. It is a big challenge to design a very strong cipher that has very
fast speed. But if we consider the situation of encrypting large files, it is possible to
design a cipher with both very fast speed and very strong security. The reason is that
we can combine a very strong but slow cipher with a very fast but weaker cipher such
that the combined cipher is very fast and very strong. The reason behind the
construction is that a weaker cipher may be a strong one if it is used in the way that
each key is used to encrypt a limited amount of messages only. Just looking at those
powerful cryptanalysis techniques, such as differential attack [BS91] and linear attack
[Mat93], large amount of chosen/known plaintext/ciphertext pairs are always the pre-
condition.

In our scheme we combine fast stream ciphers with secure block ciphers.
Let SE denote a strong encryption algorithm, such as AES, and FE be a weaker

but very fast encryption algorithm, such as some fast stream-cipher. Denote a
plaintext by M1M2M3�Mn where Mi is a block of size same as that of SE. Let K be a
key, the encryption can be done as follows

                 Ciphertext = SE(K, M1)||FE(K1, M2M3�Mk)||
                                      SE(K, Mk+1)||FE(K2, Mk+2 Mk+3�M2k)||
                                      ��||
                                      SE(K, Mtk+1)||FE(Kt+1, Mtk+2Mtk+3�Mn)
where Ki+1=SE(K, SE(K, Mik+1)) (i=0,1,�,t) are called segment keys. The k

(segment size) is the value determined by FE such that FE is strong enough if one
key is used to encrypt at most k blocks forever.

It is obvious that such combinations have speed advantage only for large files. If
the plaintext consists of only a few blocks, the speed is close to that of SE. But if the
plaintext is large and the k is fairly large, the speed is close to that of FE. In analogy
this is like to construct a door with steel frame and plastic filling pieces such that the
door is as light as a plastic door while as strong as a steel door. The k is like the size
of the grid. The smaller it is, the more secure the scheme.

Dividing the video into segments is also needed for fast-preview. The video can be
played from any segment. In Appendix, we show two concrete ciphers with speed
300 Mb/s, and 1,500 Mb/s on a 233 MHz Pentium II Processor.

We have seen some research papers, such as [MS95, QNT97, Tan96 etc] on
increasing video encryption speed by exploiting the structures of MPEG. But none of
them can compare with our solution. Ours is very much faster as long as the
encrypted file is large.
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7 PKC with Fast Decryption

In our system, a tamper-resistant hardware device contains a private key of a PKC
(public key cryptosystem). The PKC decryption is conducted in the device. Although
any PKC can be used in our system, a PKC with fast decryption is favored for
lowering the cost of the device. It is well known that RSA can be made fast for
encryption. But PKC with fast decryption has rarely been studied. In this section we
make an effort to design a PKC with fast decryption. We propose a PKC that is much
faster in decryption than RSA and at least ten times faster than MultiPrime, while the
security strength is the same. The PKC proposed here is similar to Shamir�s
unbalanced RSA except that we have a small d. In RSA a small d is dangerous. We
show that our scheme is immune to small d attack. To our knowledge, this is the first
PKC design for fast decryption.
Algorithm Description

Private key: primes p, q (better p, q are safe primes) and an odd number d .
Public key: n(n=pq), e(ed≡1 mod q−1).
Encryption: c=me mod n where m (0<m<q) is the plaintext, c is the ciphertext.
Decryption: m=cd mod q

It is easy to verify that the decryption is correct. The scheme is different from RSA at
the point there is an expansion from plaintext to ciphertext.
Fast Decryption

We take |n|=1024, |q|=341 and |d|=120. The decryption speed of this scheme is
apparently much higher than 1024 bit RSA. But the most important issue is the
security. It is dangerous to take small d in RSA. In our algorithm, however, a small d
is conjectured to be safe.

Security Analysis
Small d. It is shown in [Wie90] that if d is small, say |d|<|n|/4, then the RSA

scheme can be broken. The attack is very simple and beautiful:
In number theory we have: if η/ξ is an approximation of a

known number c within 1/ξ2, i.e., |c−η/ξ|<1/(2ξ2), then η and ξ can
be efficiently computed out by continuous fraction. Since ed≡1
mod ϕ(n), we have ed=kϕ(n)+1 for some k, |k|≤|d|. Then
|e/n−k/d|=|(kp+kq−k+1)/(nd)|<1/(2d2) due to |d|<|n|/4. Therefore, k
and d can be quickly computed from e and n.

In [BD99], the result is improved to breaking RSA for |d|<0.292|n| by lattice
method, which can be regarded as the generalization of approximation in multiple
dimensions. In both [Wie90] and [BD99], the e satisfying ed≡1 mod ϕ(n) is the key
point. But in our scheme, the e satifies ed≡1 mod q−1 instead of mod ϕ(n). If we
target at the d’ such that ed’≡1 mod ϕ(n) for public key e, the d’ must be very large.
Another attack to small exponent d is the meet-in-the-middle attack that is similar to
the birthday attack but requires FFT technique. The complexity of that attack is

))((log 2 ddO .  Therefore taking d 120 bits gives a security level of 270~80.
Chosen Ciphertext Attack. The scheme is fragile to chosen ciphertext attack. An

attacker can choose a M>q and set c=Me mod n. The decryption m=cd mod q satisfies
gcd(n, M−m)=q. However this attack does not cause any problem if we carefully
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choose a mapping format before encryption, as done in [BR94] and [OU98], which
provide provable security. Besides, the application of the scheme in our video system
prevents the chosen ciphertext attack since the decrypted value never goes out of the
tamper-resistant hardware device. The decrypted value is the key to encrypt video. So
chosen ciphertext attack does not apply.

Factorization. In our scheme, n is a composite of two primes with different sizes.
For the situation where n has 1024 bits and the smaller prime factor has 341 bit, the
current factoring techniques cannot provide better performance than factoring 1024-
bit n with two equal-size primes. This is because the most efficient number field sieve
algorithm has complexity Ln(1/3, c), which is dependent on size of n. Elliptic curve
factoring algorithm is dependent on the size of the smaller prime q, but it has
complexity Lq(1/2, c). So currently available factoring techniques do not make
factoring our n easier. The same argument is taken in [OU98], where n=p2q has 1024
bits, and in MultiPrime [Compaq] where n (|n|=1024) is a composite of three different
primes.
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Appendix

Fast Encryption Scheme I
Now we introduce the first scheme of our fast encryption framework. AES is

supposed to be the encryption standard for this whole century. It is regarded unbroken
unless some impossible breakthroughs in math take place. Therefore, we take SE() as
AES (Rijndael). The stream cipher FE() is given as follows. The whole picture of the
scheme is described in Section 6.
    Description of the Stream Cipher FE()

The stream cipher has a 128-bit key size and operates on 32-bit plaintext
strings b b bm1 2! ! . Denote the 128-bit key as k k k k k= 1 2 3 4 , where ki�s are 32-bit
strings. Define

))))((((),( 4321 kkkkxxkF ⊕×⊕+= ↵

where x is a 32-bit string, ⊕ is the bit-wise XOR, + and × are mod 232  addition
and multiplication respectively,  and ↵ is to reverse the 32 bits into opposite ranking.
Encryption of the plaintext strings b b bm1 2! !  is then given by

d b F k F k F k d b di i i i i= ⊕ ⊕ ⊕− − −( , ( , ( , ) ) )1 1 2

where d d dm1 2! !  are the corresponding ciphertext strings and where 001 ,, bdd−

are set to k k k2 3 4, , , respectively.

We implemented the encryption scheme on a 233MHz Pentium-II/MMX processor
(The encryption speed of Serpent on the same processor is about 25.8 Mbit/s). The
experiment are given in the table below.

Table 1. Experiment Results of Encryption Scheme I

Total Data Size
(bits)

Segment
Size
(bits)

Test 1
(Mbit/s)

Test 2
(Mbit/s)

Test 3
(Mbit/s)

Test 4
(Mbit/s)

Average
Speed

(Mbit/s)
5,242,880,000 32,768 297.0 296.1 297.0 297.0 296.7
5,242,880,000 65,536 304.0 302.9 304.0 304.0 303.7
5,242,880,000 131,072 307.0 307.0 307.0 308.1 307.3
5,242,880,000 262,144 309.1 309.1 309.1 309.3 309.2
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Security Discussion
Security of the secret key: The secret key K is protected by SE() which by our

assumption, is secure against all known attacks.
Meet-in-the-middle attack to segment keys: This is a type of brute force attack.

By meeting one or more bits in the middle, the attacker exhaustively search the key
bits relevant to these middle bits. Since we take 3 rounds of F, the meet-in-the-middle
attack does not work. This is because at least one of the two sides of the middle bits
goes through two rounds of F; therefore, at least 96 bits of the key effect one middle
bit.

Chosen ciphertext attack to segment keys: It is well known that all stream
ciphers that have ciphertext feedback are vulnerable to chosen ciphertext attacks.
Suppose our stream cipher was defined as

d b F k F k F k d d di i i i i= ⊕ ⊕ ⊕− − −( , ( , ( , ) ) )1 2 3 .
By letting 11 ’ −− = ii dd , d di i− −=2 2’  and di-3 and d�i-3 differing in only one bit, an

attacker can ask for the decryption of di and d�i by applying the differential attack.
However, our stream cipher is defined by

d b F k F k F k d b di i i i i= ⊕ ⊕ ⊕− − −( , ( , ( , ) ) )1 1 2

which has both ciphertext and plaintext feedback. In this case, if the attacker
chooses both plaintext and ciphertext, the decrypted plaintext from the chosen
ciphertext will have a very small chance to match the chosen plaintext.  On the other
hand, if the attacker tries to find such match from known plaintext/ciphertext (instead
of chosen plaintext/ciphertext), the required number of known plaintext/ciphertext
pairs is around 248 blocks (like the birthday attack to 23 32× = 296). However, this
amount of plaintext/ciphertext pairs will not be available to the attacker since our
segment size can never be so large.

Fast Encryption Scheme II
This encryption scheme is identical to Scheme I except that it uses another very

fast stream cipher FE(), which is given below.
Description of the Stream Cipher FE()
This stream cipher is used to expand a 128-bit key into a key stream of a plaintext

segment size. Before illustrating its detailed design, we introduce the notations below:
T : a table containing 19 elements, with each element consisting of 32 bits.
Ti : the ith element of the table T
k: the 128-bit secret key, consisting of four 32-bit words: 3210  and ,, kkkk .
ci: a 32-bit constant generated from the constant e as ci = (e × 232(i+1)) &

0xFFFFFFFF, i = 0 to 18.

ir ′ : a constant between 3 and 14.  It is generated from the constant π  as
    312 mod 0xFF)&)2(( )1(8 +×=′ +i

ir π , i = 0 to 18.
We use the standard notations &, ⊕ and >>> to represent bit-wise AND, bit-wise

XOR and right rotation, respectively. In addition, we define a feedback function F
and an output function G below.

Definition of F.   The input to F is the table T and a rotation constant r .  The
output of  F is given as

141340 )))(( TrTTTf ⊕>>>+⊕=
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Definition of G.    The input to G  is the table T and the output is given as

361118 ))(( TTTTg +⊕+= .
The operation of this stream cipher consists of two stages: the initial setup stage

and the output stage or the main algorithm.
The initial setup stage

1. Let Ti = ci + ki mod4, for i = 0 to 18.
2. Let )0&)4(( 0 xFikrr ii >>+′=  for i = 0 to 7;

  )0&)))8(4((( 1 xFikrr ii −×>>+′=  for i = 8 to 15;
 )0&)))16(4((( 2 xFikrr ii −×>>+′=  for i = 16 to 18.

3. Run the main algorithm below for 38 cycles and prepare for the output.

                                                                                                                     f

                                                                                   g

The main algorithm: For the thi cycle
1. Run the F function with 19 mod  irr =  to obtain the value of f.
2. fTj TT jj === + 181 let  and 17,  to0  ,Let .

3. Run the function G  and generate the output g .
We implemented the encryption scheme described on a 233MHz Pentium-II/MMX

processor. The encryption speed of Serpent on the same processor is about 25.8
Mbit/s. The experiment results are given in the table below.

Table 2. Experiment Results of Encryption Scheme II

Total Data Size
(bits)

Segment
Size
(bits)

Test 1
(Mbit/s)

Test 2
(Mbit/s)

Test 3
(Mbit/s)

Test 4
(Mbit/s)

Average
Speed

(Mbit/s)
24,903,680,000 38,912 1234.9 1236.2 1234.9 1235.5 1235.4
24,903,680,000 79,824 1370.5 1370.5 1369.7 1370.5 1370.3
24,903,680,000 159,648 1448.8 1447.8 1451.8 1453.8 1449.8
24,903,680,000 319,296 1493.1 1492.1 1491.2 1493.1 1492.4

Security Discussion of Encryption Scheme II
First of all, the secret encryption key K is protected by SE. Therefore, attacking the

key is as hard as attacking AES, which is supposed to be absolutely secure against all
attacks. Second, each segment key generated by SE is used to encrypt a plaintext

F

G
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segment of very limited length by the stream cipher. For known ciphertext attack, our
stream cipher can resist a large number of known ciphertexts.

The security of this stream cipher greatly depends on the feature that those 19
elements of the table T are updated in a non-linear way as the encryption goes on.
With the carefully chosen parameters of function F, we can show that any two outputs
of  F are generated from at most one of the same elements of T. We note that each
updated element, which is the output of F, is the non-linear combination of four
elements of T. The key-related rotation amount in F strengthened the cipher further.
With these unknown rotation amounts, we believe that it would be very difficult to
find linear relationship among the elements of T.

The key stream is also generated from the elements of T in a non-linear way. The
parameters of function G are carefully chosen so that any two outputs of G are
generated from at most one of the same elements of T, and any output of G is
generated from at most one of the same elements of T as any output of F (the updated
element). Thus recovering the continuously updating elements of T from the output of
G or revealing the linear relationship among the generated key stream becomes
almost infeasible.

In this stream cipher, the elements of T are modified in a non-linear way. Thus it is
not possible to compute the period of the generated key stream cipher. However, the
period would not be a problem here. There are 19 32-bit elements of T. It is very
unlikely that those elements will come back to their initial values even in the process
of generating a 1282 -bit key stream. Furthermore, the stream cipher is used to encrypt
only one package. The period of the output key stream is believed to be far larger than
the size of a package.
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Abstract. Many algorithmic problems, which are used to prove the se-
curity of a cryptographic system, are shown to be characterized as the
subgroup membership problem. We then apply the subgroup membership
problem to private information retrieval schemes following the method
by Kushilevitz and Ostrovsky. The resulting scheme has the same com-
munication complexity as that of Kushilevitz and Ostrovsky.

1 Private Information Retrieval

Chor, Goldreich, Kushilevitz and Sudan [3] introduced the private information
retrieval scheme for remote database access, in which the user can retrieve the
data of user’s choice without revealing it. Their scheme attains information the-
oretic security, however, the database must be replicated in several locations
where the managers are not allowed to communicate each other. The computa-
tional private information retrieval scheme was introduced by Chor and Gilboa
[4]. Their scheme attains more efficient communication than Chor, Goldreich,
Kushilevitz and Sudan’s model by sacrificing the information theoretic security,
nevertheless, their scheme enjoys computational security by assuming the exis-
tence of pseudorandom generators. However, their scheme still needs replication
of the database. Kushilevitz and Ostrovsky [6] introduced a computational pri-
vate information retrieval scheme in which only one database is needed. Their
scheme depends on the intractability of the quadratic residue problem. More
efficiency, polylogarithmic communication complexity, is attained by Cachin,
Micali and Stadler [2]. They assume a number theoretic hypothesis, which they
call the Φ assumption, and sacrifice one-round communication and then obtain
polylogarithmic communication complexity. However, a rigorous proof of the in-
tractability of the Φ assumption or its equivalence to a widely used assumption
like the quadratic residue assumption or the integer factorization is not given in
[2]. We summarize the known results on private information retrievals in Table
1 below.

We briefly review the general scheme of a private information retrieval (PIR
for short) scheme. A computational PIR scheme with a single database is a

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 206–220, 2001.
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protocol for two players, a user U and a database manager DB. Both are able to
perform only probabilistic polynomial time computation. The database manager
DB maintains a database, which is a binary sequence X = x0x1x2 · · ·xn−1. The
goal of the protocol is to allow U to obtain the ith bit xi+1 of X without leaking
any information on xi to DB. The protocol runs as follows:

Step 1 U computes a query Query(i) using his random tape (coin toss), which
U keeps secret. Then he sends Query(i) to DB.

Step 2 DB receives Query(i). He performs a polynomial-time computation for
the input X , Query(i) and his random tape. The computation yields the answer
Answer(Query(i)). He sends Answer(Query(i)) back to U .

Step 3 U receives Answer(Query(i)). He performs a polynomial-time com-
putation using the answer Answer(Query(i)) and his private information (his
random tape). The computation yields the ith bit xi+1 of the database.

Correctness
For any database sequence X and for any query Query(i) for ith bit of X , U
obtains xi at the end.

Privacy
DB cannot distinguish a query for the ith bit and a query for the jth bit for
all i and j by a polynomial-time (probabilistic) computation with non-negligible
probability. Formally, for all constants c, for all database of length n, for any
two 1 ≤ i, j ≤ n, and all polynomial-size family of circuits Ck, there exists an
integer K such that for all k > K we have

|Prob(Ck(Query(i)) = 1)−Prob(Ck(Query(j)) = 1)| < σ , (1.1)

where k is the security parameter of the protocol and σ = 1
(Max(k,n))c .

Computation
Computations of both DB and U are bounded above by a polynomial in the size
n of the database and the security parameter k.

2 Subgroup Membership Problem

The quadratic residue (QR for short) problem and the decision Diffie-Hellman
(DDH for short) problem have numerous applications in cryptography, and
hence, they have been studied in detail. Our aim of this paper is to generalize and
formalize them as the subgroup membership problem and to show many other al-
gorithmic problems, which are used in public key cryptography, are characterized
as the subgroup membership problem as well. Such a unification of algorithmic
problems used in cryptography has not been appeared up to date as far as the
authors are concerned. Widely used assumptions in cryptography are divided
into two groups: the algorithmic assumptions related to the integer factoring
(and the QR) and the algorithmic assumptions related to the discrete logarithm
problem (and the DDH). The first is originated from the RSA cryptosystem and
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Table 1. Several Private Information Retrieval Schemes

Scheme Round Security Assumption Communication Number
Number Complexity of DBs

Chor, Goldreich,

Kushilevitz, 1 Information Theoretical O(n1/3) ≥ 2
Sudan [3]

Ambainis [1] 1 Information Theoretical O(n1/2k−1) for ≥ 2
k(> 1) DBs

Chor and 1 Existence of O(nc) for c > 0 ≥ 2
Gilboa [4] Pseudo Number Generators

Kushilevitz and 1 Quadratic Residue O(nc) for c > 0 1
Ostrovsky [6] Problem Assumption

Ostrovsky and Multiple Reduction to
Shoup [9] Read only scheme

Cachin, Micali 2 Φ Assumption Polylogarithmic 1
and Stadler [2]

Subgroup Membership
Proposed Scheme 1 Assumption O(nc) for c > 0 1

(e.g. DDH assumption)

the second from the Diffie-Hellman key exchange protocol. These two look dif-
ferent and are usually discussed separately. The unified approach to the integer
factoring problem and the discrete logarithm problem shed light on the funda-
mental properties of algorithms required to provide the security. Therefore, we
can get better understanding of the algorithmic problems by unified treatment
of subgroup membership problems.

Once we prove that the subgroup membership problem is applicable to a
certain scheme in general, then any primitive based on the subgroup membership
problem concerning a specific group is applicable to the scheme in principle. As
an example, in this paper, we show that any subgroup membership problem can
be employed to construct a computational PIR system by constructing a PIR
system using the subgroup membership problem in a general manner.

2.1 Subgroup Membership Assumption

Determining the membership of a given element of a certain group in its subgroup
is not always easy. As a matter of fact, the membership problem of a subgroup
in a finitely presented group is not recursive in general. To apply the member-
ship problem to cryptographic schemes such as asymmetric cryptosystems, we
require the efficiency of computation for legal participants and the existence of
a trapdoor. In this section we consider the subgroup membership problem with
a trapdoor, and show that several problems widely used in cryptography are
characterized as the subgroup membership problem.
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Let G be a group, and let H be its subgroup. The membership problem is
to decide whether or not a given element g ∈ G belongs to H . We suppose
that every element in G has a binary representation of size k, where k is the
security parameter. The membership can be decided within polynomial time in
k if a certain information, called a trapdoor, is provided. The membership of
an element g ∈ G in H can be decided provided the trapdoor, however, the
membership cannot be decided with a probability substantially larger than 1

2
without the trapdoor. We now formalize the subgroup membership problem.

Let k be the security parameter. For the input 1k, a probabilistic polynomial
time algorithm IG outputs the description of a group G, the description of
a subgroup H ⊂ G and the trapdoor that provides a fast algorithm for the
subgroup membership problem ofH inG. The algorithm IG is called the instance
generator. Every element of G is represented as a binary sequence of length k.
Computation of the multiplication in G is performed in polynomial time in k.

The predicate for the membership of a subgroup is denoted by Mem, that is,
Mem is defined as follows:

Mem(G,H, x) =

{
1 if x ∈ H
0 if x ∈ S ,

where IG outputs the pair (G,H) for 1k, x is in G, and S = G \ H . The
subgroup membership problem is to compute Mem in polynomial time in k when
we inputs 1k and obtain a pair of groups (G,H) and an element g in G, which
is uniformly and randomly chosen from H or G according to the coin toss b R←
{0, 1}. If there does not exist a probabilistic polynomial time algorithm that
computes Mem with a probability substantially larger than 1

2 , then we say that
the membership problem is intractable. We also assume that one can choose
uniformly and randomly an element from both H and G. This is significant to
apply to cryptographic schemes.

The following is trivial, however, it is useful for the construction of an PIR
system based on the subgroup membership problem.

Proposition 1. Let G be a group, and let H be a subgroup of G. For any g ∈ G
and h ∈ H, we have gh ∈ H if and only if g ∈ H. �

Subgroup Membership Assumption I
For every constant c, and every family {Ck | k ∈ N} of circuits of polynomial
size in k, there is an integer K such that for all k > K we have

Prob(Ck(G,H, g) = Mem(G,H, g)) <
1
2

+
1
kc

, (2.1)

where the probability is taken over (G,H) ← IG(1k), b R← {0, 1}, g R← H if
b = 1, g R← S if b = 0.

The assumption claims that there exists no polynomial size circuit family
to compute the predicate Mem. The following is equivalent to the assumption
above.
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Subgroup membership assumption II
For every constant c, and every family {Ck | k ∈ N} of circuits of polynomial
size in k, there is an integer K such that for all k > K we have

|PH −PS | < 1
kc

, (2.2)

where the probabilities PH and PS are defined as follows;

PH = Prob
(G,H)←IG(1k) ; g

R←H
(Ck(G,H, g) = 1) ,

and
PS = Prob

(G,H)←IG(1k) ; g
R←S

(Ck(G,H, g) = 1) .

2.2 Examples

We exhibit several subgroup membership problems: the DDH problem, the QR
problem, the rth residue (RR for short) problem studied by Kurosawa and Tsu-
jii [7], the p-subgroup (PSUB for short) problem introduced by Okamoto and
Uchiyama [10] and the decisional composite residuosity (DCR for short) prob-
lem introduced by Paillier [11]. Recall that the assumption that the QR problem
is intractable (QR assumption) is employed to prove the semantic security of
Goldwasser-Micali cryptosystem [5], and the assumption that the DDH problem
is intractable (DDH assumption) is employed to prove the semantic security of
ElGamal cryptosystem. These two have many other applications. The assump-
tion that one of problems above is intractable is employed to prove the semantic
security of the corresponding cryptosystem [7], [10], [11], respectively. We also
note that the security of the cryptosystem introduced by Naccache and Stern [8]
depends on the PSUB assumption as well.

Quadratic Residue Problem
Let p, q be primes. Set N = pq. The primes p and q are trapdoor information
for the quadratic residue problem, on the other hand, the number N is public
information. Let G be the subgroup of (Z/(N))∗ consisting of the elements whose
Jacobi symbol is 1, and let H be the subgroup of G consisting of quadratic
residues of G, that is, H = {x ∈ G | x = y2 mod N for y ∈ (Z/(N))∗}. The
quadratic residue problem of H in G is to decide whether or not, a given element
g ∈ G, g belongs to H . We can effectively determine the membership of g in
H provided that the information p and q are available. No polynomial time
algorithm is known for the membership of a randomly chosen element of G in H
without the information p and q. Hence, if we define an instance generator for
the QR problem as a probabilistic algorithm that outputs two primes p and q of
size k and a quadratic non-residue h whose Jacobi symbol is 1 for the input 1k,
then the QR problem is considered as a subgroup membership problem. Note
that we can obtain a quadratic non-residue h with Jacobi symbol 1 by using
p, q, and that it is possible to uniformly and randomly choose elements from H
without the trapdoor information provided h is given.
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Decision Diffie-Hellman Problem
Let C be a cyclic group of prime order p. The group C may be a multiplication
group of a finite field or a group of rational points of an elliptic curve. Let g be a
generator of C. The decision Diffie-Hellman problem is to decide whether or not
h2 = ga

2 for the given quadruple (g1, h1, g2, h2) of elements in C with h1 = ga
1

for some 1 ≤ a ≤ p − 1. If so, we say that (g1, h1, g2, h2) is a Diffie-Hellman
quadruple. The integer a is the trapdoor of the decision Diffie-Hellman problem.
Knowing the trapdoor a, we can efficiently decide whether or not h2 = ga

2 .

We show that the DDH problem can be characterized as a subgroup mem-
bership problem for a certain group. We set G to be the direct product C × C.
Then the input to the DDH problem is (x, y) where x, y ∈ G, that is, x = (g1, h1)
and y = (g2, h2). It is obvious that (g1, h1, g2, h2) is a Diffie-Hellman quadruple
if and only if y belongs to the subgroup < x > of G generated by x. It follows
that the DDH problem for the cyclic group C is equivalent to the subgroup
membership problem of the group H =< x >, where x = (g1, ga

1), in the group
G = C × C =< g1 > × < g1 >. Note that, when a generator x of H is given,
it is possible to choose uniformly and randomly elements from H without the
trapdoor information.

Rth Residue Problem
The RR problem is a natural extension of the QR problem defined as follows. Let
p, q be primes, and let e1, e2 be odd integers dividing p−1 and q−1, respectively,
such that e1 is prime to q− 1 and e2 is prime to p− 1. Set N = pq and r = e1e2.
The primes p and q are the trapdoor information for the RR problem, on the
other hand, the number N and r are the public information. Let G be the group
(Z/(N))∗, and let H be the subgroup consisting of rth residues of G, that is,
H = {x ∈ G | x = yr mod N for y ∈ G}. The RR problem of H in G is to
decide whether or not, a given element g ∈ G, g belongs to H . Thus, the RR
is a subgroup membership problem of H in G. We can effectively determine the
membership of g in H provided that the information p and q are available. No
polynomial time algorithm is known for the membership of a randomly chosen
element of G in H without the information p and q. Note that we can obtain
an element h such that hi �∈ {xr mod N : x ∈ (Z/(N))∗} for any 1 ≤ i ≤ r − 1
by using the trapdoor information, and that we can uniformly and randomly
choose an element from H provided h is given.

P-Subgroup Problem
Let p, q be primes such that p does not divide q − 1. Set N = p2q and let g
be a random element in (Z/(N))∗ such that the order of gp−1 mod p2 is p. The
primes p and q are trapdoor information for the PSUB problem, on the other
hand, the number N, g, k are public information. Let G be a group defined by
G = {x | x = gmyN mod N for m ∈ Z/(p) and y ∈ (Z/(N))∗}, and let H be the
subgroup defined by H = {x | x = yN mod N for y ∈ G}. The PSUB problem of
H in G is to decide whether or not, a given element g ∈ G, g belongs to H . Thus,
the PSUB is the membership problem of H in G. We can efficiently determine
the membership of g in H provided that the information p and q are available. No
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polynomial time algorithm is known for the membership of a randomly chosen
element of G in H without the information p and q. Note that our description
of PSUB is slightly diffrent from Okamoto-Uchiyama [10], where the PSUB is
introduced as a variant of the coset indistinguishability problem, which we will
present in Section 2.3. Naccache and Stern [8] implicitly used PSUB problem
in their scheme. Paillier introduces the decisional composite residuosity (DCR
for short). This is a generalization of [10] and also characterized as a subgroup
membership problem.

For other plausible applications of the subgroup membership problem, the
reader is also referred to [12] in which the DDH assumption is applied to the
cryptographic schemes which only known method to construct is to base on the
QR assumption. We summarize the examples above in Table 2, however, the
table is not exhaustive at all.

Table 2. Subgroup Membership Problems

Related Group Applications

Problem Subgroup

DDH DLP C × C: Direct Product of Cyclic Groups ElGamal

DH 〈(g, h)〉: Subgroup Generated by (g, h)
QR FACT(pq) {x ∈ Z∗N | ( x

N ) = 1} Goldwasser-Micali [5]

{x2 mod N |x ∈ Z∗N}
RR FACT(pq) Z

∗
N Kurosawa-Tsujii [7]

{xr mod N | x ∈ Z∗N}
{x | x = gmyN mod N for Okamoto-Uchiyama

PSUB FACT(p2q) m ∈ Z/(p), y ∈ (Z/(N))∗} [10]

{yN mod N | y ∈ Z∗N} Naccache-Stern [8]

{x | x = gmyN mod N2

DCR FACT(pq) m ∈ Z/(N), y ∈ (Z/(N2))∗} Paillier [11]

{yN mod N2 | y ∈ (Z/(N2))∗}

2.3 Equivalent Problems

We examine several algorithmic problems equivalent to the subgroup member-
ship problem. Suppose that IG is an instance generator of a family of groups,
and that IG outputs (G,H) for the input 1k. We set S = G \H . Suppose that t
is an integer bounded above by a polynomial in k. Let Ki be the direct product
of t − 1 H ’s and S, where all jth position (j �= i) is occupied by H except for

ith position, that is, Ki = H ×H × · · ·× i

S × · · · ×H for every i = 1, 2, . . . , t.
Let L be the union of K1, K2, · · · , Kt, that is, L = K1

⋃
K2

⋃ · · · ⋃Kt.
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Pattern Indistinguishability Assumption
The pattern indistinguishability assumption is to assume the following holds: for
every constant c, every family {Ck | k ∈ N} of circuits of polynomial size in k
and all i, j such that 1 ≤ i, j ≤ n there is an integer K such that for all k > K
we have

|Pi −Pj | < 1
kc

. (2.3)

Here the probabilities Pi and Pj are defined as follows;

Pi = Prob
(G,H)←IG(1k) ; (g1,g2... ,gt)

R←Ki
(Ck(G,H, i, g1, g2 . . . , gt) = 1) ,

Pj = Prob
(G,H)←IG(1k) ; (g1,g2... ,gt)

R←Kj
(Ck(G,H, i, g1, g2 . . . , gt) = 1) .

General Pattern Indistinguishability Assumption
The general pattern indistinguishability assumption is to assume the following
holds: for every constant c, every family {Ck | k ∈ N} of circuits of polynomial
size in k and all (i1, i2, . . . , iu) and (j1, j2, . . . , ju), there is an integer K such
that for all k > K we have

|P(i1,i2,... ,iu) −P(j1,j2,... ,ju)| < 1
kc

. (2.4)

Here the probabilities P(i1,i2,... ,iu) and P(j1,j2,... ,ju) are defined by

P(i1,i2,... ,iu) = Prob(Ck(G,H, x1, x2 . . . , xu) = 1) ,

where the probability is taken over (G,H) ← IG(1k) and (x1, x2 . . . , xu) R←
Ki1 ×Ki2 × · · · ×Kiu and

P(j1,j2,... ,ju) = Prob(Ck(G,H, x1, x2 . . . , xu) = 1) ,

where the probability is taken over (G,H) ← IG(1k) and (x1, x2 . . . , xu) R←
Kj1 ×Kj2 × · · · ×Kju .

Coset Indistinguishability Assumption
The coset indistinguishability assumption is to assume the following holds: for
every constant c, every family {Ck | k ∈ N} of circuits of polynomial size in k
and every algorithm F that on input (G,H) outputs a pair of elements in G,
there is an integer K such that for all k > K we have

Prob(Ck(G,H, g0, g1, g) = b) <
1
2

+
1
kc

, (2.5)

where the probability is taken over (G,H) ← IG(1k), (g0, g1)←F (G,H), b R←
{0, 1} and g R← gbH .
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Theorem 1. The following are equivalent.
(1) The subgroup membership assumption I.
(2) The subgroup membership assumption II.
(3) The pattern indistinguishability assumption.
(4) The general pattern indistinguishability assumption.
(5) The coset indistinguishability assumption.

Proof. We show the equivalence among (1), (2), (3). Note that (1) clearly
implies (3). The proof for the equivalence among (1), (4) and (5) is omitted.

(2) implies (1): Suppose that there exists a constant c and that for every K,
there is k ≥ K such that the circuit Ck does not satisfy (2.1). Note that
Prob(Ck(G,H, g) = Mem(G,H, g)) = 1

2PH + 1
2 (1 − PS). Since (2.1) does not

hold, we have 1
2 (PH −PS + 1) > 1

2 + 1
kc . Therefore we have |PH −PS | > 2

kc .

(1) implies (2): Suppose that there exists a constant c and that for every k,
there is k ≥ K such that the circuit Ck does not satisfy (2.2). For the circuit
Ck, we have Prob(Ck(G,H, g) = Mem(G,H, g)) = 1

2PH + 1
2 (1 − PS) =

1
2 (1 +PH −PS) > 1

2 + 1
kc .

(3) implies (2): Suppose that there exists a constant c and that for every k, there
is k ≥ K such that the circuit Ck does not satisfy (2.3). Construct a circuit
C′k as follows. Given (G,H) and g ∈ G, we choose uniformly and randomly
x1, x2, . . . , xt−2 form H . We also choose uniformly and randomly y from H . We

toss a coin, say, b R← {0, 1}. If b = 0, then we input (G,H, x1, x2, . . . ,
i
y, . . . ,

j
g

, . . . , xt−2), and the circuit C′k returns the output of Ck. If b = 1, then we input

(G,H, x1, x2, . . . ,
i
g, . . . ,

j
y, . . . , xt−2), and the circuit C′k returns the negation of

the output of Ck. If g ∈ S, then we have Prob(C′k(G,H, g) = 1 : g ← S) =
1
2Pi + 1

2 (1 − Pj). If g ∈ H , then we have Prob(C′k(G,H, g) = 1 : g ← H) =
1
2θ + 1

2 (1 − θ), where θ = Prob(Ck(G,H, g1, g2, . . . , gt)) and the probability is
taken over g1, g2, . . . , gt are taken uniformly and randomly from H . It follows
that |PH −PS | > 1

2 |Pi −Pj | > 1
2kc . ��

3 PIR Based on the Subgroup Membership Problem

We show that the subgroup membership problem can be applied to a PIR scheme
by modifying Kushilevitz and Ostrovsky’s scheme [6]. The proposed scheme
has the same communication complexity as Kushilevitz and Ostrovsky’s scheme
whose security depends on the QR assumption. On the other hand, the security
of the private information retrieval scheme proposed in this paper is based on
the subgroup membership assumption. Therefore, we can construct a private in-
formation retrieval scheme based on any algorithmic problems in Section 2.2, in
particular, we can use groups of rational points on elliptic curves or multiplica-
tive groups of finite fields under the corresponding DDH assumption. We should
remark that all the private information retrieval schemes proposed so far depend
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on either the existence of pseudorandom number generators or intractability as-
sumption related to the integer factorization. No private information retrieval
scheme based on the DDH has been proposed, yet as far as the authors are
concerned. Modifying [6], we construct a PIR scheme based on the subgroup
membership problem.

3.1 Basic Idea

First of all, we explain the basic idea of the scheme by a simple model. Suppose
DB has the database X = x0x1x2 · · ·xn−1 and that U wishes to know the ith
bit xi−1. U chooses group elements g0, g1, g2, . . . , gi−1, . . . , gn−1 so that gj ∈ H
for j �= i−1 and gi−1 ∈ S = G\H . Then U sends them all to DB. DB computes
the group element g = gx0

0 gx1
1 gx2

2 · · · gxi−1
i−1 · · · gxn−1

n−1 and sends it back to U . DB
cannot get to know which of g0, g1, g2, . . . , gi−1, . . . , gn−1 comes from S if the
subgroup membership problem of H in G is intractable. Since U possesses the
trapdoor, he can determine whether or not g lies in H . By Proposition 1, g lies in
H if and only if xi−1 = 0. Therefore, U can obtain the ith bit xi−1. This simple
model illustrates the idea of using the subgroup membership problem, but the
communication complexity is still large. We need the trick by [6] to reduce the
communication complexity.

3.2 Scheme

Step 0 The user U inputs 1k to the instance generator IG and then gets a pair
(G,H) of groups and the trapdoor for the subgroup membership problem of H
in G, where k is the security parameter and every element of G is represented by
a binary sequence of length k. We assume the subgroup membership assumption
of H in G. The group G is shared by both DB and U . On the other hand,
U keeps the trapdoor information for the subgroup membership problem of H
secret. Computations of both DB and U are performed in the group G. Let X
be the database managed by DB. We suppose that X = x0x1x2 · · ·xn−1, where
xi ∈ {0, 1}, and that n = tl, where t, l are positive integers.

Step 1 U computes a query Query(i) for his desired bit xi−1, where 1 ≤ i ≤ n,
in the following manner. First, U computes the t-adic expansion of i. Let i = α0.
Then the t-adic expansion of i is βlβl−1 · · ·β2β1, where

α0 = α1t+ β1 0 ≤ α0 ≤ tl−1 − 1, and 0 ≤ β1 ≤ t− 1

α1 = α2t+ β2 0 ≤ α1 ≤ tl−2 − 1, and 0 ≤ β2 ≤ t− 1

α2 = α3t+ β3 0 ≤ α2 ≤ tl−3 − 1, and 0 ≤ β3 ≤ t− 1
· · · · · ·

αl−2 = αl−1t+ βl−1 0 ≤ αl−2 ≤ t− 1, and 0 ≤ βl−1 ≤ t− 1
0 ≤ αl−1 = βl ≤ t− 1 and αl = 0 .

(3.1)
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For each u (1 ≤ u ≤ l), U chooses uniformly and randomly t− 1 elements g(u,0),
g(u,1), . . . , g(u,βu−1), g(u,βu+1), . . . , g(u,t−1) from H . He also chooses uniformly
and randomly g(u,βu) from S = G \H . U defines Q(u) by

(g(u,0), g(u,1), . . . , g(u,βu−1), g(u,βu), g(u,βu+1), . . . , g(u,t−1)) , (3.2)

that is, Q(u) is a sequence of group elements of G such that the βuth component
is uniformly and randomly chosen from S = G \H and the others are uniformly
and randomly chosen from H . Then, Q(1), Q(2), . . . , Q(l) comprise a query
(denoted by Query(i)) for the ith bit xi−1 of X , and U sends Query(i) to DB.
Since each Q(u) consists of t group elements from G, Q(u) is represented by k×t
bits. Thus, Query(i) consists of k × t× l bits.

Step 2 Receiving Query(i), DB constructs child databases recursively from
the original database X . We regard X as the tl−1 × t binary matrix

D(0, λ) =




x0 x1 x2 · · · xt−1

xt xt+1 xt+2 · · · x2t−1

· · ·
xtl−t xtl−t+1 · · · · · · xtl−1


 ,

where λ denotes the empty sequence in {0, 1, 2, . . . , k − 1}∗. We note that the
target bit xi−1 is the (α1, β1) entry of D(0, λ) (α1 and β1 are obtained in (3.1)).
Denote it by Target(D(0, λ)).

We recursively define child databases D(u, s), where 1 ≤ u ≤ l and s ∈
{0, 1, 2, . . . , k − 1}u. Suppose that we have defined the databases D(u, s) and
their target bits Target(D(u, s)) and s ∈ {0, 1, 2, . . . , k − 1}u for 0 ≤ u < l − 1.
Then we define the databases D(u+ 1, s0), D(u+ 1, s1), . . . , D(u+ 1, s(k− 1)).

The database D(u, s) is a binary sequence of length tl−u. We regard D(u, s)
as a tl−u−1 × t binary matrix. Suppose that

D(u, s) =




y0 y1 y2 · · · yt−1

yt yt+1 yt+2 · · · y2t−1

· · ·
ytl−u−t ytl−u−t+1 · · · · · · ytl−u−1


 .

We now construct k child databases, D(u + 1, s0), D(u+ 1, s1), . . . ,
D(u+ 1, s(k − 1)).

Recall that Q(u) consists of t group elements g(u,0), g(u,1), . . . , g(u,t−1)

in G (defined in (3.2)). We define a group element gv for each row v =
0, 1, 2, . . . , tl−u−1 − 1 as follows. We set

f(v,w) =

{
g(u,w) if D(u, s)(v, w) = 1
1 if D(u, s)(v, w) = 0 ,

(3.3)

where D(u, s)(v, w) denotes the (v, w) entry of D(u, s). Then we set

fD(u,s),v =
∏

w=0,1,2,... ,t−1

f(v,w) (3.4)
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for each row v = 0, 1, 2, . . . , tl−u−1−1. We note that the group element fD(u,s),v

(0 ≤ v ≤ tl−u−1 − 1) is of size k, and that fD(u,s),v ∈ H if and only if
D(u, s)(v, βu) = 0 by Proposition 1. The rth child database D(u+1, sr) (0 ≤ r ≤
k − 1) is defined to be the sequence consisting of g0(r), g1(r), . . . , gtl−u−1−1(r),
where gv(r) denotes the rth bit of the representation of fD(u,s),v. Hence, we have
the following matrix equation:




fD(u,s),0

fD(u,s),1

· · ·
fD(u,s),tl−u−1−1


 =

(
D(u + 1, s0) · · · D(u+ 1, s(k − 1))

)
(3.5)

where each fD(u,s),v is a row vector and each D(u + 1, sr) is a column vector.
Thus,D(u+1, sr) is a binary sequence of length tl−u−1. We regard it as a tl−u−2×
t binary matrix. Then the target bit for it (denoted by Target(D(u + 1, sr))) is
defined to be the (αu+1, βu+1) entry of D(u+1, sr) for every r ∈ {0, 1, . . . , k−1}
(αu+1 and βu+1 are obtained in (3.1)).

Step 3 In the last stage of constructing child databases, DB obtains kt−1

databases D(l − 1, s) (s ∈ {1, 2, . . . , k}t−1). Note that each D(l − 1, s) contains
t bits. We regard D(l − 1, s) as a 1× t matrix. For each D(l− 1, s), we define a
group element A(s) as follows. First, we define

f(0,w) =

{
g(u,w) if D(l − 1, s)(0, w) = 1
1 if D(l − 1, s)(0, w) = 0 .

Then, we set fD(l−1,s),0 =
∏

w=0,1,2,... ,t−1
f(0,w) = A(s). The group element A(s) is

of size k for every s ∈ {0, 1, 2, . . . , k− 1}t−1. Then the group elements A(s) (s ∈
{0, 1, . . . , k − 1}t−1) form the answer Answer(Query(i)) to the query Query(i),
and DB sends Answer(Query(i)) to U .

Step 4 U receives Answer(Query(i)) consisting of A(s), where s ∈
{o, 1, . . . , k− 1}t−1. U can retrieve the target bit xi = Target(D(0,λ)) in polyno-
mial time in k, n. In fact, the following holds in general.

Theorem 2. For every database D(u,s), where 0 ≤ u ≤ l − 2 and s ∈
{1, 2, . . . , k}u, U can compute Target(D(u,s)) in polynomial time in n, k if
Target(D(u+1,s0)), Target(D(u+1,s1)), . . . , Target(D(u+1,s(k−1))) are given.

Proof. Suppose that we have the information

Target(D(u+1,s0)), Target(D(u+1,s1)), . . . , Target(D(u+1,s(k−1))) .

Recall that U knows the trapdoor for the subgroup membership problem of
the subgroup H and the secret information that g(u,βu) ∈ S = G \ H
and g(u,0), g(u,1), . . . , g(u,βu−1), g(u,βu+1), . . . , g(u,t−1) ∈ H, where
Q(u) = (g(u,0), g(u,1), . . . , g(u,βu−1), g(u,βu), g(u,βu+1), . . . , g(u,t−1)). Note that
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the number βu is a private information for U . Recall that Target(D(u,s)) is the
(αu, βu) entry of the databaseD(u,s). By the computation of DB in (3.4), we have
fD(u,s),βu

=
∏

w=0,1,2,... ,t−1
f(βu,w). By Proposition 1 and (3.3), fD(u,s),βu

∈ H if

and only if (αu, βu) entry is 0. Moreover, fD(u,s),αu
is the αuth row of the matrix

(
D(u+ 1, s0) D(u+ 1, s1) D(u + 1, s2) · · · D(u+ 1, s(k − 1))

)

by (3.5). Note that αuth bit in the database D(u + 1, sr) is the (αu+1, βu+1)
entry of the matrix D(u + 1, sr) for every r = 0, 1, . . . , k − 1. On the other
hand, the (αu+1, βu+1) entry of D(u+1, sr) is Target(D(u+1,sr)). Since U knows
Target(D(u+1,s0)), Target(D(u+1,s1)), . . . , Target(D(u+1,s(k−1))), he can retrieve
fD(u,s),αu

. After retrieving fD(u,s),αu
, U checks whether or not fD(u,s),αu

is in
H . Therefore, U can retrieve Target(D(u,s)) in polynomial time. ��

3.3 Privacy

In the proposed scheme, the query Query(i) consists of Q(1), Q(2), . . . , Q(l),
and each Q(u) consists of

(g(u,0), g(u,1), . . . , g(u,βu−1), g(u,βu), g(u,βu+1), . . . , g(u,t−1)) ,

where one of the components is chosen uniformly and randomly from S = G \
H and the others are chosen uniformly and randomly from H . The privacy is
assured by the inequality

|Prob(Ck(Query(i)) = 1)−Prob(Ck(Query(j)) = 1)| < σ ,

where σ = 1
(Max(k,n))c , given in (1.1). This is exactly the general pattern indis-

tinguishability assumption in (2.4) if n is bounded by a polynomial in k. Hence,
the privacy of the proposed scheme is guaranteed by the subgroup membership
assumption by Theorem 1.

3.4 Communication Complexity

In the first step, U sends Query(i) = (Q(1), Q(2), . . . , Q(l)). Each Q(u) consists
of t group elements in G. Since every element in G is represented by a binary
sequence of length k, the total bits sent in this stage is l×t×k. In the second step,
DB sends Answer(Query(i)) consisting of kl−1 group elements in G. Therefore,
the total bits sent in this stage is kl−1×k = kl. Consequently, the communication
complexity is ltk+kl = ln

1
l k+kl. Suppose that k = nc and l = O( log n

log k ). Then we

have l =
√

log n
log k , and kl = (2log k)l = 2l log k = 2

√
log n log k = 2

√
log nc log n = n

√
c.

On the other hand, we have ltk+ kl = kl(lk+ 1) < klkl = (kl)2. Hence, we have
ltk + kl = (n

√
c)2. It follows that the communication complexity is O(nc).
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3.5 Small Example

For good understanding of the scheme, we illustrate with a small example. Sup-
pose that the database is given by X = x0x1x2x3x4x5x6x7x8 = 110010101.
The size of the database is 9 = 32 in this example. Let t = 3. The X is

identified with the t × t matrix D(0, λ) =




1 1 0
0 1 0
1 0 1


. Suppose that the user

U wants to read x7. He computes 3-adic expansion of 7 as in (3.1). Then
we have 7 = 2 × 3 + 1, 2 = 0 × 3 + 2. Hence, we have α0 = 7, α1 = 2,
α2 = 0, β1 = 1, β2 = 2. Then U chooses uniformly and randomly 3 group
elements g(0,0), g(0,1), g(0,2), where g(0,0) and g(0,2) belong to H and g(0,1) be-
longs to S = G \ H since β1 = 1. Next, U chooses uniformly and randomly
3 group elements g(1,0), g(1,1), g(1,2), where g(1,0) and g(1,1) belong to H and
g(1,2) belongs to S = G \ H since β2 = 2. The query Query(7) consists of
Q(1) = (g(0,0), g(0,1), g(0,2)) and Q(2) = (g(1,0), g(1,1), g(1,2)). It is sent to DB by
U . Let us assume that every element of G is represented by a binary sequence of
length 4.DB receives Query(7) and then performs the following computation. Us-
ing (3.3), he sets f(0,0) = g(0,0), f(0,1) = g(0,1), f(0,2) = 1, f(1,0) = 1, f(1,1) = g(2,1),
f(1,2) = 1, f(2,0) = g(2,0), f(2,1) = 1, f(2,2) = g(2,2) corresponding to the database.
Then, using (3.4), he computes fD(0,λ),0 = f(0,0)f(0,1)f(0,2) = g(0,0)g(0,1),
fD(0,λ),1 = f(1,0)f(1,1)f(1,2) = g(0,1), fD(0,λ),2 = f(2,0)f(2,1)f(2,2) = g(0,0)g(0,2).
Suppose that fD(0,λ),0, fD(0,λ),1, fD(0,λ),2 are represented by 0110, 1010, 1101, re-
spectively. It is helpful to see it in the matrix form as follows:



fD(0,λ),0

fD(0,λ),1

fD(0,λ),2


 =




0 1 1 0
1 0 1 0
1 1 0 1


 .

DB constructs four child databases D1,0, D1,1, D1,2, D1,3, where D(1, 0) =
(011)T , D(1, 1) = (101)T , D(1, 2) = (110)T , D(1, 3) = (001)T . Note that we

have



fD(0,λ),0

fD(0,λ),1

fD(0,λ),2


 =

(
D(1, 0) D(1, 1) D(1, 2) · · · D(1, 3)

)
. For each database, us-

ing Q(2) = (g(1,0), g(1,1), g(1,2)), DB compute a group element. For D(1, 0) =
(011)T , he computes A(0) = g(1,1)g(1,2). For D(1, 1) = (101)T , he computes
A(1) = g(1,0)g(1,2). For D(1, 2) = (110)T , he computes A(2) = g(1,0)g(1,1). For
D(1, 3) = (001)T , he computes A(3) = g(1,2). He sends (A(0), A(1), A(2), A(3))
to U as Answer(Query(7)) to U . Receiving Answer(Query(7)), U checks the mem-
berships of A(0), A(1), A(2) and A(3) in H . Since U keeps the trapdoor for the
subgroup membership problem for H , he can check the memberships of these
elements in polynomial time. He finds that A(0), A(1), A(3) ∈ H and A(2) ∈ S
and concludes that fD(0,λ),2 = 1101. Checking the membership of fD(0,λ),2 in H ,
he finds that x7 = 0.
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Abstract. An English auction is the most familiar type of auctions.
Generally, an electronic auction has mainly two entities, the registration
manager(RM) who treats the registration of bidders, and the auction
manager(AM) who holds auctions. Before starting an auction, a bidder
who wants to participate in English auction is registered to RM with
her/his information. An electronic English auction protocol should sat-
isfy the following nine properties, (a)Anonymity, (b)Traceability, (c)No
framing, (d)Unforgeability, (e)Fairness, (f)Verifiability, (g)Unlikability
among different auctions, (h)Linkability in an auction, and (i)Efficiency
of bidding. Furthermore from the practical point of view we add two
properties (j)One-time registration and (k)Easy revocation. A group sig-
nature is adapted to an English auction in order to satisfy (a), (b), and
(f)[18]. However such a direct adoption suffers from the most critical
drawbacks of efficiency in group signatures. In this paper we propose
more realistic electronic English auction scheme, which satisfies all of
these properties. Four notable features of our scheme are:
(1) both of bidding and verification of bids are done quite efficiently by
introducing a bulletin board,
(2) anonymity for RM, AM and any participant can be realized to plural
auctions by only one-time registration,
(3) RM can easily revoke a bidder, and
(4) nobody can impersonate any bidder.

keywords: anonymity, signature of knowledge, bulletin board, easy revoca-
tion

1 Introduction

1.1 Background

An English auction is the most familiar type of auctions. In an English auction,
each bidder offers the higher price one by one, and finally a bidder who offers the
highest price gets a good. An English auction is used on the Internet as well as
the real world. In an English auction through the Internet, it is important to spoil
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the collusion of bidders, because Internet makes the formation of ring members
much easier[15]. Therefore anonymity plays an important role in spoiling the
collusion of bidders. In an English auction, all bid information is published.
Therefore the competition principle well works and any bidder easily knows
her/his market price position. This is why an English auction is the most familiar
style of auctions. In this paper, we investigate an electronic English auction.

Generally, an electronic auction has mainly two entities, the registration man-
ager(RM) who treats the registration of bidders, and the auction manager(AM)
who holds auctions. Before starting an auction, a bidder who wants to par-
ticipate in English auction is registered to RM with her/his information. As
for studies about an electronic auction, a sealed-bid auction has been often
investigated[19, 11, 21, 22, 24, 14, 10, 3, 17, 13]. A sealed-bid auction is that
each bidder secretly submits a bid to AM only once, and a bidder who offers
the highest price gets the goods. A sealed-bid auction has two problems, (1)the
competition principle does not work well; (2)a winning bid may be much higher
price than market one.

In the case of sealed-bid auction, any canceled bid does not affect the valid
bidders. However, in the case of English auction, any bid does not allow to be
canceled. If a bid can be canceled in an English auction, the highest bid may be
insignificant. Therefore, in an electronic English auction, it is the most impor-
tant to satisfy the following two properties, (a)Anonymity and (b)Traceablitiy.
Although any bidder can participate anonymously, it is necessary to identify a
winner after a bidding. This means that every bid placed in an English auc-
tion must be verified maintaining the bid anonymity. Addition to the above
two properties, an electronic English auction should satisfy the following nine
properties:

(a) Anonymity: nobody can identify a bidder from her/his signature on a bid.
(b) Traceability: A winner cannot deny that she/he submitted the winning bid

after the winner decision procedure.
(c) No framing: nobody can impersonate a certain bidder.
(d) Unforgeability: nobody can forge a bid with a valid signature.
(e) Fairness: all bids should be fairly dealt with.
(f) Verifiability: anybody can verify a signature on a bid and can confirm

whether the bidder is valid or not.
(g) Unlinkablity among different actions: nobody can link the same bid-

der’s bids among plural auctions.
(h) Linkability in an auction: anybody can link which bids are placed by the

same bidder and knows how many times a bidder places a bid in an auction.
(i) Efficiency of bidding: the computation and communication amount in

both bidding and verifying a bid is practical.

1.2 Related Works

Only a few studies on English auction[18, 23, 15, 16] have been reported as long
as we know. On the other hand, many studies on a sealed-bid auction[19, 11,
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21, 22, 24, 14, 10, 3, 17, 13] have been proposed because it can realize fairness
more easily than English auction of public auction. These studies[15, 16] do not
concern with the security aspect of public auctions but describe those different
methods. [23] also proposed an electronic English auction using reverse hash
chains[20] as a bid, which is similar to multiple sealed-bid biddings in order to
satisfy fairness. When a bidder participates in an auction, it has two advantages
that a valid bidder can place a bid many times by using only one-time signature
and that bidder fairness is satisfied for a non-trusted center. However, in this
protocol, the following two problems exist:

1. Anonymity for AM is not satisfied after each bidding since AM knows the
bidder’s identity.

2. The bidding points are set up discretely. For n bidding points, it is necessary
for a bidder to compute hash functions n times. Apparently each bidder
cannot place a bid as she/he likes.

[18] proposed an electronic English auction, which keeps a bidder privacy
using a slightly modified group signature scheme[7, 5, 6]. So this protocol suffers
from the following drawbacks of group signature schemes. In their scheme, a
group manager (GM) works as AM and a group member corresponds to a bidder.

The first problem, which is the most serious, is rather complicated signature
generation and verification procedure. In [7, 5, 6, 1], a membership certificate
is used to reduce the data size of public group key[4]: only a group member
has the certificate issued by GM. When each member generates a signature
on this certificate and a bid, she/he is required the proof of the knowledge.
However the proof of the knowledge needs enormous modular multiplication. In
an English auction, signature generation or verification corresponds to bidding
or verification of bids respectively, both of which are required in each bidding.
In an electronic auction, reducing the computation amount of both signature
generation and verification are much concerned compared with reducing the
group public key size. Therefore we realize an electronic English auction with
both fairly simple bidding and verifying procedures by introducing a bulletin
board, which is usually used in putting each bid. The important feature of a
bulletin board is that anybody can check the correctness of the board easily. In
our protocol, the computation amount for both bidding and verifying a bid can
be reduced by using a feature of bulletin board.

The second problem is anonymity. The group signature does not satisfy
anonymity for GM at all since GM has a special authority. However, in an elec-
tronic auction, any bidder surely desires that nobody knows how much she/he
wants to buy goods. Therefore, we need a technique of Escrow scheme[12], in
which introduces Identity Escrow Agency(EA) in order to enhance anonymity
for GM. This scheme realizes the perfect separability between GM and EA: only
EA can identify a user by himself. This means that, in a sense, anonymity for
EA is not satisfied at all. In an electronic auction, it is required that neither
AM(GM) nor RM(EA) can identify the bidder from a signature on a bid, but
cooperation of both parties can certainly recover the identity. In our protocol,
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neither only AM nor RM identify any bidder but RM can open the signature
on a bid with the help of AM and can identify the bidder. Even if a winner is
identified in an auction, the winner bidder can participate in the next auction
maintaining enough anonymity for both RM and AM satisfied.

The third problem is that it is rather difficult to revoke a bidder since a
membership certificate is distributed to each bidder indicated in [2]. Revocation
of bidder is necessary when a bidder wants to withdraw from an auction or RM
wants to revoke a certain bidder. Therefore RM should be able to revoke a bidder
easily. In our protocol, a revocation of bidder is done easily by using a bulletin
board: just remove her/him on it.

1.3 Our Result

We propose a practical anonymous electronic English auction protocol satis-
fying the above eleven properties, (a)Anonymity (b)Traceability, (c)No fram-
ing, (d)Unforgeability, (e)Fairness, (f)Verifiability, (g)Unlikability among differ-
ent auctions, (h)Linkability in an auction, (i)Efficiency of bidding, (j)One-time
registration, and (k)Easy revocation. Our protocol satisfies both (a) and (b) si-
multaneously by using a combination of both the signature of the knowledge
and two kinds of bulletin boards. In particular, the computation amount of both
bidding and verifying each bid is fairly reduced by introducing a bulletin board.
In our protocol, there are two managers RM and AM. RM manages the corre-
spondence of bidder identity to public key, and can identify a winner or a faulty
bidder with the help of AM. When a certain bidder is identified after a winner
decision procedure or later disputes, AM has only to request RM to identify the
bidder.

Notable features of our scheme are as follows:

– both of bidding and verification of bids are done quite efficiently by intro-
ducing a bulletin board.

– Any bidder can participate in plural auctions by only one-time registration.
Even if a bidder is identified as a winner, she/he can participate in the next
auction without repeating registration, maintaining anonymity for RM, AM,
and any bidder.

– RM can easily revoke a bidder.
– Even if both RM and AM collude, they cannot impersonate any bidder.

The remaining of this paper is organized as follows. Section 2 summarizes
a basic scheme[18] using group signature. Section 3 describes our protocol in
detail. Section 4 considers fairness. Section 5 investigates the properties of our
scheme.

2 Related Work

Here we summarize a previous English auction scheme[18] which uses an idea of
group signature.
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2.1 Group Signature

The concept of group signature was introduced by Chaum and van Heyst[8].
Group signature allows any member to sign on behalf of a group and keeps the
member identity secret. The work[7] is the first efficient group signature schemes
in that the size of both group’s public key and of signatures are independent of
the number of group members and that a group’s public key remains unchanged
if a new member is added to a group. Later, group signature schemes with
improved performance and better flexibility are proposed in [5, 12, 6, 1]. [18] is
based on these group signatures [7, 12, 5, 6].

In an English auction, GM works as AM and a group member corresponds
to a bidder. When a bidder places a bid, she/he generates a group signature on
a bid. The validity of signature can be verified easily by any participant using a
group public key, but any participant does not know who places the bid.

2.2 Previous Scheme

Setup: AM computes an RSA modulus n, where n is the product of two primes,
an RSA key pair (e, d), a cyclic group G = 〈g〉 of order n over the finite
field Zp for a prime p, an element a ∈ Z∗n that is of the order φ(n)/4,
and an upper bound λ on the length of the secret keys: a revocation man-
ager chooses h ∈ G with order n, computes ElGamal-encryption key pair
(ρ, YR(= hρ)) ∈ Zn ×G, and sets a constant b �= 1. The group public key is
Y = (n, e,G, g, a, λ, h, YR). AM’s secret key is d and a revocation manager’s
secret key is ρ.

Registration: Alice randomly generates a secret key x ∈ {0, · · · , 2λ − 1} and
sends the value y = ax (mod n) and z = gy to AM; AM returns v =
(y + b)d (mod n). Note that AM cannot see the value of x.

Bidding Phase: In order to put a bid m with her signature, she computes the
following values (d1, d2, V1, V2, V3):
– g̃ = gr and z̃ = g̃y for r ∈R Zn;
– d1 = Y u

R gy and d2 = hu for u ∈R Zn;
– V1 = SK[(γ, δ) : z̃ = g̃γ ∧ d2 = hδ ∧ d1 = Y δ

Rgγ ](m);
– V2 = SK[(β) : z̃ = g̃aβ

](V1);
– V3 := SK[(α) : z̃g̃b = g̃αe

](V2)
The notation of a signature of knowledge (x1, · · · , xk) on a message m is as
follows:

SK[(x1, · · · , xk) : z1 = f1(x1, · · · , xk) ∧ · · · ∧ z� = f�(x1, · · · , xk)](m).

The secrets x1, · · · , xk satisfy all  statements: z1 = f1(x1, · · · , xk), · · ·, z� =
f�(x1, · · · , xk). Assume that computing the discrete logarithm, the double
discrete logarithms and the e-th root of the discrete logarithm is infeasible.
The concrete algorithm for these signatures is referred to [7]. Alice’s group
signature consists of a set of (d1, d2, V1, V2, V3). If the signature (V1, V2, V3) is
valid, anyone confirms that (d1, d2) is an encryption of z by using ElGamal
encryption function with a revocation manager’s public key YR, and that
Alice knows her secret key x and her membership certificate v.
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Winner Decision Phase: A revocation manager decrypts (d1, d2) using his
secret key ρ and identifies a member Alice from z since he knows the corre-
spondence of z to member’s identity.

In this scheme, the signature V3 is slightly modified using a verifiable group
signature sharing scheme in order to satisfy anonymity of bidder.

2.3 Undesirable Properties of the Scheme

In this scheme, there exist some problems as follows.

Efficiency: In applying a group signature to an electronic auction, it is neces-
sary to generate or verify a signature on each bid. A signature generation or
verification corresponds to bidding or verification of bids respectively, both
of which are required in each bidding. However the computation amount for
both signature generation and verification is rather large. Therefore it is not
realistic to apply directly a group signature to an electronic auction, which
requires a real-time operation.

Revocation of Bidder: In an Electronic auction, a revocation of bidder is
frequently conducted when a bidder wants to withdraw from an auction or
AM wants to revoke a certain bidder. So revocation-procedure should not be
complicated. However, in the previous scheme, it is rather difficult to revoke
a bidder since a membership certificate has been distributed to each bidder
indicated in [2]. Of course, a bidder does not want to publish her/his secret
key in revocation procedure. A revocation manager has to keep her/his z in
a black list to revoke a certain bidder. Therefore a revocation manager can
discover the unacceptable signature generated by a revoked bidder.

3 Our Protocol

In this section, we propose a practical electronic English auction.

3.1 Entities

The entities of our scheme consist of the registration manager(RM), the auction
manager(AM) and a bidder(B), where each role of AM or RM is slightly different
from that of previous scheme. The role of each entity is as follows:

– RM:
• guarantees the correspondence of a bidder to bidder’s registration key.
• works like Identity Escrow Agency and identifies a certain bidder when

AM requests.
– AM:
• sponsors several auctions.
• controls the number of a bidder’s bidding in an auction.

– Bidder(B):
• participates in an auction that AM holds.
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3.2 Notations

Notations are defined as follows:

p, q : two large primes (q|p− 1)
g : an element g ∈ Zp with order q
I : the number of bidders
i : the index of bidders (i = 1, · · · , I)
Bi : bidder i
xi : a secret key of Bi (xi ∈R Zq)
yi : a public key of Bi (yi = gxi) (Note that a public key is used as a

registration key, and does not reveal bidder’s identity.)
ri : AM’s random number for Bi (ri ∈R Zq)
ti : a random number of Bi (ti ∈R Zq)
Ti : an auction key for Bi

k : the index of auctions (k ≥ 1)
YAM : AM’s public key (YAM = gρ, ρ ∈R Zq)
Enc : Enc(key, data) is a secret key encryption function by using a secret

key, key, (Note that a cipher text is uniquely determined.)
Encj : Encj(key, data) is j-times encryption by using the same key,

Enc(key,Enc(key, · · ·)).

3.3 Procedure

Initialization: RM publishes p, q and g. AM computes a pair of public key and
secret key, (YAM , ρ) using g and publishes YAM .

Bidder Registration: A bidder Alice (Bj) registers her registration key in the
following steps:

1. Alice chooses her secret key xj and computes her registration key yj =
gxj (mod p);

2. She chooses a random number tj , named ticket. She uses her ticket in order
to find her auction key Tj on AM’s bulletin board. Note that she can also find

her auction key Tj without using her ticket by checking that y
rj

j
?= (grj )xj ;

3. She sends {yj, tj} to RM as her registration key, registers her identity and
proves that she knows the discrete logarithm xj of yj to the base g by showing
V1,

V1 = SK[(α) : yj = gα](mR),

where mR is a message published by RM;
4. When RM accepts that Alice knows the discrete logarithm, he publishes her

registration key {yj , tj} on his bulletin board, while RM keeps her name
secretly(Figure 1).

Although Alice’s name is not published at RM’s bulletin board, she can easily
confirm whether there exists her registration key on that board or not. Here a
registration key works also as a pseudonym. We assume that RM cannot make
up a secret key of a certain bidder.
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Fig. 1. Bulletin Board

AM’s Setup: When a vendor requests AM to hold an auction, AM conducts
the following procedure. For simplicity, here a bidder Bi participates in the k-th
auction.

1. AM computes a shared secret key yρ
i with each bidder Bi (yρ

i = Y xi

AM ) by
using Diffie-Hellman key-distribution[9].

2. AM generates the random numbers {r1, · · · , rI} ∈R Zq for each bidder pub-
lished on RM’s bulletin board and keeps the numbers {r1, · · · , rI} secret.

3. AM encrypts ti to Enck(yρ
i , ti) = Enc(yρ

i , Enck−1(yρ
i , ti)) in the k-time Enc

by using a shared key yρ
i .

4. AM computes the following auction key Ti for Bi using Bi’s public key yi on
RM’s bulletin board:

Ti = (Enck(yρ
i , ti), yi

ri , gri).

5. AM publishes the shuffled auction key Ti of all bidders on his bulletin board.

AM’s setup has the following properties:

(A) Nobody except for AM can know the correspondence of yi to Ti since yi is
concealed to yri

i in Ti and shuffled by AM;
(B) AM cannot identify a bidder since he does not know the correspondence of

Bi’s identity to yi.

Bidding: Alice who wants to participate in the k-th auction can easily find her
bidding key Tj in {T1, · · · , TI} published by AM because she knows the value
Enck(yρ

j , tj) in advance by using yρ
j = Y

xj

AM . Alice generates the signature of
knowledge V2 using both yj

rj and grj in Tj.
When she places a bid, she sends the following bid information (mj , y

rj

j , grj ,
V2) to AM.
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– a bid mj (mj = auction ID||bid value)
– y

rj

j and grj (published by AM)
– V2 = SK[α : yrj

j = (grj )α)](mj)

Here V2 implies that Bj knows the value of α = xj if V2 is valid signature.
Furthermore both y

rj

j and grj also work as a kind of certificate.

Verifiability: We assume that AM checks the validity of the signature V2 on
each bid. Of course, anybody can check the validity. If the signature V2 is invalid
signature, AM removes the bid with V2

Checking the validity of the signature of knowledge V2, anybody can confirm
that a bidder knows surely her/his secret key. Furthermore anybody can accept
that the signer is one of the bidders if the values yj

rj and grj in V2 are published
on AM’s bulletin board.

Winner Decision: Let Alice’s bid mj be a winning bid. AM proves to RM
that the public information yj

rj added to a winning bid mj corresponds to the
registration key yj by sending RM the value r−1

j . Note that only RM can identify
Alice as a winner for the first time, and that AM cannot identify a winner Alice
in this winner decision.

Winner Announcement: Only the entity RM knows the winner’s identity
after the winner decision procedure. This means that all participants including
AM cannot identify a winner but can confirm the validity of a winner. If RM
informs a vendor of winner’s identity after the winner decision procedure, nobody
except for RM can identify a winner. Therefore anonymity of a winner is satisfied
without changing her/his registration key managed by RM.

Generally, there is a problem of bidder collusion to form a ring. However,
in our protocol, even if a winner Alice offers her values of bid, any bidder can-
not identify her at the next auction, because AM changes rj at every auction.
Unlikability among different auctions holds in our protocol.

4 Fairness of Bidder

Fairness of bidder in an electronic auction means that any bid is fairly accepted
by AM. Generally, in an electronic English auction, fairness of bidder depends
on AM. There are two unfairness acts by AM:

1. AM repudiates any higher bids than a certain value.
2. AM repudiates any bidding by a certain bidder.

In order to satisfy the fairness of above 1, a bidder has to conceal a bid value for
AM. As for the above 2, a bidder has to place a bid anonymously. Our protocol
keeps the fairness of case 2 since bidding is done anonymously but is vulnerable
to the case 1 since any value on bids is revealed. In order to avoid the case 2, we
may use non-repudiation protocol [25, 26].
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4.1 Outline of Non-repudiation Protocol

The non-repudiation protocol is that Alice sends a message to Bob and then
Bob cannot repudiate a receipt of the message from Alice. We summarize the
basic procedure.

1. Alice encrypts a message m into C and sends it to Bob.
2. He sends his signature SBob(C) back to her after receiving C.
3. She sends the decryption key K of C to him after receiving SBob(C).

Note that if Bob repudiates K after the deadline, she deposits K in TTP (Alice
cannot know whether Bob repudiates K or the network between Alice and Bob
is broken down). TTP publishes K using public directory service as soon as TTP
receives it. Bob cannot deny receiving a message m if the network between Bob
and TTP is not permanently broken down.

4.2 Bidding Procedure with Non-repudiation

Fairness of bidder is realized by introducing an idea of non-repudiation protocol
as above. Non-repudiation protocol is added to a bidding procedure of our pro-
tocol. Alice and Bob correspond to a bidder Bi and AM, respectively. RM also
plays a role of TTP. In our protocol, both RM and AM use a public bulletin
board. A bid m is placed as follows:

1. AM cannot know each bid value since the bid information is encrypted by a
bidder.

2. AM publishes Bi’s signature SBi(C) in AM’s bulletin board instead of re-
turning it since AM does not know who is Bi.

3. Even if AM repudiates a receipt of decryption key K from a bidder, he
cannot deny getting bid information since RM publishes K in his bulletin
board.

5 Consideration

5.1 Features

We discuss the following eleven properties in our protocol.

(a) Anonymity: nobody including either RM or AM can identify a bidder from
her/his signature on a bid. Furthermore AM cannot identify a bidder though
RM can identify a bidder with the help of AM. More importantly any bidder
can anonymously participate in another auction by using the same registra-
tion key even if she/he has been identified once.

(b) Traceability: RM can open a signature on a bid with the help of AM and
can identify the bidder. So a winner cannot deny that she/he has submitted
the winning bid after the winner decision procedure.

(c) No framing: this will be discussed in chapter 5.2.
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(d) Unforgeability: nobody can forge a bid with a signature since anybody
cannot generate a valid signature using the registration key in AM’s bulletin
board.

(e) Fairness: our scheme has fairness of bidder if it applies non-repudiation
protocol to bidding. Otherwise AM may decide on which bids to accept.
However AM’s misbehavior turn out by a bulletin board. A bidder can point
out that AM does not accept her/his bid. Furthermore AM cannot identify a
bidder from bids. Therefore such a dishonest act may not have an influence
on electronic auction.

(f) Verifiability: anybody can verify the signature V2 on a bid. Furthermore
anybody can confirm whether a bidder is valid or not by checking her/his
registration key in AM’s bulletin board.

(g) Unlikability among different auctions: each bidding key generated by
AM is different among each auction since AM’s secret information ri, which
is different in every auction, is embedded in yri

i and gri with a bid. So nobody
except for AM can link two signatures among different auctions. Although
AM can link all bids of Bj in all auctions, AM cannot get an identity of Bj

except for collusion with RM.
(h) Linkability in an auction: a real auction has a linkability in an auction.

An auction becomes active by a certain aggressive bidder who always places
a higher bid. Anybody knows how many times a bidder places bids in an
auction from the signature since a bidder uses both yri

i and gri as a part of
bidding information in an auction.

(i) Efficiency of bidding: this will be discussed in chapter 5.3.
(j) One-time registration: any bidder can take part in plural auctions as a

valid bidder in one-time registration of registration key, maintaining ano-
nymity for RM, AM, and any bidder.

(k) Easy revocation: this will be discussed in chapter 5.4.

5.2 No Framing

Here we discuss the security against framing attacks such that an entity imper-
sonates another valid bidder.

Security against Collusion of RM and AM: Even if both RM and AM
are colluded, they cannot impersonate a bidder in the following reason. In our
protocol, in order to impersonate a bidder, RM and AM must show that they
know the bidder’s secret key xi, which is the discrete logarithm of a part of the
bidding key in AM’s bulletin board. However only a bidder Bi knows xi, so they
cannot impersonate a bidder.

Security against RM, AM, Other Bidders, and Outsiders: In the same
reason as the above, RM, AM, other bidders and outsiders cannot also imper-
sonate another valid bidder.
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Table 1. Performance for a bidder

#Modular multiplications (1024-bit) Communication amount (kbit)
Registration Bidding Verification Registration Bidding

[18] 1,500 218,600 206,700 1.3 7.6

Our scheme 480 240 (560)1 320 (560) 1.3 2.4

5.3 Performance

In this section, we compare our scheme with the previous scheme[18] in section
2 from the viewpoints of computation and communication amount for a bid-
der, which are shown in Table 2. For simplicity we estimate the computation
amount by the number of 1024-bit modular multiplication and let the system
parameters be e = 3, |n| = |p| = 1024, |q| = λ = 160, |H| = 160 and a security
parameter  = 64[7]. From table 2, we see that the computation amount for a
bidder is much reduced compared with the previous scheme. In particular, it
is the most important to reduce the modular multiplication amount of bidding
and verification, because both are conducted many times in an auction. The
computation amount in our scheme is dramatically reduced by introducing two
kinds of bulletin boards and an auction key. AM has only to check whether the
signature V2 is valid or not and whether there exists an auction key is in his
bulletin board or not when a bidder places a bid. In this way the computation
amount of both bidding and verification are reduced. Therefore our scheme can
practically realize an electronic auction.

5.4 Easy Revocation

In an Electronic auction, a revocation of bidder can be frequently conducted
when a bidder wants to withdraw from an auction or RM wants to revoke a
certain bidder. Therefore it should be simple and easy. Furthermore the bidding
history is kept secret if a bidder is revoked. In the previous scheme, it is rather
difficult to revoke a bidder since a membership certificate is distributed to each
bidder. In our protocol, it is easy to revoke a bidder: RM has only to delete a
bidder from RM’s bulletin board. Note that AM requests RM to revoke a certain
bidder informing her/his information(e.g. the value ri) or that a bidder requests
RM to revoke herself/himself.

6 Conclusion

We have proposed a practical electronic auction which satisfies (a)Anonymity,
(b)Traceability, (c)No framing, (d)Unforgeability, (e)Fairness, (f)Verifiability,
(g)Unlikability among different auctions, (h)Linkability in an auction, (i)Effi-
ciency of bidding, (j)One-time registration, and (k)Easy revocation. Five notable
features are:
1 This value in brackets shows the case that fairness of bidder is realized.
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(1) both of bidding and verification of bids are done quite efficiently by intro-
ducing a bulletin board,
(2) anonymity for RM, AM and any participant can be realized to plural auc-
tions by only one-time registration,
(3) RM can easily revoke a bidder,
(4) nobody can impersonate any bidder, and
(5) Fairness of bidder can be realized.
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Abstract. The rapid growth of wireless systems provides us with mobil-
ity. In mobile environments, authentication of a user and confidentiality
of his identity and location are two major security issues, which seem
incompatible with each other. In this manuscript, we propose a user au-
thentication scheme with identity and location privacy. This scheme is
an interactive protocol based on public key cryptosystems. In the pro-
posed scheme, to prove his authenticity, a user utilizes a digital signature
scheme based on a problem with a random self-reducible relation such
as the square root modulo a composite number problem and the dis-
crete logarithm problem. We also define the security requirements for
user authentication with identity and location privacy, impersonation-
freeness and anonymity, against active attacks, and prove that the pro-
posed scheme satisfies them assuming the security of the cryptographic
schemes used in the scheme. Furthermore, we show that we can construct
authenticated key agreement schemes by applying the proposed scheme
to some existing authenticated key agreement schemes.

1 Introduction

The rapid growth of wireless systems provides us with mobility. In mobile envi-
ronments, the service area of a service provider is divided into domains, each of
which is covered by a network operator. Each user moves around the domains
and gets some services through the network operator of the visiting domain.
In such a situation, user authentication is necessary for accounting. It is also
necessary to ensure the identity and location privacy, that is, users’ identity and
location information should not be disclosed to unauthorized entities. However,
these two requirements seem incompatible with each other.

In this manuscript, we present a solution to this problem, user authentication
with identity and location privacy (ILP), in a public key setting. We assume that
user authentication is achieved with a challenge-and-response scheme based on
a digital signature scheme.

Suppose that a user uses the same public key and proves his authenticity to
different network operators. In this case, the location privacy is not provided.
These network operators are able to track the user by colluding with each other,
even if the user uses some pseudonym and hides his real ID. To avoid the tracking,
the user has to generate and use his temporary public key whenever he proves
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his authenticity. We present an efficient scheme which achieves this goal. As is
in the typical situation, it is assumed that the service provider keeps the public
keys of its users. Each of the corresponding secret keys is known only to the
user. We call these public/secret keys original public/secret keys of the user.

To prove his authenticity to the network operator he is visiting, each user uti-
lizes a digital signature scheme based on a problem with a random self-reducible
relation such as the square root modulo a composite number problem or the
discrete logarithm problem. Thus, the proposed scheme can be constructed with
practical digital signature schemes such as the ElGamal scheme [4], the Fiat-
Shamir scheme [5], the Schnorr scheme [12], the Pointcheval-Stern scheme [10]
and so on.

When a user proves his authenticity, he computes a pair of temporal public
and secret keys from his original key pair and a random seed by utilizing the
random self-reducibility of the problem the digital signature scheme is based on.
The user signs for the challenge from the network operator he is visiting and
the temporal public key by using the temporal secret key. The user’s ID and the
random seed are sent to his service provider through the network operator after
being encrypted so as to be recovered only by his service provider. The validity
of the temporal public key is guaranteed by his service provider that is able to
compute it from the user’s original public key it keeps and the random seed.

In this manuscript, we also initiate the study of provable security of user au-
thentication schemes with ILP. We first define two security requirements for user
authentication with ILP, impersonation-freeness and anonymity, both of which
are against active attacks. Then we prove that the proposed scheme satisfies
these requirements assuming the security of the cryptographic schemes, public
key encryption schemes and digital signature schemes, used in the scheme.

Furthermore, we show that we can construct authenticated key agreement
schemes by applying the proposed scheme to existing authenticated key agree-
ment schemes such as those in [2, 7]. As an example, we show an authenti-
cated key agreement scheme constructed by applying the proposed scheme to
the station-to-station protocol [2].

1.1 Related Works

User authentication schemes have been already incorporated in the specifications
of cellular phone systems such as GSM [11] and CDPD [1, 11]. These schemes,
however, do not provide anonymity of users.

Molva, Samfat and Tsudik [8] presented an efficient user authentication
scheme with anonymity based on KryptoKnight [9]. Their scheme is constructed
with private key cryptosystems. Thus, their approach is quite different from ours.
In addition, they focused on user authentication and did not fully discuss the
anonymity. Their security analysis of the anonymity was quite informal.

Herzberg, Krawczyk and Tsudik [6] discussed the anonymity problem in mo-
bile environments. They reviewed the existing approaches and proposed several
potential solutions based on private key cryptosystems or public key cryptosys-
tems. As a scheme based on private key cryptosystems, they presented the same
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scheme as the one in [8]. For public key based schemes, they focused on provid-
ing the framework rather than proposing some concrete schemes. Furthermore,
their security analysis is also quite informal.

In [3], for third generation mobile telecommunications systems, several user
authentication schemes with ILP are proposed. One of the protocols is based
on public key encryption schemes and uses the service provider on-line. Fur-
thermore, it is mentioned that the scheme needs a temporary user public key
encryption transformation. However, no solution is provided for this problem.

1.2 Organization of This Manuscript

This manuscript is organized as follows. In Section 2, random self-reducibility,
which is the basis of the proposed scheme, is reviewed. The proposed user au-
thentication scheme with ILP is presented in Section 3. As an example, the
proposed scheme constructed with the Schnorr scheme is presented in the same
section. In Section 4, two security requirements for user authentication with ILP,
impersonation-freeness and anonymity, are defined and it is proved that the pro-
posed scheme satisfies these requirements. Efficiency of the proposed scheme is
also discussed in this section. In Section 5, it is shown that authenticated key
agreement protocols can be constructed by applying the proposed scheme to
existing authenticated key agreement schemes.

2 Random Self-Reduciblity

In this section, random self-reducibility, on which the proposed scheme is based,
is reviewed [13].

Let N be a countable infinite set. For any N ∈ N , let AN , BN be finite sets
and RN ⊆ AN ×BN be a relation.

dom(RN ) def= {a ∈ AN | (a, b) ∈ RN for some b ∈ BN} is called the domain of
RN , and RN (a) def= {b | (a, b) ∈ RN} is called the image of a ∈ AN .

Let R be the relation {((N, a), b) |N ∈ N and (a, b) ∈ RN}. R is called a
random self-reducible relation, if there exists an algorithm M1 for R, which has
the following properties:

M1 is an algorithm which outputs a′ ∈ dom(RN ) which satisfies the following
conditions on input N ∈ N , a ∈ AN , r ∈ {0, 1}∗ in |N |O(1) steps.

– If each bit of r is selected randomly, uniformly and independently, then a′ is
uniformly distributed over dom(RN ).

– There exists an algorithm M̄1 which outputs some b ∈ RN (a) on input
N ∈ N , a ∈ AN , r̄, b′ ∈ RN (a′) in |N |O(1) steps, where r̄ is a finite prefix of
r used by M1(N, a, r).

– There exists an algorithm M2 which outputs some b′ ∈ RN (a′) on input N ,
a, r, b ∈ RN (a) in |N |O(1) steps. Furthermore, if each bit of r is selected
randomly, uniformly and independently, then b′ is uniformly distributed over
RN (a′).
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For example, the square root modulo a composite number problem, the dis-
cete logarithm problem and the graph isomorphism problem are the problems
with random self-reducible relations. A random self-reducible relation of the dis-
crete logarithm problem is as follows.

For a positive integer k, let Zk = {0, 1, 2, . . . , k − 1} and Z∗k = {x |x ∈ Zk,
gcd(x, k)=1}. Let N ={(p, g) | p is prime, g ∈Z∗p and g is a primitive element},
and R(p,g) = {(a, b) | (a, b) ∈ Z∗p × Zp−1, a = gb mod p}. Since g is a primitive
element, dom(R(p,g)) = Z∗p. For any a ∈ dom(R(p,g)) and r ∈ Zp−1, let a′ =
agr mod p. Then, if r is randomly selected, then a′ is uniformly distributed over
dom(R(p,g)). Furthermore, since b′ = b + r mod p − 1, b or b′ is easily obtained
from r and b′ or r and b, respectively.

In this manuscript, we present a user authentication scheme which utilizes
a digital signature scheme based on a problem with a random self-reducible
relation. For this kind of digital signature scheme with a random self-reducible
relation R = {((N, a), b) |N ∈ N and (a, b) ∈ RN}, N is a public key shared by
all users, a is a public key of a user and b is a secret key corresponding to a.

3 The Proposed Scheme

3.1 Overview

In this section, we present an overview of the proposed user authentication
scheme with ILP, which is based on public key cryptosystems.

We assume that there exists a service provider and that its service area is
divided into domains. We also assume that each domain is covered by a network
operator. A network operator checks the authenticity of a user who makes a
request in the domain it covers.

Each user has his own pair of a public key and a secret key, which is used
for proving his authenticity. We call the public/secret keys of a user the original
public/secret keys of the user. The service provider maintains the original public
key of each user. Notice that the original secret key of a user is known only to
the user.

The proposed scheme enables a user to prove his authenticity to the network
operator he is visiting without disclosing his ID and location with the aid of the
service provider. The user proves his authenticity with a challenge-and-response
protocol based on a digital signature scheme.

When a user proves his authenticity, he computes a pair of temporal public
and secret keys from his original key pair and a random seed by utilizing the
random self-reducibility of the problem the digital signature scheme is based on.
The user signs for the challenge from the network operator he is visiting and
the temporal public key by using the temporal secret key. The user’s ID and the
random seed are sent to the service provider through the network operator after
being encrypted so as to be recovered only by the service provider. The validity
of the temporal public key is guaranteed by the service provider who is able to
compute it from the user’s original public key it keeps and the random seed.
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3.2 Description of the Scheme

Before describing the proposed scheme in detail, we introduce some notations.
Let U be a user, SP be the service provider and NO be a network operator

U is visiting. Let IU, ISP, INO be the ID’s of U, SP and NO, respectively. ID’s
are assumed to be binary strings.

Let Sig be a signing algorithm used by the users to prove their authenticity.
The subscript of Sig is the key used when signing. The digital signature scheme
with this signing algorithm is assumed to be based on some problem with random
self-reducibility. For this scheme, let N be a public key shared by all users and
let a, b be the original public key and the original secret key of U, respectively.
For N, a, b, let M1 be an algorithm which outputs a temporal public key on input
N, a and a random seed r, and M2 be an algorithm which outputs a temporal
secret key on input N, a, b and a random seed r. These algorithms are publicly
available.

Let ESP be an encryption algorithm of some public key encryption scheme.
The decryption key corresponding to ESP is kept secret only by SP. Let SSP, SNO

be signing algorithms of SP and NO, respectively. It is not necessary for ESP,
SSP, SNO to be based on the problems with random self-reducibility.

The proposed user authentication scheme with ILP:

1. U randomly selects r and α, and sends c, ISP, α to NO, where c = ESP(IU, r).
He also computes a temporal public key atmp = M1(N, a, r) and a temporal
secret key btmp = M2(N, a, b, r).

2. After receiving c, ISP, α from U, NO sends c, INO to SP. He also randomly
selects β, computes SNO(α, β), and sends β, SNO(α, β) to U.

3. After receiving c, INO from NO, SP recovers IU, r from c. If the plaintext
obtained from c is invalid, then SP terminates the execution. Otherwise,
he computes the temporal public key of U, atmp = M1(N, a, r) and sends
SSP(c, atmp), atmp to NO.
After receiving β, SNO(α, β) from NO, U verifies the validity of SNO(α, β). If
it is invalid, then he terminates the execution. Otherwise, he computes a sig-
nature of β, atmp with the temporal secret key btmp and sends Sigbtmp(β, atmp)
to NO.

4. NO receives SSP(c, atmp), atmp from SP and verifies the validity of
SSP(c, atmp). If it is invalid, then NO terminates the execution. Otherwise,
after receiving Sigbtmp(β, atmp) from U, NO verifies its validity with the tem-
poral public key atmp. NO accepts U if and only if it is valid.

The above scheme is also shown in Fig. 1.

3.3 Example

The proposed scheme can be constructed with digital signature schemes based
on problems with random self-reducibility: the ElGamal scheme [4], the Fiat-
Shamir scheme [5], the Schnorr scheme [12], the Pointcheval-Stern scheme [10]
and so on.
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U NO SP
random r, α
c = ESP(IU, r)

c, ISP, α−→−→−→−→−→
atmp = M1(N, a, r) random β

c, INO−→−→−→−→−→
btmp = M2(N, a, b, r)

β, SNO(α, β)←−←−←−←−←− atmp = M1(N, a, r)
SSP(c, atmp), atmp←−←−←−←−←−

Sigbtmp(β, atmp)−→−→−→−→−→

Fig. 1. The proposed scheme. U is a user and NO is a network operator U is
visiting. SP is the service provider.

In the following, we present an example with the Schnorr scheme. Let p and
q be primes and q be a divisor of p− 1. Let g be an element of Z∗p, whose order
is q. Let p, q, g be the public keys of the Schnorr scheme shared by all users. Let
b ∈ Zq be the original secret key of the user U and a = gb mod p be the original
public key of U. Let h be a collision-free hash function. Furthermore, α and β
are assumed to be binary strings in {0, 1}κ, where κ is appropriately determined.

An example of the proposed scheme constructed with the Schnorr scheme:

1. U randomly selects r ∈ Zq and α ∈ {0, 1}κ, and sends c, ISP, α to NO, where
c = ESP(IU, r). He also computes a temporal public key atmp = a gr mod p
and a temporal secret key btmp = b+ r mod q.

2. After receiving c, ISP, α from U, NO sends c, INO to SP. He also randomly
selects β ∈ {0, 1}κ, computes SNO(α, β), and sends β, SNO(α, β) to U.

3. After receiving c, INO from NO, SP recovers IU, r from c. If the plaintext
obtained from c is invalid, then SP terminates the execution. Otherwise, he
computes U’s temporal public key atmp = a gr mod p and sends SSP(c, atmp),
atmp to NO.
After receiving β, SNO(α, β) from NO, U verifies the validity of SNO(α, β).
If it is invalid, then he terminates the execution. Otherwise, he computes a
signature of β, atmp with the temporal secret key btmp. That is, he randomly
selects x ∈ Zq and computes y = gx mod p, e = h(y, β, atmp), and w =
x− e btmp mod q. Then U sends e, w to NO.

4. NO receives SSP(c, atmp), atmp from SP and verifies the validity of
SSP(c, atmp). If it is invalid, then he terminates the execution. Otherwise, af-
ter receiving e, w, he verifies its validity. That is, he computes z=gwae

tmp mod
p and checks whether e = h(z, β, atmp) or not. NO accepts U if and only if
it is valid.
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4 Discussions

4.1 Security

In this section, we discuss the security of the proposed user authentication
scheme with ILP. We first define two security requirements, impersonation-
freeness and anonymity, and then prove that the proposed scheme satisfies these
requirements.

In the proposed scheme, the service provider should be trusted because it
guarantees the validity of temporal public keys of the users. A dishonest ser-
vice provider is able to impersonate any user by randomly selecting a temporal
secret key, generating the corresponding temporal public key and stating that
the temporal public key is a valid key for the user. Thus, the service provider is
assumed honest.

Let � be the security parameter. Let U ,O be the set of the users and the set
of the network operators, respectively. Both of |U| and |O| are assumed to be
bounded by some polynomial of �.

We consider the security against active attacks. A malicious adversary A is
a probabilistic algorithm and is assumed to operate in two successive phases:
the observation phase and the trial phase. In the observation phase, A can fully
control the network. A can arbitrarily select U’s in U and NO’s in O, and make
them execute the protocol with SP. A can modify, replay or not deliver the
messages exchanged during the executions of the protocol. Furthermore, A can
corrupt U’s and NO’s. A can obtain the secret keys of corrupted U’s and NO’s
and also control them arbitrarily. On the other hand, A cannot corrupt SP. A
cannot obtain the secret keys of SP: the decryption key for ESP nor the signing
key for SSP. A cannot control SP, neither.

We define the security requirements, impersonation-freeness and anonymity,
against the active adversary A.

impersonation-freeness. A user authentication scheme with ILP is impersonation-
free if no polynomially bounded adversary A succeeds with non-negligible prob-
ability in impersonating an uncorrupted user in the observation phase.
A’s behavior in the observation phase is described as above. At the end of

the observation phase, A selects a network operator NO.
In the trial phase, A executes the protocol with NO and SP, and tries to

impersonate some user. Notice that A may not determine the user he tries to
impersonate.

anonymity. To define anonymity, we consider the most advantageous scenario
for an adversary. A’s behavior in the observation phase is described as above. At
the end of the observation phase, the adversary A selects two users U0,U1 and
a network operator NO. U0,U1 and NO may be corrupted in the observation
phase.

In the trial phase, the user Ui ∈ {U0,U1}, who is randomly selected, executes
the protocol with NO and SP. We assume that A does not know which one of
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U0,U1 is selected. We also assume that U0,U1 are not corrupted and that NO
is corrupted. After the execution of this protocol, A outputs the value of i that
he guesses.

An user authentication scheme with ILP satisfies anonymity if
|Pr[A’s guess is correct] − 1/2| is negligible.

In the definition of impersonation-freeness, impersonation of a network op-
erator NO is not mentioned. If the signature scheme of NO, SNO is existentially
unforgeable against the adaptive chosen-message attack, then it is impossible to
impersonate NO.

The definition of anonymity implies the anonymity against passive eaves-
droppers though it describes the anonymity against network operators.

Impersonation-Freeness. First, we make an assumption on the unforgeability
of the digital signature scheme of the users.

Assumption 1. For the digital signature scheme of the users, there exists a
probabilistic polynomial time algorithm which computes the secret key with
non-negligible probability by using an algorithm which can forge a signature
with the adaptive chosen-message attack as an oracle.

This assumption holds for the digital signature schemes such as the Schnorr
scheme [12] and the Pointcheval-Stern scheme [10].

Theorem 1. Suppose that the digital signature scheme of the service provider
SP is existentially unforgeable against the adaptive chosen-message attack. If
there exists an adversary A who succeeds in impersonation with non-negligible
probability, then there exists a probabilistic polynomial time algorithm which is
able to compute the original secret key of some user with non-negligible proba-
bility in cooperation with SP by using A as an oracle.

Proof. In the observation phase, an adversary A can make the adaptive chosen-
message attack on the digital signature scheme of the users and that of SP. At
the end of the observation phase, suppose that A selected a network operator
NO.

In the trial phase, A executes the protocol with NO and SP, and tries imper-
sonation.

Since the digital signature scheme of SP is assumed to be existentially un-
forgeable against the adaptive chosen message attack, we do not consider the
attack such that A generates a temporal key pair (atmp, btmp) in some way,
forges SSP(c, atmp), and succeeds in impersonation with btmp.

During the execution of the protocol with NO and SP, A first sends c, ISP, α
to NO.

Notice that A does not necessarily know the plaintext corresponding to c nor
may there exist no valid plaintext corresponding to c. NO then sends c, INO to
SP.
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If SP recovers a valid plaintext (IU, r) for some U ∈ U , then he computes
the temporal public key of U, atmp = M1(N, a, r) and sends SSP(c, atmp), atmp

to NO.
If A succeeds in impersonation with non-negligible probability, then he suc-

ceeds in forging signatures for random challenges from NO with non-negligible
probability. ¿From Assumption 1, there exists a probabilistic polynomial time
algorithm Alg which can compute the temporal secret key btmp corresponding to
atmp by using A as an oracle. Thus, Alg can compute the original secret key of
U in cooperation with SP from N, a, r, btmp. ��

This theorem implies that, for example, the proposed scheme constructed
with the Schnorr scheme is impersonation-free if users’ public keys are selected
so that it is intractable to compute the corresponding secret keys.

Anonymity. To prove anonymity of the proposed scheme, we only consider a
random self-reducible relation R = {((N, a), b) |N ∈ N and (a, b) ∈ RN} which
satisfies the following conditions:

– For any N ∈ N , r is selected from a finite set QN , and the random sampling
from QN is feasible.

– There exists an algorithm which outputs r ∈ QN on input N ∈ N , a ∈ AN ,
b ∈ RN (a), a′ ∈ AN , b′ = M2(N, a, b, r) ∈ RN (a′) in |N |O(1) steps.

These conditions are not restrictive. For example, the random self-reducible rela-
tion of the discrete logarithm problem presented in Section 2 satisfies them. It is
easy to show that the digital signature schemes such as the ElGamal scheme, the
Fiat-Shamir scheme, the Schnorr scheme and the Pointcheval-Stern scheme can
be constructed based on the problems with random self-reducibility satisfying
the conditions.

We further assume that an adversary A is able to obtain the temporal secret
key btmp that the user uses during the execution in the trial phase.

Theorem 2. If the public key encryption scheme of the service provider SP sat-
isfies the indistinguishability of encryptions against the adaptive chosen-cipher-
text attack, then the proposed scheme satisfies the anonymity.

Proof. In the observation phase, since an adversary A can fully control the net-
work, he can apply the adaptive chosen-ciphertext attack on the public key
encryption scheme of SP.

Suppose that an adversary A has chosen two users U0,U1 at the end of the
observation phase, whose original secret keys, b0, b1, are known to A. Further-
more, in the trial phase, suppose that A obtained btmp, which is used by the user
to compute Sigbtmp(β, atmp) during the execution of the protocol. Then, from
the conditions on the random self-reducibility described above, A can compute
ri from N, ai, bi, atmp, btmp for i = 0, 1, and the plaintext of the ciphertext c is
(IU0 , r0) or (IU1 , r1). Since ESP satisfies the indistinguishability of encryptions
against the adaptive chosen-ciphertext attack, A’s advantage of guessing i over
random selection is negligible. ��
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4.2 Efficiency

In [3], for third generation mobile telecommunications systems, an authentication
scheme with ILP based on public key cryptography is shown which uses the
service provider on-line. In this section, the proposed scheme is compared with
the above scheme in terms of the efficiency, and the advantage of the proposed
scheme is made clear. In the following the scheme in [3] is called the 3GS3
scheme.

The communication overhead of the proposed scheme is lower than that of
the 3GS3 scheme, while the number of the passes of the proposed scheme is
equal to that of the 3GS3 scheme. In the proposed scheme, the network operator
NO communicates on-line with the service provider SP in order to receive a
temporal public key of U and its certificate. However, NO can send a challenge
β to U without waiting for the response from SP. On the other hand, in the
3GS3 scheme, NO can send a challenge to U only after receiving the response
from SP.

As is mentioned in Introduction, it is observed in [3] that the 3GS3 scheme
needs a temporary user public key encryption transformation. For this problem,
the proposed scheme provides a solution based on the random self-reducibility,
which can also be applied to the 3GS3 scheme. The solution is more advantageous
than the naive solution in that a user need not prove to the service provider
that he really generates the temporal public key atmp that he sends. The naive
solution possibly requires the user to prove to the service provider that he really
knows the corresponding temporal secret key. On the other hand, the proposed
solution guarantees that the one who knows the secret key of atmp = M1(N, a, r)
is the one who knows both the random seed r and the secret key of the public
key a.

5 Extension

In this section, we show that we can construct an authenticated key agree-
ment protocol by applying the proposed scheme to an existing authenticated
key agreement scheme. The constructed key agreement protocol also provides
the ILP. With this key agreement protocol, a user can share a common secret
session-key with the network operator without the aid of the service provider,
that is, the shared session-key is known only to the user and the network operator
he is visiting, not known to the service provider.

To construct an authenticated key agreement protocol, we can apply the
proposed scheme to some of the existing protocols, such as those in [2, 7]. As
an example, we show the application of the proposed scheme to the station-to-
station (STS) protcol [2]. In the following description, let 〈·〉K be a ciphertext
obtained by encrypting the plaintext in 〈 〉 with the secret key K and some
symmetric key encryption function.

An authenticated key agreement scheme constructed by applying the proposed
scheme to the STS protocol:
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1. U randomly selects kU ∈ Zq, computes uU = gkU mod p and sends c, uU, ISP

to NO, where c = ESP(IU, r). He also computes the temporal public key
atmp = M1(N, a, r) and the corresponding temporal secret key btmp =
M2(N, a, b, r).

2. NO receives c, uU, ISP from U and sends c, INO to SP. He also randomly
selects kNO ∈ Zq, computes uNO = gkNO mod p and the session-key K =
uU

kNO mod p, and sends uNO, SNO(〈uU, uNO〉K) to U.
3. After receiving c, INO from NO, SP recovers IU, r from c. If the plaintext

obtained from c is invalid, then he terminates the execution. Otherwise,
he computes the temporal public key of U, atmp = M1(N, a, r), and sends
SSP(c, atmp), atmp to NO.
After receiving uNO, SNO(〈uU, uNO〉K) from NO, U computes the session-key
K = uNO

kU mod p and verifies the validity of the signature SNO(〈uU, uNO〉K).
If it is invalid, then he terminates the execution. Otherwise, he signs for
〈uNO, uU〉K , atmp with his temporal secret key btmp and sends
Sigbtmp(〈uNO, uU〉K , atmp) to NO.

4. NO receives SSP(c, atmp), atmp from SP and verifies the validity of the sig-
nature. If it is invalid, then he terminates the execution. Otherwise, after
receiving Sigbtmp(〈uNO, uU〉K , atmp) from U, he verifies the validity of the
signature with the temporal public key atmp. NO accepts U if and only if it
is valid.

In the above protocol, 〈uNO, uU〉K is used as a challenge from NO to U. The
above protocol is also shown in Fig. 2. In this figure, the interactions between
NO and SP are omitted because they are same as those of the proposed scheme.

U NO
kU ∈R {0, 1, . . . , q − 1}
uU = gkU mod p
random r
c = ESP(IU, r)

c, uU, ISP−→−→−→−→−→−→−→
atmp = M1(N, a, r) kNO ∈R {0, 1, . . . , q − 1}
btmp = M2(N, a, b, r) uNO = gkNO mod p

K = uU
kNO mod p

uNO, SNO(〈uU, uNO〉K)←−←−←−←−←−←−←−
K = uNO

kU mod p
Sigbtmp(〈uNO, uU〉K , atmp)−→−→−→−→−→−→−→

Fig. 2. An authenticated key agreement scheme constructed by applying the
proposed scheme to the STS protocol. The interactions between NO and SP is
omitted, which are same as those of the proposed protocol.
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6 Conclusion

In this manuscript, we have proposed a user authentication scheme with ILP.
We have also discussed the provable security and the efficiency of the proposed
scheme. Furthermore, we have shown that we can construct authenticated key
agreement schemes by applying the proposed scheme to some of the existing
authenticated key agreement schemes.
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Abstract. Mobile commerce is becoming more and more commonplace,
but security is still a major concern. To provide security, the WAP (Wire-
less Application Protocol) forum suggests the WAP security architecture.
However, it needs the WAP gateway for intermediate process between the
WTLS (Wireless Transport Layer Security) and the SSL (Secure Socket
Layer) protocol, and it does not guarantee end-to-end security between
the mobile devices and the WAP servers. In this paper, we propose a
new authentication protocol to solve this problem. Our solution is based
on the design of a new network component that is called CRL-agent.
Furthermore, we also analyze and evaluate the security strength of the
proposed protocol.

1 Introduction

Recently, the new customers and services have been developing due to the rapid
growth of the wireless Internet market. Operators and manufacturers established
the WAP forum, which defines a set of protocols in transport, security, transac-
tion, session and application layers to meet the challenges of the advanced, dis-
tinguished, fast and flexible services. The WAP forum has developed the WTLS
layer for secure communication in the WAP environment. The primary goal
of the WTLS is to provide privacy, data integrity and authentication between
communicating applications. The WTLS provides functions similar to SSL 3.0
and incorporates new features such as datagram service, optimized handshake
and dynamic key refreshing. The WTLS is optimized for low-bandwidth bearer
networks with a relatively long latency[1],[2].

Presently, the serious security problem in the WAP is caused by not the
WTLS in itself but importing WAP gateway. Since the WTLS is not compatible
to the SSL protocol used on the web, the WAP gateway must decrypt the received
data from the WAP client and re-encrypt the data to transfer to the WAP server.
Existence of the WAP gateway at the network has the advantage that a content
provider does not need a new software to overcome differences between wire and
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wireless networks. However, the drawback is that we have no real end-to-end
security between the WAP client and the WAP server.

In this paper, we design a new authentication protocol that can provide
several security services such as a WAP client’s user authentication, session key
establishment, dynamic key refresh and end-to-end security between a WAP
client and a WAP server in the WAP environment.

The rest of this paper is organized as follows. In Section 2, we show the
architecture of WAP and shortcomings of it. Moreover, we present necessity of
designing a new protocol. In Section 3, we introduce the whole operating rule of
the proposed protocol and a new network component that is called CRL-agent.
In Section 4, we introduce notations and the proposed protocol. In Section 5, we
evaluate the proposed protocol from the security point. Finally, we present some
tips that can be used to embody the proposed protocol and make conclusions in
Section 6.

2 The Security Architecture for WAP and Its
Shortcomings

2.1 The Security Architecture for WAP

The WTLS that is provided by the WAP forum is composed of four subprotocols.
The Handshake Protocol, Alert Protocol and Change Cipher Spec Protocol are
used for managing the operation of the WTLS, and the Record Protocol provides
actual security services. For connecting a secure session between the WAP client
and the WAP server through the WTLS, the Handshake Protocol is processed
in advance to allow peers to agree upon security parameters such as a session
key, a peer certificate, compression method, master secret and a key refresh to
be performed. The negotiated security parameters are used to provide security
services in the Record Protocol[1],[2].

Fig. 1. The security architecture in WAP environment



An End-to-End Authentication Protocol in Wireless Application Protocol 249

The Security architecture for WAP is shown in Fig. 1. The WTLS is used for
secure services in wireless environment between the WAP client and the WAP
gateway, and SSL is used for secure services in wire environment between the
WAP gateway and the WAP server.

2.2 The Shortcomings of Security Architecture for WAP

The security architecture for WAP based on WTLS/SSL has the following several
shortcomings.

– It does not provide end-to-end security between the WAP client and the
WAP server. That is, the WAP gateway decrypts the data that is received
from the WAP client and re-encrypts it for wire Internet. Finally, plaintext
is exposed in the WAP gateway.

– For a secure session, several public certificates based on X.509 v3 are used.
Furthermore, the verification of a received certificate needs to query and
verify the CRLs (Certificate Revocation Lists). This traffic leads to extrav-
agant resources of the WAP client that has only low-processing power and
memory. Even if the WAP forum recommends short-lived certificate to the
verification of certificate, it is not a clear solution[3].

– The security vulnerability of the WTLS has been publishing[4],[5],[6],[7].
– The authentication based on public certificate only supports the legality

of the communicating entity. Therefore, it does not sufficiently present the
authorization information of the communicating entity[8].

In this paper, we propose a security protocol that can be applicable in the
WAE (Wireless Application Environment) layer of the WAP protocol stack.
Since it operates in the different layer with the WTLS/SSL, it can be appli-
cable together with them. The proposed protocol in this paper which is called
E2ESP(End-to-End shared Security Protocol) resolves the shortcomings of the
original WAP security architecture and supports basic access control based on
the identity of the WAP client’s user.

In this paper, we assume that the WAP gateway is located at the subnetwork
of the network operator. At present, the input equipment of a mobile phone is
very inferior and network operators do their best to support more useful and
interesting WAP portal that has power to collect subscribers. Therefore, most
users search the linked sites of the WAP portal that is provided by the WAP
gateway and it is few for users to search the unlinked-sites by typing directly
the URL[9]. Hence, E2ESP focuses on the usual wireless Internet services based
on the WAP portal. However, E2ESP can be operated in a situation where a
special company has its own WAP gateway and needs to do access control for
the internal users that connect from the outside.

3 CRL-Agent & Assumptions

When a user starts the service of a wireless Internet, the home page of the WAP
browser for the WAP client is established as the WAP portal. If the WAP servers
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that are linked from the WAP portal are the sites that need the security such as
on-line banking, stock services and m-commerce, these sites have already agreed
with network operator for the support of E2ESP. Fig. 2 shows the architecture
of E2ESP.

Fig. 2. The architecture of E2ESP

When a user does not want to use E2ESP for communication with a linked
WAP server or tries to communicate with an un-linked WAP server, a session
between the WAP client and the WAP server can be made securely by the
WTLS/SSL. However, when a WAP client uses E2ESP for a secure session with
a WAP server, it is not surely necessary to use the WTLS/SSL for a secure
session.

We assume that the CRL-agent is located in the subnetwork of network
operator and it is a secure system. The main function of the CRL-agent is to
investigate the present state of public certificates for public-keys that are used
in E2ESP. The present state of the public certificate means that it is one of
the following three states; ”applicable”, ”revoked” or ”updated”. We consider
the traffic overhead of the CRL-agent and restrict that only several specific
negotiated CAs (Certificate Authorities) with network operator can issue public
certificates for E2ESP. The CRL-agent periodically investigates CRLs to ensure
the state of the WAP servers and the public keys of the WAP servers. When
a WAP client makes a request to the WAP portal page to the WAP gateway,
the WAP gateway makes a request to the public key state information that is
related to the WAP client. Then, the CRL-agent gives a response of the public
key state information to the WAP gateway. The WAP gateway that received the
response sends the WAP portal page and the public key state information to
WAP client.
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When the CRL-agent sends the public key state information to the WAP
gateway, it does not perform any translation for privacy. Moreover, the public
key of the WAP client for communicating with the CRL-agent has been already
known to the CRL-agent and the CRL-agent can periodically investigate the
state of the public certificate of the WAP client for E2ESP. If the public key of
the WAP client is revoked, CRL-agent can make a request for a new certificate
URL to the WAP client. More detail procedures are introduced in [3].

In this paper, we assume that the WAP client trusts network operator as the
following point of view.

– The WAP client trusts that the CRL-agent is a secure system. That is, the
WAP client trusts that the public key of the CRL-agent is safe and already
knows the public key of the CRL-agent from the initial establishment. How-
ever, it can query the CRLs to verify the public certificate for the CRL-agent.

– The WAP client can verify the received information that is signed by the
CRL-agent.

4 End-to-End Authentication Protocol in WAP

4.1 Notations

In this section, we introduce some notations as follows.

– Ci : The identity of i-th WAP client, for 1 ≤ i ≤ n.
– Sj : The identity of j-th WAP server, for 1 ≤ j ≤ m. It may be linked to

WAP portal pages.
– CRLA : The identity of the CRL-agent.
– Uij : The identity of i-th WAP client’s user at j-th WAP server. For example,

the user’s account name in the WAP server.
– PUX : A public key of communication entity X.
– PRX : A private key of communication entity X.
– Hash(m) : A one-way hash value of message m.
– Ppassj : A public password that is a hash value for the public key of j-th

WAP server.
Ppassj = Hash(PUSj)

– Upassij : A user defined weak password that corresponds to user’s account
Uij .

– rX : A random challenge of communication entity X. The main function of
this is both response and timeness. In initialization step for E2ESP, it can
be replaced with time-stamp value.

– refresh : It defines how often session keys are updated. A new session key
is calculated at every

n = 2refresh

message, i.e. the sequence number of new session key is 0, n, 2n, 3n etc re-
spectively.
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– Krls : It is a list that includes all kind of refresh periods which an WAP
server can support and is called key refresh list.

– Svls : It is a list that includes the identities of the WAP servers whose
certificates are revoked and is called server list.

– Info : It is a notification message that the identity of an WAP server is
deleted from certificate query lists for a specific WAP client.

– seqnum : The sequence number of transmitted message.
– ZZij : A shared secret value that is derived from key agreement between

i-th WAP client and j-th WAP server through E2ESP.
– SKij : A session key that is used for a secure session between i-th WAP client

and j-th WAP server and is derived from ZZij and the other parameters.
– EA(m) : Message m is encrypted with key A.
– DA(m) : Message m is decrypted with key A.
– SIGA(m) : Message m is signed with key A.

4.2 Initialization for E2ESP

After establishing a session between the WAP client and the WAP gateway
(optionally through WTLS), the process that the WAP client receives the WAP
portal page is shown in Fig. 3. The detailed procedures are given as follows;

Message 1 : [WAP client ) WAP gateway]

WAP portal request, Ci; SIGPRCi
(Ci; rCi)

Message 2 : [WAP gateway ) CRL-agent]

Ci; SIGPRCi
(Ci; rCi)

Message 3 : [CRL-agent ) WAP gateway]

CRLA;SIGPRCRLA
(Svls; CRLA;Ci; rCi)

Message 4 : [WAP gateway ) WAP client]

WAP portal pages,

CRLA;SIGPRCRLA
(Svls; CRLA;Ci; rCi)

Fig. 3. Initialization for E2ESP

Message 1 WAP portal request, Ci, SIGPRCi
(Ci, rCi)

i-th WAP client Ci requests the WAP portal page to the WAP gateway.
Message 2 Ci, SIGPRCi

(Ci, rCi)
The WAP gateway requests the public key state information of WAP servers
for Ci to the CRL-agent before sending the WAP portal pages to Ci.

Message 3 CRLA, SIGPRCRLA(Svls, CRLA, Ci, rCi)
The CRL-agent has a database that is called certificate query lists. This
database defines which WAP servers’ certificates are necessary to be verified
for each WAP client.
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The CRL-agent receives message 2, and detects the required public key state
information for the WAP servers which are included in the certificate query
lists for Ci and makes server list. Then, the CRL-agent sends message 3 to
the WAP gateway.

Message 4 WAP portal pages, CRLA, SIGPRCRLA(Svls, CRLA, Ci, rCi)
After receiving message 3, the WAP gateway sends message 4 to Ci. Then,
Ci verifies the signed part of message 4 by the public key of the CRL-
agent. Finally, Ci displays the WAP portal pages in the WAP browser and
recognizes whether each WAP server’s public key is revoked or not.

If the public certificate of j-th WAP server Sj to be accessed by i-th WAP
client Ci is revoked or updated, Ci must update the public password for Sj or
delete the identity of Sj from certificate query lists. We will refer to the public
password at section 4.3 in more detail. The detailed procedures are shown in
Fig. 4 and given as follows;

Message 1 : [WAP client ) WAP gateway]

Ci; SIGPRCi
(Sj; Ci; rCi)

Message 2 : [WAP gateway ) CRL-agent]

Ci; SIGPRCi
(Sj; Ci; rCi)

Message 3-1 : [CRL-agent ) WAP gateway]

CRLA;SIGPRCRLA
(CRLA; Sj; Cj; PUSj ; rCi)

Message 3-2 : [CRL-agent ) WAP gateway]

CRLA;SIGPRCRLA
(CRLA; Sj; Cj; Info; rCi)

Message 4-1 : [WAP gateway ) WAP client]

CRLA;SIGPRCRLA
(CRLA; Sj; Cj; PUSj ; rCi)

Message 4-2 : [WAP gateway ) WAP client]

CRLA;SIGPRCRLA
(CRLA; Sj; Cj; Info; rCi)

Fig. 4. Updating public password for WAP server

Message 1 Ci, SIGPRCi
(Sj , Ci, rCi)

Message 1 has two meanings according to different circumstances. If the
identity of Sj is not included in the certificate query lists inside the CRL-
agent for requesting Ci, it means that Ci wants to add Sj into the certificate
query lists. If the identity of Sj is included in the server list of message 4 of
the former initialization step, it means that Ci wants to receive the updated
public key of Sj or delete the Sj from the certificate query lists.

Message 2 Ci, SIGPRCi
(Sj , Ci, rCi)

The WAP gateway only forwards the received message from Ci to the CRL-
agent.

Message 3-1 CRLA, SIGPRCRLA(CRLA, Sj , Cj , PUSj , rCi)
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Message 3-2 CRLA, SIGPRCRLA(CRLA, Sj , Cj , Info, rCi)
After receiving message 2, the CRL-agent performs the following steps.
– If the received Sj is included in the certificate query lists for Ci,
• In the case of update of Sj ’s public certificate for E2ESP, the CRL-

agent sends the message 3-1 that includes a new public key for Sj to
the WAP gateway.
• In the case of revocation of Sj ’s public certificate for E2ESP, the

CRL-agent deletes Sj from the certificate query lists for Ci and
makes a notification message Info that is added into message 3-2.
The CRL-agent sends message 3-2 to the WAP gateway.

– If the currently received Sj has linked site with the WAP portal pages
and is not included in the certificate query lists for Ci, the CRL-agent
adds the received Sj to certificate query lists for Ci and sends message
3-1 that includes a new public key for Sj to the WAP gateway.

Message 4-1 CRLA, SIGPRCRLA(CRLA, Sj , Cj , PUSj , rCi)
Message 4-2 CRLA, SIGPRCRLA(CRLA, Sj , Cj , Info, rCi)

The WAP gateway only forwards message 3-1 or message 3-2 to Ci . Ci

received message 4-1 or 4-2 performs one of the following two steps according
to circumstances.
– If Ci receives message 4-1, Ci hashes the received public key of Sj and

allows the user to use it as a public password.
– If Ci receives message 4-2, E2ESP for communicating with Sj will be

inactive. However, it is independent of the existing WTLS/SSL protocol.

4.3 E2ESP

When the WAP client’s user receives the WAP portal pages and public key
state information from WAP gateway, the user can start the login process and
key agreement for E2ESP based on the user-defined password. E2ESP adopts
the EKE (Encrypted Key Exchange) method based on Diffie-Hellman key agree-
ment[10],[11],[12]. The WAP client’s user and the WAP server agree on a large
prime p and g, such that g is primitive mod p. These two integers do not have to
be secret; the WAP client and WAP server can agree to them over some insecure
channel. The user has a hash value for the public key of the WAP server as a
public password. The user does not even need to type such a digest, but just
recognize it when it is displayed. The WAP server has a user-defined password
as

vij = gHash(Upassij , Uij , Sj), for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The value vij will allow the WAP server later to get or store the password
itself; this way we can limit the damage if the WAP server is corrupted or the
database is leaked. vij is stored together with the WAP client’s identity in the
WAP server’s user database.

The procedure of the WAP client’s user who wants to login to the WAP server
is given in Fig. 5. In this paper, we omit the mod p calculation for convenience.
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Message 1 : [WAP client ) WAP server]

User login request

Message 2 : [WAP server ) WAP client]

rSj ; PUSj ; g
x; gx

0

;Krls

Message 3 : [WAP client ) WAP server]

EPUSj
(Uij; Sj; g

y; refresh; ESKij
(rSj)); rCi

Fig. 5. A secure session establishment over E2ESP

Message 1 User login request
Message 1 may be sent by i-th WAP client’s user to j-th WAP server at
any time. This message just means that Uij can negotiate several security
parameters such as ZZij, SKij and refresh and Uij wants to login to Sj .
In message 1, it does not include user’s identity Uij but the identity of i-th
WAP client Ci.

Message 2 rSj , PUSj , g
x, gx′

, Krls
Sj that has received message 1 chooses two random big integers x and x′,
and computes gx and gx′

for key agreement with Ci. Of course, x and x′ are
secure information for Sj . Then, Sj generates rSj as a random challenge and
makes a key refresh list. Finally, Sj configures message 2 and sends it to Ci.

Message 3 EPUSj
(Uij , Sj , g

y, refresh, ESKij (rSj )), rCi

Ci that has received message 2 compares the public password Ppassj with
the hashed value of PUSj . The implementation technique of this comparison
will be handled at Section 6 in more detail. If two values do not agree, Ci may
request the CRL-agent to give the public key state information for Sj . If the
two values agree, Ci requests the user to input his identity Uij and password
Upassij , chooses an appropriate refresh from the received key refresh list.
Then, Ci chooses a random big integer y and generates gy which is secure
information for Ci.
Ci generates a shared secret ZZij and a session key SKij for a secure session
with Sj in the following way.

ZZij = Hash((gx)y, (gx′
)Hash(Upassij ,Uij ,Sj))

SKij = Hash(ZZij , rSj , rCi , seqnum)

Finally, Ci generates message 3 and sends it to Sj .
Now, Sj receives message 3, and decrypts it by its own private key PRSj

and becomes to know the user’s identity Uij and gx. Sj generates a shared
secret and a session key in the following way.

ZZij = Hash((gx)y, (vij)x′
)

SKij = Hash(ZZij , rSj , rCi , seqnum)
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As a result, Sj can decrypt an encrypted part of message 3 by the SKij and
compares rSj with the received one. If two values agree, Sj knows that the
generated session key and the Uij are correct.
The first seqnum value is 0 and this value is updated every message exchange
between Ci and Sj . While updating SKij according to refresh, the above
procedures for generation of session key SKij must be recomputed where
only seqnum is changed.

5 Security Evaluation of E2ESP

In this section, we evaluate the security of E2ESP through some attack scenarios.

– When the attacker compromises vij and masquerades j-th WAP server Sj .
• The attacker generates disguised r�

Sj
, x�, x′� and sends

r�
Sj

, PUSj , g
x�

, gx′�
, Krls

to i-th WAP client Ci. Then, Ci receives the above messages, and com-
putes a shared secret

ZZ�
ij = Hash((gx�

)y, (gx′�
)Hash(Upassij ,Uij ,Sj))

and a session key SK�
ij correspondent to ZZ�

ij . Finally, Ci sends

EPUSj
(Uij , Sj , g

y, refresh, ESK�
ij
(r�

Sj
)), rCi

to the attacker. In this situation, the attacker must know PRSj to com-
promise Uij or SKij . That is, attacker must decrypt message that is
encrypted by PUSj .
• If the attacker uses its own public key to make a response for the user

login request of Ci, he may send

r�
Sj

, PU�
Sj

, gx�

, gx′�
, Krls

as response to Ci . Since the verification process of the public password
is performed, this attack would fail. However, when gy is exposed by
accident, the attacker could make a session key successfully.

– When the attacker eavesdrops on the inner traffic of the WAP gateway and
masquerades Uij .
This active attack is possible when an attacker knows Upassij and Uij . If the
attacker who masquerades Uij randomly generates r�

Ci
, gy�

, U�
ij and Upass�

ij

and computes a shared secret

ZZ�
ij = Hash((gx)y�

, (gx′
)Hash(Upass�

ij ,U�
ij ,Sj))

and a session key.

SK�
ij = Hash(ZZ�

ij , rSj , r
�
Ci

, seqnum)
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He chooses a masqueraded refresh� and sends

EPUSj
(U�

ij , Sj , g
y�

, refresh�, ESK�
ij
(rSj )), r

�
Ci

to Sj , then Sj tries to decrypt the received message and finds U�
ij and

its related information Upass�
ij in the system. If Sj cannot find the correct

U�
ij and Upass�

ij, it terminates the present session. However, if Sj can find a
correct U�

ij and Upass�
ij by accident, the secure session is established between

the attacker and Sj , where the attacker has come to understand the identity
of user and user-defined password.

The second possible attack can be protected by the following two methods.

– Sj which has already sent message 2 in Fig.5 closes the session after wait-
ing for a defined time interval. Since the transmitted rSj , g

x, gx′
values are

changed every time, it is impossible for an attacker inside the WAP gateway
to perform an off-line password guessing attack. Moreover, Sj can give a time
delay for establishing a session to a user who had already failed to login Sj

several times, hence, it can be protected on-line password guessing attack.
– Since the input mechanism of the WAP client is so simple, it is a basically

weak situation against a dictionary attack. However, since the identity of user
and user-defined password are not sent in plaintext over the insecure channel,
it is difficult for an attacker to perform on-line and off-line password guessing
attacks, and to know the identity of the user and user-defined password.
Therefore, these attacks can be efficiently protected in E2ESP.

6 Implementation Techniques of E2ESP & Conclusion

For example, the following situation can be considered. ” When does the WAP
client request the CRL-agent to manage the updated or revoked WAP servers’
public certificate after receiving the public key state information from WAP
gateway ?” There are two possible ways to implement this. The first one is that
the WAP client requests updating process of public password to the CRL-agent
right after receiving the WAP portal pages and server list. The second one is that
the WAP client requests updating process of public password to the CRL-agent
right before trying to connect with the WAP server that has revoked the public
certificate.

For a user to be able to read, recognize, and type the public password, it is
advisable to have a user-readable format for these passwords. A representation
which maps arbitrary binary strings into easy-to-read words was introduced in
the context of one-time passwords in detail[13]. When the WAP client receives
the WAP server’s public key (message 2 in E2ESP), it displays a verification
screen of the public key to user, as given in Fig. 6.

In Fig. 6, one of number 1, 2, 3, 4 is a correct password. The user must choose
the number corresponding to the correct public password. That is, if the public
password is ”limb mont bloc gone rage pit”, the user may choose ”1”. The others
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Fig. 6. Example of user interface to input public password, user ID and user-
defined password

from 2 to 4 are randomly selected words in the word dictionary of the S/Key
system by the WAP client. The next step of verifying the public password is
that the user must input his identity and user-defined password. Fig. 6. shows
this process. After ending all of the above steps, the WAP client sends message
3 of Fig. 6 to the WAP server. The above mentioned implementation is a typical
example, so the various alternatives are possible if we consider user’s convenience.

In this paper, we propose a new security protocol that serves as an end-to-
end security between the WAP client and the WAP server in WAP environment.
Since E2ESP adopts the EKE method for a user to login to the WAP server,
the user’s identity is not exposed over the insecure channel. Moreover, E2ESP
supports that the WAP server can successfully do basic access control based on
the user’s identity and key agreement. E2ESP can operate securely alone and
more securely together with the WTLS/SSL.
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Abstract. Detecting errors in a raw key and authenticating a private
key are crucial for quantum key distribution schemes. Our aim is to pro-
pose practical methods for error detection and authentication in quantum
key distribution schemes. We introduce several concepts about neigh-
borhood collision free properties of Boolean functions, which are closely
related to hash functions, and propose methods based on neighborhood
collision free functions and error correcting codes such as Reed-Solomon
code. We also examine whether or not widely used cryptographic hash
functions SHA-1 and MD5 satisfy the neighborhood collision free prop-
erty by computation experiments.

1 Introduction

Quantum key distribution schemes have been introduced and studied in detail
up to date (e.g. [1], [2], [8]). Under an ideal circumstance like an experiment in a
laboratory without any physical interferences, quantum key distribution schemes
enjoy the unconditional security. Since an eavesdropper Eve’s unlawful access to
the quantum channel causes disturbance of bit patterns of photons sent by Alice
due to the Heisenberg uncertainty principle, Alice and Bob can detect Eve’s
intervention by estimating error rate after the data transmission through the
quantum channel. Error estimation can be carried out by discussion through the
classical channel. Physical errors inevitably occur in data transmission through
the quantum channel under realistic circumstances. Eve may want to obtain only
small amount of information concerning the private key shared by Alice and Bob.
Then Eve’s best strategy is to wiretap the quantum channel only small fraction
of the total data transmission, and deceive Alice and Bob as if the resulting
disturbance is caused by the physical defects of the quantum channel and other
peripherals. By the attack, Eve may be able to obtain partial information on the
private key shared by Alice and Bob. Under such a scenario, bits, where errors
may have happened, are more suspicious of Eve’s intervention than the other bits
and should be dumped to prevent Eve from gaining any partial information. The
following are essential to attain the virtually unconditional security. The first is

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 260–273, 2001.
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to lower the error rate in the data transmission through the quantum channel.
This depends on improvements of physical devices such as optical fibers, single
photon source generators, avalanche-photo-diode detectors and so on. The error
rate depends on the distance of the quantum data transmission: the longer the
channel gets, the higher the error rate rises. See [15], [16] for recent experimental
results. The second is to efficiently detect (and correct) errors in the raw keys,
remove the leaked information and confirm the integrity of the private key agreed
by Alice and Bob. Our aim in this paper is to propose practical methods forward
the second goal.

We briefly explain the general scheme of a quantum key distribution (see
Chapter 2 of [6] for more detail). First, Alice generates a (sufficiently long)
random bit string and sends photon pulses according to the random bit string
through the quantum channel, where the basis and the polarization are randomly
determined. Bob also generates a random bit string and measures the photon
pulses with the basis determined according to his random bit string. Then Alice
and Bob obtain bit strings, called raw keys, respectively. We should note that
Bob’s raw key is totally different from Alice’ raw key because Bob does not
know Alice’s choice of bases and cannot get to know the bits in Alice’s raw
key unless he chooses the same basis. Checking their choice of bases through
the classical channel, they estimate errors existing in Bob’s raw key and then
obtain sifted keys (this process is called sifting). The error rate is supposed
to be kept under a previously fixed value, which is determined by the quality
of the physical devices, unless Eve intervened. If Eve wiretapped substantial
amount of data transmission from Alice to Bob through the quantum channel,
Eve’s intervention can be detected in this stage because Alice and Bob will find
the error rate is larger than the previously fixed value. Eve’s best strategy to
eavesdrop is to wiretap only small fraction of the total data transmission through
the quantum channel. It follows that the leaked information to Eve is at most
the physical error rate.

Second, errors must be removed or corrected. After the error correction pro-
cess, Alice and Bob possess an identical key called reconciled key. Note that Eve
might have partial information on the reconciled key because Eve could eaves-
drop the communication through the quantum and the classical channel even
though the potentially leaked information is almost negligible.

Third, Eve’s information is reduced substantially using privacy amplification
that is the method to lower Eve’s information exponentially by sacrificing bits
in the reconciled key linearly ([3], [4], [10]). Privacy amplification can be carried
out using t-resilient functions [4] (also known as (N,J,K) functions [7]). The
resulting key is called a private key.

Lastly, Alice and Bob confirm the integrity of their private key and obtain
an authenticated private key. We illustrate a typical process of key distribution
in Fig.1 in a quantum key distribution scheme.
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Fig. 1. Data Processing in Quantum Key Distribution

We introduce a concept of a (globally, locally) neighborhood collision free
function and show that SHA-1 [9] and MD5 [12] enjoy the neighborhood collision
free property by experiments with computers. We present methods to detect
errors in the raw keys and to authenticate the private key in a quantum key
distribution scheme using a neighborhood collision free function. Our methods
realize the error detection (correction) and authentication procedures in Fig.1.

2 Several Error Correction Methods

We briefly explain the error correction methods in [4] and [5] in this section.
Suppose Alice and Bob possess their sifted keys after the sifting process in a
quantum key distribution scheme. If Alice has a sifted key r, then Bob has a
sifted key r ⊕ e, where ⊕ denotes the bitwise exclusive or, and e represents
the errors occurred. The Hamming weight of e depends on the physical error
rate of data transmission through the quantum channel, and the recent physical
experiments show relatively low error rate for short distance transmission. See,
for example, [15] and [16]. The physical error rate is the fraction of occurrence
of errors in the total data transmission through the quantum channel. Under
the most ideal assumption, we have e = 0, and hence, Alice and Bob share the
identical key, on which Eve has no chance to get any information on it. Although
physical errors unavoidably occur at some rate under the realistic situation, they
are very rare. Therefore, the Hamming weight of e is in proportion to the error
rate and so slightly greater than 0. We may assume that most of bits in e are
0. To share the identical private key, Alice and Bob need to get rid of the error
bits. Especially, if they intend to use the key as the secret key for a symmetric
cipher, it is crucial to share an identical authenticated private key.

First, we explain the error correction method by Bennett, Bessette, Brassard,
Salvail and Smolin [5]. Alice divides her sifted key into blocks. Bob also divides
his sifted key in the same way as Alice does: if Alice has the sifted key r and r is
divided as r = r1r2 · · · rn, then Bob has the sifted key r ⊕ e and it is divided as
r⊕ e = (r1⊕ e1)(r2 ⊕ e2) · · · (rn ⊕ en), where e = e1e2 · · · en represents the error
bits. Then Alice computes the parity of each block ri and sends them all to Bob
through the classical channel. Eve can wiretap the classical channel and is able to
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obtain the parities of the blocks. The parity of each block is considered as one bit
information, and so, Alice and Bob take it for granted that one bit information
is leaked for each block. Bob computes the parities of the corresponding blocks
of his sifted key and compares them with the parities sent by Alice. If all of them
coincide, then Alice and Bob probably possess the identical key. Otherwise, some
of Alice’s block and Bob’s block must be different at least one position. In such
a case, Alice and Bob divide the block whose parities are different into shorter
blocks and continue the process until they do not find any different parity. In
any stage, Alice and Bob delete one bit from each block at the same position
in order to make the leaked information to Eve meaningless. Repeating the
process several times, Alice and Bob eventually establish an identical key with
a high probability. Demerits of this method are following: Alice and Bob are not
guaranteed to share the identical reconciled key. It wastes numerous bits and
requires considerable computation. In the process of generating raw keys, Alice
and Bob cannot theoretically predict the number of necessary bits to establish
the reconciled key, that is, it is quite hard to theoretically estimate the efficiency
of the error correction.

Second, we explain one of the methods in Bennett, Brassard and Robert [4].
They proposed that Alice sends the hash value of her sifted key through the
classical channel. Bob computes the hash value of his sifted key as well. Bob
compares these two hash values. If they are identical, they share the identical
reconciled key. Otherwise, Bob turns around a few bits in his sifted key, computes
the hash value of the altered key then and checks whether or not it coincides
with the hash value of Alice’s sifted key. Bob continues this process until he
finds the one whose hash value coincides with the hash value of Alice’s sifted
key. Bob basically carries out the exhaustive search to find positions in his bit
string, where the errors happen, until he detect the errors. The method is called
a bit twiddling. The defect of the method is that Bob is required to carry out
substantial computation, and the hash value transmitted through the classical
channel gives substantial information to Eve as well. Only under the very re-
stricted assumption that the error rate is very low and the bit string is short,
the exhaustive search can be carried out. Otherwise, the task is impossible. It
is also proposed in [4] that Alice encodes her sifted key by an error correcting
code and sends only the redundancy part of the encoded sifted key. The defect
of this method is again that the redundancy part of encoded sifted key gives
substantial information to Eve. This method has several demerits, nevertheless,
these can be remedied as we will see in Section 4.

3 Neighborhood Collision Free Functions

Let H be a Boolean function of Zl
2 to Zk

2. Intuitively, H is neighborhood collision
free if H maps any two bit strings with a small Hamming distance to bit strings
with a large Hamming distance. Recall that the Hamming distance of bit strings
x1 and x2 is the number of positions where the entry of x1 is different from that
of x2. The Hamming weight of a bit string x is the Hamming distance between
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x and the zero (that is, the string consisting of only 0). This property should be
satisfied by all (symmetric and asymmetric) encryption functions, although it is
not sufficient for secure communication. Recall that a Boolean (hash) function
H is (strongly) collision free if it is hard to find bit strings r1 and r2 with r1 �= r2
and H(r1) = H(r2). In other words, H is (strongly) collision free if it is hard to
find bit strings r1 and r2 such that r1 �= r2 and the Hamming distance between
H(r1) and H(r2) is 0. This concept is generalized as follows. Let us denote the
Hamming distance between r and s by d(r, s), where r, s ∈ Zl

2. For t ∈ Zl
2, the

set {s ∈ Zl
2 | d(s, t) ≤ i} is called the neighborhood around t of radius i and

denoted by N(t, i). We define several neighborhood collision free properties. Let
H be a Boolean function of Zl

2 to Zk
2.

– H is a globally j-neighborhood collision free function if it is hard to find
s, t ∈ Zl

2 such that H(s) ∈ N(H(t), j), equivalently H(t) ∈ N(H(s), j) (or
N(H(s), j

2 ) ∩N(H(t), j
2 ) is not empty).

– H is a locally j-neighborhood collision free function in i-neighborhood if for
every u ∈ Zl

2 it is hard to find s, t ∈ N(u, i) such that H(s) ∈ N(H(t), j),
equivalently H(t) ∈ N(H(s), j) (or N(H(s), j

2 ) ∩N(H(t), j
2 ) is not empty).

– H is a globally collision free function if it is hard to find s, t ∈ Zl
2 such that

H(s) = H(t).
– H is a locally collision free function in i-neighborhood if for every u ∈ Zl

2 it
is hard to find s, t ∈ N(u, i) such that H(s) = H(t).

These concepts play a vital role in construction of our error detection and
authentication scheme. The concept of the hardness depends on the context,
and it may be information theoretic or computational. A globally collision free
property coincides with a (strongly) collision free property for cryptographic hash
functions. It is easy to see that a globally j-neighborhood collision free function
is a locally j-neighborhood collision free function in i-neighborhood, a globally j-
neighborhood collision free function is a globally collision free function, a globally
collision free function is a locally collision free function in j-neighborhood and
a locally j-neighborhood collision free function in i-neighborhood is a locally
collision free function in i-neighborhood. The converses are not necessarily true.
See Fig. 2 for the relationships among the concepts.

Globally Neighborhood Collision Free Function

Globally Collision Free Function Locally Neighborhood
Collision Free Function

Locally Collision Free Function

�
��	

@
@@R

@
@@R

�
��	

Fig. 2. Hierarchy of Collision Free Functions
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For example, good block ciphers show the strong avalanche effect, and hence,
they satisfy the globally neighborhood collision free property even under a low
round. The globally neighborhood collision free property can be considered as a
generalization of the avalanche effect. We shall show, in Section 5, that SHA-1
and MD5 satisfy the globally neighborhood collision free property by experi-
ments by computers. Our experiments show that SHA-1 has the 43-neighborhood
collision free property, and MD5 has the 34-neighborhood collision free property,
however, it is difficult to prove theoretically and rigorously that they really do.

4 Error Detection Using Locally Neighborhood Collision
Free Functions

The methods explained in Section 2 waste numerous bits and require consid-
erable computation such as iterations of random permutations to detect and
correct errors. Moreover, it is difficult for us to predict the number of necessary
bits, that is, the length of raw keys, to succeed in establishing an authenticated
private key in the final stage. It is desired to invent a simple efficient method so
that we can predict easily and theoretically the number of necessary bits in ad-
vance. We employ a locally neighborhood collision free function to detect errors
in the sifted keys.

Suppose that the physical error rate of the quantum data transmission is
ε > 0. We note that Alice and Bob should operate a random permutation to
their sifted keys after the sifting process. If they have done so, we can suppose
the errors are random, that is, the errors are uniformly distributed in Bob’s sifted
key. If Eve eavesdrops the bits located at specific positions in the private key
(according to his eavesdropping strategy) and Alice and Bob do not operate a
random permutation, then the errors are burst, that is, they are distributed non-
uniformly in Bob’s sifted key. After the error estimation process, Alice and Bob
have their sifted keys, r and s, where r, s ∈ Zl

2 for some integer l, respectively.
Then r⊕s shows the error bit pattern and its Hamming weight is approximately
ε× l. Suppose 0 < ε < 1 and 0 < α < 1 are constants such that α is sufficiently
larger than ε. Let H be a locally neighborhood collision free function of Zl

2 to
Z

k
2 with θ(H, ε, α) that is the probability of the event d(H(r1),H(r2)) ≤ α × k

when we choose randomly and uniformly a pair (r1, r2) of distinct bit strings
from Z

l
2 such that the Hamming distance between r1 and r2 is less than or equal

to ε× l. A Boolean function H is considered locally neighborhood collision free
if θ(H, ε, α) is negligible for some constants ε and α such that 0 < ε� α < 1.

We now explain the basic idea of an error detection method. Suppose that
H is a locally neighborhood collision free function and θ = θ(H, ε, α) is small.
This implies that the probability that d(H(r),H(s)) < α × k for r �= s ∈ Zl

2

with d(r, s) < ε× l is negligible. We assume the Hamming weight of r⊕ s is less
than ε× l. Hence, if r �= s, then H(s) is not in N(H(r), α × k), equivalently the
Hamming weight of H(r)⊕H(s) is bigger than α×k, by the locally neighborhood
collision free property of H . If r = s, H(r) = H(s) and so the Hamming weight
of H(r) ⊕H(s) is 0.
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We now suppose Alice and Bob possess t and t ⊕ e as parts of their sifted
keys, respectively, where t, e ∈ Zk

2 and the Hamming weight of e is approximately
ε×k. Then the Hamming distance between H(r)⊕t and H(s)⊕(t⊕e) is given by
(H(r)⊕ t)⊕ (H(s)⊕ (t⊕e)) = (H(r)⊕H(s))⊕e. Hence, the Hamming distance is
approximately ε× k if r = s, otherwise, it is more than α× k. So if we set ε+α

2 k
as a threshold, Bob can determine whether or not r = s by checking whether
the Hamming distance between H(r) ⊕ t and H(s)⊕ (t⊕ e) is smaller or bigger
than ε+α

2 k.
We combine this criterion to find the existence of errors and several meth-

ods to find the exact bit positions where the errors occurred. We discuss several
methods in the following subsections. The difference among the first three meth-
ods lies in the consumption of resources (computation, quantum data transmis-
sion and classical data transmission). This difference indicates the existence of
a trade-off relation among computation, quantum communication and classical
communication.

4.1 Method 1

Suppose that l is the intended size of a reconciled key. Let H be a locally neigh-
borhood collision free function of Zl

2 to Zk
2 such that the probability θ(H, ε, α)

is negligible and ε� α. We assume Alice and Bob can make use of H. Note that
H is not necessarily kept secret, and hence, Eve can also make use of it. Alice
and Bob first establish 2l+k bit sifted keys in the sifting process. Alice and Bob
have 2l+k bit binary strings r and r⊕e as their sifted keys, respectively. Here, e
represents the errors. The Hamming weight of e is approximately ε× |e| = ε× l.
The basic idea is that Alice and Bob sacrifice l + k bits of their sifted keys and
detect error bits in e without leaking any information to Eve. Then they share
r and agree that r is their reconciled key.

Suppose Alice has r as her sifted key and r = r1r2r3, where r1, r2 ∈ Zl
2 and

r3 ∈ Zk
2. Alice computes the hash value H(r1), then sends r1⊕ r2 and H(r1)⊕ r3

to Bob through the classical channel. Eve can wiretap the classical channel.
Bob has r ⊕ e as his sifted key and r ⊕ e = (r1 ⊕ e1)(r2 ⊕ e2)(r3 ⊕ e3), where
e = e1e2e3 and e1, e2 ∈ Zl

2 and e3 ∈ Zk
2. Bob, receives r1 ⊕ r2 and H(r1) ⊕ r3.

Thus, Bob possesses r1 ⊕ e1, r2 ⊕ e2, r3 ⊕ e3, r1 ⊕ r2,H(r1) ⊕ r3. He computes
the hash value H(r1 ⊕ e1). Next he computes (r1 ⊕ r2) ⊕ (r2 ⊕ e2) = r1 ⊕ e2
and (r1 ⊕ e2)⊕ (r1 ⊕ e1) = e1 ⊕ e2. The bit string e1 ⊕ e2 contains considerable
information on the bit string e1e2. Bob now computes (H(r1)⊕ r3)⊕ (r3⊕ e3) =
H(r1)⊕e3 and (H(r1)⊕e3)⊕H(r1⊕e1) = H(r1)⊕H(r1⊕e1)⊕e3. If e1 contains
no 1, that is, r1 = r1 ⊕ e1, then we have H(r1) = H(r1 ⊕ e1). In this case,
H(r1)⊕H(r1⊕e1)⊕e3 = e3. Hence, the Hamming weight of H(r1)⊕H(r1⊕e1)⊕e3
is smaller than α+ε

2 k with a high probability. On the other hand, if e1 contains
1, then H(r1)⊕ H(r1 ⊕ e1) ⊕ e3 is larger than α+ε

2 k with a high probability. So
we can decide whether or not e1 = 0 by the threshold criterion that Hamming
weight of H(r1)⊕ H(r1 ⊕ e1)⊕ e3 is bigger than or smaller than α+ε

2 k.
If e = 0, then Alice and Bob established the identical key r1 of size l. If

H(r1) �= H(r1 ⊕ e1), then Bob guesses e1 from the information e1 ⊕ e2 (bit
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twiddling). Then he computes the hash values of the bit string twiddled from r1⊕
e1 according to the information e1⊕e2 and compares them with H(r1)⊕e3. Bob
can eventually finds e′ such that H(r1) = H(r1⊕e1⊕e′) (strictly speaking, e′ such
that the Hamming distance between H(r1)⊕e3 and H(r1⊕e1⊕e′) is smaller than
α+ε
2 k. Since H is locally neighborhood collision free, it is implausible that he finds
e′ �= e1 and H(r1) = H(r1⊕e1⊕e′). Hence, e′ = e1 holds with a high probability
and Bob can detect all errors occurred in quantum data transmission. Alice and
Bob can delete or correct these error bits e1 = e′ and establish a reconciled
key r′1 of the length slightly shorter than l (when the errors are deleted). We
should note that if Alice and Bob correct (not to delete) and reuse the error bits,
then they share the reconciled key r1 of exactly size l. Amplifying privacy, they
can reduce enemy’s information at their own will. The method is schematically
illustrated in Fig. 3.
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Fig. 3. Method 1

We briefly discuss the security of the method. Eve can only obtain informa-
tion out of communication through the classical channel under the assumption
that the process of establishing the shifted key is sound. Thus, Eve can obtain
only r1 ⊕ r2 and H(r1) ⊕ r3. By the mechanism of quantum key distribution
scheme, r1, r2, r3 are mutually independent random bit strings. We can consider
r1 and H(r1) are encrypted by the one-time pad, also known as the Vernam
encryption [14], sacrificing r2 and r3, respectively. This implies that Eve can ob-
tain virtually no information as the one-time pad enjoys the perfect secrecy [13].
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However, physical implementation problem leaves room for Eve to obtain small
amount of information. In the case that Eve wiretapped only small fraction of
the total data transmission, succeeded in her attack and obtained partial infor-
mation of the reconciled key r1, the information is estimated at most 2ε× l bits.
This leaked information can be removed by the privacy amplification process.

4.2 Method 2

We suppose Bob has strong computation power and then discuss a method to
reduce the amount of quantum data transmission by demanding Bob substan-
tial computation as a trade-off. Data transmission through the quantum chan-
nel costs much more than data transmission through the classical channel and
computation, and hence, it is reasonable to require Bob to perform substantial
computation if he has abundant computation resource. As before, H is a lo-
cally neighborhood collision free function of Zl

2 to Zk
2 such that the probability

θ(H, ε, α) is negligible and ε� α.
Suppose that Alice has r1r2 as her sifted key, where r1 ∈ Zl

2 and r2 ∈ Zk
2,

whereas Bob has (r1 ⊕ e1)(r2 ⊕ e2) as his sifted key, where e1 and e2 represent
the errors. Alice computes the hash value H(r1) and sends H(r1) ⊕ r2 to Bob
through the classical channel. The communication can be considered encrypted
by the one-time pad. Note that the amount of bits transmitted is the constant
k. Bob computes H(r1 ⊕ e1) and (H(r1) ⊕ r2) ⊕ (r2 ⊕ e2) = H(r1) ⊕ e2. If
H(r1) = H(r1 ⊕ e1), then H(r1 ⊕ e1)⊕H(r1)⊕ e2 = e2 and its Hamming weight
is approximately k × ε. If H(r1) �= H(r1 ⊕ e1), then the Hamming weight of
H(r1 ⊕ e1)⊕H(r1)⊕ e3 is approximately k × α since H is locally neighborhood
collision free. Since α is sufficiently larger than ε, we can conclude with a high
probability that H(r1) = H(r1 ⊕ e1) if the Hamming weight of H(r1) ⊕ e2 is
smaller than α+ε

2 k, and H(r1) �= H(r1 ⊕ e1) otherwise. If H(r1) �= H(r1 ⊕ e1),
then Bob twiddles randomly up to ε× l bits of r1⊕e1, computes the hash values
of them and then compares with H(r1)⊕ r2. Bob can eventually find e1 by the
exhaustive search, however, e1 has approximately ε × l bits of 1 and so Bob
twiddles only up to about ε× l bits of r1 ⊕ e1. Clearly Bob’s computation task
depends on the length of r1 and the error rate ε.

Let us discuss the amount of data transmission through the quantum and
classical channels. In Method 1, Alice and Bob have to generate sifted keys of
size 2l + k to generate a reconciled key of length l bits. The amount of the
quantum data transmission is proportion to 2l+ k. The amount of the classical
data transmission is l + k. In Method 2, on the other hand, the amount of the
quantum data transmission is proportion to l+k and the amount of the classical
data transmission is k.

Another merit in Method 2 is that information potentially leaked to Eve is
reduced compared with Method 1. The reason is that the total (quantum and
classical) communication is less than in Method 1. In Method 1, it is estimated
that Eve may have stolen at most ε × (2k + l), whereas in Method 2, at most
ε× (k + l).
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A defect of Method 2 is to require Bob considerable amount of computation.
If ε is small and the length of the established key is small, then Bob’s computation
can be carried out by a desktop computer. However, if ε is large and the key
length is long, then the computation becomes an impossible task.

4.3 Method 3

We give an intermediate between Method 1 and Method 2. Suppose H is a
locally neighborhood collision free function of Zl

2 to Zk
2 such that the probability

θ(H, ε, α) is negligible and ε � α. Alice has r1r2r3r4 as her sifted key and

r1, r2, r3 ∈ Z( l
2 )

2 and r4 ∈ Zk
2. Similarly Bob has (r1 ⊕ e1)(r2 ⊕ e2)(r3 ⊕ e3)(r4 ⊕

e4) as his sifted key, where e1, e2, e3 ∈ Z( l
2 )

2 and e4 ∈ Zk
2. The string e1e2e3e4

represents the errors. Alice and Bob intend to establish a reconciled key r1r2. The
bit string e1e2 contains approximately ε× l bits of 1. Alice computes r1⊕ r2⊕ r3
and H(r1r2)⊕r4 and sends it to Bob through the classical channel. Bob computes
(r1 ⊕ r2 ⊕ r3) ⊕ (r3 ⊕ e3) = r1 ⊕ r2 ⊕ e3 and (H(r1r2) ⊕ r4) ⊕ (r4 ⊕ e4) =
H(r1r2) ⊕ e4. He computes (r1 ⊕ e1) ⊕ (r2 ⊕ e2) = r1 ⊕ r2 ⊕ (e1 ⊕ e2), and
then (r1 ⊕ r2 ⊕ e3) ⊕ (r1 ⊕ r2 ⊕ (e1 ⊕ e2)) = e1 ⊕ e2 ⊕ e3. If r1r2 is equal
to (r1 ⊕ e1)(r2 ⊕ e2) = (r1r2) ⊕ (e1e2), then the Hamming distance between
H(r1r2)⊕e4 and H((r1⊕e1)(r2⊕e2)) is approximately ε×k. On the other hand,
if r1r2 is not equal to (r1 ⊕ e1)(r2 ⊕ e2), then the Hamming distance between
H(r1r2)⊕ e4 and H((r1 ⊕ e1)(r2⊕ e2)) is more than α× k. Since α is sufficiently
larger than ε, Bob can decide whether or not e1e2 = 0 by the threshold criterion
that the Hamming distance between H(r1r2) ⊕ e4 and H((r1 ⊕ e1)(r2 ⊕ e2)) is
bigger or smaller than ε+α

2 k. If H(r1r2) = H((r1 ⊕ e1)(r2 ⊕ e2)), then Alice and
Bob agree the reconciled key r1r2. If H(r1r2) �= H((r1 ⊕ e1)(r2 ⊕ e2)), then Bob
guesses e1e2 using the information e1⊕e2⊕e3 (bit twiddling). Clearly it is much
easier to find e1e2 than Method 2, but more difficult than Method 1.

For Alice and Bob to establish a reconciled key of length l, r1r2 must be of
length l. Note that |r1| = |r2| = |r3| = l

2 and |r4| = k. Hence, Alice and Bob have
to generate a sifted key of length 3l

2 + k. If we ignore k, they need to generate a
bit string of length almost 3l

2 of the reconciled key length whereas sifted keys of
size 2l and l are required in Method 1 and Method 2, respectively.

4.4 Method Using Error Correcting Codes

We briefly discuss a method using error correcting codes. Suppose H is a lo-
cally neighborhood collision free function of Zl

2 to Zk
2 such that the probability

θ(H, ε, α) is negligible and ε � α. To correct the errors in sifted keys of Alice
and Bob, Alice may want to encode her sifted key by a classical error correcting
code and transmit only the redundancy part of the encoded sifted key. How-
ever, the redundancy part gives substantial information of Alice’s sifted key, and
hence, the redundancy part must be encrypted to prevent Eve from obtaining
any information. We propose to encrypt the redundancy part by the one-time
pad. Suppose Alice has r1r3 as her sifted key, where r1 ∈ Zl

2 and r3 ∈ Zk
2,
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and Bob has (r1 ⊕ e1)(r3 ⊕ e3) as his sifted key, where e1 ∈ Zl
2 and e3 ∈ Zk

2.
Alice computes the redundancy (denoted by C(r1)) of the encoded word of r1
by the error correcting code C. Bob can detect and correct the error bit string
e1 if he has most correct bits of C(r1) with his sifted key r1 ⊕ e1. Alice sends
C(r1) ⊕ r3, and hence, C(r1) is encrypted by the one-time pad and so it gives
virtually no information to Eve even if she can eavesdrop it. Bob can compute
(C(r1) ⊕ r3) ⊕ (r3 ⊕ e3) = C(r1) ⊕ e3. Hence, if the error rate is small enough,
then Bob can correct the error bits due to the error-correcting ability of C. For
instance, we can use the Reed-Solomon code [11] for our purpose because of its
capability of correcting random errors. Note that we may assume that errors
distribute uniformly all over the sifted keys because Alice and Bob operated a
random permutation to their sifted keys after the sifting process.

4.5 Authentication

After generating a reconciled key, Alice and Bob carry out privacy amplification
and obtain their private key. Next they confirm the integrity of their private
key. We can employ the same idea to authenticate a private key. We should note
that the existing methods basically require the previously shared authenticated
private key, while ours do not. Suppose that after the privacy amplification
process, Alice has her private key r1 and Bob has his private key r′1, where
r1, r

′
1 ∈ Zl

2. When making their raw keys, Alice and Bob generate extra sifted
keys r3 and r3⊕e3, respectively, where r3 ∈ Zk

2 and e3 represents the errors. Alice
sends H(r1)⊕r3 to Bob. This transmission is considered as encrypted by the one-
time pad, and hence, Eve obtains virtually no information. Bob checks whether
or not the Hamming distance between H(r1)⊕ r3 and H(r1⊕ e1) is smaller than
the threshold ε+α

2 k. If so, r1 = r1 ⊕ e1 and e1 = 0, otherwise, r1 �= r1 ⊕ e1. This
authentication method can be applied after the error correction process. We also
note that the method can be employed after any error correction and privacy
amplification method.

5 Experimental Results

To implement our error detection method, we need a concrete locally neigh-
borhood collision free function. We show by experiment with computers that
SHA-1 [9] and MD5 [12] satisfy the locally neighborhood collision free property.
If a function H satisfies the locally neighborhood collision free property, then the
Hamming distance of H(x1) and H(x2) is expected to be relatively large with
a high probability for any bit strings x1, x2 having a small Hamming distance.
In our experiments, we choose randomly N = 100, 000, 000 pairs (x1, x2) of bit
strings having Hamming distance 1 (10, 20, respectively). Then we count the
frequency of the Hamming distance of the pair (H(x1),H(x2)). If H is a crypto-
graphic hash function, we easily imagine that H exhibits a normal distribution.
If the standard deviation is relatively small, that is, most samples yields a Ham-
ming distance close to the mean value, then we can conclude that it is a good
neighborhood collision free function.
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We consider SHA-1 as a function of Z512
2 to Z160

2 , that is, we restrict its
domain to Z512

2 in our experiments. We expect the mean value to be 80, and
Hamming distance d(H(x1),H(x2)) is close to 80 for most pairs (x1, x2). Actu-
ally, our experiments for SHA-1 with 10, 000, 000 samples of Hamming distance
1(10, 20) show that the mean value is about 80, the standard deviation is 6.3,
the minimum of d(H(x1),H(x2)) is 44, and the maximum of d(H(x1),H(x2)) is
115. See Table 1 for the statistic and Fig. 4 and Fig. 5 for the histograms in
Appendix. Our experiments show that the deviation is small enough. Hence,
SHA-1 has the good neighborhood collision free property, and hence, most pairs
of bit strings with Hamming distance 1 are mapped to the strings with Ham-
ming distance close to 80. For example, we may set α = 1

4 . Then the probability
θ(H, α, ε) is negligible for any error rate 0 < ε < α. In this case, the threshold
value is around ε+ 1

4
2 × 180.

We consider MD5 as a function of Z512
2 to Z128

2 . Hence, we expect the mean
value to be 64, and Hamming distance d(H(x1),H(x2)) is close to 64 for most
pairs (x1, x2). Our experiments for MD5 with 10, 000, 000 samples of Hamming
distance 1(10, 20) show that the mean value is about 64, the standard deviation is
5.6, the minimum of d(H(x1),H(x2)) is 34, and the maximum of d(H(x1),H(x2))
is 95. See Table 1 for the statistic and Fig. 4 and Fig. 5 for the histograms in
Appendix.

Our experiments show that the deviation is small enough. Hence, MD5 has
the good neighborhood collision free property, and hence, most pairs of bit strings
with Hamming distance 1 are mapped to the strings with Hamming distance
close to 64. For example, we may set α = 1

4 . Then the probability θ(H, α, ε) is
negligible for any error rate 0 < ε < α. In this case, the threshold value is around
ε+ 1

4
2 × 128.
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Appendix: Statistic and Histogram

Table 1. Statistic of Experiments on SHA-1 and MD5

Algorithm ID #data MEAN S.D. max.h.d min.h.d
SHA-1 1 108 80.000029 6.327076 115 44

10 108 80.004204 6.334314 109 49
20 108 79.994482 6.321717 111 47

MD5 1 108 63.999359 5.656389 95 34
10 108 63.998326 5.658194 93 38
20 108 63.995178 5.655455 92 37

In Fig. 4 and Fig. 5, the graph labeled by Dis:1, Dis:10 and Dis:20 shows the
histogram of Hamming distance of 1, 10 and 20, respectively.
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Fig. 4. Hamming Distance Histogram of SHA-1
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Abstract. Trust is essential to a communication channel. The trust
relationships, which play an important role in Public Key Infrastruc-
tures (PKIs), need to be formalized for providing a reliable modelling
methodology to support secure digital communications. In this paper,
we present a typed modal logic used for specifying and reasoning about
trust in PKIs. In order to study trust relationships within PKIs, we de-
fine TA (a set of trust axioms), TB (a trust base) and TC (a set of
trusted certificates). In our method, the trust relation in a given PKI is
formalized by trust axioms. Based on trust axioms, an agent can have
its own trust base that contains all agents whom the agent trusts, and
can derive and extend its trusted certificates set. The trust theory for a
given PKI, which consists of our modal logic and a set of trust axioms
proposed for the PKI, is the basis of the certificate verification function.

Keywords: certificate, CA (Certificate Authority), PKI (Public Key
Infrastructure), trust, trust theory, certificate verification, information
security.

1 Introduction

Public key technology within Public Key Infrastructure (PKI) has widely been
recognised as a fundamental technology for supporting secure digital communi-
cation (for example: electronic commerce and secure messaging). A PKI can be
viewed as a system consisting of the entire, generally heterogeneous, set of com-
ponents, which are involved in issuing, rekeying, revoking and managing public
key certificates. It has two essential relations, the certification relation and the
trust relation.
The certification relation is usually defined based on the roles that agents (or

participants) play in the PKI. For instance, RFC 1422 [7] defines a rigid hier-
archical structure for the Internet Privacy Enhanced Mail (PEM) [4]. There are
three types of PEM CAs: Internet Policy Registration Authority (IPRA) acts
as the root of the PEM certification hierarchy at level 0, and issues certificates
only for the next level of authorities, called PCAs (Policy Certification Authori-
ties); PCAs, at level 1 of the PEM certification hierarchy, take the responsibility

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 274–291, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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for establishing and publishing the certification policy with respect to certifying
users or subordinate certification authorities; and CAs, which are at level 2 of
the hierarchy and can also be at lower levels (those at level 2 are certified by
PCAs). We will adopt the concept of PKI certification topology, proposed by
Liu et. al. [10], to describe the certification path architecture of a PKI.
The trust relation is somewhat different from the certification relation. It

captures agents’ beliefs and can be modelled by belief logics similar to the BAN
logic [2]. Trust depends on the observer (agent), and there is no absolute trust.
Two different agents may not equally trust any received information. A message
may carry some information, and different people (agents) may act differently
depending whether they believe this information or not.
Linguistically, “trust” is closely related to “true” and “faithful”, with a usual

dictionary meaning of “assured reliance on the character, the integrity, justice,
etc., of a person, or something in which one places confidence”. So, in common
English usage “trust” is what one places his confidence in, or, expects to be
truthful. In a PKI, one of the main concerns for an agent is whether a certifi-
cate is trustworthy or not. In managing public key certificates, a PKI provides
mechanisms allowing an agent to determine whether a needed certificate can be
trusted (or, in the agent’s view, that the certificate is valid).
PKIs simplify key management but create trust management problem [6].

Blaze et. al. [1] have identified such trust management problems as a distinct
and important component of security in network services. Recently, several trust
models with PKIs have also been proposed, which involve the development of
effective formalisms used to define and express trust relations between entities
involved in a PKI [14], and the investigation of techniques for dealing with trust
management [1,3,9] and the uncertainty in a trust model [5,8,11]. In a PKI, what
makes a public key certificate trustworthy? How can one specify and reason about
trust? We have to deal with these sorts of questions. However, trust models and
management techniques in present implementations are very limited. More rich
trust models and new techniques for specifying and reasoning about trust for
PKIs are therefore highly desirable.
Trust is essential to a communication channel. The trust relationships, which

play an important role in Public Key Infrastructures (PKIs), need to be formal-
ized for providing a reliable modelling methodology to support secure digital
communications. This paper presents an axiomatic approach to the description
of trust in PKIs. It proposes a typed modal logic for specifying and reasoning
about trust in a PKI, which is an extension of first-order logic with typed vari-
ables and modal operators representing agents’ beliefs. In order to study the
trust relationship withing a PKI, we define TA (a set of trust axioms), TB (a
trust base) and TC (a set of trusted certificates). In our model, the trust relation
in a PKI is formalized by TA. Based on TA, the set of trust axioms, an agent
can have its own TB, the trust base, that contains all “persons” whom the agent
trusts. The agent can also derive and extend its TC, i.e., the set of certificates
trusted by itself. The axiomatic approach proposed in the paper allows us to
build a trust theory that consists of the logic and a set of trust axioms for a
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given PKI. The trust theory is a basis for a main client function, the certificate
verification function.
This paper is structured as follows. Section 2 discusses the format of PKI

certificates. Section 3 is a brief introduction to the state-based model for PKIs,
and Section 4 talks about trust relationship involved in PKIs. Section 5 presents
a logc for trust transferring in PKIs. Section 6 discusses trust ABC: trust axioms
(TA), trust bases (TB) and trust certificates (TC) for a PKI. Section 7 discusses
the application of our method in the certificate path validation. The last section
concludes the paper with a short discussion about possible future work.

2 PKI Certificates

The PKI entities, which we call agents in this paper, are classified into two
classes: Certification Authorities (CAs)1 and Users. CAs can have their own
certificates, and they also issue certificates for others within the PKI. Users, also
called End Entities (EEs), are people or devices that may hold certificates issued
by some CAs, but cannot issue valid certificates themselves.
Without loss of generality, we assume that PKI certificates have a “stan-

dard” public-key certificate format, which contains the basic information that
most kinds of public key certificates should provide as follows: the name of the
certificate issuer, the start and expiry dates, the subject (i.e., the name of the
holder of the private key for which the corresponding public key is being certi-
fied), the value of the public key, the extension field, and the signature of the
issuer. Formally, we define a PKI certificate to have the following form:

Cert |(I, DS, DE, S, PK, E, Sig|)
where I is the issuer, DS and DE are the start date and expiry date respectively,
S is the subject of the certificate, PK is the value of the public key for S, E is the
value of the extension field, and Sig holds the signature of the issuer I.
Given a certificate

C = Cert |(I, DS, DE, S, PK, E, Sig|)
the following projection functions can be used to obtain the value of each com-
ponent contained in C:

I(C) = I DS(C) = DS DE(C) = DE
S(C) = S PK(C) = PK E(C) = E
Sig(C) = Sig

The public key PK(C) is bound to the entity S(C), the subject of the certificate.
The private key corresponding to the public key PK(C) is denoted by SK(PK(C)).
Therefore, the key pair possessed by the subject is (PK(C), SK(PK(C))).
1 We do not consider Registration Authorities (RAs) as separate entities. RAs carry

out parts of the CA function, and are logically part of the CA, but are implemented
elsewhere for performance, cost and usability reasons.
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The extension field of a certificate may include

– an extension named authorityKeyIdentifier for providing a means to
identify the particular private key used to sign the certificate, and

– an extension named subjectKeyIdentifier for differentiating the keys held
by the subject.

There are no requirements for PKI implementations to process these exten-
sions. However, for our purposes, we assume that in certificate process, for
a given certificate C, the identifier of the certificate authority’s key and the
identifier of the certificate subject’s key can be identified by the extensions
authorityKeyIdentifier and subjectKeyIdentifier, respectively.
In practice, a PKI may use a certificate format different from the standard

format given above. However, any PKI certificate format should consist of two
parts: the data part and the signature part of the certificate issuer. In the stan-
dard public key certificate format, Sig(C) is the signature part of the certificate
C, while the data part is a combination of the values of all other components to
be signed. We write tbs representing “to be signed”, and define:

tbs(C) = (I, DS, DE, S, PK, E),

then tbs(C) is just the data part of the certificate, i.e. the argument to signature
function carried out by the certificate issuer.

3 A State-Based Model for PKIs

We now give a brief introduction to the state-based model for PKIs, which is
based on the model proposed by Liu et. al. [10] for CMSs (Certificate Manage-
ment Systems).
In our view of a PKI, all the agents of the PKI are organized based on a

certification relation over the set of these agents. That is, for any pair of agents,
say A and B, if B is within the domain of agents which A may potentially certify
(for example, A is an organisation and B is an employee), we write A ↓ B, and
call ↓ the certification relation of the PKI.
We define the total certificate set of a given PKI, denoted as C, to be the

set of all certificates issued by CAs in the PKI. This definition indicates that
any certificate issued by some CA should belong to the total certificate set C,
because it contain “all” certificates.
At any moment in time, an agent in the PKI should hold zero or more certifi-

cates. Also, for a CA, it is at times necessary to revoke certificates, for example
when the certificate holder leaves the issuing organization or when the private
key is compromised. A mechanism defined in X.509 for revoking certificates is the
Certificate Revocation List (CRL). A CRL is a list, signed by a CA, of unexpired,
revoked certificates. In our model, we assume that any agent is associated with
a CRL issued by itself periodically. However, if the agent is an end-entity (EE),
the CRL should be empty, because we assume no EE will issue certificates to
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others and cannot therefore revoke any certificates. Thus, we define PKI states
as follows:

We call 〈Ω, ↓〉 the topology of a given PKI where Ω is the set of all agents in
the PKI and ↓ the certification relation. Let C be the total certificate set of the
PKI. Then a state s of the PKI is a relation from Ω to 2C × 2C satisfying the
following conditions: For any A ∈ Ω,
(1) there exists an unique set ζ(⊂ C) associated with A such that C ∈ ζ if and

only if A is the subject of C, and
(2) there exists an unique set η(⊂ C) associated with A such that C ∈ η if and

only if A is the issuer of C and it has revoked the certificate C.

where 2C is the power set of C. Under a state s, we call s(A, ζ, η) a triple, where
ζ(⊂ C) is a set of certificates issued to A and η(⊂ C) is a set of certificates issued
by A.
Let s be a PKI state. If we have s(A, ζ, η), then ζ is called the possessed

certificate set of A, which lists all certificates possessed by A at the state s,
and η is called the revoked certificate set of A, which represents the CRL issued
by A at the state s. In the following, we will often use PCSA and CRLA to
denote the possessed certificate set and the revoked certificate set of an agent
A, respectively, at a given PKI state.
The state of a PKI can be changed by application of some PKI functions,

such as certificate issuing, certificate rekeying and certificate revocation. These
actions could be viewed as transitions which change one PKI state into another.
Thus, a PKI can be described as a state machine. In the following, we focus on
discussing the role of trust in the certificate verification based on a given PKI
state, so we do not attempt to consider the formalization of the state changes
here, which will be covered in future work.

4 The Trust Relation

In a PKI, the operations CAs may execute include: issuing, revoking and rekeying
certificates. We make the following assumptions concerning trust between the
agents in it:

(1) All agents (CAs and users) trust all CAs to faithfully execute their CA
operations; and

(2) All agents trust that it is not viable to tamper with PKI certificates.

These assumptions can be well founded and supported by PKI practices. Firstly,
assurance is provided for (1) through the use of accreditation of CAs, Certificate
Practice Statements published by CAs and the implementation of appropriate
policy2. Assurance is provided for (2) through the use of digital signatures, and
good control of private keys.
2 Note that policy for CAs can be listed and checked in much the same way as in which

certificates are checked and can even be included as an extension in certificates.
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In the following, we focus on discussing a trust relation that is tightly related
to the certificate verification. Let 〈Ω, ↓〉 be the topology of a given PKI. Then
the trust relation of the PKI is a binary relation over Ω, i.e., a subset of Ω×Ω.
For any A,B ∈ Ω, if (A,B) belongs to the subset, we say that A trusts B,
denoted as A ⇑ B.
Note that in general the trust relation may not have the following properties:

transitivity, and symmetry, i.e., we cannot obtain the conclusion ‘A1 ⇑ A3’ from
‘A1 ⇑ A2’ and ‘A2 ⇑ A3’, and cannot derive the formula ‘A1 ⇑ A2’ from
‘A2 ⇑ A1’. These are consistent with the model of trust in the real world: A
man may not trust his friend’s friend although he may trust his friend and his
friend may also trust the friend of herself; and the fact that Alice trusts Bob does
not necessarily mean that Bob should trust Alice. However, the trust relation
can be reflexive: an agent may trust himself. This property will be expressed as
a trust axiom in our model (see Section 6).
In our model, both the certification and trust relations are a binary relation

over the set of agents. The difference between the two relations is that the certi-
fication relation is static in our model whilst the trust relation may dynamically
change from time to time because agents may change their beliefs.
Yahalom et. al. [14] identied and described various types of trust, and used

the term trusts subscripted with types to represent that an agent trusts another
in some aspect. For exmaple, A ⇑kg B can be intepreted to mean that an agent
A trusts an agent B with resepct to quality random key generation. In general,
the expression A ⇑x B means that an agent A trusts an agent B with resepct
to x, where x is a variable ranging over trust types. In our model, we do not
use subscripts attached to the trust relation, and leave a freedom for the PKI
designer or someone who concerns reasoning about trust to explain the trust
relation ⇑. For more explanation, see Section 6.

5 A Logic for Trust Transferring in PKIs

A theory is based on a logic. Briefly, a logic of any sort consists of a language,
a set of axioms and a set of rules of inference. The language defines the set of
well-formed formulas (WFFs) in the logic. An axiom is a WFF and a rule of
inference is a transformation from one WFF to another. A theory consists of
a logic and a set of WFFs called proper axioms. A proof starts out from the
axioms, repeatedly uses rules of inference and arrives at a WFF. A WFF that is
the result of a proof is called a theorem of the theory.
The logic we adopt in this paper is a typed modal logic, which is an extenstion

of first-order logic with variables typed and modal operators expressing beliefs
of a rational agent. A trust theory for a given PKI consists of the logic and trust
axioms which we discuss late.

5.1 The Syntax

In this logic, all variables as well as functions are typed. Examples of simple
types are numerical numbers and boolean values. For our purpose, we introduce
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the following primitive types: Ω (a set of agents), C (a set of certificates), K (a
set of keys), and N (the set of natural numbers). Other types may be introduced
at any time as the need arises.
In particular, we use

- A,B,A1, A2, . . . agent variables ranging over the type Ω,

- C,C1, C2, . . . certificate variables ranging over the type C,
- PK,PK1, PK2, . . . public key variables ranging over the type K,
- SK, SK1, SK2, . . . private key variables ranging over the type K, and
- T, T1, T2, . . . time variables ranging over the type N .

We may also use agent constants alice, bob, . . .; certificate constants c, c1, c2, . . .;
public key constants pk, pk1, pk2, . . .; private key constants sk, sk1, sk2, . . .; and
time constants t, t1, t2, . . ., and a special time constant today representing the
current time.
An n-ary function symbol represents functions of n variables, for finite integer

n. The types of all functions are defined. The main functions include all functions
given in Section 2, such as I(C), S(C), DS(C), Sig(C), tbs(C), PK(C) and so on.
We also have some variable and constant symbols for representing certificate
sets, such as PCSA and CRLA that we introduce for representing the possessed
certificates set and certificate revoked list of an agent A.
We write PK and SK for the public and private keys associated with a

public key pair K, that is, K ≡ (PK,SK) means that the public key of the key
pair K is PK and the private key corrensponding to the public key is SK. Note
that, as we said before, no one can calculate the private key from the public key
although the corresponding relation has been represented by the formula.
Let X be a public key or a private key. Thus, we have the following notations

to define encryptions and decryptions: {M}X representsM encrypted under the
key X , and 〈M〉X represents M decrypted under the key X .
In our logic, we distinguish two different concepts, messages (in the first-

order logic, called terms) and formulae. In our logic, messages can be names
of agents, certificates, public keys, private keys, dates, strings having particular
meanings, or other things. They can also be a combination (or sequence) of other
messages. Messages are not formulae although formulas are built from messages.
Only formulae can be true or false or have agent’s beliefs attributed to them.
Formally, messages can inductively be defined as follows:

- X is a message if X a variable or a constant representing an agent, a cer-
tificate, a public key, a private key, a time, or a string such as an extension
field value of a certificate.
- F (X1, . . . , Xn) is a message ifX1, . . . , Xn are messages and F is any function.

In first order logic, with a given n-ary predicate symbol such as p, in the
formula p(e1, . . . , en) all e1, . . . , en are defined on the same domain in a given in-
terpretation. Our logic is a typed modal logic, so in the predicate p(X1, . . . , Xn),
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X1, . . . , Xn may be defined with different types. Therefore, in this logic, an inter-
pretation of a formula should be based on the corresponding types of variables
appearing in the formula.
In the vocabulary of our logic, apart from variables, function and predicate

symbols, we have the primitive propositional connectives, ¬ and ∧, universal
quantifier “∀” and modal operators: IBA, for all A ∈ Ω. The formulae of the
logic are therefore inductively defined as follows:

- p(X1, . . . , Xn) is a formula if p is a n-ary predicate symbol and X1, . . . , Xn

are the terms (messages) with corresponding types to p. In particular, we
have:
(1) A ↓ B and A ⇑ B are formulae when A and B are agents.
(2) X ∈ S is a formula if X is a certificate and S is a set of certificates or

X is an agent and S is a set of agents.
(3) X = Y is a formula if X and Y are messages.
(4) Valid(X) if X is a certificate, the signature of a certificate, a key or a

key pair.

- ¬ϕ and ϕ ∧ ψ are formulae if ϕ and ψ are formulae.
- ∀Xϕ(X) is a formula if X is a free variable in the formula ϕ(X).

- IBAϕ is a formula if ϕ is a formula, for all agent A.

Here, most of the expressions just given either are standard notation or have
been defined before. We only need to give a brief description for the following:
‘Valid(X)’ means that X is valid where X may be a certificate or a key or
something else, and, for ‘IBAϕ’, IBA is read as “agent A believes”, so it means
that the agent A believes ϕ. In the language, other connectives, ∨,→ and ↔,
and ∃ can be defined in the usual manner.

5.2 The Proof System

The proof system consists of a set of axioms and a set of rules of inference. Our
logic has the following rules of inference:

Modus Ponens: From ϕ and ϕ→ ψ infer ψ.
Instantiation: From ∀Xϕ(X) infer ϕ(Y ).
Generalisation: From ϕ(X) infer ∀Xϕ(X).
Necessitation: From � ϕ infer � IBAϕ.

where X is a free variable and A is any agent. � is a metalinguistic symbol.
‘Γ � ϕ’ means that ϕ is derivable from the set of formulae Γ (and the axioms).
‘� ϕ’ means that ϕ is a theorem, i.e., derivable from axioms alone.
Apart from all instances of tautologies of classical first logic, our logic also

has the following axiom schemata:
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(A1) IBA(ϕ→ ψ)∧ IBAϕ→ IBAψ, for any formulae ϕ and ψ.

(A2) IBAϕ→ IBA(IBAϕ), for any formula ϕ.

(A3) ∀C(Valid(C)→ Valid(PK(C))).

(A4) ∀K(K = (PK(C), SK(PK(C))) ∧ Valid(PK(C))→ Valid(K)).

(A5) ∀K∀M(K = (PK,SK) ∧ Valid(K)→ (〈{M}SK〉PK =M)).

(A6) ∀K∀M(K = (PK,SK) ∧ Valid(K)→ (〈{M}PK〉SK =M)).

(A7) ∀C(∃C′(Valid(C′) ∧ (I(C) = S(C′))∧
(tbs(C) = 〈Sig(C)〉PK(C′)))→ Valid(Sig(C))).

(A8) ∀C(Valid(Sig(C)) ∧ today ≥ DS(C)∧
today < DE(C) ∧ ¬(C ∈ CRLI(C))→ Valid(C)).

Axiom (A1) says that every agent believes everything that can logically be de-
rived from his beliefs. Axiom (A2) says in effect that an agent knows and is able
to tell what he believes. Axiom (A3) says that, if a certificate is valid, then the
public key contained in the certificate is valid. Axiom (A4) says that, if the public
key bound to the subject of a certificate is valid, then the key pair consisting of
the public key and the private key corresponding to it is valid. Axiom (A5) says
that, for any message M , we have 〈{M}SK〉PK = M if the key pair (PK,SK)
is valid. The meaning of Axiom (A6) is similar to (A5). Axioms (A7) and (A8)
allow agents to verify the signature of a certificate as well as the certificate itself
based on another certificate whose validity has been proved.
Note that digital signature algorithms usually involve use of a hash function.

However, to simplify our discussion, we do not consider this. So, in axiom (A7),
to verify the signature of the certificate C, we only check whether tbs(C) =
〈Sig(C)〉PK(C′) holds when C is signed by SK(PK(C

′)) and we believe that the
certificate C′ is valid.

5.3 Transfer of Trust

Suppose that a certificate C2 is signed by the subject of the certificate C1 with
the private key corresponding to the public key of C1. We also assume that an
agent A trust the certificate C1, i.e., it believes that C1 is valid. If the agent does
not trust the certificate C2 but wishes to use it, then the agent must verify this
certificate based on its own beliefs.
Using our logic, the verification process can be outlined as follows:

(1) IBAValid(C1). (assumption)
(2) I(C2) = S(C1). (assumption)
(3) IBA(I(C2) = S(C1)). (by the rule of necessitation)
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(4) tbs(C2) = 〈Sig(C2)〉PK(C1)
. (be checked and assumed to be true)

(5) IBA(tbs(C2) = 〈Sig(C2)〉PK(C1)
). (by the rule of necessitation)

(6) IBA(Valid(C1) ∧ (I(C2) = S(C1)) ∧ (tbs(C2) = 〈Sig(C2)〉PK(C1)
)).

(from (1), (3) & (5))
(7) Valid(C1) ∧ (I(C2) = S(C1)) ∧ (tbs(C2) = 〈Sig(C2)〉PK(C1)

))
→ Valid(Sig(C2)). (by axiom (A7) & the rule of instantiation)

(8) IBA(Valid(C1) ∧ (I(C2) = S(C1)) ∧ (tbs(C2) = 〈Sig(C2)〉PK(C1)
))

→ Valid(Sig(C2))). (by the rule of necessitation)
(9) IBAValid(Sig(C2)). (from (6) & (8), and by (A1) and Modus Ponens)

Furthermore, if the following formulas:

(10) today ≥ DS(C2),
(11) today < DE(C2) and
(12) ¬(C ∈ CRLI(C2)

)

are all checked and hold, then, form (10) – (12) and by the rule of necessitation,
we can have

(13) IBA(today ≥ DS(C2) ∧ today < DE(C2) ∧ ¬(C ∈ CRLI(C2)
)).

Thus, from (9) and (13), we have

(14) IBA(Valid(Sig(C2)) ∧ today ≥ DS(C2)∧
today < DE(C2) ∧ ¬(C ∈ CRLI(C2)

)).

According to Axiom (A8) and by the rule of instantiation, we have

(15) Valid(Sig(C2)) ∧ today ≥ DS(C2) ∧ today < DE(C2)∧
¬(C ∈ CRLI(C2)

)→ Valid(C2).

Then, by the rule of necessitation, we have

(16) IBA(Valid(Sig(C2)) ∧ today ≥ DS(C2) ∧ today < DE(C2)∧
¬(C ∈ CRLI(C2)

)→ Valid(C2)).

Thus, from (14) and (16), we obtain

(17) IBAValid(C2).

Having completed the proof, we can therefore have

(*) IBAValid(C1) �IBAValid(C2).

This expression (*) can formally be read as “the fact that agent A believes that
the certificate C2 is valid is derived from the fact that agent A believes that
certificate C1 is valid”. Intutively, it represents a trust transfer: Agent A’s trust
in the certificate C2 is transferred from its trust in C1. In general, an expression
‘IBAϕ �IBAψ’ represents that an agent’s trust in ψ is tranferred from its trust in
ϕ (or its belief in ψ is tranferred from its belief in ϕ).
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This indicates that PKIs provide a mechanism for agents to transfer their
trust from where it exists to where it is needed, while our logic allows agents to
check the correctness of trust transferring. However, we have to note that PKIs do
not create trust [6]. Any PKI is only able to propagate it: agents must initially
trust something. Ususlly, initial trust is established off-line. In our approach,
initial trust will be formalized as proper axioms in the trust theory of the PKI.
Once the set of trust axioms for a given PKI is given, agents can obtain their
trust bases as well as the initial trusted certificate set. These will be discussed
in the next section.
The reader may note that we did not directly use axioms (A4) – (A6) in the

above proof process. However, we have to point out that checking if tbs(C2) =
〈Sig(C2)〉PK(C1)

holds lies in the validity of the key K = (PK(C1), SK(PK(C1))),
and the fact that the agent believes that

if K is valid, then 〈{M}SK(PK(C1))
〉PK(C1)

=M for any message M .

Therefore, these axioms are also needed.

6 Trust Framework for a PKI

This section discusses the trust framework for a PKI, i.e. trust axioms (TA),
trust bases (TB) and trust certificates (TC), which are formed as the basis of
specifying and reasoning about trust in the PKI.

6.1 Trust Axioms

In our approach, the trust relation in a PKI is formalized as a set of trust axioms.
That is, we will use a set of proper axioms to define the trust relation. Obviously,
different kinds of PKIs may have different axioms to define the trust relation.
In the hierarchical PKI, all CAs and users would trust the certificate of

the paa, the top CA, because any certificate may be verified by verifying the
certification path starting from the “root” certificate held by the paa. Therefore,
any agent may trust the paa. Also, in the PKI, every agent may trust itself. Thus,
the PKI may have the following axioms to define the trust relation:

(T1) ∀A(A ⇑ paa).
(T2) ∀A(A ⇑ A).
The TA = {(T1),(T2)} is the set of trust axioms, which specifies trust in the
PKI.
In our approach, a trust theory for a PKI consists of a logic and a set of

trust axioms. Now, for the hierarchical PKI, we have a trust theory, for which
the proper axioms specifying some trust are contained in TA.
What are the effects when adding a new axiom to the existing theory? If the

new axiom can be proved as a theorem in the theory, there is no need to add it;
if the new trust axiom is not a theorem, adding it gives rise to a new theory.
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Let us continue to consider the example given above. We denoted the trust
theory for the hierarchical PKI as T . Obviously, adding a trust that “alice trusts
the paa” to the trust theory T is not necessary, because it cannot make the theory
to contain more trusts. In fact, the trust “alice trusts the paa” can formally be
expressed as

alice ⇑ paa,
which can directly derived from Axiom (T1). However, if we add a trust stated
that all EEs (i.e., users) trust their parents, i.e., those who can certify them, we
will obtain a new theory T1. The trust can be expressed as:

(T3) ∀A∀B(Is EE(A) ∧ (B ↓ A)→ A ⇑ B),

which says that for any agents A and B, if A is an EE and can be certified by
B, then A trusts B.
(T3) cannot be derived from the theory T , it should therefore be viewed as

a new axiom. Thus, the new theory T1 has an extended set of trust axioms:
TA1 = {(T1),(T2),(T3)}.
Furthermore, if we add the formula

(T4) ∀A∀B(B ↓ A→ A ⇑ B)

as an axiom into the theory T1, a new trust theory T2 is obtained. Thus, the set
of trust axioms for T2 contains 4 axioms, i.e., (T1) – (T4). However, if (T3) is
moved out from the set of trust axiom, we still have the same theory. That is,
the set of trust axioms for the theory T2 can be TA2 = {(T1),(T2),(T4)}.
We do not attempt to discuss all the issues about how to construct a set of

trust axioms in a trust theory for a PKI. We only need to note that we have to
consider the consistency of a trust theory when adding a new trust into it. That
is, we must maintain the soundness of our theory when extending the theory by
adding new axioms.

6.2 Trust Bases

Given the topology 〈Ω, ↓ 〉 of a PKI. We define that the trust base of any agent
A(∈ Ω), denoted as TBA, is a set consisting of all agents whom the agent trusts.
We argue that, for any agent in a PKI, there should be a trust basis that the
agent places his trust in and from where it can therefore obtain the information
it expects.
Our model is conservative: in particular, an agent A is assumed not to trust

another agent B unless there is an explicit expression A ⇑ B that can be derived
from the theory of trust. That is

– If T is the trust theory of a PKI, then, for any agents A and B, B ∈ TBA

if and only if A ⇑ B is a theorem of T .
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For example, assume that alice ∈ Ω, and the PKI is hierarchical and has the
trust theory T given above. Then, it is not difficult to show that TBalice =
{paa, alice}.
As we will see, based on the trust base, an agent can build its own trusted

certificate set, which is needed for the certificate verification.

6.3 Trusted Certificates

When an agent wants to verify a required certificate, it must construct a cer-
tification path starting with a certificate trusted by itself and ending with the
required certificate. If it has no trusted certificates, it cannot accept any certifi-
cate as valid. We now analyse why an agent needs a set of trusted certificates
and how to derive it based on our logic.
A PKI provides mechanisms for agents to retrieve information, such that

agents are able to verify the validity of every certificate that a security application
uses. Assume that an agent Alice wants to retrieve Bob’s certificate together with
evidence used for checking if the certificate is valid. The certificate held by Bob
carries the message that allows Bob to say, for example, “I am bob and have the
certificate to which the public key pk (and the corresponding private key sk)
is bound. The certificate is issued by ca1 and valid from 12th October 2000 to
31st October 2001”. If Alice trusts Bob, she may believe that Bob’s certificate is
valid, i.e., she may accept Bob’s certificate as valid. In particular, Alice believes
that Bob’s public key is really Bob’s, so that she can use Bob’s public key pk to
decrypt a message signed with Bob’s private key.
However, if Alice does not trust Bob, she must verify Bob’s certificate before

she uses it. To do this, Alice may employ the proof procedure presented in the
last section to transfer some of her trust which has existed to Bob’s certificate,
and to determine whether to trust it. The procedure can be outlined as follows:

- verifying the identity of the certificate issuer and owner (checking if bob is
the owner and, and checking if bob belongs to the certification domain of the
issuer);
- verifying the validity dates of the certificate;
- verifying the certificate against the issuer’s latest CRL list to make sure it
has not been revoked;
- verifying extension fields (such as certificatePolicies) if necessary; and
- verifying the signature on the certificate.

In order to verify the signature on Bob’s certificate, Alice needs to check if the
issuer holds a valid certificate, or, more precisely, Alice must verify the certificate
which is held by the issuer and used to sign Bob’s certificate in the same way
if she does not trust the issuer’s certificate. Therefore, the verification process
Alice uses is iterative. She cannot accept Bob’s certificate as valid unless she
reaches a certificate she trusts in the verification procedure.
This indicates that, if Alice has no trusted certificates, either she cannot prove

that Bob’s certificate is valid or her proof process can never terminate. That is,
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an agent who is involved in certificate verification should have a non-empty set
of certificates which it trusts.
Let 〈Ω, ↓ 〉 be the topology of a PKI. Given a state, for all agent A(∈ Ω), we

denote the set of certificates trusted by the agent A at the given state by TCA.
For the agent, it has a basic belief that, if a certificate belongs to its trusted
certificate set, then the certificate can be accepted as valid. Formally, we have:

(A*) IBA(C ∈ TCA → Valid(C)), for all C ∈ C.
(A*) is an auxiliary axiom of the proof system, which is related to constructing
initial trust.
Suppose that at the current state the trusted certificate set of an agent A is

TC, and the agent has also verified that a certificate C is valid and put C into
its trusted certificate set, then its new trusted certificate set would be TC∪{C}.
This indicates that, if there has existed a trusted certificate set for an agent, then
there is no problem to extend the set by adding new certificate that the agent
trusts. The question is: how does the agent derive the initial trusted certificate
set for itself? A simple rule the agent A may adopt is that, if a certificate is
owned by someone whom A trusts, then the certificate can be trusted by A itself
and should belong to the trusted certificate set TCA. This rule can be expressed
as follows:

Belief Rule: If S(C) = B and B ∈ TBA, then C ∈ TCA.

As we said before, we allow freedom to define the meaning of “trust”. In our
model, as shown in the above rule, a simple explanation of trust could be that
the fact “one agent trusts someone” means that the agent trusts the person’s
certificate, i.e., it believes that the certificate is valid. The above rule is flexible,
and may be modified by giving different explanations for the meaning of “A ⇑ B”
(depending on the designer and/or security requirements). For instance, instead
of the above rule, we may adopt a rule as follows:

If S(C) = B and A ⇑ B, then IBA(B controls SK(PK(C))),

which means that if an agent A trusts an agent B and B is the subject of a
certificate C, then the agent A believes that B controls the private key corre-
sponding to the public key of C. (Note that, if this rule is adopted, we may need
to make slight changes to the axioms of our proof system.)
Trust assessment must be based on some initial trust combined with trust

propagating [6]. For certificate verification, one must obtain an initial trusted
certificate set. Initial trust is usually established off-line. Our model allows an
agent to gain trust by the proof system of our logic.

7 Certificate Verification

Certificate verification is a client function, which is responsible for verifying the
validity of every certificate that a security application uses. This section discusses
certificate verification in a given state for a PKI.
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7.1 The Concept of Certificate Verification

The certificate verification is always based on a given state, in which any agent
has a certain set of certificates possessed by itself and a certain revoked certificate
set. For verifying a required certificate, the agent must also have its own trusted
certificate set at the given state.
Verifying the validity of a required certificate involves obtaining and verifying

the certificates from a trusted certificate to the target certificate. Obtaining
the certificates is referred to as certificate path development and checking the
validity of the certification path is referred to as certification path validation. A
certification path is usually defined to be a non-empty sequence of certificates
〈C0, . . . , Cn〉, where C0 is the target certificate, Cn is a trusted certificate, and
for all i (0 ≤ i < n) the subject of Ci+1 is the issuer of Ci.
The path development module discovers certification paths and sends them

to the path validation module for processing; the path validation module takes
a given certification path and determines whether the target certificate is valid
or invalid.
For certificate verification, we have an essential principle stated as follows:

– In a certificate verification process, when the verifier (an agent) has found a
certification path constructed for verifying a required certificate in which he
believes that all certificates are valid it may accept this certificate as valid,
and in all other cases the certificate is regarded as invalid.

Note that, according to the certificate verification principle, it can happen
that a certificate may actually be valid but the verifier did not find a correspond-
ing certificate path in which all certificates are valid. In such a case, the verifier
cannot accept this certificate as valid. This is the correct choice on security
grounds.

7.2 Path Development and Validation

How the certification path is obtained is dependent on the structure of the PKI.
However, in any PKI, starting with the target (required) certificate and building
a certificate chain back towards a certificate trusted by the verifier is usually an
efficient means for developing a certificate path.
A sequence of certificates starting with the target certificate constructed in

developing a certification path may eventually be a part of some certification
path; however, in some cases, it may be discarded as not being a part of any
certification path if the verifier could not reach any trusted certificate along this
sequence. In either case, the verifier may need to check whether there is any
possibility to reach a trusted certificate along such a sequence of certificates,
such that a certification path can be constructed.
We assume that, at a given state, C0 is the target certificate required by

the agent A, and TCA is the trusted certificate set of the agent A. Recalling
the notations for possessed and revoked certificate sets, we have: for any agent



An Axiomatic Basis for Reasoning about Trust in PKIs 289

B, PCSB represents B’s possessed certificate set, and CRLB represents B’s
revoked certificate set.
Thus, for a hierarchical PKI, the agent A, as a verifier of the certificate

C0, may adopt the following algorithm in developing a certification path by
constructing candidate paths step by step.

1. Set i = 0, P = 〈C0〉 and ζ0 = PCSI(C0)
;

2. If Ci ∈ TCA, return P = 〈C0, . . . , Ci〉 as the certification path, then stop;
otherwise

3. If ζi is not empty, choose Ci+1 from ζi, set
ζi = ζi − {Ci+1}, P = 〈C0, . . . , Ci, Ci+1〉, and ζi+1 = PCSI(Ci+1)

,
then reset i = i+ 1 and go to Step 2; otherwise

4. If ζi is empty, and i > 0, delete the last element in P , i.e., reset P =
〈C0, . . . , Ci−1〉, then set i = i− 1, go to Step 3; otherwise

5. If ζi is empty and i = 0, return fail (which means that no certification path
is found), then stop.

By this method, the verifier A may construct all possible certification paths
starting with the target certificate and ending with a trusted certificate. All these
certification paths can be used for verifying the target certificate. However, it
may find that there are no such certification paths, in which case, it cannot
accept the certificate as valid.
In particular, if A only trusts the certificate held by the paa in a hierarchical

PKI, then any certification path constructed by itself is always a certification
path starting with the certificate held by the paa.
Since the certificate set of an agent may contain multiple certificates, without

the use of the key-identifier information, certification path development become
increasingly complex as the number of paths that need to developed may grow
exponentially. To avoid this, in Step 3 “choose Ci+1 from ζi”, we may use the
key-identifier information to reduce the number of choices.
Suppose a certification path 〈C0, . . . , Cn〉 bas been developed for agent A

to verify cerificate C0, and sent to the path validation module, where Cn is a
certificate belonging to A’s trusted certificate set. ¿From the fact that A trusts
the certificate Cn, i.e., Cn ∈ TCA, and Axiom (A*), we can have

IBAValid(Cn).

The path validation module needs to check whether A’s trust in Cn can be trans-
ferred to its trust in C0, i.e., it needs to prove all the following trust transferring:

IBAValid(Cn) �IBAValid(Cn−1),
IBAValid(Cn−1) �IBAValid(Cn−2),

. . . . . .
IBAValid(C1) �IBAValid(C0).

Unless all proofs for these trust transferrings are successfully completed, the
agent A cannot accept C0 as valid by this path.
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A framework for path processing has been proposed based on a natural sep-
aration of the entire certification path validation problem into distinct types of
checking requirements. For the details about the framework and a mechanism
dealing with various different checks, we refer the reader to Ozols et. al. [12].

8 Conclusion

There are two major relations involved in a PKI, one is the certification relation
and the other the trust relation. The certification relation has been formalized
by Liu et. al. [10,12]. The trust relation is the basis of certificate verification.
This paper, focusing on the trust relation, has present a typed modal logic for
specifying and reasoning about trust for a PKI. We have proposed a trust theory
for formalizing the trust relation in a PKI. In particular, we have discussed trust
axioms, trust bases and trusted certificates. In our model, the trust relation in
a PKI is formalized by TA, a set of trust axioms. Based on the trust axioms,
an agent has its own trust base that contains all agents whom the agent would
trust. The trusted certificate sets are essential for certificate verification.Without
a trusted certificate set, an agent cannot prove that a certificate is valid or he
should not use any PKI function for itself.
Our axiomatic approach is flexible: it is easily modified or extended for a

specific purpose. The logic is sound. Because of space limitation, no proof of
soundness is given in this paper. Also, we did not give a formal semantics for
this logic. All these will be addressed in future work. We also plan to mechanise
the theory in a general theorem prover, Isabelle [13]. Once a reasoning system
for PKIs has been developed, certificate verification and the proof of security
properties of a PKI could be automatically performed.
Future work also includes investigating the different distributions of trust

points within a PKI. Comparisons of solutions and suggestions as to how distri-
bution of trust points could be implemented in these extended PKI structures
need to be considered. Joining PKI’s, with so called cross-certificates or bridging
CAs, is another important issue. This paper is based on first order logic. The
PKI functions, include certificate verification, could also be described based on
a temporal reasoning framework.
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Abstract. This paper proposes a knowledge-based approach to Internet
authorizations using Public-Key Infrastructure (PKI) based digital certificates
and Role-Based Access Control (RBAC). First, we introduce several existing
access control models. Second, a logic-based policy specification language is
given. Third, a policy-driven RBAC is presented. Fourth, a method of
automatically assigning roles to users using digital certificates is discussed.
Then, the architecture for Internet authorizations is described. Finally, a
solution to remote policy enforcement is proposed. We also give the syntax of a
role definition language and illustrate it in appendices A and B, respectively.

1   Introduction

The Internet provides an excellent infrastructure for supporting information sharing
and the collaboration between business partners.  One of the most important
challenges is to control Internet users accesses to resources, without asking the users
to pre-register with the resource providers. In the following, we will use the terms
resource and service exchangeably. First, we introduce some of the existing access
control models.

1.1 Discretionary Access Control (DAC)

DAC enforces the rules specified by an access matrix, which describes the operations
each subject is authorized to perform on various objects, and is typically implemented
by either Access Control Lists (ACLs) associated with resources or users� capability
lists. Each time a user is added into or removed from a system, security managers
have to administer the relevant ACLs for those resources affected. Similarly, this
applies to users� capability lists, when a resource is added into or removed from the
system. The extensions to the conventional ACL include the addition of an optional
field to each ACL entry for specifying restrictions on access rights [8]. In [17], a
generalized ACL supporting authorizations delegation is given. However, they do not
scale well as the number of subjects or objects in the system increases. If an
authorization policy changes, the ACL has to be modified dramatically. Therefore,
DAC is not the best solution to the access control in Internet environments from a
user-resource management perspective.
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1.2 Mandatory Access Control (MAC)

MAC attaches security levels to objects based on their information sensitivity, and to
subjects, reflecting the degree to which they are trusted to not disclose sensitive
information. Security levels are partially ordered in a lattice-structured hierarchy, with
each level dominating itself and the ones below it [4, 19, 23]. Some MAC systems
also introduce categories and assign them to subjects and objects. Thus, a node in the
hierarchy consists of a security level and a set of categories. MAC enforces a specific
security policy so that it prevents information flow from high-level objects to low-
level subjects. However, when a user is unknown to a resource provider, the prior art
MAC model still cannot solve the general problem of Internet authorizations.

1.3 Role-Based Access Control (RBAC)

In RBAC models [2,6,7,9,13,14,16,24], a role is represented by a set of permissions
that allow its role members to perform operations on objects. Security officers and
system administrators create and assign roles to users based on their responsibilities
and obligations in their organizations. An RBAC system determines a user�s
permissions according to the role(s) the user plays at the time of requesting a
resource.  A user can be easily reassigned from one role to another. A role may be
granted new permissions as new resources are provided, and permissions can be
revoked from roles as needed. Therefore, security management is significantly
simplified.  However, given an unknown Internet user�s request, assigning roles to the
user dynamically still needs to be solved.

1.4 Certificate-Based Access Control

Attribute and authorization certificates may contain access rights [11,15]. Attribute
Certificates (ACs) bind attributes to users� Distinguished Names (DNs), and can be
used with identity certificates to achieve the mapping: attributes → DN → public key.
Having a delegation tag within it, a SPKI attribute certificate allows its recipients to
delegate privileges to other people, achieving the distributed authorizations [1,3,5].
However, having authorizations in an AC has several issues. First, AC authorities
must issue ACs to users before the users accesses to the controlled resources. Second,
for those ACs that have a long period of validity, revoking them can be much of a
burden to the issuing AC authorities, especially when the accessing rights within them
have to be updated due to the resource provider�s security policy changes. Third, it is
too expensive to issue ACs to potential Internet users.

    In this paper, it is assumed that an AC contains only users� non-volatile attributes
without access rights. A user may have several ACs issued by different trusted
authorities that have intimate knowledge of the user. E.g., an accredited university
issues its graduates normal ACs containing such information as degrees,
qualifications, majors, graduation dates, and the like.  A user�s ACs will then be used
to make access control decisions by resource providers, based on their security policy
and the user�s requests [25,26,27,28].
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In the following, a logic-based policy specification language is introduced first.
Second, a policy-driven RBAC is presented. Third, we discuss a method of
automatically assigning roles to Internet users using digital certificates. Fourth, the
architecture for knowledge-based Internet authorizations is described. Finally, a
solution to remote policy enforcement is proposed. We also give the syntax of a
policy-based role definition language and illustrate how it can be used to specify
security policies in appendices A and B, respectively.

2   A Logic-Based Policy Specification Language

Our policy specification language is defined as a subset of Horn clauses. A clause,
also known as a rule, takes the following form: H if B, where H, B are called the head
and body of the rule, respectively. H takes the form of pred(t1, � , tn), where pred is
an n-ary predicate symbol and each ti is a term. B is a conjunction of literals. A term is
either a variable or a constant and each rule has a bounded number of variables. When
B is empty, the �if� part of the rule can be omitted. A policy base is thus just a finite
set of rules. Given a policy base PB, a request r is to be granted if and only if PB ! r.

    The logic-based policy specification language has the following advantages [18]:

• The separation of domain-specific policy base from its implementation
mechanism, increasing the flexibility of an authorization system. Based on
the same implementation mechanism, users can deploy various
authorization policies.

• The ability of expressing constraints and security policies as declarative
rules. In most security systems, policies are hard-coded into programs,
which is inflexible for configuration changes.

• The capability of expressing information implicitly. E.g., a role membership
can be specified by a predicate, rather than enumerating its members
explicitly.

• Policy conflict detection can be done by checking if the corresponding rule
set is consistent or not, based on the model-theoretic semantics of first order
logic.

3    Policy-Driven RBAC

The known prior art RBAC is policy-neutral. Some extensions to it include the
introduction of role hierarchies, and constraints that apply to user-role and role-
permission assignment, and so on [2,6,7,9,12,13,16]. In our policy-driven RBAC
model, user-role assignment policy and the application-specific business logic on role
permissions are provided as a configurable knowledge base. Any changes to it will
dynamically and automatically drive the changes in an organization�s security policies
on its business processes, thus alleviating the security management. In our approach,
each role is extended by a predicate describing its membership policy, and role
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permissions are generic. For example, there are several permissions defined for the
withdrawal of money in a traditional RBAC system:

• A normal customer can withdraw money from its own bank account, but
overdrawing is disallowed.

• However, a silver customer, whose annual salary is over £20000, can
overdraw up to £1000 from a bank if the customer has been with the bank for
more than 5 years; otherwise, the limit for overdrawing is reduced to £300.

    The business logic on roles permissions can be captured in the knowledge base so
that when the bank�s business policy on a customer�s withdrawal of money changes,
all that needs to be done is to modify the affected policy rule rather than adding a new
permission or modifying an existing permission. A simplified definition of role
silver_customer is described below, based on the role syntax given at appendix A.

Name: silver_customer.
Role-Assigning Policy: salary_based_silver_customer(Certificates, Request).
Authorizations:

Request = [withdraw, Account, Amount|_],
overdraw_policy(Certificates, Limit),
withdraw_test(Limit, Account, Amount),
withdraw_money(Account, Amount). // It is a method.

// For simplicity, other permissions are omitted here.
.

salary_based_silver_customer(Certificates, _) :-
get_salary (Certificates, Salary), // Its definition is omitted here.
Salary > 20000.

overdraw_policy(Certificates, 1000) :-
              time_with_the_bank_over_months(Certificates, 60).
              // For simplicity, its definition is omitted here.
overdraw_policy(_, 300).

withdraw_test(Limit, Account, Amount) :-
              balance_of_the_account(Account, Balance),
              Amount <= Balance + Limit.

    Besides the application-specific business logic on role permissions, the user-role
assignment policy can also be captured in the knowledge base. If it is empty, roles
must be assigned to users manually with business logic hard-coded into the system;
otherwise, roles may be assigned to users automatically and dynamically, depending
on whether the role assignment policies evaluate true. For a role that can be assigned
to any user, the role assignment policy attribute is �true� in its definition. If a role
assignment policy evaluates false for a given user, the role cannot be assigned to the
user. For other roles that must be manually assigned to users, their user-role
assignment policy attributes are �null� by default. Furthermore, because a resource
provider may trust only those digital certificates issued by particular Certificate
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Authorities (CAs), the trust relationships between resource providers and CAs may
also be captured in the knowledge base.

    There are several significant differences between our approach to Internet
authorizations and others like PolicyMaker, KeyNote, and SPKI.  First, a resource
provider does not need to issue digital certificates to an Internet user before the user
can access the resources controlled by the resource provider. The user may need to
have a set of digital certificates issued by trusted third parties. Second, the user�s
presented digital certificates do not contain any access rights. A user�s access rights
are implied by the permissions of the roles assigned to the user based on the user�s
presented certificates. They will be used for a wide range of general purposes rather
than specific requests for particular resources. Third, for security reasons, access
control policies do not appear on the certificates in the form of credential conditions
or whatsoever. Fourth, when either the access control policies or access rights change,
our approach will not be affected. The separation of access rights and authorization
policy from a user�s digital certificates makes our approach very flexible.

4   Automated Role-Assignment Using Digital Certificates

Most RBAC systems assign roles to users manually and involve a lot of user-role
administration. An approach has been proposed to dynamically map a user to
predefined business roles, using the user�s presented digital certificates issued by
Certificate Authorities (CAs) and role-assigning policies pre-set by resource providers
[11]. Because the user does not know about the role-assignment policy and multiple
roles may have the required permission for a given user�s request, various digital
certificates will be requested to present to the resource provider [18], based on the
evaluation of security policies and business logic associated with the required
permission.

    There are two major differences between our automated role-assignment approach
and that described in [11]. First, we adopt a non-deterministic approach due to the fact
that the resource provider does not know which role should be dynamically assigned
to a user for its current request. The non-deterministic role assignment is achieved by
using a powerful backtracking mechanism. Second, our approach is more efficient by
enforcing server side security policies on a client�s machine remotely, which will be
discussed later.

     The principle of separation of duties can be dynamically accomplished by not
satisfying the policies on the assignment of conflicting roles to the same user
simultaneously [20]. Alternatively, we can store the roles already assigned to a user in
a database persistently, such that the candidate roles being in conflict with them will
not be assigned to the user (see Fig. 1). If such a conflict does occur, the security
manager will be informed and will take necessary measures as required. In this paper,
we adopt the first approach due to its simplicity for implementation.
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    Although a user may be assigned multiple roles, only some of them will authorize
the user�s current request. For each role assignable to a user, if either it does not have
a matching privilege for the user�s current request or the business logic associated
with the privilege evaluates false, the current role assignment will be backtracked
automatically for alternative roles; otherwise, the user�s current request is authorized.
If all roles have been tried and none of them authorize the given request, the user will
be denied. In our approach, a role-filtering sub-system is used to pre-compute the
candidate roles assignable to a user for efficiency.

5   A Knowledge-Based Approach to Internet Authorizations

The architecture for our knowledge-based solution to Internet authorizations is
described in Fig. 2. Given a user�s digital certificates and the knowledge base on the
server side, it does not make sense to ask the user to submit all of its digital
certificates to the service provider for accessing the requested service, most of which
are irrelevant to the current request. The user may not be willing to send them either.

     During the access control decision-making, if any of the following conditions
holds, the Server Security Agent (SSA) will automatically redo the current user-role
assignment and re-evaluate the business logic on a role�s associated privileges:

• Some of the user�s presented digital certificates have already been revoked
by their issuing CAs, using either Certificate Revocation Lists (CRLs) or the
Online Certificate Status Protocol (OCSP) for their validations.

• Some certificates presented either have expired or are unacceptable to the
SSA, based on the trust models described in the server-side knowledge base.
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• The user refuses to send the requested digital certificates to the SSA.
• Given a user�s current request, the user�s presented digital certificates do not

satisfy the resource provider�s role-assignment policy.
• The business logic on the assigned role�s matching privilege evaluates false,

based on the server-side knowledge base.

    Given a user�s request, there are several steps in sending the user�s digital
certificates to the SSA after the role-filtering sub-system identifies the candidate roles
assignable to the user. First, the SSA finds a set of digital certificates required for
assigning each of the candidate roles to the user, based on the certificate acceptance
policies and trust models specified in the server-side knowledge base. Second, if some
of those certificates have already been cached in a local directory and are still valid,
the SSA only requests for other unavailable certificates from the user, who then sends
back the requested certificates to the SSA according to the user�s certificate-sending
policy. Finally, the SSA caches the received certificates in its directory using
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Lightweight Directory Access Protocol (LDAP). If the user refuses to send a
requested certificate to the SSA, an alternative candidate role will have to be tried for
its assignment to the user.

    Users� certificates can be sent to the SSA by an application, a trusted applet
digitally signed by the resource provider, or a plug-in from a trusted third party for the
user�s Web browser.  The user may configure its certificate-sending policy so that
some of its certificates can be automatically sent to the SSA. The default
configuration will inform the user of the SSA�s request for them whenever it happens.
If the user�s certificate-sending policy evaluates false, the user will not send the
requested certificates; otherwise, they will be sent to the SSA. The client side may
need a knowledge base that describes the client�s certificate-sending policy and trust
models, as shown in Fig. 3.

Figure 3.  Knowledge-Based Certificate Sending 
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    Our knowledge-based approach to Internet authorizations using PKI-based digital
certificates and RBAC has several unique advantages over the traditional RBAC and
other access control models. First, it enables users to specify security policies, trust
models, and business logic in a configurable knowledge base separately rather than
hard-coding them into the system or the role privileges. Second, based on digital
certificates, it allows unknown Internet users to access resources more conveniently
without having to register with the resource provider in advance. Third, the approach
supports automated, non-deterministic role-assignment. Because the user-role
administration in conventional RBAC systems has been automated, the security
manager�s work is reduced to a minimum, and thus can be focused on the declarative
specification of security policies, trust relationships between the service provider and
various CAs. Finally, our approach provides a flexibility that any changes to the
knowledge base will automatically drive the changes in an organization�s security
policies on its business processes, thus alleviating the security management.
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6   Remote Policy Enforcement in Internet Authorizations

The solution to reducing the traffic caused by runtime digital certificate exchange
between a client and a server is minimizing the computation-intensive non-
deterministic policy evaluation over the Internet. This can be achieved by
downloading the server side knowledge base, which includes certificate acceptance
policy and role-assigning policy, onto a client�s machine whenever the client requests
a service.

     However, the server side security polices will not be enforced unless, on the client
side, the inference engine is trusted and the knowledge base used is the same as that
from the service provider. One potential solution is generating the set of a client�s
digital certificates required for its current request and sending them to the server side
for checking [25]. Because much of the backtracking has already been done on the
client side during the finding of the set of the client�s certificates that satisfy both the
client�s certificate sending policy and the server side certificate acceptance policy, the
server side checking no longer needs to ask the client to send various digital
certificates to it, and therefore the client�s privacy is protected to some extent.

     To further reduce the traffic between a client and a server, we only need to
download onto the client�s machine a much smaller server-side knowledge base,
which is relevant to the client�s current request and can be pre-computed. Before
discussing how to enforce security policy remotely and efficiently, we give the
following notations first. Let R be the set of role, and KB the set of rule in the
knowledge base on the server side, respectively.

1. For a given role r, its privileges and role assignment policies are denoted by
P(r), and RA(r), respectively.

2. For a given privilege p in role r, its business logic is denoted by A(p,r), and
the partial KB relevant to it is defined as K(p,r) = RA(r) " A(p,r).

3. For a given privilege p, the set of candidate role assignable to a user is
defined as C(p) = { r | r # R $ q # P(r) $%u (p◦u = q◦u) }, where u is a
most general unifier for p and q.

4. The privileges of all of the roles in R, are defined as Priv(R) = "P(r).
                                                                                                                                                                         &r # R

5. Let T be the trust model for the validation and acceptance of the client�s
digital certificates by the service provider.

6. For a given privilege p, the partial KB relevant to it, is defined as follows:

knowledge_base(p) = ( "K(p,r) ) "T.

       
&r # C(p)

     During the compilation of KB, for every role r and each privilege p in r, C(p) and
K(p,r) are computed first, and finally knowledge_base(p) is computed. We store C(p)
and knowledge_base(p) in a file whose name is denoted by F(p).
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    The client�s service request now can be processed as follows. First, the SSA
translates it into a corresponding privilege p in Priv(R). Then, the SSA sends the file
F(p) to the client. After the client application receives the partial server-side
knowledge base, it retrieves C(p) and knowledge_base(p) immediately, and tries to
enforce server-side security policies based on the client�s current request and
available digital certificates. Finally, if the client is authorized for the current service
request, it will return a set of the client�s digital certificates that satisfy both the
client�s certificate-sending policy and the server-side security policies to the SSA;
otherwise, an empty set will be returned.

7   Conclusions

In this paper, a knowledge-based approach to Internet authorizations is proposed by
using PKI-based digital certificates and RBAC. After introducing a logic-based policy
specification language, we present a policy-driven RBAC. Security policies are
expressed as the rules in an application-specific, configurable knowledge base. An
inference engine is utilized to evaluate policies, automatically assign roles to Internet
users based on their digital certificates, and redo role assignment as required. The
approach is capable of dealing with unknown Internet users and automatically
managing user-role assignment by using digital certificates, which makes the
administration of unknown Internet users� access to services less of a burden to
security managers. Finally, we discuss an efficient method of remote security policy
enforcement by downloading a partial knowledge base that is relevant to a client�s
current request.

     As pointed out in [11,12,14,18,25], the expressiveness of a logic-based
specification language allows security policies to be succinctly and uniformly
specified. PROLOG is based on Horn-clauses, which is a subset of first order logic,
and has a solid theoretical foundation for reasoning. Both policy evaluation and policy
conflict detection can be easily done within the logic framework. Therefore,
PROLOG is adopted as the generic policy representation language in this paper.
However, a policy-authoring tool is strongly recommended for alleviating the policy-
writing task of security managers. The tool should be capable of mapping a user�s
access request to a role�s privilege intelligently and refining a high-level security
policy into an executable rule, so that security managers can focus on the
specification of authorization policies, trust models, and role-assigning policies in the
knowledge base.
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Appendix A � The Role Syntax

 <Role>           ::= �Name:�                            <Role Name>�.�
                             �Role-Assigning Policy:�  {<Predicate> | �null� | �true�}�.�
                             �Authorizations:�               <Privileges>
                             �.�
<Role Name> ::= <Symbolic Atom>
<Privileges>   ::=  <Privilege>*

<Privilege>     ::=  <Pattern><Policy>+ {�,�<Method>}*�.�

Where, <Pattern> is a user�s request pattern expressed by a logical term, <Policy> is
a predicate defined by a set of PROLOG clauses, and <Method> is defined as an
external function in models.

Appendix B � A Bank Example

We use a simple example to demonstrate the ideas contained in the paper. It is
assumed that a full-time student has already been issued an identity certificate by an
accredited university, and has got a digital driving license issued by the Driving
License Agency (DLA) after having passed both the theory and practical tests. The
student wants to get the service of car rental or hotel reservation on the Internet,
which requires the student to open an account in a recognized bank first to get digital
credit certificates. The bank provides a set of E-services, including new account
creation, normal bank account transactions. In the following, various kinds of policies
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are modeled by PROLOG rules, and predicates are only simply defined due to space
limitation.

Name: account_owners.
Role-Assigning Policy: bank_account_ owners (Accounts, Certificates, Request ).
Authorizations:

Request = [balance|_], true, get_balance( Account, Balance ).
// get bank account balance.
Request = [deposit|_], true, deposit_money( Account, Amount ).
Request = [withdraw, Account, Amount|_],

overdraw_policy( Certificates, Limit),
withdraw_test(Limit, Account, Amount),
withdraw_money( Account, Amount ).

.
// Request attribute certificates issued by the bank to the user, and collect bank
account   // numbers into Account_numbers. If the user doesn�t have valid and
acceptable
// attribute certificate issued by the bank, it returns false.
bank_account_owners( Accounts, Certificates, Request ) :-

request_certificates( Certs ),  // Its definition is omitted
valid_and_accepted_certificates( Certs, Accepted_Certs ),

               //collect valid and accepted certificates from Certs into Accepted_Certs
get_account_numbers( Accepted_Certs, Accounts),

              // get account numbers of valid and accepted bank account attribute
certificates

bank_account_no( Request, Account ),
member( Account, Accounts ).
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Abstract. The review process is an important part of many everyday
activities. We introduce the concept of trusted review for electronic data.
The review process is performed using an insertable security device called
a Trusted Reviewer. The Trusted Reviewer can be designed to satisfy
high assurance evaluation requirements. We show how the Trusted Re-
viewer can offer increased security in messaging, certification authorities,
funds transfer, witnessing, and information downgrade.

1 Introduction

Computer systems and networks are an increasingly integral part of our every-
day operations. As a result, we are becoming increasingly dependent on these
systems. Another trend, relevant to this article, is that humans are becoming
separated from computer processes as use of automation increases and comput-
ers begin to undertake interactions between themselves on our behalf. As our
traditional paper medium is replaced by electronic methods and computers be-
come more pervasive, we are becoming further dis-associated from tasks and
actions once under our control. With the many advantages of computerisation
it is evident that these changes will be permanent with the “brave new world
of ubiquitous computing” [21]. At the same time computer security incidents
are widely acknowledged to be on the rise. There are many reports of attacks,
for example, [2, Section 1] describes a number of successful attacks against well
known organisations ranging from the Pentagon to NATO. Seemingly, we face a
brave new world ridden with risks.
There are several approaches to mitigate these problems. For example, se-

curity evaluation and accreditation schemes are in place to provide a measure
of confidence where required. Legislation exists for the provision of due care
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with the handling of certain information [10]. Another approach is to use in-
sertable security products like firewalls, intrusion detection systems, etc. Indeed,
insertable security products can focus on securing particular applications or com-
ponents rather than the entire system. An example along these lines is to use
tamper resistant devices, such as smartcards, to provide key storage and perform
cryptographic operations thus protecting cryptographic keys from exposure on
a Personal Computer (PC).
In this article, we consider a process familiar to humans that can be trans-

ferred to the electronic world to improve security, namely, the process of review.
This is achieved using an insertable security device which we call the Trusted
Reviewer. This device may be used by a human to review data in a high assur-
ance setting. Prototype devices are currently under development at the Defence
Science and Technology Organisation.
This article describes both the Trusted Reviewer (TR) itself and a number of

its applications. In Section 2 we briefly outline a number of existing information
security problems relevant to our discussion. In Section 3 we describe the Trusted
Reviewer and outline possible applications in Section 4. Conclusions are given
in Section 5.

2 Hurdles: A Brief Survey of Existing Problems

High development costs are making proprietary or custom hardware and soft-
ware unattractive. As a consequence, commercial off the shelf (COTS) products
are being incorporated into sensitive and critical processes. Even defence organ-
isations, which require the most dependable systems, have acknowledged their
increased reliance on the use of COTS products [21,23]. In [8], attention is drawn
to the contrast between the acceptance of software failures and normal consumer
expectations of dependability with other products. Wide utilisation of COTS
products and the on-going interconnection of systems has increased exposure to
computer attacks in the following ways.

– Decreases in diversity of available products have led to wider susceptibility.
– Inter-connection has enabled remote attacks and increased the scope of at-
tacks as infected computers and systems can be used to spread attacks.

– Economic pressures for rapid development and system evolution has de-
creased consideration of security issues.

– The increased complexity of systems has made security harder to achieve.

This list is by no means complete but highlights some of the issues now affecting
computer security.
The concept of trusted computing has largely remained within the military

and research domains. The increased reliance on computer systems to support
critical processes will drive this concept into the commercial sector. The first
steps have already been taken in this direction, [26], [32]1. Without trusted plat-
forms it may be necessary to employ external trusted devices to provide the
1 the intentions of this group may not be as altruistic as they first appear [30]
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required process security and assurance. Separate trusted devices can run sim-
plified programs for specific applications allowing users to keep their untrusted
platforms for running comprehensive, full featured applications. The idea of using
insertable security devices in systems has already generated some high assurance
devices, such as [3,24,34]. Some, recognising the vulnerabilities in general pur-
pose computers, have proposed trusted devices for certain applications, such as
voting [37] or smartcard PIN entry [31].
Baker [8] argues that the trusted system concept is still relevant in modern

computer systems. She states that “Any system component is only as trust-
worthy as the components upon which it depends.” This point has been widely
overlooked, even with security products. For example, cryptography can be used
to secure transmissions between two end points but it cannot secure the ends:
indeed it imposes additional security requirements. End point attacks still have
to be considered, but are all too frequently ignored.
The following quote from Baker extends the idea of trusted components:

“Applications derive their functionality and assurance from the strength
of the underlying infrastructure; unfortunately dependability of that in-
frastructure has largely been ignored.”

This comment may seem to contradict the concept of insertable security. How-
ever, we will show that it does not.
We support efforts to improve the security of application and operating sys-

tem software. However, with current technology, it would not be cost effective to
develop and evaluate them all to the highest standards. Instead, we should try
to isolate the security enforcement into small components, so that if we can trust
only those modules, the entire system will be secure. A physical world analogy
is that by securing the external doors, walls, and windows of a house, we reduce
the need to have the same level of security on inner doors and walls.

3 Trusted Review: Concepts

Two established principles for the design of a secure system [28] are:

Economy of mechanism: keep the design as simple and small as possible.
Complete mediation: every access to an object must be validated. There must
be no path to the object that bypasses validation.

The traditional result of applying these rules is the Reference Monitor, which
requires that a secure kernel at the heart of an operating system mediates access
to every file. Although many systems contain a reference monitor, it has not
proven to provide a very high level of security.
If we assume that there is limited opportunity to improve commodity com-

puting systems (including operating systems), then we need to look for a different
way to apply these principles. The trusted reviewer described in this paper medi-
ates access to a special private key. Access is based on decisions an authenticated
user makes in response to the displayed document.
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In a simple scenario, illustrated in Figure 1, a user Alice has a trusted reviewer
(TR) device on her desk, next to her PC. At the beginning of a session, she
authenticates to the TR. When it is necessary for her to confirm some critical
information, the PC transmits it to the TR2. The TR displays the information
to Alice, who has an opportunity to read it carefully. If she decides to confirm
the information, she presses the “Accept” button on the TR to indicate this.
The TR then creates a pair of digital signatures for the information to indicate
that it has been confirmed within the trusted environment. The first signature is
calculated using Alice’s private key, and the second uses a private key belonging
to the device itself. The signed information is then sent back to the PC.

Network

TR TR

SmartcardSmartcard

Bob’s
PC PC

Alice’s

A B

Fig. 1. Network topology for simple Trusted Reviewer scenario

Alice can now email the (TR-signed) information to Bob. Bob’s email pro-
gram can check the signature(s), and it informs him that it is valid. However,
Bob is aware (possibly through bitter experience) that COTS computers cannot
be trusted to any great degree. Before he relies on, or trusts, this signature he
sends it to his own trusted reviewer. The TR verifies the signature, and displays
the details of the signature and the document to Bob. Because the TR is not
susceptible to threats like his PC, Bob is able to trust the TR’s display.

This scenario illustrates the essential security functions of the TR:

– Authentication of the user

– Display of information to the user3

– Receiving an indication of the user’s confirmation

– Generating a digital signature

– Verifying a digital signature

Figure 2 is a logical view of the TR’s internal functions and its external interfaces.

2 Any convenient medium such as USB, Ethernet, or SCSI could be used.
3 Trusted display and receipt of user’s confirmation constitute a “Trusted Path” in
the terminology of [25].
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Fig. 2. Functional view of the Trusted Reviewer

3.1 Authentication Mechanism

It would be possible for the TR to use a variety of different authentication
mechanisms. Here, we propose the use of a smartcard or similar token [11, for
example] that requires entry of a PIN for activation. The smartcard is inserted
into the TR (not the computer), and the PIN is entered directly into the TR. This
means that a PIN need never be entered into the computer4(where untrustworthy
software may have access to it). We suggest using public key cryptography to
authenticate the user to the TR [1] as this technology can then be used to apply
digital signatures to reviewed data. With public key cryptography each entity
has a public key and a private key. The public key is made available to all
entities. The private key is protected from disclosure and use by anyone other
than the rightful owner. We propose that the user’s smartcard contain their
private signing key.
The TR may present a challenge for the smartcard to sign or use other

mechanisms to obtain some signed data from the smartcard. The TR must also
have access to the associated public key. We do not outline a preference for the
mechanism to achieve this in this article. However, we note that this can be done
using TR loaded public keys or by employing Public Key Infrastructure (PKI)
methods [1].
Whenever a user is able to insert a smartcard and enter the appropriate PIN,

that user is said to be authenticated.

3.2 Display

We have explained that most commodity computers are vulnerable to malicious
software. Thus, we cannot rely on these computers to display the actual contents
of a document or file to us reliably.
4 Some commercially available smartcard readers [31] have PIN entry systems which
do not require the computer to process the PIN.
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We solve this problem by arranging for the information to be forwarded to
the TR for display. The TR may have its own built-in display mechanism, or by
suitable arrangement of video cables and some switches, it is possible to use the
computer’s monitor, as shown in Figure 3.

Display

User Input

Trusted ReviewerMonitor

Keyboard

Computer

Fig. 3. Video and keyboard switching for the Trusted Reviewer

It is important for the user to be confident that the display is an accurate
representation of the information. For example, if the user is about to certify
that the document contains no classified information, it may be important that
it is not a Microsoft Word file containing some “Track Changes” information, as
this would allow a recipient to undo some recent deletions. Similarly, if it were a
contract, it would be important to make sure that the user can see every page,
and all information on those pages, before they sign. For this reason, it may be
appropriate for the TR to use a specialised markup format to indicate how the
document is to be displayed.
Providing the user with a reliable, complete, and easy-to-interpret display of

the document’s contents is a difficult task. Initial implementations of the Trusted
Reviewer have been limited to simpler document formats, such as plain text,
RTF, and HTML. For perfect security, it would be necessary for the Trusted
Reviewer to expose (or filter out) any steganographic [6] content. This is, by
definition, challenging, and the subject of continuing DSTO research.
We can see that there will also be a need for a user to scroll or page through

a long document. One possibility is to have dedicated keys on the TR to do this.
An alternative would be to switch the PC’s keyboard, as shown in Figure 3, so
that it could be used to operate the trusted reviewer.

3.3 Signature Generation

One of the attractive security features of some smartcards is that the user’s
private signature key can never leave the card. This means that there is a high
degree of certainty that the user’s signature can only be created by that card
(assuming that the keys and algorithms are not weak, broken, or compromised).
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However, this does not guarantee that the user has approved or seen the informa-
tion being signed, or is even aware of signing events. There are three components
involved in creating a digital signature: the private key, the algorithm, and the
data to be signed. The overall security of the signature creation process is lim-
ited by the security of each of these components. A smartcard can be used to
secure the key and algorithmic processing, but it is not able to ensure that only
appropriate information is signed. No matter what data is sent to the card, the
card will securely create a signature for that data.
We solve this problem by programming the TR so that it can only sign

information after it has been reviewed and confirmed by an authenticated user.
Now it may be possible to use similar software on a PC. However, because the
TR is a rigorously evaluated embedded device, it will not be possible for any
malicious software to bypass this mechanism in the TR. The same cannot be
said for the PC environment.
The user’s smartcard may sometimes also be used in an untrustworthy pro-

cess, such as on the PC. It is necessary, therefore, to ensure that any signature
created by a TR is clearly identifiable. We propose to solve this problem by
having the TR append its own additional signature to that of the user.
This implies that the TR needs to be an end-entity in the public key world,

having its own identity, public-private key pair, and certificate. Also, it means
that the private key needs to be stored securely inside the TR, or otherwise
communicated securely to it from some central store. We propose that the TR
would have its own smartcard locked (via some physically secure means) into
place.

3.4 Signature Validation

The verification of digital signatures is subject to the attacks that we outlined
for digital signatures themselves. Signatures can be validated on a PC, and
the results displayed to the user. However, as indicated earlier, when a PC is
vulnerable to potentially malicious code, we cannot trust what the PC says.
Therefore, if we need to rely on a signature, it is important that the validation of
that signature, and the display of the result, are both carried out in a trustworthy
way. This motivates use of the TR for signature validation.
To support validation it may be necessary for the TR to contain a root

public key (a key from which all trust is referenced) in secure storage. There
are a number of complex issues associated with public key infrastructures upon
which the Trusted Reviewer will rely, such as the discovery of valid certificate
paths. In this paper, we do not attempt to solve these problems. However, we
do note that the TR does not need to be able to perform complex searches
of directories; such tasks, as well as preliminary validation of certificates, can
be delegated to the PC, with the results being forwarded to the TR for final
verification.



312 John Yesberg and Marie Henderson

3.5 Assurance

In regards to security, we need to address the question of why we can rely on the
trusted reviewer when we cannot rely on the user’s computer. There are really
two questions here that need answering.

Question 1: why is the TR implicitly more trustworthy?

The TR is a far simpler device than a PC. It has a specific purpose and performs
a small number of tasks. The TR would be an embedded device with all software
in ROM and consist of a simplified operating system, with no disk drives or any
other built in non-volatile storage. It would be limited to a single, well defined
function. Hence it is feasible for it to be evaluated very carefully. In fact, we
propose that EAL-7 (Evaluation Assurance Level 7 of the Common Criteria
[9]) would be an achievable level. This level is the highest supported by the
Common Criteria. This judgement is based on our experience with the evaluation
of other devices to similar levels, [35,36,34,12]. In comparison, a PC is composed
of complicated hardware and software, none of which can be considered to be
in a stable or static state. Evaluation is difficult at best, with only lower EAL
levels attainable.

Question 2: why can we trust a system composed of untrusted PCs
and trusted reviewers?

The function of the TR is to display the content to the user no matter what
this content contains. Once the information is passed to the TR from the PC
then the information can not be altered and can be considered to be in a static
state. The content is displayed under the control of the TR to the user. The user
is wholly responsible for judging whether this content is acceptable. If the user
decides to accept the content then the TR will cover the information with its
own digital signature before passing the information and the signature back to
the PC. Similarly, a TR can be used to check a TR’s signature and the content it
is associated with. Therefore the untrusted PCs do not affect the TR operation5.

3.6 Threat Model

In this section, we explain and summarise how the TR can offer improved secu-
rity. The essential security-breach conditions that we aim to prevent are:

1. Information being signed with a user’s (Alice’s) signature, without that user’s
knowledge of what is being signed, and/or without their deliberate decision
to make and be bound by that signature; or

2. A user (Bob) being convinced that another user (Alice) deliberately chose
to sign and be bound by a document, when this is not the case.

5 Of course, the PCs can cause a denial-of-service attack, but this is true whether or
not the TR is involved.
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The TR offers the following features:

– Allows PCs to be virus-prone. Assume firstly that Alice’s computer contains
malicious software.
• If this software modifies the document before the signature is applied,
Alice will detect this when she reads it in the trusted display.

• If this software modifies the document after the signature is applied, the
signature will not be valid.

• If this software refuses to send the information to the TR, no signature
will be created. (This may be a denial of service, but it doesn’t fit within
our definition of a security breach.)

• This software cannot obtain Alice’s or the TR’s private keys, nor cause
any information to be signed with them, until it has been reviewed and
physically accepted by Alice.

Now, assume that Bob’s computer contains malicious software.
• Bob’s computer may display information to Bob claiming that it has
been signed by Alice. But Bob will not believe this unless the TR is in
control of the screen. (The TR may use a LED or other device to indicate
that the screen is presently trustworthy.)

• Bob’s computer may not pass information to the TR when it should.
This is another denial of service, but not a security breach as we have
defined it.

• Bob’s computer may modify the information before it reaches the TR.
But then the signature(s) will not be valid, and the TR will indicate that
the document has not been validly signed.

• Bob’s computer may modify the information after the TR has displayed
it. But Bob will already have seen the real information and that it was
validly signed.

– Allows communications between PC and TR to be open and unauthenticated.
The TR does not trust the source of any communications. The user is re-
quired to visually verify information before it is signed.

– Allows user’s smartcard to be used in untrustworthy devices. If the user’s
smartcard is used in a PC containing malicious software, a document could
be signed with the user’s signature, without the user’s knowledge. However,
such a document could not be signed with the TR’s private key, because this
key is never made available outside the TR. Therefore, the recipient’s TR
will not indicate that the document has been validly signed.

– Protects the PINs of the users’ smartcards. Unless the users choose to use
their cards in untrusted environments, we can guarantee that the PIN is
never made available outside the TR.

The TR does not solve all security problems. The security that it offers rests on
a number of pillars.

Public Key Cryptography
The TR uses public key cryptography to create signatures. If the keys or algo-
rithm can be broken, either by brute-force or other attacks, then the system will
not be secure.



314 John Yesberg and Marie Henderson

Public Key Infrastructure
The TR relies on the security of its private keys, and of the root public key. If
these can be compromised, the overall system will not be secure.

User
If the authorised user behaves irresponsibly, then the system will not be secure.
Examples of irresponsible behaviour include habitually pressing the “Accept”
button, without carefully reading the information displayed by the TR; and
believing the reported validity of a signature if the TR is not in trusted display
mode. Another problem, is that the information displayed may be ambiguous6.
However, this problem is not specific to the TR.

4 Trusted Review: Applications

4.1 High Assurance Signatures

In the previous section, we described a high assurance signature scenario for the
trusted reviewer. Such a system provides a recipient with a very high level of
confidence that it not only came from the particular signer, but also that this
signer deliberately confirmed that she would accept and be legally bound by the
information that was displayed. This high assurance signature can be contrasted
with existing systems which rely on operating system services to provide:

– authentication of the user;
– access and reuse control for the PIN or private key;
– display of the information to the user; and
– confirmation that the information should be signed.

When an operating system vendor builds in features that allow automatic ex-
ploitation of one or more of these services, the signature may not be very mean-
ingful. Even the lay community is aware of the Melissa [7] and I-Love-You [19]
viruses: malicious software which transmit email from your account without you
knowing about it. It would not be difficult to construct a virus which would
create and append a valid digital signature to such emails.

4.2 Certification Authority

We have described some problems with current mechanisms for creating digital
signatures. One important area where signatures are used is in the creation of
digital certificates. Trusted authorities, known as Certificate Authorities (CAs),
create and digitally sign certificates. The CAs signature attests to the correctness
of the details within a certificate (usually linking an identity or authorisation to
a public key value).

6 As an example of undesirable ambiguity, the verb cleave can mean “stick together”
or “break apart”.
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It is normal for CA software to be loaded onto an existing (and relatively
untrustworthy) operating system. Even if the CA software itself has been strin-
gently evaluated, so that it only creates signatures for appropriate certificates,
there is nothing to stop the operating system from accessing the CA’s private
key7, or from providing inappropriate input to the CA software.
For critical applications, it would be appropriate to use a TR as a CA work-

station. This would have the advantage that no untrustworthy software could
ever access the CA’s private key, or cause a signature to be created without the
operator’s knowledge.

4.3 Witnessing

Many legal aspects of our civil society require the witnessing of documents and
signatures [13]. For example, a person’s signature on their legal will needs to be
witnessed by two other people. The major application is to prevent forgery and
fraud. The witness may provide evidence regarding the signing event if it is later
called into question or denied. With paper based witnessing of a signature, this
usually means checking that a document doesn’t have blank spaces or alterations,
and then watching a person make a mark on the page, before the witness applies
their mark. The witness’s mark attests that they have observed this event. It does
not require authentication of the signatory or careful review of the meaning of
the document, as the witness is not bound by its contents. Currently, no method
for electronic witnessing exists, although [22] presents some requirements.
The TR may be used to support a witnessing application in the following

way. The signatory uses a TR to apply their digital signature to the reviewed
information (as described in Section 4.1) in the presence of the witness. The
witness can then use a TR to review the information and verify the associated
signature. The TR can display the information to the witness and also the pres-
ence of a valid digital signature. If the witness is satisfied by the results of this
process then they digitally sign over the entire document and signature (or some
fingerprint of this information).
With paper-based witnessing it is sometimes recommended that everyone

uses the same pen (this strengthens the evidence that the signing was performed
with everyone present). This could be achieved electronically by using a single
TR device which applied its signature to each signature in turn. By including a
trusted real-time clock within the TR, signatures could also be reliably times-
tamped. This would provide additional benefits in witnessing applications, and
possibly auditing and other non-repudiation services.

4.4 Electronic Funds Transfer

Banks and commercial organisations use dedicated Automatic Teller Machines
and special purpose EFTPOS devices. Yet many banking operations can today
7 Even if the key is stored on a smartcard, the OS could cause the smartcard to sign
an inappropriate certificate, without the operator’s knowledge.



316 John Yesberg and Marie Henderson

be performed over the Internet. Although there are many risks [27,5], banks (and
their customers) appear to have decided that it is commercially worthwhile to
offer (use) these services. If TR devices became prevalent, it might be appropriate
for banks to require their use for fund transfer requests. Manninger [20] has
proposed a similar system for Internet banking.

4.5 Multilevel Security Information Downgrade

The final application we describe in this paper is actually the one for which the
TR was originally invented. Consider an organisation with two networks, one
classified, say “Secret”, and the other one Unclassified. In an ideal situation,
there would be no need to transfer information between these two networks.
However, in reality, these information flows are required.
From a confidentiality view-point, there are no problems with allowing in-

formation to pass from the Unclassified to the Secret network (integrity and
availability issues are outside the scope of this paper). Transferring information
from a Secret network to an Unclassified network is, however, potentially danger-
ous. We assume that each network is comprised of COTS (untrusted) hardware
and software8. Therefore, we need to cater for the possibility that there may be
malicious software on the Secret network. Such software may insert Secret infor-
mation inside what would otherwise be Unclassified files. If an operator transfers
the file onto a magnetic medium, and then to the Unclassified network, we would
have a security breach.
Some “guard” systems [15,17,16,33] use labels to indicate which files are

suitable for passing from a Secret system, through a filter, to the Unclassified
system. However, these labels are typically generated on untrusted platforms.
The security therefore relies on the correct operation of an untrustworthy system.
This is hardly a desirable situation.
With these problems in mind, we propose that a TR could be used to attach a

signed label to a file. This label could not be forged, nor created without a human
user’s deliberate confirmation. A Guard (a sibling in the TR product range)
would verify the signature of the label, and check that the classification within
the label was appropriate before transferring it to the unclassified network.
In Figure 4, we see Charlie’s PC connected to the Secret network. He wants to

send an Unclassified email to Dora, whose PC is connected to the Unclassified
network. Charlie first creates the email, and then his PC sends it to his TR.
The TR generates a “trusted display” of the contents of the message (including
the label “Unclassified”), which Charlie is able to review. When he presses his
“Accept” button, the TR signs the message with Charlie’s signature and its own
signature, and returns it to the PC.

8 The security of the Secret network is provided by physical access control means,
rather than any logical mechanism: e.g. only people with Secret clearances are allowed
to be in the same room as the Secret network.
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Unclassified Network

Secure Enclave
Guard

Charlie’s

Secret PC TR

Unclas. PC

Dora’s

Secret Network

Fig. 4. Multilevel Security Downward Transfer Scenario

The PC now forwards the message to the Guard via the email system. The
Guard checks that the message:

– has an “unclassified” label;
– has been signed by an authorised user; and
– has been signed by an authorised TR.

After these checks are passed, the Guard is able to forward the message to Dora’s
computer, again via the email system.
Space limitations preclude a detailed discussion of the frameworks for man-

aging authorisation. Readers will recognise that a supporting PKI could be de-
signed with ease. A separate option might require more than one person on the
Secret system to approve the release of information.

5 Conclusions

The concept of review is an important part of many of our paper processes. Until
now there has been no secure electronic analogue. Unfortunately, software tech-
nology does not currently allow vendors to deliver highly dependable products.
The risks associated with the performance of many security-critical operations
using commodity applications and operating system software are therefore un-
acceptably high. We have shown that a new device, called the Trusted Reviewer,
allows a number of the risks to be reduced to much more acceptable levels.
The Trusted Reviewer provides authentication, review, and digital signature

creation and validation functions. Because it is so simple in both function and
design, it will be feasible to develop, evaluate, and certify the device to a high
level, such as EAL-7 in the common criteria. As we have pointed out in this ar-
ticle, a device like the Trusted Reviewer has applications in many areas, includ-
ing Certification Authorities (CAs), organisational messaging, Electronic Funds
Transfer (EFT), witnessing, and inter-security-domain information transfer. The
Trusted Reviewer can achieve this without limiting users’ access to commodity
PCs running diverse applications on the shared network.
The Defence Science and Technology Organisation is developing prototype

Trusted Reviewers to explore and demonstrate a number of these issues.
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Abstract. The major objective of this paper is to develop the network security
modeling and cyber attack simulation that is able to classify threats, specify
attack mechanisms, verify protection mechanisms, and evaluate consequences.
To do this, we have employed the advanced modeling and simulation concepts
such as System Entity Structure / Model Base framework, DEVS (Discrete
Event System Specification) formalism, and experimental frame concept
underlying the object-oriented S/W environment. Our approach is to show the
difference from others in that (i) it supports a hierarchical and modular
modeling environment, (ii) it generates the command-level behavior of cyber
attack scenario, (iii) it provides an efficient model building environment based
on the experimental frame concept, and (iv) it supports the vulnerability
analysis of given node on the network. Simulation test performed on sample
network system will illustrate our techniques.

1   Introduction

For all practical purposes, international boundaries have been eliminated in
cyberspace. The growth of information technology and almost universal access to
computers has enabled hackers and would be terrorists to attack information systems
and critical infrastructures worldwide  [1]. A cyber attack is an attack on a computer
and network system, consisting of computer actions (e.g., remote or local connection,
computer file access, program execution, etc.) to compromise the secure operation of
the computer and network system. As we increasingly rely on information
infrastructures to support critical operations in defense, banking, telecommunication,
transportation, electric power and many other systems, cyber attacks have become a
significant threat to our society with potentially severe consequences.

A computer and network system must be protected to assure security goals such as
availability, confidentiality and integrity. That is, the deep understanding of system
operation and attack mechanisms is the foundation of designing and integrating
information protection activities [2]. Therefore, the advanced modeling and
simulation methodology is essential for classifying threats, specifying attack
mechanisms, verifying protective mechanisms, and evaluating their consequences.
That means, we need to establish the advanced simulation methodology for analyzing
the vulnerability, survivability, etc. of given infrastructure as well as the expected
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consequences of successful attacks and the effect of the defense policy. Such a
methodology may be able to support to find unknown attack behavior if more refined
models are allowed. Actually, many fields use modeling and simulation technique to
support the analysis and insight into building better systems, but the field of
information protection has not produced significant research results to date. Perhaps
this is due to the extreme complexity of the cyber attack and defense problem, the
enormous size of the search space, the lack of good data on attacks and defenses, the
inability to derive consequences in a systematic way, or the lack of a coherent view of
information protection [3].

In order to overcome these limitations, we have proposed the network security
modeling and cyber attack simulation by employing the advanced modeling and
simulation concepts such as System Entity Structure / Model Base framework, DEVS
formalism, and experimental frame concept [4] underlying the object-oriented S/W
environment. Our approach is to show the difference from others in that (i) it supports
a hierarchical and modular modeling environment, (ii) it generates the command-level
behavior of cyber attack scenario, (iii) it provides an efficient model building
environment based on the experimental frame concept, and (iv) it supports the
vulnerability analysis of given node on the network.

The remainder of this paper is organized as follows. First, it briefly reviews a
background on conventional information security modeling approaches. Then, it
proposes a model-based approach for designing the network security modeling and
cyber attack simulation system. This is followed by the case study.

2   Background on Network Security Modeling and Simulation

Many fields use modeling and simulation to provide analysis and insight into building
better systems, but the field of network security has not produced significant research
results to date. Since we are modeling very complex phenomena involving mixes of
human behavior and interactions of complex interdependent systems with time bases
ranging from nanoseconds to years. There is no widely accepted information physics
that would allow us to make an accurate model, and the sizes of the things we are
modeling are so large and complex that we cannot describe them with any reasonable
degree of accuracy. Also there are no consensus on how to describe a network
security system, and no set of commonly accepted metrics upon which to base a set of
measurements to be used for simulation. Despite of these difficulties of network
security modeling and simulation, it actually provides much of the best justification
for actively pursuing it. The high cost of running real-world attacks, the limited extent
to which they exercise the space of actual attacks, and the high potential for harm
from a successful attack conspire to make some other means of analysis an imperative
[3].

Cohen [3], who was a pioneer in the field of network security modeling and
simulation, interestingly suggested a simple network security model which is
composed of network model represented by node and link, cause-effect model,
characteristic functions, and pseudo-random number generator. However, cyber attack
and defense representation which is based on cause-effect model [3] is so simple that
practical difficulty in application comes about. Amoroso suggested that the intrusion
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model [6] should be represented by sequence of actions, however, the computer
simulation approach was not considered clearly. Wadlow [7] suggested an intrusion
model with four classified states such as COOL, WARM, HOT, and COOLDOWN,
but it failed to go beyond the conceptual modeling level. Finally, Nong Ye [2]
noticeably proposed a layer-based approach to complex security system, but failed to
provide a practical modeling and simulation techniques of the relevant layers. Nong
Ye�s approach is that the high layers among four such as objectives, conceptual,
functional, and physical level can be represented in a simple model, and have rapid
simulation run with minimal number of parameters, however, it is too simple to be
meaningful. In the low layers, it is represented in complex model with accuracy, but it
requires the massive amount of data and enormous amount of simulation time so that
it is hard to model. To deal with these problems, this paper attempts to provide an
appropriate modeling approach through functional level (command-level) access to
cyber attack, and provide a network security model and its simulation by applying a
discrete event simulation technique.

3   Proposed Approach

The overall design methodology for the network security simulation systems can be
better understood by organizing them within a set of layers that characterizes its
design structure as shown in Fig. 1. Layer I provides a hierarchical and modular
modeling and simulation S/W environment. Layer II supports the command-level
dynamic model construction based on the experimental frame concept. Finally, the
network security simulation system can be accomplished in the Layer III.

SES/MB Framework

! Command-level
! Experimental Frame Concept

Component, 
Attacker, Analyzer

Model Design

! Object-oriented
! DEVS Formalism

Network
Security

Simulation System

Layer ¥ °

Layer ¥ ±

Layer ¥ ²
! Vulnerability
! Attack Behavior

Fig. 1.  Layered approach for network security simulation systems
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3.1   Layer I: SES/MB Framework

This layer relies on the object-oriented programming environment to provide the
ability to specify models that populate the model base that it organizes. The properties
of this lowest layer make it possible to realize similar properties at the higher layers.
The SES/MB framework [4] as a step toward interfacing the dynamic-based
formalism of simulation with the symbolic formalism of AI can be suitably adopted
for this layer. It basically consists of a system entity structure (SES) and model base
(MB). The SES represents the knowledge of decompositions, taxonomies, coupling
specification and constraints. Hierarchical and modular simulation models may be
constructed by applying the transformation operation to the SES. The model base
contains models that are procedural in character, expressed in discrete event system
specification (DEVS) formalism, a theoretically well-grounded means of expressing
modular discrete event simulation models. A DEVS is a structure [4,5]:

M  =  <  X , S , Y , δint , δext , λ , ta  >

where X is the set of input event types, S is the sequential state set, Y is the set of
external event types generated as output, δint (δext ) is the internal (external) transition
function dictating state transitions due to internal (external input) events, λ is the
output function generating external events as the output, and ta is the time advanced
function.

Fig. 2 shows SES of the network security model for information infrastructure.
NETWORK, which is the root entity, can be classified into ATOMIC with single
network and COMPOSITE with multiple networks. ATOMIC is divided into
COMPONENT for security factors consideration and SECURITY-AGENTS for
multiple entity. COMPONENT is again divided into O/S and several SERVICES.
Besides, it can be divided into more detailed subsystems such as BORDER,
INFRASTRUCTURE, BUSINESS, DESKTOP. In parallel, SECURITY-AGENTS
can be divided into ATTACKER which generates attack scenario and ANALYZER
which analyzes the simulation results. COMPOSITE is divided into more detailed
levels such as NETWORKS, a multiple entity, which can link multiple network
groups and LINK which links them all. Fig. 3 shows a pruned entity structure (PES)
obtained by applying the pruning operation into the SES. A final simulation model in
each entity of the PES can be established by attaching the dynamics models discussed
next.
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Fig. 2.  SES representation of network systems
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3.2   Layer II: Component, Attacker, and Analyzer Model Design

In this layer, the command-level component modeling can be constructed on the basis
of the experimental frame concept. Although a network model can be tested in a
stand-alone fashion, it really does not �come to life� until it is coupled with modules
capable of providing it input and observing its output. Thus, the experimental frame
concept [4] may be suitably utilized to couple with a given model (network model),
generates input external events (cyber attack commands), monitor its running
(consequences), and process its output (vulnerability). Fig. 4 depicts the modeling
approach with the experimental frame module underlying SES/MB framework.

In Fig. 4, Attacker inputs planned commands one by one into Network as well as
Analyzer. Simulation proceeds by Network�s responding to Attacker as well as
Analyzer. If enough data are collected for analysis, Analyzer terminate simulation by
sending stop command to Network and Attacker. Then it analyzes each component�s
vulnerability through statistical procedure on the collected commands and attack
results. A detailed modeling method can be illustrated as follows:

- statistical data processing
- vulnerability analysis

- network structure
- component models

- knowledge-based model
- attack scenario generation
- command-level(packet-based) message
- random generation capability
- learning capability

Attacker

Network

Analyzer

command

response

stop

Fig. 4.  Network security modeling approach

• Network Component Modeling
As described in the preceding section, network component model comprises various
services such as Telnet, E-mail, Ftp, Web, and Packet Filtering. Dynamics of these
component models can be represented in various ways according to their respective
state variables such as service type, H/W type, and O/S type, etc. Fig. 5(a) is a typical
example of DEVS representation of component model. In Fig. 5(a), the external
transition function processes the external input through the �in port by applying
command-table represented in pre/post-condition when phase is passive. During the
procedure, it remains in busy state. On the other hand, the internal transition function,
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when phase is busy, is converted to passive and the output function delivers processed
results in packet through �out port.

state variables
Service-type, H/W-type, O/S-type
Registered-User-list, Queue-size, etc.

external transition function
case  input-port

�in:  case  phase
passive:  execute  command-table(command)

hold-in  busy  processing-time
busy :     continue

else: continue       

internal transition function
case  phase

busy:  passive

output function
case  phase

busy: send  packet(result)  to  port  �out

Component Model

(a) Network component model

state variable
scenario-type, target-host

external transition function
case  input-port

�in:  case  phase
passive:  next command := scenario-table

hold-in  active  attacking-time
active :   continue

else: continue       

internal transition function
case  phase

active:  passive

output function
case  phase

active: send  packet(command)  to  port  �out

Attacker Model

state variable
num-attack, num-success-attack, vulnerability

external transition function
case  input-port

�in:  store  result-table(command, states)
else: continue       

internal transition function
case  phase

active:  passive

output function
case  phase

active:  analyze  result

Analyzer Model

(b) Attacker model (c) Analyzer model

Fig. 5.  DEVS representation of network security models
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Based on this basic behavior model, command-level modeling can be
accomplished by grouping and characterizing of commands that are used in various
services. Table 1 shows an example of command-level modeling using pre/post-
condition representation in Unix. Here pre-condition represents the condition for
executing the command, output represents the results by command execution, and
post-condition represents the changed properties after command execution. For
example, pre-condition for the execution of �rmdir� command is to confirm the
emptiness of the directory for deletion, output should be a directory deletion, and
finally as a post-condition, the directory property should be changed.

Table 1.  Pre/post-condition representation of Unix commands (partially-shown)

Command Pre-condition
(current states) Output Post-condition

(next states)

more - Brows of page
through a text file -

pwd - Return working dire-
ctory name -

rmdir Check the file exist-
ence

Remove directory en-
tries

Change directory attr-
ibutes

cd Check the file exist-
ence

Change working dire-
ctory

Change directory attr-
ibutes

vi Check the file exist-
ence Display or edit file Change file attributes

mv Check the file exist-
ence Move files Change file attributes

rm Check the file exist-
ence Remove file entries Change file attributes

chmod Check the file exist-
ence

Change the permiss-
ion mode

Change permission
attribute

• Attacker Modeling
The attacker model outputs a sequence of attacking commands according to its
attacking scenario. The basic mechanism that produces this behavior is the �next
command := scenario-table� and �hold-in active attacking-time� phrase in the external
transition function shown in Fig. 5(b). This phrase returns the model to the same
phase, active after each external transition and schedules it to undergo a next
transition in a time given by attacking-time. Just before the internal transition takes
place, the output of next command is proceeded by the pre-defined scenario table.

• Analyzer Modeling
The analyzer model is designed to gather the statistics and analyze the performance
index such as the vulnerability of each component on given network. For the
simulation convenience, we have defined the component vulnerability as the number
of successful attacks divided by the total number of attempted attacks. To do this, the
analyzer stores commands that arrive at its �in port on the result table as shown in Fig.
5(c).
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3.3   Layer III: Network Security Simulation System

Fig. 6 shows the overall methodology using the SES/MB. Phase I represents the
conceptual specification stage, in which the decomposition, taxonomies, coupling
specification and constraints of given information network system can be specified by
SES. In Phase II, the network component models as well as the cyber attack, defense,
and consequence models can be built and saved into MB. In phase III, the simulation
model may be constructed by integrating the dynamic models in MB along with the
network structure of the SES so that the cyber attack simulation can be performed.
Finally, the simulation result can be analyzed in Phase IV so that the security
characteristics and policies of each network component may be evaluated.

Vulnerability : 
Treatment : 

Cost : 

Vulnerability : 
Treatment : 

Cost : 

Phase I:
Conceptual 
Specification
- Objectives
- Requirements
- Constraints

Phase IV:
Security Evaluation

Model Base
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Operation

Simulation
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Operation

Simulation
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Fig. 6.  Overall methodology
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4   Case Study

This section examines the feasibility of the proposed methodology through the case
study on the sample network. Fig. 7 shows a sample network for simulation test. It
includes LAN with client and server computers, topology like ring, bus, etc., and
WAN with multiple LAN via router or gateway on Internet. In addition, each node
may be connected to attacker model, thus any node can generate packet. These
packets can move to destination node through node models, topology models, and/or
router models. Node model which receives packet responds in the same way after
conducting commands that are received in the packet. Due to the space limitation, this
case study will provide only an example of simple scenario as follows: �How to
access to a system with no user account by acquiring general user account through
SYN flooding, IP spoofing, and old bugs in SUN O/S v1.4.x [8,9]�

Internet

LAN-A

LAN-B

LAN-D

WAN-ABC

aesop
192.168.1.10

solomon
192.168.1.1

192.168.1.20
Attacker

Cisco 2514
Router

Cisco 2514
Router 172.16.112.1

Gateway

210.129.30.1
Gateway

203.253.146.1
Firewall

NN
TT

9898

Linux

SunOS

NT Server

Windows

LEGENDS

angel
172.16.112.20

brown
172.16.112.30

david
172.16.112.10

frank 
172.16.112.40

locke
203.253.146.139

kant
203.253.146.169

Victim

max
203.253.146.149

hobbes
203.253.146.129

pascal 
210.129.30.5

zeno 
210.129.30.125

hume 
210.129.30.110 NN

TT

LAN-C

NN
TT

NN
TT

NN
TT

9898

calvin
210.129.30.117

9898

9898 NN
TT

Fig. 7.  Simulation model example

Table 2 illustrates the simulation results from cyber attack scenario to acquire
general user account. Here, �Time� means a simulation run time, and �Node� signifies
the name of the nodes showing simulation result and IP address. �What� signifies the
command generated from node or command put in node or processed result.
�Remarks� provides the explanation for �What�. Let us look at simple examination of
cyber attack simulation. First, each of the commands from cyber attack scenario starts
from attacker model, moves to destination node with packet via Link, Router, and
Gateway model. Destination node again delivers command result to attacker node. In
Table 2, Attacker attacks Max node with SYN flooding and the system of Max
downs. Attacker disguises its source address with Max�s IP address and sends a
command to Kant �showmount �e 203.253.146.169� on packet. Due to Kant�s system
bug, input command is performed and Kant delivers the result to Attacker�s



330           Sung-Do Chi et al.

(disguised Max address). By using his disguised address, Attacker performs
consequential commands �mount 203.253.146.169:/usr/foo�, �echo prayccc:
1230:10001:1::: >> passwd�, �echo 192.168.1.20 >> .rhosts�  and succeeds in
acquisition of his own account. Finally, Attacker sends to Kant �rlogin
203.253.146.169� command by using his own account successfully.

Table 2.  Simulation trajectory: �Scenario of general user account acquisition�

Time Node What Remarks

0 : 0 Attacker
(192.168.1.20)

S) 192.168.1.20
SYN flooding
203.253.146.149

SYN flooding attack

0 : 2 Max
(203.253.146.149)

SYN flooding 203.253.
146.149 System down

0 : 9 Attacker
(192.168.1.20)

S) 203.253.146.149
showmount �e 203.253.
146.169

Showmount command

0 : 11 Kant
(203.253.146.169)

showmount �e 203.253.
146.169
Processing OK!!!

Command processed and
reply to 203.253.146.149

0 : 16 Attacker
(192.168.1.20)

S) 203.253.146.149
mount 203.253.146.169:
/usr/foo

Mount command

0 : 18 Kant
(203.253.146.169)

mount 203.253.146.169:
/usr/foo
Processing OK!!!

Command processed and
reply to 203.253.146.149
- Increased Mount Vul-
nerability

0 : 23 Attacker
(192.168.1.20)

S) 203.253.146.149
cd /foo Cd command

0 : 25 Kant
(203.253.146.169)

cd /foo
Processing OK!!!

Change directory to /foo
and reply to 203.253.146.
149

0 : 30 Attacker
(192.168.1.20)

S) 203.253.146.149
ls �alg Ls command

0 : 32 Kant
(203.253.146.169)

ls �alg
Processing OK!!!

List up ==>  -alg
Reply to 203.253.146.
149

0 : 37 Attacker
(192.168.1.20)

S) 203.253.146.149
echo prayccc:1230:1000
1:1::: >> passwd

Echo command

0 : 39 Kant
(203.253.146.169)

echo prayccc:1230:1000
1:1::: >> passwd
Processing OK!!!

Increased user number
Reply to 203.253.146.
149

0 : 44 Attacker
(192.168.1.20)

S) 203.253.146.149
ls �alg Ls command
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Table 2.  Simulation trajectory: �Scenario of general user account acquisition� (continued)

Time Node What Remarks

0 : 46 Kant
(203.253.146.169)

ls �alg
Processing OK!!!

List up ==>  -alg
Reply to 203.253.146.
149

0 : 51 Attacker
(192.168.1.20)

S) 203.253.146.149
su prayccc Su command

0 : 53 Kant
(203.253.146.169)

su prayccc
Processing OK!!!

Changed user ID to
prayccc and reply to 203.
253.146.149

0 : 58 Attacker
(192.168.1.20)

S) 203.253.146.149
echo 192.168.1.20  >>
.rhosts

Echo command

1 : 00 Kant
(203.253.146.169)

Echo 192.168.1.20  >>
.rhosts
Processing OK!!!

Increased rhost number
Reply to 203.253.146.
149

1 : 5 Attacker
(192.168.1.20)

S) 192.168.1.20
rlogin 203.253.146.169 Rhost command

1 : 7 Kant
(203.253.146.169)

rlogin 203.253.146.169
Processing OK!!!

Command processed and
reply to 192.168.1.20

1 : 12 Attacker
(192.168.1.20)

S) 192.168.1.20
Bye Finished

1 : 14 Kant
(203.253.146.169) Attack Succeeded!!! Attack succeeded and

reply to 192.168.1.20

Fig. 8 shows screen copy of SECUSIM system, a network security simulation
system under current implementation. SECUSIM is implemented on the basis of
MODSIM III [10] and enables a simulation of various attack patterns against various
network components. Users can set up initial conditions for simulation by using
windows of each node. They can also try to test various cases by attaching attacker
and analyzer to any particular node. Procedures of simulation can be checked by the
packet-based animation and more detailed procedures can be checked through given
windows. The simulation result can be represented in the total number of attacks and
successful attacks on each node analyzed in analyzer model, and the vulnerability
value.
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Palette
Main
Window

Trans-
mitting
packet

Analyzer
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Attacker
model Victim

model

Node 
Processing
window

Simulation
Clock Node Information Window

Fig. 8.  Implemented cyber attack simulation system: �SECUSIM�

5   Conclusions

This study has discussed so far the network security modeling and cyber attack
simulation methodology that can classify threats, specify attack mechanisms, verify
protection mechanisms, and evaluate consequences. It has employed the advanced
modeling and simulation concepts such as SES/MB framework, DEVS formalism,
and experimental frame concept underlying the object-oriented S/W environment.
Our approach in this work is different from others in that (i) it supports a hierarchical
and modular modeling environment, (ii) it generates the command-level behavior of
cyber attack scenario, (iii) it provides an efficient model building environment based
on the experimental frame concept, and (iv) it supports the vulnerability analysis of
given node on the network. As normal and attack activities are systematically
organized, understood, and captured in our model-based approach for the network
security system, information protection techniques may be designed more efficiently
to cover attacks at various levels and scales of the system for layered, complimentary
defense mechanisms. We leave here future further studies for intelligent attacker
model, distributed simulation, and vulnerability.
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Abstract.  Denial-of-service (DoS) attack is one of the most malicious Internet-
based attacks. Introduction of cryptographic authentication protocols into
Internet environment does not help alleviate the impact of denial-of-service
attacks, but rather increases the vulnerability to the attack because of the heavy
computation associated with cryptographic operation. Nevertheless, many
Internet security protocols including SSL/TLS protocol do not consider this
aspect. We consider this overlooked issue in authentication protocol design, and
propose an effective countermeasure applicable to authentication protocols like
SSL/TLS protocol which adopt public-key based encryption to authenticate the
server to the client.

1 Introduction

Recently, denial-of-service (DoS) attacks have become a growing concern as  Internet
services have been used in more aspects of human life. Many things in human life,
turned out to have their counterpart in the Internet world: the DoS attack would be
one example. In this paper, we focus on the most typical DoS attacks which may be
called connection depletion attacks or resource clogging attacks: an attack in which
an attacker seeks to initiate and leave unresolved a large number of connection
requests to a Web server, exhausting its resources and rendering it incapable of
servicing legitimate connection (or service) requests. SYN flooding attack in TCP/IP
networks is the most well known example of this kind [Cert96, Fred99]. This attack
exploits a weakness in the TCP connection establishment protocol. Attempting to
establish a TCP connection, the client sends the server a SYN message. In response,
the server sends a SYN-ACK message, and prepares the connection by allocating
buffer space. The client then finishes establishing the connection by responding with
an ACK message. After this sequence, both entities can exchange the service-specific
data. The attacker, however, does not follow the above sequence of messages. He
simply fails on purpose to send the third message, namely ACK to the server, leaving
the session half-open. The attacker may initiate large amounts of SYN messages
simultaneously, causing the server to be unable to handle the legitimate connection
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requests. A detailed analysis of this attack and possible remedies are described by
Schuba et al. [Schu97].

Using an authentication protocol in Internet environment is orthogonal to
prevention of DoS attacks. Authentication protocols themselves do not help prevent
denial-of-service attacks but instead may give rise to another environment for denial-
of-service attacks. Usually to run an authentication protocol, the involved entity has to
assign to it a particular session and some memory to keep relevant data resulting from
message exchanges and related computation during the execution of it. Thus, although
the notorious SYN flooding attacks can be minimized through careful design and
operation of the Internet communication systems, the introduction of authentication
protocols just opens up another door to similar denial-of-service attacks.

This problem concerning authentication protocols and DoS attacks is well
understood and a lot of previous work is invested to address it; a detailed survey of
the related work can be found in [ANL01, LNA00]. The most well studied and
promising approach to date seems to be for the server to use cookies against a
potential attacker. The concept of cookies for use in the context of client-server
transactions started from �Netscape Cookie� in 1994 as part of the feature set of
Netscape Version 1.1 [Laur98]. Since then, most Web browsers including Microsoft
Explorer adopted cookies.

Cookies are pieces of information generated by a Web server and stored in the
user�s computer, ready for future access [Scho99]. Basically the same concept of
cookies started to be used to thwart DoS attacks on cryptographic protocols, the first
example of which seems to be Photuris protocol by Karn and Simpson (most recent
version 1999 [KaSi99] but originally published 1995). Several Internet security
protocols followed this trend, including SKEME [Kraw96], OAKLEY [Orma98]. The
basic idea of cookies in these protocols is as follows. When a client attempts to make
a connection the server sends back a cookie which is a function of a secret known
only to the server and other information unique to the particular connection. At this
stage the server stores no state for this request. The client needs to return the cookie in
the next message and its validity can be checked by the server from the information
sent and its secret. The idea is to ensure, before investing significant resources, that
the client is making a unique request for connection. This technique addresses the
denial of service attacks in which the adversary sends random connection requests.

The benefits of stateless connections in the beginning of an authentication protocol
were recognized by Janson et al. [JTY97] in the KryptoKnight protocol suite, and this
concept was generalized by Aura and Nikander [AuNi97]. Their idea is to make the
client store all the state information required by the server and return it to the server
as necessary with each message sent. In this way the server need not store any state
information. The cookie approach can be considered a special instance of the stateless
connection approach in the sense that a cookie generated by the server can contain a
session specific information, is stored in the client system, and later delivered back to
the server to be verified.

A cryptographic puzzle for the client to solve to initiate a connection with the
server is another approach to solving DoS attack problems. Dwork and Naor
[DwNa98] first presented this concept in the context of electronic junk mailing, and
later Juels and Brainard [JuBr99] presented a simpler client puzzle for the server to
combat TCP SYN flooding attacks. The same concept was further developed by Aura
et al. [ANL01] to address DoS attacks against authentication protocols. In this
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scenario, the server in an authentication protocol can ask the client to solve a puzzle
before the server creates a protocol state or computes expensive public-key related
computations. In this way, the puzzle helps improve the DoS-resistance of an
authentication protocol.

It can be seen that each of the countermeasures against DoS attacks that we have
described carries some cost. If cookies are used as an initial stage in an authentication
protocol then additional message exchanges are usually required; this can be a
significant overhead in some applications such as the limited signalling channels in
mobile communications. Making a protocol stateless may require significant changes
to the protocol structure and also increases storage and bandwidth requirements on the
client side. Finally the use of cryptographic puzzles imposes a computational burden
on both client and server as well as requiring additional message exchanges.

In this paper, we propose a new countermeasure against DoS attacks for client-
server security protocols in which the client authenticates the server by sending a
random nonce encrypted under the public encryption key of the server. Such protocols
include SSL/TLS [RFC99], SKEME [Kraw96], and the authentication and key
agreement protocol of the PACS (Personal Access Communication System), one of
the six PCS standards in North America [Bell94], [JTC94].

Our approach is on the same line of Aura and Nikander�s stateless connection
concept in that both approaches purport to make the cryptographic protocols
themselves more robust against the attacks. Our approach has something in common
with the client puzzle concept in that both use some cryptographic mechanisms to
combat the DoS attacks, but differs in that our method can apply and be integrated
directly into the authentication and key-establishment protocols themselves. This
provides a mechanism for the design of more robust protocols. Our scheme requires
only a minimal overhead on both the client and the server. The only limitation of the
new method is its usage applies only to a specific type of authentication protocols as
stated earlier.

Notation
Throughout the paper, symbols A and B will denote the identities of the client and the
server. Symbols like Xr denote a random number or nonce generated by principal X.
The private and public keys will be written as XK and 1−

XK , respectively. The
encryption of some message under key K will be denoted by K}{• and the digital
signature under key of some message under X�s private key by {•}KX

-1. The hash
operation of some message will be denoted by )(•hash  or )(•H .

2 Server Authentication and Random Numbers

To authenticate the server with any cryptographic challenge-response mechanism, the
client chooses a random number and sends it to the server. According to the way this
random challenge is handled, we may have two different methods of authentication.
The first is that the client can send it in the clear and then the server signs over it with
its own private key. The corresponding certified public verification key is available
publicly and so the client can check whether the signature was generated by and came
from the server. The unpredictability and randomness of the random challenge
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guarantees the required freshness of the signature: i.e., the server has generated the
signature for the current session, not for another old session.

The second alternative is to encrypt the random number under the public
encryption key of the server before delivery to the server. The authentic server is then
the only entity to be able to retrieve the random number from the ciphertext. The
server�s response to the client with the decrypted random number provides the
authenticity of the server�s identity.

Each of the above two schemes has its own strengths and weaknesses. As far as
denial-of-service attack is concerned, however, the latter method is preferable. This is
because in the latter method the random number from the client is not just a random
number but an encrypted message thereof, which may be exploited to accommodate a
countermeasure against the DoS attack. The basic idea of the countermeasure is to
implant a cryptographic salt or a random number chosen by the server in the public-
key encryption operation by the client. That is, the client is required to encrypt a
random nonce which he received from the server as well as his own fresh nonce. This
is quite an unusual usage of random nonce encryption in public-key based
authentication protocols. On receipt of the encryption message of random nonces, the
server is able to check whether the message has been formed correctly since it leads to
the successful retrieval of the server�s random nonce after decryption only when the
message has been formed correctly.

Figure 1 depicts this concept in more detail.

 

rB

{rA, rB}KB

Check if the sent and received 
values of rB match

Susequent message flow as specified in authentication protocol

Client Server

Fig. 1.  A random number can be used as a kind of cryptographic salt to combat the DoS attack.

In the above figure, we assume that the client authenticates the server by sending the
second message which is encrypted under the server�s public encryption key, BK .
Furthermore, it should be noted that the first two messages just comprise a part of an
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authentication and key establishment protocol, which we want to make more robust
against DoS attacks. The steps in this scheme can be outlined as follows.

1. The server B chooses a random number Br and sends it to the client A.

2. On receipt of Br , the client chooses its own random number Ar  and encrypts it
together with Br  using the server�s public key BK ; the resulting ciphertext
{ Ar , Br }KB  is sent back to the server.

3. On receiving the encryption message, the server decrypts and retrieves Br  and
Ar from the received ciphertext. The value of the retrieved Br  and the value of Br

which has been sent to the client should match; otherwise the server concludes that
the received message is simply a garbage value sent by a malicious attacker.

Without using this kind of countermeasure, there is no way for the server to check
whether the received ciphertext is really the result of a proper cryptographic
computation and whether the computation has occurred for the current session.
Otherwise even for a garbage or old message attack the server will execute a public
key computation for decryption, send the subsequent message to the attacker, and
finally will result in a state of the session left open waiting the next message from the
attacker, which is simply given up by the attacker.

It can be seen that in a protocol in which the client already sends the challenge Ar
encrypted using the server�s public key BK there is only a small change in the
protocol messages and minimal additional computational effort required. This is in
contrast to other DoS countermeasures which may require additional messages, extra
computation, and/or significant alterations to the protocol specification. In practice it
is often possible to include the challenge from the server in an existing message, as
we will see below.

In the next section, we demonstrate that the above technique can be easily applied
to a typical Internet security protocol SSL/TLS where the ServerHello message and
the ClientKeyExchange message correspond to the first and the second messages,
respectively.

3 SSL/TLS Protocol

The SSL protocol has become a de facto standard for the Internet security, and its
latest version 3.0 is used as the core protocol TLS by the IETF Transport Layer
Security working group. The SSL/TLS protocol uses public key cryptography for
authentication and key-establishment. Some analyses of cryptographic security of the
protocol have been published, such as Paulson�s formal inductive analysis [Paul99],
and Wagner and Schneier�s informal analysis [WaSc96]. Both analyses concluded
that the protocol has no weakness with regard to its basic structure. We show below
its simplified abstract description which is adopted from Paulson�s abstract version of
the protocol, where optional messages are boxed in dotted line.
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Protocol 1. A simplified description of the TLS handshake protocol
A: Client, B: Server

1. A → B:  A, Ar , Sid, Pa client hello

2. A ← B:  Br , Sid, BCert, Pb server hello, server certificate

3. A → B:  ACert,   { ’
Ar }

BK ,  { hash( Br , B, ’
Ar ) } 1−

AK ,  { finished } A
ABK

client certificate, client key exchange, certificate verify,
client finished

4. A ← B: { finished } B
ABK

 server finished

A, B:  M = hash( Ar , Br , ’
Ar ),  finished = hash(Sid, M, Ar , Br , Pa, A, Pb, B )

Here we use slightly different notation from Paulson�s description of the TLS
protocol; Ar  and Br  replaces the original Na and Nb called client random and server
random, respectively. Another random nonce Ar  denotes the pre-master-secret
(PMS), which serves as a challenge data to the server B. The public key certificates of
the client and the server are denoted as ACert and BCert, respectively. Sid means the
session identifier. The notations {•}KB and {•}KA

-1 stand for the message encryption
under B�s public encryption key BK  and the signature with the A�s private signature
key.  Using Ar , Br  and M, the principals A and B compute the session keys A

ABK and
B
ABK to be used for A-to-B and B-to-A encryptions, respectively. Pa and Pb comply

with the original notation, which mean the sets of A and B�s preferences for
encryption and compression, respectively.

We can see that Br  in the message 2 of the SSL/TLS protocol, and { Ar }KB can
serve a good vehicle for the countermeasure described in the previous section. That is,
{ Ar }KB can be modified to { Ar , Br }KB. The countermeasure is a very reasonable
mechanism worthy to be considered for the SSL protocol because there is no
additional public-key encryption/decryption required. Furthermore, it should be noted
that the concatenation of Ar  and Br  is not the only way to implement the idea of the
countermeasure. For instance, instead of { Ar , Br }KB , we can adopt, for example, the
following alternative:

)(,}{ ’’
AKBA rhashrr

B
+ .

In this way, we can keep the length of the encrypted message as the original one. The
server decrypts the received ciphertext and subtracts the value of Br  from the
decrypted value and takes hash value of it, comparing it with the received value of
hash. The benefit of this countermeasure can be made clearer by comparing the
significance of DoS attacks for both cases: the original protocol and the modified one,
as shown in the table below.

Original SSL/TLS Modified SSL/TLS
After a DoS attack the server

has spent one decryption and one or two
signature verifications,

one decryption,

and is left in a state of one half-open session. no half-open session.
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Here both decryption and verification are public-key based operations, and the
original protocol requires two signature verifications when the client authentication is
needed: one for the client certificate verification and another for the client signature
verification. The countermeasure cannot prevent DoS attacks completely, but
significantly mitigates the damage of the attacks with no additional public key
operation or extra message exchange at all.

It is very important to note that the cryptographic salt explained so far is distinct
from the idea of cookies. A cookie is a function of session specific information
whereas a cryptographic salt is simply a nonce chosen arbitrarily by the server. Both
ideas, however, may be combined as shown in the next section.

4 Cookies Combined with the New Countermeasure

The random number Br  in the countermeasure can be generated in a way similar to
cookies in the Photuris protocol, thus enabling the server to achieve even more
robustness against DoS attacks. Usually at the point of the delivery of Br  the server is
expected to assign a unique session to the service requesting client. In this situation, a
particular value of Br  is also uniquely related to the corresponding session. The value
of Br is stored in a memory within the server system to be compared with the
received value of Br  from the client. The problem of this scheme is very similar to
that of TCP/IP based client-server model which leads to the notorious SYN flooding
attacks. In other words, the server must wait the second message in the above figure
after it sends Br  to the client. This problem can be avoided by the server delaying the
assignment of a particular session resource to the client until the client proves that he
has correctly carried out the encryption of the two random nonces. In other words, the
server does not couple a specific value of Br  with a particular client before the client
computes and sends the required cryptographic message.

To obviate the need to store the values of Br , the server prepares a suitable hash
function H, selects a random master key masterK  and selects a sufficiently large value
as the modulus M of the index for Br . Here, the index runs from 0 to M � 1. When a
new value of Br  is required, the server runs the hash function with the master key and
the current index as the inputs, the hash result of which will be used as the value of

Br  (Figure 2).

Hash Function
H

Master Key  Kmaster

Index of rB index_rB

rB

Fig. 2.  Generation of random number Br



             Cryptographic Salt: A Countermeasure against Denial-of-Service Attacks           341

The following Figure 3 shows an example using this Br  generation method together
with the countermeasure described before. The process is outlined in the following
steps.

          

Client Server

Service Request

rB,  index_rB

� Select a random nonce rA. 
� Generate the encryption message

{rA, rB}KB

index_rB, {rA, rB}KB

decrypted value of  rB
=?

Computed/retrieved value of  rB

� Re-compute rB = H(Kmaster, index_rB)
or retrieve it from the lookup table.

� Proceed the subsequent step of the 
authentication protocol

Yes

� Quit this session (the client is trying 
DoS attack!)

No

� Compute  rB = H(Kmaster, index_rB).

� Increment the value of index_rB.

Fig. 3. The cryptographic salt Br  as a cookie

1. In response to a service request from the client, the server generates a new value of
)_,( BmasterB rindexKHr = , increments the index parameter index_ Br , and

sends the client the values of Br  and index_ Br .
2. On receipt of Br  and index_ Br , the client generates his own random nonce Ar ,

encrypts Ar  and Br  under the public encryption key BK , and sends the server the
plaintext index_ Br  and the ciphertext { Ar , Br }KB.

3. When the server receives the response from the client, using the received value of
the parameter index_ Br , it retrieves from a look-up table or, alternatively, re-
computes the corresponding value of Br . The server also decrypts the received
ciphertext { Ar , Br }KB , and retrieves the value of Br , which is compared with the
value of Br  which was generated by itself using the given value of index_ Br .

4. If both values match, the server is assured that the client has formed the ciphertext
honestly and sent the ciphertext { Ar , Br }KB . This leads the server to the next step
specified in the authentication protocol to which the protection scheme is applied.

5. On the other hand, if the match fails, the server may conclude that the client is
trying a DoS attack by sending a bogus message which has nothing to do with the
correct cryptographic operation to compute the cipher text { Ar , Br }KB .
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The usage scenario of Br  as a cookie is just an example, and there may be as many
usages as different uses of cookies. It should be noted, however, that the basic idea of
the new countermeasure presented in this paper is rather independent from cookies. In
other words, the cryptographic salt Br  as described in this paper may or may not be
cookies. Rather, the new countermeasure can be more effective when combined with
the cookie scheme.

5 Conclusion

We proposed a new concept of protecting a particular form of authentication
protocols like the SSL/TLS protocol against the connection depletion attack. The
cookie, an existing countermeasure, is useful against the DoS attack, but useless for a
determined attacker because the cookie data can be eavesdropped by the attacker. The
client puzzle approach solves the problem but requires additional computational
overhead in both the client and the server. Our new concept solves all these problems
without minimal overhead because it requires no additional public-key operation. In
some concrete implementations of the concept, it may require one extra hash
computation, which is practically insignificant. Furthermore, this protection method
can be combined successfully with the existing cookie mechanism as well, providing
more robustness against the DoS attack.
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Abstract. The internet revolution and modern applications require
more bandwidth capacity as a result of the increasing amount of peo-
ple using e.g. web-based applications with their enhanced quality and
performance. Today, modern networks like ATM and SDH/SONET do
not only have to fulfill the demand of higher transmission rates but also
have to provide and to guarantee data security and especially data confi-
dentiality. Therefore, new or modified cryptographic modes of operation
are required. These modes provoke an error propagation which has an
impact on the Quality of Service (QoS) parameters of the network. The
influences on an ATM network are examined for the CBC, Statistical
Counter Mode, a new mode of operation and the ATM Counter Mode,
which needs additional bandwidth for synchronization purposes.
For SDH/SONET networks we suggest another mode of operation, called
the Statistical Self-Synchronization, combining the advantages of the
CFB and OFB mode. In synchronous networks it is the only mode that
does not require additional bandwidth and is self-synchronizing with
acceptable augmentation of error rates. The impact on the error perfor-
mance is discussed and guidelines for adjusting selected cryptographic
parameters are presented.

1 Introduction

The development of efficient, digital transmission systems is a result of the in-
creased requirement of bandwidth capacity over the last years. The Synchronous
Digital Hierarchy (SDH), Synchronous Optical Network (SONET) and the Asyn-
chronous Transfer Mode (ATM) are the technologies that do not only fulfill this
demand, but also offer the possibility of enhanced network management and
controllable Quality of Service (QoS) for different services.

These networks require adequate security features to protect the processed
information and the network management. The ATM Forum has established
a framework of specifications that defines objectives for security requirements.
The security requirements for ATM networks originate from confidentiality, data
integrity and accountability for all ATM network service invocations and man-
agement activities. To ensure data confidentiality during the transmission, en-
cryption technology is highly important. Because of the high transmission rates
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and the consideration of the negotiated QoS-parameters new or modified modes
of operation are required.

The ATM Forum recommends the Cipher Block Chaining (CBC) and ATM
Counter Mode for the usage in ATM networks. The ATM Counter Mode has the
disadvantage that additional bandwidth for security purposes is necessary and
that the occupied bandwidth is no longer available for user data. This results
in further cell losses, depending on traffic load and buffer capacities of the se-
curity devices. To overcome this disadvantage and new mode of operation, the
Statistical Counter Mode is introduced.

In SDH the standardized and fixed frame structure does not allow addi-
tional synchronization information of the crypto algorithm. The Statistical Self-
Synchronization is the suggested technique which ensures the synchronization
even in case of bit-slipping. This mode of operation guarantees that the cor-
rect plaintext is computed at the receiver’s side after an error propagation has
occurred.

The paper is organized as follows: In Sec. 2 the ATM technology is briefly
introduced. Section 3 gives a short overview of SDH/SONET. Section 4 con-
centrates on the modes of operation of block ciphers and two new modes of
operation, the Statistical Self-Synchronization and Statistical Counter Mode are
presented. Sections 5 and 6 focus on the impact of modes of operation on the
error performance in SDH networks and Quality of Service parameters in ATM
networks. Finally, the paper is summarized and suggestions for future work are
given.

2 ATM

Asynchronous Transfer Mode is based on the definition of the B-ISDN Protocol
Reference Model specified in ITU I.321 [5]. It supports integrated voice, data,
and video communications for available services as well as for future services not
yet defined. ATM has become one of the leading network protocols, because it is
highly scalable, fast and efficient, suitable for service integration, and provides
Quality of Service.

In ATM the information to be transmitted is divided into short 53 byte fixed-
length units called cells, which have a 5 byte header and a 48 byte payload. The
reason for such a short cell length is that ATM must deliver real time service
at low bit rates and thus it minimizes packetization delay. ATM networks are
connection oriented with virtual channels and virtual paths. The virtual channel
carries one connection while a virtual path may carry a group of virtual chan-
nels. This ensures that cell sequence is maintained throughout the network. The
virtual channel is identified by the Virtual Channel Identifier (VCI), and the
virtual path is identified by the Virtual Path Identifier (VPI). Both the VCI
and VPI are stored in the header of the cell and may change within the net-
work. These values are assigned during call establishment while using a Switched
Virtual Connection (SVC) or Permanent Virtual Connection (PVC).
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The reference-model consists of the ATM Adaption Layer (AAL), the ATM
Layer and the Physical Layer:

– ATM Adaption Layer (AAL)
The ATM Adaption Layer adapts the data structure of higher-layer-services
to the cell structure of the ATM Layer.

– ATM Layer
The ATM Layer is responsible for the transparent transfer across pre-estab-
lished connections and is independent of the used service and physical in-
frastructure.

– Physical Layer
The main task of the Physical Layer is to adapt cells from the ATM Layer
to the physical infrastructure.

3 SDH

SDH and SONET are transmission systems with unlimited increasing transmis-
sion rates that originally have been developed for the use in Wide Area Networks
(WANs). Nowadays they are also used for ATM in Local Area Networks (LANs).
The standards for SDH and SONET contain not only the definitions of interfaces,
e.g. transmission rates, formats and multiplexing techniques and error perfor-
mance objectives, but also recommendations for network management. SDH and
SONET have similar characteristics. SONET is mainly used in North America
and is based on a standard frame, called Synchronous Transport Signal Level 1
(STS-1), with a transmission rate of 51.84 Mbit/s. SDH, which is based on a
standard rate of 155.52 Mbit/s is widely spread in Europe. The standard SDH
frame is called Synchronous Transport Module 1 (STM-1) [6].

SDH has a modular structure, in which the STM-1 builds the basis for all
higher transmission rates. Higher transmission rates are gained by bytewise mul-
tiplexing 4·n STM-1 frames (n = 1,2, etc) to one STM-4·n-frame. In this way the
next level of the hierarchy is the STM-4, which offers a capacity of 622 Mbit/s.

In synchronous networks the clocks of the network providers synchronous
switching equipment are locked to one common clock. The objective of network
synchronization is to minimize the number of byte slips. In case of clock dif-
ferences between network nodes, up to three bytes can positively or negatively
be stuffed into one transmission frame. Therefore, bit- or byte-slipping can only
occur if these thresholds are exceeded or in case of a frame buffer overflow or
underflow. This error needs to be taken into consideration even if the probability
of bit- or byte-slipping is extremely low.

The overhead on the STM-1 frame contains bytes for frame synchroniza-
tion, signaling of the frame structure, service quality monitoring, path identi-
fication, alerts and alert responses. These specific parts of the frame must not
be encrypted. Some overhead bytes bypass the encryption and enter the next
overhead respectively to be transmitted in plaintext. Section 5 summarizes the
error performance objectives which are described in ITU-T G.826 [8] and ITU-T
G.829 [10].
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4 Encryption

A block cipher encrypts plaintext blocks of a fixed size of n bits, whereby usual
values for n are 64 or 128. For messages exceeding n bits, the simplest approach is
dividing it into n-bit blocks and encrypt each block separately. This native mode
of a block cipher, the Electronic Codebook Mode (ECB), has disadvantages in
most applications. Enciphering each block separately results in separate pieces of
ciphertext which the adversary can analyze and abuse. A method of enciphering
successive blocks is necessary, making the cipher meaningless except in the given
sequence.

Two ways of generating such a sequence are common. The first solution
is the concatenation of a ciphertext blocks with all preceding blocks due to a
chaining operation like in Cipher Block Chaining mode or a feedback operation
as in Cipher Feedback Mode (CFB) mode. The other one is the generation of
a pseudo-random binary sequence that is added modulo-2 with the plaintext
binary sequence like it is done in Output Feedback Mode (OFB). These ciphers
are called binary additive stream ciphers.

The four modes of operation, defined so far in ISO 10116 [2], are quite dif-
ferent in their properties regarding security, synchronization, error propagation,
delay and throughput. (Note: ISO 10116 is currently been revised. It will be ex-
tended by new modes appropriate for high-speed applications, e.g. the Counter
Mode and the Statistical Self Synchronization, at the next release).

4.1 CBC-Mode

A method of using the algorithm in which the ciphertext blocks are concatenated
is called the (CBC) mode. Figure 1 demonstrates how the CBC mode is used to
encrypt a message. The content of the Shift Register at the beginning is called
the Initialization Vector. The CBC mode requires complete blocks of 64 bits
until the final block is encrypted. The length of the feedback register is extended
to allow parallel encryption (pipelining) for usage in high-speed networks.

Fig. 1. CBC-Mode

The operation of enciphering each plaintext variable employs the following
steps. First the leftmost n-bit of the feedback register have to be selected. The
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input to the cipher engine is defined to be the XOR of the data and the content
of the feedback register. The ciphertext is generated by ciphering the cipher
engine input. The bits of the feedback register are shifted left by n places and
the ciphertext is inserted in the rightmost n places, to produce the new value
of the feedback register. The new n leftmost bits are used as the next input
of the encipherment process. These steps are repeated until the final block is
encrypted. The final data block of a message or record may contain less than
64 bits when processing in the CBC mode. In this case either the plaintext block
must be padded to 64 bits or the terminal block must be enciphered in a way
that yields the same number of bits as the input. The steps to encipher the data
are repeated in reverse order to decipher the data again.

One or more bit errors within a single cipher block affect the decryption of
two blocks (the block in which the error occurs and a succeeding block). If the
errors occur, each bit of the corresponding plaintext block has an average error
rate of 50%. A succeeding plaintext block has one bit error at the same position.
Therefore the CBC mode recovers from bit errors, it also recovers from losses
of whole ciphertext blocks, but it does not recover if the block boundaries are
lost. The error propagation of the CBC mode in ATM-networks is described in
Sec. 6.1.

4.2 The CFB Mode

In CFB mode encryption is achieved by XORing the key stream with the plain-
text the output of a key stream generator, where the size of a plaintext character
is n bits. The key stream is generated by the block cipher EK , whereby K is a
secret key. The algorithms input data is buffered in an input shift register. The
ciphertext is fed back into the input shift register, n bits at a time (Fig. 2).

Fig. 2. CFB-Mode

The CFB mode is self-synchronizing. If a synchronization error occurs by
erasing or adding a ciphertext unit of n bits, the decrypting side only gener-
ates corrupt plaintext as long as defect ciphertext units remain in the input
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shift register, this requires n
r ciphertext blocks where r is the length of the feed-

back shift register. The same behavior occurs, if bits have been modified during
transmission.

CFB mode is quite inefficient in terms of encryption speed. One block cipher
operation is required for enciphering n-bit of plaintext. This applies also, if
n = 1 is selected to gain a self-synchronization even in the case of bit slipping.
The one-bit CFB is not suitable for the encryption of broadband networks. In
general, assuming V is the throughput rate of the block cipher implementation,
the effective encryption rate, can be calculated by:

ν = V · n
64

4.3 The OFB-Mode

The Output Feedback Mode (OFB) differs from CFB mode that the output of the
encryption block is fed back into the input shift register instead of the ciphertext.
Hence, a complete output block of the key stream can be XORed with the
plaintext for encryption even if this is achieved only n-bit by n-bit (Fig. 3). The
effective encryption rate therefore equals the encryption rate V of the key stream
generator. Since the key stream does not depend on the plaintext or ciphertext
it may be generated in advance. This type is also called a synchronous stream
cipher.

Fig. 3. OFB-Mode

The fact that the transmitted ciphertext is not used for the generation of
the key stream means that the cryptographic synchronization is completely lost
and cannot be recovered after the occurrence of synchronization errors. The
advantage of the OFB mode is that no error propagation occurs if bits have
been modified during transmission.

4.4 The Statistical Self-Synchronization

The two stream cipher modes of operation of block ciphers described in sec-
tion 4.3 and 4.2 show big differences in their properties. The CFB is self-



350 Oliver Jung et al.

synchronizing, but only offers a low data throughput and error propagation.
The OFB in contrast is not self-synchronizing, but has no error propagation and
offers a higher encryption rate.

The optimal solution would be the combination of both modes of operation.
This is achieved by the Statistical Self-Synchronization [12].

The Statistical Self-Synchronization switches from one mode of operation to
the other and back, whereby synchronization is reached between encryption and
decryption by using the CFB mode. OFB mode is used between the synchro-
nization phases. Loss of synchronization occurs in case of bit- or byte-slipping.
In order to re-synchronize both sides need to be switched to CFB mode. The
encryption and decryption are kept in CFB mode unless the input shift registers
are filled with a complete block of ciphertext. This has to be identical on both
sides. The content is used as a new starting value whereby the OFB mode is
re-used afterwards (Fig. 4).

Fig. 4. Statistical Self-Synchronization

The decryption side is not able to recognize a loss of synchronization. Both
sides search for a fixed statistically distributed bit pattern in the ciphertext
as there is no additional communication capacity between the encryption and
decryption entities to signal a switch in modes. Once the pattern is found, both
sides switch to CFB mode. The length of the bit pattern defines the probability
of the synchronization and needs to be chosen in relation to the probability
of bit slipping. The content of the bit pattern can be selected randomly as all
bit patterns of a fixed length are equally probable in the ciphertext. A bit-slip
causes a loss of synchronization, because the OFB mode is used between the
synchronization phases. Encryption and decryption are out of synchronization
until the bit pattern occurs again in the ciphertext. Switching to CFB mode is
achieved even in the case that no synchronization loss has occurred.

It should be emphasized again, that the bit pattern is generated by the en-
cryption process itself as a result of the encryption of the plaintext. No additional
bandwidth is necessary to signal the synchronization start or re-synchronization
start, respectively.
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A switching to the slower CFB mode implies for the encryption that during
the operation in OFB mode, as many key stream blocks as necessary need to be
stored in the output buffer to encrypt the plaintext during the next synchroniza-
tion phase. Therefore, the encryption rate in OFB mode must be higher than
the transmission rate.

The bit pattern recognition is switched off to permit another synchronization
during the synchronization process.

Assuming that the same key is used for long messages the statistical self-
synchronization might be weakend compared to the OFB in case of known-
plaintext resp. chosen-plaintext attacks. Changing the keys more often and
choosing a block length of more then 64 bit e.g. 128 bit makes the attacks
harder to achieve. As encryption works in output feedback mode the generated
key stream is cyclic like the data of any other pseudo random generator. The
maximum possible cycle length for a 64 bit OFB mode is 264. Leaving the key
unchanged means that the stream generator jumps from one point in the cycle
to another every time re-synchronization is performed.

4.5 The ATM Counter Mode

Overview The ATM Counter Mode, specified in the ATM Forum Security
Specification [1] is a modified version of the Counter Mode, which will be part of
the next revision of the ISO 10116 standard [4],[3]. The difference between the
ATM Counter Mode and the previously introduced CBC Mode is the absence
of a feedback function. Instead encryptor and decryptor are synchronously pro-
ducing identical key streams, based on so-called State Vectors (SV). After the
determination of the key stream the encryptor XORs the key stream with the
plaintext and generates the ciphertext. On the decryption side the XOR of the
key stream and the ciphertext recovers the original plaintext (Fig. 5).

Fig. 5. ATM Counter Mode

Because the Counter Mode allows direct parallelization of the encryption
algorithm, it is well suited for high-speed implementations, such as required for
modern ATM networks. The advantage arises from the fact that the 48 byte
payload can be divided in 6 segments with a length of 64 bit each.
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Cryptographic Synchronization Dependent on the used ATM Adaption
Layer type, a cell loss or bit error in the ATM network can cause a loss of cryp-
tographic synchronization on the decryption side. The result would be that the
encrypted cell can not be correctly decrypted again. To prevent this the decryp-
tor has to use the same SV as the encryptor. To accomplish this the encryptor
sends re-synchronization cells (Session Key Changeover (SKC)) including the
actual State Vector. The SKC cells are sent on a regular basis, dependent on the
bandwidth of the used connection and the negotiated Quality of Service param-
eters. The so-called re-synchronization rate (R) is based on the Cell Loss Ratio
(CLR) and the Sustainable Cell Rate (SCR): R = 10 · CLR · SCR

State Vector The synchronously produced key stream is based on identical
State Vectors (SV). The SV consists of several counters and a Linear Feedback
Shift Register to ensure that unique key stream values are generated for each
encrypted block (Figure 6):

– Galois Linear Feedback Shift Register (LFSR)
The LFSR is a 21 bit linear non-repeating sequence that is stepped once per
cell or per sequence of cells depending on the used AAL type. In case of a
re-synchronization the LFSR is preset to its initial value.

– Initiator/Responder bit
The initiator/responder bit is used to prevent the generation of identical key
streams for each direction in duplex connections.

– Sequence number
The 4 bit sequence number field is filled with the sequence number extracted
from the encrypted/decrypted ATM cell. The length of the sequence number
within the ATM cell is dependent on the used AAL type.

– Segment number
The 48 byte payload of the ATM cell is seperated into 64 bit segments for
encryption and decryption. The 3 bit segment number defines which segment
is being encrypted/decrypted. All other State Vector fields are held constant
for the entire cell payload.

– Jump number
The 35 bit jump number is preset to all zeros at call setup and is incremented
for each re-synchronization and in case of an AAL-5 connection for each
received End-of-Message cell. Because of its length the jump number ensures
an always unique SV.

Fig. 6. State Vector (SV)
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4.6 Statistical Counter Mode

The ATM Counter Mode has the disadvantage that it allocates bandwidth for
synchronizing en- and decryption. This disadvantage can be overcome by using
a new mode, the Statistical Counter Mode.

On the analogy of the ATM Counter Mode, the Statistical Counter Mode
encrypts the plaintext by XOR-ing the enciphered State Vector with the plain-
text. Compared to the ATM Counter Mode, a modified SV is used, as the Jump
Number is not considered. Instead the LFSR is extended to 56 bits for AAL-1
and AAL-3/4 and to 44 bits for AAL-5. Additionally, for AAL-5 a 16 bit counter
for the cells between two End of Message (EOM) cells is used (Fig. 7). The pur-
poses of the other fields remain unchanged. The update of the SV is processed
in accordance to the update mechanisms of the ATM Counter Mode.

Fig. 7. State Vector of the Statistical Counter Mode

Without allocating bandwidth and without sending re-synchronization cells
the synchronization process is maintained by scanning the ciphertext for a pre-
defined Bit Pattern (BP) in the 2nd byte of each user cell payload. The cell
containing the bit pattern is called Bit Pattern Cell (BPC). Since the first byte
of the payload is not random, it cannot be used as it may contain the sequence
number. The re-synchronization rate is determined by the length of the bit pat-
tern. If the defined bit pattern occurs in the ciphertext, the following 56 bits
are stored and encrypted. They serve as a new value for the LFSR. The value
that has been extracted from the ciphertext is random and therefore an already
used value can recur. To prevent an attacker from getting knowledge about the
used LFSR, the ciphertext is enciphered again before it is used in the new SV,
even if the probability of the repeated LFSR content is very low. Furthermore,
in contrast to the ATM Counter Mode, the value of the LFSR should be kept
secret. Figure 8 shows the Statistical Counter Mode for ATM.

The re-synchronization rate is defined by the length of the bit pattern. The
shorter the bit pattern is chosen, the more often re-synchronization is performed.
The average re-synchronization rate should be the same as in the ATM Counter
Mode. It can be calculated by:

R =
1

2BPL
= 10 · CLR · SCR (1)



354 Oliver Jung et al.

Fig. 8. Statistical Counter Mode

Respectively, the length of the bit pattern is derived by:

BPL =
log(2)

log(10 · CLR · SCR)
(2)

Since different bit patterns of the same length have the same probability (P =
1/2BPL), the distances between the synchronization events are geometrically
distributed with mean 2BPL. Thus, the probability of the distances d can be
derived by:

f(d) =

{
1

2BP L · (1 − 1
2BPL )d−1 for d ε {1, 2, ...}

0 others
(3)

The exact time of re-synchronization cannot be foreseen, as the occurrence
of the bit pattern is statistically distributed.

New problems arise due to transmission errors that affect the bit pattern
cell. Under the assumption that all bits in an errored cell are unusable, in an
errored BPC, the bit pattern itself as well as the new starting value are errored.
Therefore, the decryption is not able to detect the bit pattern which finally leads
to loss of synchronization. The same problem arises if a cell is errored in that
way, that a new bit pattern is created. The decryption would detect a pattern
which the encryption did not detect. If the BPC is lost, the decryption produces
corrupt plaintext until re-synchronization is performed again.

5 Impact of Security on Error Performance in
SDH/SONET

In contrast to ATM, SDH does not offer any possibility to provide additional
bandwidth for cryptographic synchronization methodologies. Hence, the mode
of operation for an encryption in SDH networks has to be self-synchronizing and
to offer an adequate throughput rate. Due to this needs the only appropriate
mode of operation is the Statistical Self Synchronization.
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Using the Statistical Self-Synchronization provokes a new source of errors.
Loosing the cryptographic synchronization means that all bits are errored until
the synchronization is re-established. There are three possible reasons for the
loss of synchronization:

– A bit- or byte-slip (Event E1)
– An errored synchronization pattern (Event E2)
– A new synchronization pattern is generated by an error (Event E3)

Frame alignment in SDH is found by searching for the framing pattern con-
tained in the SOH of the STM-N signal as specified in ITU-T G.783 [9]. The
frame signal is continuously checked with the presumed frame start position for
alignment. If no framing pattern is found in the presumed bit position Out-
of-Frame (OOF) is declared. In the OOF condition the SDH payload may be
corrupt. If in the OOF state the maximum frame alignment time shall be 250 µs
for an error-free signal with no emulated framing patterns. In case of a bit- or
byte-slip the frame alignment is lost as well as the cryptographic synchroniza-
tion. Frame alignment is gained again 250 µs after the correct framing pattern
has been found. The encryption algorithm is not synchronized until the synchro-
nization pattern is found in the ciphertext. For this period of time the decryption
generates erroneous plaintext.

An errored synchronization pattern as well as an erroneous generated syn-
chronization pattern have the effect that cryptographic synchronization is lost.
In that case only one of the participating parties performs a re-synchronization.
The encryption is out of synchronization until the next occurrence of the syn-
chronization pattern.

The probability for both events, the errored synchronization pattern and the
erroneous generated synchronization pattern are equal. The length of the syn-
chronization pattern has to be adapted to the BER and the slip rate. The dom-
inating events are the events E2 and E3 as slipping occurs rarely. The longer
the synchronization pattern is chosen the smaller is the probability for these
events and for a disturbed decryption. The occurrence of a longer synchroniza-
tion pattern has a lower probability which results in a longer period without
synchronization.

A demand on the encryption is the transparency regarding the SDH frame
structure and management data. Erroneous decryption cannot be detected by
the error detection mechanisms of SDH. If e.g. an ATM signal is mapped into
the VC-4, errors can only be detected by the ATM network equipment.

Monitoring the BER in terms of G.826, a loss of cryptographic synchro-
nization causes a burst error and thus a SES, but it is not detected by the SDH
equipment. This is troublesome for the signal that is carried by the SDH network
and recovered from a path terminating node as the data is corrupt. The encryp-
tion has to be adjusted for an optimized error performance which is reached by
choosing the appropriate length of the synchronization pattern.
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6 Impact of Security on QoS in ATM

Providing security in ATM networks is an important aspect to guarantee the
confidentiality of the transmitted data. New security devices which offer differ-
ent encryption algorithms and modes of operation are necessary to fulfill these
demands. The CBC and ATM Counter Mode are the recommended modes of
operation by the ATM Forum in their Security Specifications. The ATM Forum
suggests the DES and FEAL algorithms for the encryption in ATM networks.

All security devices have in common that the performance parameters (Tab. 1)
defined in ITU-T I.356 [11] are influenced. This arises because of the transit de-
lays, delay variations and obviously the error propagation of the modes. Hence,
the degradation of the QoS parameters depends on the used mode of operation
and implementation.

Table 1. ATM Performance Parameters

Acronym Parameter Meaning

CER Cell Error Ratio ratio of total errored cells to
total transferred cells

CLR Cell Loss Ratio ratio of total lost cells
to total transmitted cells

CMR Cell Misinsertion Rate the number of misinserted cells
per connection second

CTD Cell Transfer Delay the time between the occurrence
of two corresponding successful
cell transfer events

CDV Cell Delay Variation variability in the pattern of cell arrival
events at an measuring point

SECBR Severly Errored ratio of total severely errored
Cell Block Ratio cell blocks to total cell blocks

Especially the time dependent parameters (CTD and CDV) are highly ad-
dicted to the hardware or software implementation. Features like key agility and
algorithm agility have a strong impact on the performance because these features
lead to additional delay and delay variations, but are out of scope.

If modes of operation that require additional bandwidth (e.g. the ATM
Counter Mode) for synchronization purposes are used, it is recommended to
assume that the additional bandwidth is available and reserved during the call-
establishment. Otherwise it would lead to an increment of the cell loss ratio,
because a cell loss may be unavoidable each time a SKC cell is inserted. Ev-
idently, the influence on the QoS parameter not only depend on the mode of
operation, but strongly on the implementation and traffic characteristics.

The influence of the used mode of operation on the dependability parameters
(CER, CLR, CMR) are described in the following sections. The impact of the
implementation and the specific aspects are out of scope.
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6.1 Impact of the CBC-Mode

As described in ITU I.432.1 [7], the synchronization mechanism verifies the in-
tegrity of every incoming cell and rejects invalid cells. Consequently only valid
cells are transmitted to security devices and therefore, the CBC Mode in ATM
networks self-synchronizes from bit errors and cell losses.

The CBC Mode does not require any bandwidth for re-synchronization pur-
poses. Thus, this mode does not have any influence on the CLR. Misinserted
cells are usually caused by errored routing tables. Naturally, security devices do
not have any routing purposes and therefore the CMR does not change.

The modification of the CER depends on the CLR, CMR and CER itself.
Supposing the parallel encryption of m blocks, the cell loss of an encrypted cell
leads to A = 1 +

⌊
m−1

6

⌋
errored cells. The same number of cells is errored after

each misiserted cell. An errored block in cell i leads to one additional errored
cell in cell i+A.

6.2 Impact of the ATM Counter Mode

Compared to the CBC-Mode the ATM Counter Mode is a non-self-synchronizing
stream cipher which results in the necessity for a re-synchronization protocol.
The re-synchronization with SKC cells (Sect. 4.5) implicates a demand for addi-
tional bandwidth. Assumed that the additional bandwidth is requested during
call setup the CER, CLR and CMR have several effects depending on the used
AAL type.

A cell error does not result in a error propagation as long as the cell error does
not occur in a SKC cell. In this case all cells up to the next re-synchronization cell
cannot be decrypted correctly. In an AAL-1 or AAL-3/4 connection, a corrupted
sequence number in the ATM payload would lead to the same result.

In case of an used AAL-1 or AAL-3/4 ATM connection a cell loss has an
error propagation if the SKC cell is lost. Again all cells up to the next re-
synchronization cell cannot be decrypted correctly. For an AAL-5 connection a
cell loss means that all cells up to the next End-of-Message cell (EOM) or SKC
cell are errored. In case of a lost SKC or EOM the synchronization is lost up to
the next SKC cell.

For all AAL types a misinserted ATM cell results in an errored cell stream
up to the next SKC cell. The ATM Counter Mode does only have an impact on
the Cell Error Ratio and not on the CLR and CMR. Table 2 shows all error and
re-synchronization events.

6.3 Impact of the Statistical Counter Mode

As the Statistical Counter Mode for ATM is based on the ATM Counter Mode,
the error expansion is similar. This concerns the impact of cell losses and cell
errors of user cells not containing the re-synchronization pattern as well as misin-
serted cells. Differences only occur if the cell containing the re-synchronization
pattern is affected. This may happen if this cell has an errored re-synchronization
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Table 2. Re-Synchronization in ATM Counter Mode

AAL-1 & 3/4 AAL-5

Cell Error (SKC) SKC cell SKC cell

Errored sequence number SKC cell —

Cell Loss — SKC or EOM cell

Cell Loss (SKC) SKC cell SKC cell

Cell Loss (EOM) — SKC cell

Misinsertion SKC cell SKC or EOM cell

pattern, errored starting value or if this cell is lost. The same problem arises if a
cell is errored in that way that a valid re-synchronization pattern is created. In
all cases synchronization is lost until the next BPC is detected and processed.
Tab. 3 shows all errors and the events that reestablish synchronization.

Table 3. Re-Synchronization in Statistical Counter Mode for ATM

AAL-1 & 3/4 AAL-5

Cell Error (BPC) BPC cell BPC cell

Cell Error (generated bit-pattern) BPC cell BPC cell

Errored sequence number BPC cell —

Cell Loss — BPC or EOM cell

Cell Loss (BPC) BPC cell BPC cell

Cell Loss (EOM) — BPC cell

Misinsertion BPC cell BPC or EOM cell

7 Conclusions and Outlook

In this contribution the mostly used and specified modes of operation for high-
speed networks are described and new modes, the Statistical Counter Mode for
ATM and the Statistical Self-Synchronization for SDH/SONET networks are
presented.

The Statistical Self-Synchronization is the only mode that provides self-
synchronization, efficient encryption speed and allows parallelization of multiple
encryption modules. However, the Statistical Self-Synchronization shows secu-
rity weaknesses compared to the OFB mode, because of the re-synchronization
process. This problem can be prevented by changing the keys more frequently.

For ATM networks, various modes of operations are applicable. The CBC
mode is self-synchronizing but has an error propagation. The ATM Counter
Mode has less error propagation but requires bandwidth for synchronization
purposes. The new Statistical Counter Mode overcomes this disadvantage using a
statistical method. Therefore, for ATM the mode has to be chosen in accordance
to the desired application and quality parameters.
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An overview of the error propagation and the QoS parameters in ATM and
SDH/SONET networks has been given. The impairment of quality parameters
are tolerated to gain the benefit of data confidentiality. Further research has to
be done in the area of the simulation models and the analysis of the simulation
results in comparison to the existing ATM security device SEDAN 155 developed
at the Institute for Data Communications Systems [13].
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Abstract. We discuss the availability questions that arise when digital
time stamps are used for preserving the evidentiary value of electronic
documents. We analyze the time-stamping protocols known to date and
point out some weaknesses that have not been addressed so far in scien-
tific literature. Without addressing and solving them, any advantage of
the linkage-based protocols over the hash-and-sign time-stamping would
be questionable. We present several new techniques and protocols for im-
proving the availability of both the hash-and-sign and the linkage-based
time-stamping services. We introduce fault-tolerant linking as a new con-
cept to neutralize fault-sensitivity as the main weakness of linkage-based
time-stamping.

1 Introduction

Time stamp is an attestation that a digital document was created at a certain
time. Time stamps are essential tools for relying parties to preserve the evi-
dentiary value of electronic data (particularly, digital signatures). Due to their
responsible mission, Time-Stamping Authorities (TSAs) must be reliable – trust-
worthy, and available when needed. Availability threats may be as harmful as
potential attacks by network hackers or dishonest behavior of other parties (re-
pudiation etc.). For example, if TSA’s server is destroyed, a large number of time
stamps may get unverifiable, and therefore, relying parties may suffer from con-
siderable monetary losses because some important documents (agreements, bills
etc.) lost their evidentiary value. This seems unfair from the view-point of an in-
terested party who has no control of the procedures running in a time-stamping
server. It would thereby be reasonable if no party could affect the validity of
time stamps except the relying party itself.

Regardless of their importance, availability questions have almost never been
discussed in scientific literature. This paper is intended to be a contribution to
filling this gap. We discuss several techniques for improving the availability of
time-stamping services. Particularly, we propose protocols for using multiple
� Supported by the Estonian SF, grant no. 4150
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time-stamping servers and argue what kind of benefits such approach may of-
fer for both the hash-and-sign and the linkage-based systems. We also discuss
methods for fighting against occasional errors in TSA’s database which turn out
to be the most serious threats in linkage-based time stamping systems.

In Section 2, we outline the objectives of time-stamping, the general model
of time-stamping, and point out the main threats to availability. In Section 3, we
analyze the time-stamping systems known to date and point out their advantages
and weaknesses. In Section 4, we discuss how multiple servers can be used to
improve the availability of service. In Section 5, we introduce a new concept of
fault-tolerant linking – a technique against fault-sensitivity of the one-way hash
computations used in linking schemes.

2 Time-Stamping: Objectives, Model, and Threats

Let [t, t′] be a time-interval and x, y be bit-strings. There are three basic state-
ments that time stamps should prove:

– Freshness (of x at t) – x was created after t.
– Existence (of y at t′) – y was created before t′.
– Order (of y and x) – y was created before x.

We call the time stamps intended to prove these statements as: (1) freshness
token, (2) existence token (or stamp), and (3) order token, respectively. Freshness
tokens are needed to avoid replay attacks in authentication protocols. Possibly,
there exist no reliable ways of proving that x was created precisely at t. Existence
tokens (or stamps) are necessary for proving that a digital signature was created
before the corresponding key-identity relation was revoked. In some cases we
may need to prove more than one of these statements.
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Fig. 1. General model of time-stamping.

Time-stamping is a service used by the Relying party to prove temporal
relations to the Verifier (such as judge and alike). The relying party obtains
time stamps from the TSA (and also takes care of them later) by using the
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Stamping protocol. The Verifier uses the Verification protocol (which may require
communication with the TSA) to check the correctness of time stamps presented
by the relying party (Fig. 1). The TSA may also use secure logs and a public
directory to enable the Auditor to audit the TSA’s work. Audit reports are made
available to the verifier and to the relying party. The presence of regular audit
gives some additional assurance to time-stamping services.

As referred to in the Introduction, it will be fair if the evidentiary value of
time stamps does not depend on third parties (other than the relying party).
This is the motivation for the compactness of evidence principle: Relying parties
possess a compact and time-proof evidence the value of which depends neither on
other parties’ actions nor on the events which the relying party has no sufficient
control of. We discuss three such events:

[A] Broken cryptography and compromised keys. If the cryptographic mecha-
nisms for protecting the authenticity of time stamps are compromised, there
should still be a mechanism to distinguish between time stamps (1) issued by
the TSA before the compromise, and those (2) created by an attacker, using com-
promised cryptography. Hence, all the time stamps issued so far can be called
into question and cannot further be used as evidence.

[B] Service unavailability. Time-stamping service itself gets unavailable for a
while. Relying parties are not able to obtain time stamps for documents they
want to preserve as evidence. Such an accident may be causal, for example,
in a stock market computer system where time stamps are used to arrange
stockbrokers’ requests. Unavailability is often caused by the denial of service
attacks which are possible if the communication (or security) protocols are poorly
designed.

[C] Loss of server’s data. A portion of data in a time-stamping server is destroyed
and a fraction of time stamps becomes unverifiable. This means that a large
number of documents may lose their evidentiary value, and therefore, relying
parties may suffer from considerable monetary losses. This type of unavailability
may be caused by occasional errors in TSA’s server. The most important reason
that makes this threat more serious than the previous one is that neither the
server nor the relying parties may notice that errors have occurred and the server
uselessly continues its work.

In this paper, we analyze which of those threats are encountered in each
time-stamping system. We also propose new techniques for overcoming these
threats.

3 Time-Stamping Systems: Overview

Preliminaries and notation. By SigA{X1, . . . , Xm} we mean a digital signature
created by A on the ordered list of messages X1, . . . , Xm. Sometimes, we in-
herently assume that A uses a signature scheme with message recovery. By a
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collision-free hash function h, we mean a polynomial-time function family such
that it is computationally infeasible to find two arguments x1 �= x2 such that
h(x1) = h(x2). Exact mathematical definition of a hash function is unnecessary
for understanding the subject of this paper and is omitted.

Technical assumptions. We only deal with time-stamping systems with one or
more central authorities, though there exist protocols without central authori-
ties [1,2]. We also assume that, in order to prevent unreasonable communication,
documents are always hashed before they are included into time-stamping re-
quests.

3.1 Absolute (Hash-and-Sign) Time Stamps

Absolute (hash-and sign) time stamps are tokens (signed by the TSA) which
comprise a document (or a hash of the document) and a date/time represented
as a number. Security of this scheme is based on the assumption that the TSA
has a precise enough clock device and is completely trustworthy.

To obtain a freshness token H, a client A (Alice) sends a request to the TSA.
The TSA signs the current time t and sends H = SigTSA{t} back to A. For
example, given a message σ = SigA{X,H}, Bob is able to verify that X was
signed by Alice after t. Note that even if the TSA is trusted and trustworthy,
the freshness token does not prove that σ was created precisely at t.

To obtain a stamp for a bit-string x (for example, x = σ), a client B (Bob)
sends x to the TSA. The TSA adds the current time and date t′ to x and sends
T = SigTSA{x, t} back to B. The triple (H, σ, T ) proves that A signed X during
the interval [t, t′].

Main concern: key compromise. In systems with a single TSA there seems to be
no efficient solution to this problem. The best solution seems to be that the TSA
stores all time stamps it ever issues. If then the key is compromised, the TSA
signs all time stamps with a new key. This is impractical because of high storage
and computational complexity. Tamper-proof hardware may be used to prevent
the key compromise. The hardware module may even generate a key-pair for
the TSA and never let the private component outside the module. However, this
is neither a completely usable solution because the signature scheme itself may
be broken and the key length insufficient. In Surety’s white paper [8] they even
conclude that using keyed cryptography for time-stamping is extremely flawed
and only the keyless cryptography can do the job. However, we do not completely
agree with this categorical statement. We will show in this paper that the key
change is practical in a multi-server case.

3.2 Auditable Relative Time-Stamping

There is a substantive relationship between absolute time stamps and trust. Peo-
ple have unconsciously accepted the concept of time as a number and they hardly
realize that actually the relation between physical time and numbers is almost as
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artificial as the relation between people and their public keys (which are numbers
as well!). Thereby, the relationship between time and numbers cannot be fixed
reliably without using trusted third parties. However, this does not mean there is
no temporal measure which is independent of trusted third parties! Indeed, un-
der some assumptions about computational intractability (one-wayness of hash
functions), we have relative temporal measure that uses no trust assumptions.

Let h be a collision resistant one-way hash function and y be a bit-string
which was published in a newspaper on February 20, 2001. If we are sent a
bit-string x satisfying the relation y = h(x) then we are convinced (because
of one-wayness) that x was known to somebody (or stored into a computer)
before y was created. Therefore, we also know for sure that x was created before
February 20, 2001. More generally, if

y = �(x, x1, . . . , xn), (1)

where � is an arbitrary hash formula (e.g., h(h(x, x1), h(x2, x3))), then (x1, . . . ,
xn) is a proof that x was created before y. Let x = SigA{X} be Alice’s signature
on X and σ = SigB{Y, y} be Bob’s signature on Y which also comprises a
bit-string y, such that equation (1) holds. Then (x1, . . . , xn) is an undeniable
proof that Alice signed X before Bob signed Y . Note that the proof itself uses
only keyless cryptography and its validity is thereby not affected by the key
compromise. This is the main idea of linking first proposed by Haber et al [7].

The TSA maintains a secure log file (�0, �1, . . . , �n, . . .) created by using a
collision-free hash function h with k-bit output. After each request xn the TSA
computes a new value of �n using the following recursive formula:

�n = h(xn, �n−1) (2)

The most important property of the linking scheme is that the value of each log
item �n depends in one-way manner on all the previous items �0, . . . , �n−1. If
�n was published in a newspaper on February 20, 2001, then: (1) the previous
values cannot be modified without the possibility of detection by an Auditor;
and (2) �0, ..., �n may be used as existence tokens for x0, . . . , xn, respectively.

To obtain a freshness token, Alice sends a request to the TSA. The TSA
sends back the most recent �m. To obtain a stamp for a bit-string xn, an in-
terested party B (Bob) sends xn to the TSA. The TSA computes a new value
for �n using (2). Finally, the TSA sends �n−1 back to Bob in order to make
him able to compute �n from xn, and optionally, uses a short-term signature
key to authenticate �n. So, an existence token is obtained through the following
protocol:

1. B → TSA: xn

2 TSA computes: �n = h(xn, �n−1)
3. TSA→ B: �n−1, [ SigTSA{�n} ].

(3)

Here and further, the square brackets mean that the signature is optional in this
protocol. From time to time (say, weekly), the TSA publishes the most recent �n
in the Directory (Fig. 1). After that, the TSA and no-one else is able to modify
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the chain �0, . . . , �N−1 of previous log items. The secure log may also be made
widely public. For verifying the order of �m and �n (m < n), the Verifier obtains
a list Tm,n = (xm+1, xm+2, . . . , xn) and performs n−m hash-steps (Fig. 2). The
list Tm,n is an undeniable proof that �m was issued before �n.
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Fig. 2. Linear linking scheme.

Remark: What do signatures add to the linked service? At first sight, the TSA’s
signature on �n in Protocol (3) seems redundant since the signature is unnec-
essary for the comparison of time stamps. However, the TSA’s signature is still
valuable from the view-point of availability as a method of authenticating the
TSA by clients. A malicious party may act as the TSA and thereby, the inter-
ested party (Bob) cannot be sure about the validity of the time stamp. Another
reason to use signatures is that a malicious TSA may manipulate with the tem-
poral order before it publishes a log item in the Directory. As the value of �n
comprises the whole previous history, the signature of the TSA on �n can be
taken as a temporary commitment. Any modifications in the list (�0, . . . , �n−1)
can be detected and proved by Bob, even if no �N (N ≥ n) has been published
yet.

Main drawback: verification cost. Reliable (trust-free) verification of temporal
relations may require a large amount of computation and storage, because both
are linear functions in | n −m |. The Verifier should download a large amount
of data for each verification which may cause huge traffic on the Internet. If a
trusted server is used to perform the computation, we have almost the same trust
problems as in the absolute time-stamping case. We have very much the same
“trust versus communication” problem here as in the public key infrastructure –
revocation lists (CRL) require communication, whereas on-line status protocol
(OCSP) requires trust. Regular audit may, to some extent, increase reliability of
the service. However, an assumption about a trusted Auditor is very much the
same as an assumption about a trusted TSA.

The compactness of evidence principle is, thereby, almost unachievable, be-
cause it would require a huge amount of storage in the relying party’s side. For
the service being practical, the Verifier needs communication with the TSA and
hence the evidentiary value of time stamps depends on the availability of TSA’s
service.
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3.3 Time Certificates

Time certificates approach, which was first proposed by Pinto and Freitas [10]
and independently by Buldas, Laud, Lipmaa and Villemson [4] tries to reduce
the communication by saving a part of the linkage data as a meta-part τ(X)
(called time certificate) of the time-stamped document X . The purpose of a
time certificate τ(X) is to fix the temporal position of X in a reliable way, so
that (τ(X), τ(Y )) is always a compact piece of evidence for temporal comparison
of X and Y (Fig. 3).

We now briefly describe how to use linear linking scheme to create time certifi-
cates. Let �N be the most recent log item which is published, and x0, x1, . . . , xN

be the bit-strings time-stamped so far. It is easy to see that we may use a
pair τ(xn) = (�n−1, Tn,N ) as a time certificate for xn. Indeed, let m < n and
τ(xm) = (�m−1, Tm,N ) be another certificate. Then, by the definition,

Tm,n = (xm+1, . . . , xn) ⊆ (xm+1, . . . , xN ) = Tm,N

which means that the pair (τ(xm), τ(xn)) indeed comprises a proof that xm was
time-stamped before xn.
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Fig. 3. Off-line comparison of time certificates.

As we mentioned, the linear linking scheme (2) is not practical for using
time certificates because of certificates’ size (linear in the total number of time
stamps). More complex linking schemes presented by Buldas et al [4,3,5,6] make
certificates practical because their size in those schemes is logarithmic in the
total number of time stamps.

In general, the protocols are almost the same as in the linear scheme, except
that after each request xn the TSA computes two new values: (1) �n is a bit-string
the length of which is equal to the output length k of h; (2) Hn is a sequence of
bit-strings of length k. Computations use the following recursive formulae:

�n = L(xn,Hn−1), Hn = H(�n,Hn−1), (4)

where H and L are polynomial-time algorithms consisting of one-way hash com-
putations. Note that by taking Hn = {�n} and �n = h(xn, �n−1) we get the
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linear scheme. The freshness token in the general scheme is Hn. Existence token
can be obtained through the following protocol:

1. B → TSA: xn

2 TSA computes: �n = L(xn,Hn−1), Hn = H(�n,Hn−1)
3. TSA→ B: Hn−1, [ SigTSA{�n} ].

(5)

Time certificate for xn is a pair τ(xn) = (Hn−1, Tn,N), where Tn,N is a set
of hash values, comprising a proof that the value of �N depends on �n. Linking
algorithms L andH can be chosen so that for anym < n the certificates τ(xm) =
(Hm−1, Tm,N ) and τ(xn) = (Hn−1, Tn,N ) together are enough to construct a
verifiable hash-chain from �m to �n. At the same time, the size of a certificate is
logarithmic in N . One such linking scheme – threaded tree [5] – is described in
Appendix A.

One important property of time certificates is that they can be extended,
i.e. for any N1 > N the Relying party (say Bob) may request the TSA for a
proof TN,N1 and then extend the certificate τ(xn) from τ(xn) = (Hn−1, Tn,N )
to (Hn−1, Tn,N1). For extension, Bob sends TSA a request which contains two
numbers (N,N1). The TSA answers with TN,N1 which comprises a one-way link
from �N to �N1 . The answer may also be completed with the TSA’s signature
SigTSA{�N1}. Therefore, the extension goes as follows:

1. B → TSA: (N,N1)
2. TSA→ B: TN,N1, [ SigTSA{�N1} ] (6)

We mention without giving a proof that in the threaded tree linking scheme
[5] described in Appendix A, we can define an easily-computable composition
operation ◦, so that

Tn,N1 = Tn,N ◦ TN,N1 .

The most important thing here is that Bob can extend a time stamp several
times, whereas its size will stay logarithmic. This is not the case if we just
concatenate Tn,N and TN,N ′ , because doing so for numerous times, we end up in
the linear certificate size.

Therefore, if a set of time stamps are extended to the same published time
stamp their temporal order can be determined without the TSA. This is an
important property from the view-point of availability. For example, the TSA
may require that all the time stamps older than January 1, 2000 were extended
to N which was the first time stamp issued on that date. If the relying parties
indeed do so, the values �0, . . . , �N−1 may be deleted from the TSA’s server to
save storage space.

Main advantages of the time certificates approach over the previous ones are
that (1) Time certificates may always be extended to the most recently published
log values. Thereby, users are able to audit the TSA by themselves. (2) Time
certificates can be used to verify temporal order of documents off-line, without
communicating with the TSA.
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Main drawback: increased fault-sensitivity. Computation of log items �n is (and
should be!) extremely fault sensitive. Hence, there is always a concern that errors
in the log file will propagate to the future. As a result, the hash-chain splits into
two parts, whereas time stamps in different parts would be incomparable. If we
compare the formulas of linear linking (2) and general linking (4), we notice
that linear linking is less susceptible to error propagation because the value of
�n depends only on �n−1, whereas in the general linking scheme, Hn−1 may
comprise relatively old �m, with m  n. Therefore, if something happens to
�m in the interval between creation of �m and �n−1, computing �n in the next
step leads us to erroneous log file. So far, almost no attention has been paid
in scientific literature to this concern. In Section 5 of this paper we propose a
method of fault-tolerant linkage which significantly reduces the danger of fault
propagation.

3.4 Usage Example: Time Stamps for Digital Signatures

Time-stamping of digital signature begins with obtaining a freshness token from
the TSA. The signer A (Alice) sends a request to the TSA and receives the
most recent freshness token Hm. In the hash-and-sign scheme, Hm = SigTSA{t},
where t is the current time. Alice first concatenates Hm with the message she
wants to sign and then applies the signature algorithm to the concatenation. As
a result, she has a signature σ = SigA{X,Hm}. Suppose B (Bob) is a relying
party who received σ and wants that σ would retain its provable authenticity.
Usually, this means that B should be able to prove that σ was created before the
Alice’s public key was revoked. To obtain a time stamp, Bob computes a hash
x = h(σ) and sends x to the TSA as a time stamp request.

A time-stamped signature consumes both the freshness token H and the
stamp T issued by the TSA. In naive time-stamping systems, the stamp T is
computed as follows:

T = SigTSA{SigA{X,Ht}, t′},

where Ht is either SigTSA{t}, if Alice obtained a freshness token, or t, if Alice
did not use the freshness token and added time/date to the message herself.
In certain applications this would be sufficient. Naturally, in this case t should
be interpreted as the time/date Alice declares she signed X at. Note that t (as
opposed to SigTSA{t}) under Alice’s signature does not prove that the signature
was actually created at t (or after).

In a linkage-based time-stamping system, the TSA sends back the most recent
linking item �n. The pair (Hm, Ln) is called a preliminary time stamp for σ. For
extension of this time stamp, Bob sends TSA the request which contains two
numbers (n,N), where N > n. The TSA answers with Tn,N (and optionally,
with the signature SigTSA{LN}). The triple (Hm, Tn,N , SigTSA{LN}) is called a
time certificate for σ.

One must be careful in time-stamping digital signatures. Signature algo-
rithms behave almost like one-way functions. However, if the key-space is also
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considered as part of the input space, the signature scheme as a function is not
collision-free. Massias et al showed [9] that an attacker may generate a weak RSA
key and back-date signatures created with that key. Note that this attack would
work in both the hash-and-sign and in the linkage-based time-stamping. To pre-
vent this attack, it is sufficient to time stamp a hash h(X, SigA{X}) instead of
time-stamping a pure signature σ = SigA{X},.

4 Time-Stamping with Multiple Servers

Using multiple servers is an obvious approach when fighting against service un-
availability and loss of data. In this section, we discuss what kind of benefits this
approach would give in the case of absolute time-stamping and in linkage-based
time-stamping. It turns out that the motivations of using multiple servers are
somewhat different in those cases.

As we show in this section, using multiple servers is both (1) a prevention
measure and a (2) recovery measure. It helps to keep time stamping services
available to clients, and in some cases, to restore the evidentiary value of time
stamps if the keys are compromised (in absolute time-stamping) or if TSA’s
database is lost (in linkage-based time-stamping).

Assumptions. Suppose we have smutually trusting time-stamping servers TSA1,
..., TSAs. We emphasize that it is not assumed that the servers are completely
trusted by all clients. To obtain a time stamp, the relying party may interact
with all of these servers. Servers’ interaction is assumed to be invisible to clients
and be protected using a standard authentication protocol (such as SSL). We
assume that at every moment, there is at least one server available to clients.

4.1 Absolute Time-Stamping with Multiple Servers

It turns out to be relatively easy to improve the availability of absolute time-
stamping just by putting two or three servers together. We need servers’ interac-
tion only to synchronize their clocks and in key change scenarios. Using multiple
TSAs would enable us to solve the key change problem without storing all the
time stamps in servers.

To obtain a freshness token, Alice (A) sends a request to all three servers.
The TSAi signs the current time ti and sends Hi = SigTSAi

{ti} back to A:

1. ∀i: A→ TSAi: requesti
2. ∀i: TSAi → A: Hi = SigTSAi

{ti} (7)

A s-tuple H = (H1, . . . ,Hs) is a freshness token. If Alice signs a message X
together with freshness token H then Bob can verify that the signature σ =
SigA{X,H} was created after t = max{t1, . . . , ts}.

To obtain a stamp for a bit-string x (for example, x = σ), Bob (B) sends
x to all s servers. The TSAi adds the current time t′i to x, signs the result and
sends it back to B:
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1. ∀i: B → TSAi: x
2. ∀i: TSAi → B: T i = SigTSAi

{x, ti} (8)

A s-tuple T = (T 1, . . . , T s) is the stamp of x. T proves that σ was created before
t′ = min{t′1, . . . , t′s}. Accordingly, the triple (H, σ, T ) proves that A signed X
during [ti, t′i], assuming that the signature key of TSAi was valid and the TSAi

itself is trustworthy.

Key change. If the signature key of TSA1 is compromised, the components H1

and T1 signed with this key are no more reliable. The TSA1 generates a new
key and publishes it in a reliable and widely witnessed way. After that, clients
may use a renewal protocol for replacing the components of T signed with the
old key with components signed with the new key. The renewal protocol runs as
follows:

1. B → TSA1: SigTSA1,old{x, t1}, SigTSA2
{x, t2}, . . .SigTSAs

{x, ts}
2. TSA1: verifies signatures SigTSA2

{x, t2}, . . . ,SigTSAs
{x, ts}

if the signatures are valid and given on the same x:
3. TSA1 → B: SigTSA1,new{x,min{t2, . . . , ts}}.

(9)

Therefore, TSA1 is able to renew time stamps without storing all the previously
issued time stamps.

Note also that signing old time stamps with a new key is not usable for
freshness tokens added to digitally signed documents as signed attributes. To
explain this, suppose that we have a signature σ = SigA{X,H} with a freshness
token H and the signature key of the TSA is compromised. We cannot just
replace the key and sign H again with a new key because then σ would not be
verifiable any more. Signatures are one-way operations and we cannot modify the
content of a signed document without violating the signature. Freshness tokens
signed with a compromised key are equivalent with plain time stamps created by
the signer herself. As we will see later, relative time stamps do not suffer from
this concern.

4.2 Linking with Multiple Servers

As linking-based time stamps are keyless, the key compromise is not a motivation
of using multiple servers. Moreover, there are many wide-spread techniques for
increasing the reliability of storage on the hardware level (e.g. RAID). Thereby,
designing special protocols for time-stamping with multiple servers may seem un-
necessary. Indeed, we may just use s identical copies of a time-stamping server
that uses a linking scheme, such that the clients would even not know that actu-
ally there are s servers. However, if the motivation of using multiple servers is to
increase the availability of service, there should be multiple processes (running in
separate machines) for creating new linking items when the request from a client
is received. Just holding several copies is insufficient. One should also guarantee
that each request xn from a client is transmitted to all servers identically. If
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anything here goes wrong, the servers end up with different linking chains. Con-
sidering the nature and purpose of time-stamping services, we cannot completely
exclude the possibility of incoherence between the servers because its probability
increases as we consider large time-frames. In this paper, we do not assume that
each request xn is certainly received by all servers identically. Therefore, the
linking chains (log files) maintained by the servers may be different. The proto-
col we describe is simple and does not require any additional means of reliable
storage. Therefore, we increase the reliability. However, we pay the price in the
time certificate size which increases approximately s times. The protocol may
be of interest, if the documents time-stamped have a relatively high monetary
value. Otherwise, standard tools (RAID etc.) would do their job well.

Assumptions and notation. Each server uses a linking scheme described by gen-
eral formulae (4). The n-th log item created by the i-th server TSAi will be
denoted as �in. Similarly, we use Hi

m and T i
n,N to denote, respectively, the fresh-

ness tokens and the relative proofs generated by TSAi.

Freshness tokens and stamps. To obtain a freshness token, Alice sends each of
the servers a request and obtains answers from each of them independently. Each
answer consists of s hash formulae. For example, an answer from TSA1 is

(H1
m11

,H2
m12

, . . . ,Hs
m1s

),

where Hj
m1j

is the freshness token issued by TSAj which TSA1 knows are the
most recent ones. These values are distributed between the servers using proto-
cols which we describe later. If a server TSAi is down and does not answer, we
set mi1 = mi2 = . . . = mis = 0. The freshness token protocol runs as follows:

1. ∀i: A→ TSAi: requesti
2. ∀i: TSAi → A: (H1

mi1
,H2

mi2
, . . . ,Hs

mis
)

3. ∀j: A computes: mj = max{m1j,m2j , . . . ,msj}
4. A computes: H = (H1

m1
,H2

m2
, . . . ,Hs

ms
)

(10)

Existence tokens are obtained almost in the same way as in the one-server case.
The Relying party sends time stamp requests to all servers and obtains time
stamps from all of them except those being inaccessible at the moment.

1. ∀i: B → TSAi: x
2. ∀i: TSAi → B: �ini−1, [σi = SigTSAi

{�ini
}] (11)

Time-certificate τ(x) for x is a s-tuple ((H1
n1
, [σ1]), (H2

n2
, [σ2]), . . . , (Hs

ns
, [σs]))

the components of which are ordinary time stamps (already familiar to us from
the one-server case).

Extension of a time-certificate is performed on a component-wise basis. Each
component is extended using the same protocol as introduced in the one-server
case. For extension of the i-th component of a time-certificate, the relying party
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(Bob) sends TSAi the request which contains two numbers (ni, Ni) withNi > ni.
The TSAi answers with T i

ni,Ni
and, optionally, with the signature SigTSAi

{�iNi
}.

1. B → TSAi: (ni, Ni)
2. TSAi → B: Tni,Ni , [ SigTSAi

{�iNi
} ] (12)

Boot. If TSA1 wakes up, it checks whether it has stored values of H1
n11

, H2
n12

,
... , Hs

n1s
. These values may be missing either because the server has never been

up before or because the linkage data has been destroyed in the last crash. In
that case, TSA1 sets n11 = n12 = . . . = n1s = 0. After that, the TSA1 obtains
(using protocol (10)) freshness tokens form other servers and starts linking from
the latest value of �ns1 the other servers know.

1. ∀j > 1: TSA1 → TSAj : request
2. ∀j > 1: TSAj → TSA1: (H1

nj1
,H2

nj2
, . . . ,Hs

njs
)

3. ∀j: TSA1 computes: n1j := max{n1j, n2j , . . . , nsj}
(13)

Let n = n11. If the database was indeed destroyed during the last crash, TSA1

sets xn+1 = h(H2
12, . . . ,Hs

1s) and creates �1n+1 and H1
n+1 using formulae (4). If

time-certificates older than �1n are then completed with the list (H2
12, . . . ,Hs

1s),
then we are again able to compare (off-line) time stamps issued by TSA1 with
older time stamps issued by other servers before the crash.

New linking item. If the server TSAi creates a new linking item Lnii+1, it com-
putes Hi

nii+1 and sends it immediately to other servers. For example, if i = 1
the following protocol is completed:

1. TSA1 computes: n11 := n11 + 1
2. ∀j > 1: TSA1 → TSAj : H1

n11

3. ∀j > 1: TSAj computes: H1
nj1

:= H1
n11

(14)

5 Fault Tolerant Linking

As mentioned above, the linking items �n may get corrupted, either because of
occasional errors in hardware or bugs in programs running in the same computer
with the TSA software. In linking schemes such errors would propagate to the
future and affect the correctness of a large number of time stamps. This threat is
even more dangerous than a complete destruction of the TSA’s database because
the TSA is unaware of the disaster and the service may stay unavailable for a
long time. Therefore, some detection measures would be desirable. Error detec-
tion codes are the most widespread means against the loss/corruption of data.
However, instead of including additional data fields into the linking scheme, we
may use the linking scheme itself to detect and correct occasional losses of data.
The crucial idea is that a collision-resistant hash function itself is a very efficient
error detection code. According to equations (4), we define error detection codes
for �n and for Hn as follows:

Code(�n) = (xn,Hn−1), Code(Hn) = (�n,Hn−1). (15)
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Verifying the code just means verifying the equations (4). Before computing the
values of �n and Hn by formulae (4), the TSA checks the code Code(Hn−1). If
the code is not OK (i.e. if Hn−1 �= H(�n−1,Hn−2)), then the TSA concludes
that the database is corrupted.

Note that the codes will work only if the errors are occasional, i.e. are not
caused intentionally by an attacker. For example, if an attacker modifies �n−1

and Hn−2 and computes a new value for Hn−1 using (4), then the error detec-
tion procedure we described would not detect any changes because Code(Hn−1)
is correct. Therefore if errors are occasional, any error which affects future com-
putations is detected at the very next linkage step. Indeed, equations (4) show
that if the value of Hn−1 is correct and the request xn is obtained correctly,
then the values �n, Hn can also be computed correctly. Any error which does
not change Hn−1 has no influence on future computations.

Note also that, in principle, the TSA may also try to correct errors by using
the codes recursively. This idea needs further research and is not discussed in
this paper.

6 Conclusions

This paper indicates that practical problems related to the reliability of digi-
tal time-stamping services are far from being completely solved. One of such
problems is availability which has not been sufficiently addressed in scientific
literature so far. We discussed the availability concerns of both the hash-and-
sign and the linkage-based time-stamping systems. We showed how the use of
multiple servers eliminates one of the most important threats in hash-and-sign
time-stamping – the TSA key compromise. We pointed out a new weakness in
linkage-based time-stamping – fault-sensitivity – which arises in its full strength
in binary linking schemes [4,3,5]. To overcome the fault-sensitivity concern, we
proposed a new approach – fault-tolerant linking – which in our opinion deserves
future research.
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7 Appendix A: Linking Scheme

For the readers interested in details, we present as an example the linking scheme
construction given in [5]. In Fig. 4, we see a fragment of this scheme with only
five vertices numbered with 0–4. This fragment is created using the following
formulae:

�0 = h(x0),
�1 = h(x1, �0) �01 = h(�0, �1)
�2 = h(x2, �01)
�3 = h(x3, �01, �2) �23 = h(�2, �3) �0123 = h(�01, �23)
�4 = h(x4, �0123).

To define this linking scheme in general case, we use binary codes to enumerate
linking items. For example, we denote L2 with 010, i.e. with binary representa-
tion of 2. The non-leaf vertices are numbered by using additional symbol ∗. For
example, �23 is denoted as 01∗ because it represents (is a parent-vertex of) a
pair of leaves {010, 011}. For similar reasons, �0123 is represented by codeword
0 ∗ ∗ because it represents a pair of vertices {00∗, 01∗}. Let bk−1 . . . b0 be binary
representation of n. Then Hn−1 is a set of codewords:

Hn−1 = {bk−1bk−2 . . . bi+10 ∗ . . . ∗ | 0 ≤ i < k, bi = 1}.
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Fig. 4. The threaded-tree linking scheme [5].

For example, in the scheme depicted in Fig. 4, we have H3 = {010, 00∗} =
{�2, �01}. Let n′ > n be another k-bit integer with binary representation
b′k−1 . . . b

′
0. Let m be the smallest index such that

bk−1 = b′k−1, bk−2 = b′k−2, . . . , bm = b′m,

i.e. bm−1 �= b′m−1 and therefore, considering that n′ > n, we know that bm−1 = 0
and b′m−1 = 1. In that case,

Tn,n′ = Hn′−1 ∪ {xn′} ∪ {bk−1 . . . bmbm−1 . . . bi+1bi ∗ . . . ∗ | 0 ≤ i < m}.

It can be easily proved that having two pairs

(Hm1 , Tn1,N ) and (Hm2 , Tn2,N )

such that n1 ≤ m2 ≤ N then Tn1,N and Hm2 together are sufficient to compute
a one-way link from Ln1 to Lm2 .
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Abstract. Some secret sharing schemes can be used with only cer-
tain algebraic structures (for example fields). Group independent linear
threshold sharing (GILTS) refers to a t out of n linear threshold secret
sharing scheme that can be used with any finite abelian group. Although
group independent secret sharing schemes have long existed, here we
formally introduce the definition of group independent linear threshold
sharing. Using tools developed by [18], we develop some new necessary
conditions for a GILTS. In addition, we develop lower bounds concerning
the amount of randomness required within a GILTS.
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1 Introduction

Secret sharing is important in the cases where a secret needs to be distributed
over a set of n participants so that only authorized subsets of participants can
recover the secret. A setting where the authorized sets consists of all subsets of
t or more is called a t out of n threshold secret sharing scheme. Some threshold
schemes are constructed for certain algebraic structures, such as fields, groups,
semi-groups, etc. Shamir’s scheme [31] provides an efficient way to construct t
out of n threshold sharing over a field. However, in many cases the setting of
the secret space is not a field, for example in RSA [30]. In some cases when
the share space is not a field, it is possible to embed the secret within a field
and share it using Shamir’s secret sharing scheme. The importance of thresh-
old cryptography, especially in the context of threshold signature sharing was
noted in [9,15]. Within a threshold signature scheme, the participants are not
recovering the secret but a function of the secret (i.e. a signature). In such cases,
one cannot embed the secret within a field, and must use the algebraic structure
for which the secret space resides. When developing RSA threshold signature
schemes an alternative to Shamir’s scheme must be used. Some of these alterna-
tives rely on tailoring the scheme to this algebraic setting, some examples of this
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approach include [21,22,23]. Other alternatives introduced the concept of devel-
oping threshold schemes which can be used over any finite abelian group, see
[13,17]. Another alternative described how threshold sharing can be achieved
over any finite group [16], even non abelian groups, this can as well be used
with abelian groups. The solutions in [13,17] provided zero-knowledge threshold
sharing. Thus these methods achieve zero-knowledge RSA threshold sharing.
Further in [24], it has been noted that under certain conditions, the group in-
dependent threshold scheme by Desmedt and Frankel [17], can be more efficient
than Shoup’s threshold signature scheme [32]. Consequently, the importance of
threshold sharing over any finite abelian group has been discussed in detail. This
paper will provide a formal definition of what we call group independent linear
threshold secret sharing (GILTS), and build off the concepts and tools developed
in [18]. Moreover, we establish bounds on the amount of randomness required
by the dealer to create a t out of n group independent linear threshold scheme
(GILTS).

The organization of this paper is as follows: first we provide background and
define a GILTS, we discuss the tools developed by Desmedt and Jajodia in [18],
we recall some of the work concerning dealer randomness within secret sharing
schemes, and highlight those that impact our discussion, lastly we develop our
lower bounds concerning randomness R in a GILTS. In all cases, these bounds
are lower bounds when working with groups K of exponent 2. The implication
is that if the scheme is a GILTS, and for example, we have determined that R
must satisfy a lower bound when K has exponent 2, then it must satisfy that
lower bound if it is a GILTS. Of course, such logic would not be possible in the
derivation of upper bounds. A point we wish to make is that once we adopt a
group K with a specific exponent then the R that we are referring to is RK, the
randomness needed in a t out of n threshold scheme of that given exponent. In
an effort to simplify notation we will refer RK as R, when there is no ambiguity.

2 Definitions and Notation

Mm×n(Z) represents the set of all m by n matrices with integer entries. If A
is a matrix, it’s transpose will be denoted by AT . A row (column) operation of
type I is a row (column) interchange. A row (column) operation of type II is
a row (column) multiplied by a nonzero constant. A row (column) operation of
type III is a row (column) multiplied by a nonzero constant added to another
row (column) leaving this result in the second row (column). The rank of a
matrix is the number of linearly inde[endent rows within the matrix. If x1 . . .xn

are vectors then a linear combination is
∑n

i=1 λixi where λi ∈ Z. GLn(Z) will
denote the group with respect to matrix multiplication of all n× n nonsingular
integer matrices (see [29]). All row vectors will be denoted as x. Column vectors
will be denoted by x. The exponent of a group G is the smallest positive integer
a such that ga is the identity for all elements g ∈ G.1

1 If G is an additive group then the exponent is the smallest positive integer a such
that ag = e for all g ∈ G.
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Definition 1. [2,31] A perfect t out of n threshold scheme is such that given
a secret k, any set of at least t participants can compute k, and any subset of
t− 1 or less participants gain no information about k. If s1, . . . , sn represent the
shares distributed to the n participants, then the security conditions are:

(i) Prob(k = k|si1 = si1 , . . . , sit = sit) = 1
(ii) Prob(k = k|si1 = si1 , . . . , sit−1 = sit−1 ) = Prob(k = k)
The set Γ of all sets of t or more participants is called the access structure.

Because every set of t or more participants contains a set of precisely t partici-
pants, we will use Γ0 to represent those sets which contain exactly t participants.

Definition 2. [17,18] A linear secret sharing scheme is one in which for each set
B={i1, . . . it} of t participants, the secret k can be written as k=

∑t
j=1 ψB,ij (sij )

where ψB,ij is a homomorphism from participant Pij ’s share space Sij (+) to the
keyspace K(+).

This can be algebraically represented as:



ψB1,1 ψB1,2 · · · ψB1,n

ψB2,1 ψB2,2 · · · ψB2,n

...
...

...
ψB|Γ |,1 ψB|Γ |,2 · · · ψB|Γ |,n







s1
s2
...
sn


 =




k
k
...
k




where ψBi,j · sj represents ψBi,j(sj).
There are many examples of threshold schemes which are linear, including

[17,3,27,31]. Further, in schemes [17,3], the key space can be interpreted as a
module with left scalars from a commutative ring. In the case of [17], and others,
this ring is Z (the set of integers). Thus the scheme itself can be written in the
form of a matrix, with integer entries. The number of rows of this matrix would
be at least

(
n
t

)
.

2.1 Definition of a t out of n Group Independent Linear Threshold
Sharing Scheme

Definition 3. Let K = {K|K is a finite abelian group}. A group independent t
out of n linear threshold scheme is an ordered pair (Ψ,S) such that:
(1) For each K ∈ K and for each i = 1, . . . , n there corresponds a sharespace
Si,K. We write Si = {Si,K : K ∈ K} and S = (S1,S2, . . . ,Sn).
(2) For all B ∈ Γ0 and for all i there exists a function ψB,i such that for
all K ∈ K, ψB,i : Si,K −→ K is a homomorphism. Further, for all k ∈ K,
shares si belonging to Si,K are distributed to participant Pi such that ∀B ∈ Γ0,
k =

∑
i∈B ψB,i(si),

(3) Prob(k = k|si1 = si1 , . . . , sit−1 = sit−1 ) = Prob(k = k), and
(4) Prob(k = k|si1 = si1 , . . . , sit = sit) = 1.
We represent [ψB,i]i=1,...,n;B∈Γ0

by Ψ .
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Example 1. [20] A group independent 2 out of 3 threshold scheme.
Let k represent an indeterminate for which once a group K is chosen, will be
replaced by the secret. Let r1 and r2 represent indeterminates for which once K
is fixed, will be selected randomly from K to achieve Definition 3 (3) and (4). For
all K ∈ K, define S1,K = K and Si,K = K×K for i=2, 3. There are 3 sets which
belong to Γ0. Define ψ{1,2},1(x) = x , ψ{1,3},1(x) = x , ψ{1,2},2(x1, x2) = −x1 ,
ψ{2,3},2(x1, x2) = x2 ψ{1,3},3(x1, x2) = −x1 , and ψ{2,3},2(x1, x2) = −x2. . For
i �∈ B, B ∈ Γ0, define ψB,i(x) = 0.

Shares will be distributed as follows: P1 has 1 subshare with s1 = k + r1,
P2 has 2 subshares with s2 = [r1, k + r2]T , and P3 has 2 subshares with s3 =
[r1, r2]T . Once a group K is fixed, and the secret k is selected, assuming that the
distribution of the secrets is uniform over K, we randomly and independently
select r1 and r2 from K. We satisfy Definition 3 due to the one-time pad.
Of course there is a simpler representation of Ψ so that Ψ [s1, s2, s3]T = [k, k, k]T .
That is,




1 −1 0 0 0
1 0 0 −1 0
0 0 1 0 −1





s1
s2
s3


 =



k
k
k


 .

More examples are provided in the appendix.

2.2 Our Assumption on Group Independent Linear Threshold
Sharing

For each set B, of t participants, and for each i ∈ B, we would like ψB,i to
be group independent. That is, the threshold scheme can be used with any
finite abelian group such that the reconstruction algorithm is independent of
the group. The only method known so far to achieve this is to have Si,K be
the direct product Kai (here Si,K denotes participant Pi’s share space and K
is the keyspace, ai is some positive integer), and to have ψB,i be a row matrix
(with ai columns) of integers (i.e. Pi possesses subshares which belong to the
keyspace). Such a threshold scheme can be described by an integer matrix Ψ
such that for each set B there corresponds a row ψB of Ψ . That is, the row
ψB = [ψB,1ψB,2 · · ·ψB,n], where for each i, ψB,i is a row vector of integers of
length ai. (see the above example as a reference). In general, whenever i �∈ B,
then ψB,i would be a row of zeros.2

For each i, si denotes the share distributed to Pi. This share consists of ai

subshares, the jth subshare of participant Pi will be denoted by si,j and we will
write si,j ∈ si. We will assume that all subshares are used in Ψ . As si,j must be
used in Ψ there exists a row ψ in Ψ such that the coefficient in the column for
si,j of row ψ is nonzero.

2 There is no requirement that the integers in Ψ be chosen from 1, −1, or 0.
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2.3 The Basic Model

Let Ψ describe a group independent t out of n threshold scheme. Then Ψ is a
matrix belonging to Mµ×

∑
ai

(Z). Shares are distributed to the n participants
(which we collectively represent by s) such that

Ψs = k where k = [α1k, α2k, . . . , αµk]
T , (1)

and αi is either 0 or 1. When αi = 1, this row describes how the set of participants
(those with nonzero entries) can compute k. When αi = 0, this describes a
linear dependence between the subshares (those with nonzero entries).3 We can
represent Ψ by [A1|A2| · · · |An], where the submatrices Ai denote the blocks
which pertain to participant Pi. Since there exists a reconstruction algorithm
which is independent of the group, we see that for each B = {i1, . . . , it} there
exists a row ψB of Ψ such that: there are nonzero entries in those blocks which
pertain to participants Pi1 , . . . , Pit , for all other blocks the coefficients are zero,
and ψBs = k. Thus this row (call it the jth is such that αj = 1. Therefore
|{i : αi = 1}| ≥ (n

t

)
.

3 A Representation of s

The goal of this section is to provide equations which define s. Some of the
material in this section is due to [18]. The following treatment is reminiscent
of van Dijk’s [34]. Except that in [34], the setting is a field, whereas we are
working with finite abelian groups. The tools that can be used when working
with a field are much broader than the tools that we can employ. For example,
in a field all square matrices of full rank are nonsingular. Here, we are working
with finite abelian groups. One must be careful, for an integer scalar applied
to a group element represents repeated computations with the group element.
Thus in our treatment, all scalars must be integers. We require that all matrices
have integer entries. Further an invertible matrix, should satisfy that its inverse
has integer entries. This restricts row/column operations on matrices to those of
type I and/or III. It is permitted to perform row (column) operation of type II as
long as we restrict ourselves to multiplying the row (column) by the scalar −1.
If a group K is fixed then one will be permitted to multiply rows (columns) by
other nonzero scalars. (For example, if the fixed group K has a prime exponent,
then the entries in ΨK, Ψ where entries are reduced modulo the exponent, belong
to a field. Then one can use any nonzero field element as a scalar and perform
row/column operations of type II.) Lastly, there will be occasions when we do
use row operations of type II with integer scalars, but in those cases, the inverse
of the matrix will not be relevant and will not be used.
3 The threshold scheme Ψ defines dependencies between shares. To reduce the amount
of randomness needed, one may want to introduce additional dependencies in Ψ .
Such a dependency is introduced when an αi = 0. To illustrate this we provide two
examples in the appendix, see Examples 2 and 3.
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Many of our results for a GILTS (group independent linear threshold scheme)
are developed using familiar mathematical tools like reduction to Smith-normal
form, reduction to Gauss-Jordan form, etc. Often these tools are applied to the
general representations of Ψ , at other times these tools are applied to the scheme
where a group K has been adopted.4 Note that any lower bound required by a
group K implies a lower bound for the GILTS. It is important to realize that
the consequence of the implementation of these tools, for example reduction to
Smith-normal form, may be different dependent on whether it is applied to the
general Ψ or ΨK, the result of adopting the group K. We always use a subscript
K to indicate that the matrices will be reduced modulo the exponent of K.

3.1 Reduction to Smith-Normal Form

An important tool will be the reduction to Smith-normal form on a matrix (for
more information see [25,26,1]). Its use in this contest for secret sharing was first
made in [18], as far as we know. In this section, we survey the results given in
[18].

Suppose that Ψ is reduced to Smith-normal form. Then there exists U ∈
GL(µ,Z) and V ∈ GL(

∑
ai,Z) such that UΨV = D where

D =




d1 0 0 0 · · · 0
0 d2 0 · · · 0

. . .
0 dl 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0




.

U and V are nonsingular matrices which have integer entries, the invariant fac-
tors di of Ψ are integers and satisfy di|di+1 and l is the rank of Ψ . Observe that
U can be interpreted as a series of row operations of types I and/or III, and V
can be interpreted as a series of column operations of type I and/or III that are
performed on Ψ to reduce it to D. Since the ring Z is a principal ideal domain,
the invariant factors of Ψ are unique, up to sign, so we may assume without loss
of generality that all invariant factors are positive.

Then UΨV V −1s = Uk. Hence DV −1s = UΨV V −1s = Uk. Consider the
first l rows of the column matrix Uk. Each row can be interpreted as an integer∑

j αjuij applied to k. It follows then that di|(
∑

j αjuij). Since di|
∑µ

j=1 αjuij

(for i = 1, . . . , l), we can divide each of the first l rows by the corresponding di

and still retain the form of an integer matrix. It follows then that we have
[
Il×l 0l×(

∑
ai−l)

0(µ−l)×l 0(µ−l)×(
∑

ai−l)

]
V −1s = [k

∑µ
i=1 αiu1i

d1
, . . . , k

∑µ
i=1 αiuli

dl
, 0, . . . , 0]T .

4 In such cases we will use a subscript of K, for example ΨK would represent the scheme
Ψ when group K has been adopted.
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Set R =
∑
ai− l, and let r1, . . . , rR be chosen uniformly at random from denote

K. Then

V −1s = [k
∑µ

i=1 αiu1i

d1
, . . . , k

∑µ
i=1 αiuli

dl
, r1, . . . , rR]T .

Therefore

s = V [
∑µ

i=1 αiu1i

d1
k, . . .

∑µ
i=1 αiuli

dl
k, r1, . . . , rR]T . (2)

Represent V as V = [X |Y ], where X is a
∑
ai × l matrix (which is formed by

using the first l columns of V ). Then s can be represented as

s = C[k, r1, . . . , rR]T , (3)

where C =
[
X · [

∑µ
i=1 αiu1i

d1
, . . . ,

∑µ
i=1 αiuli

dl
]T |Y

]
. Consequently the total num-

ber of subshares
∑
ai can be expressed as R + l. R is the number of random

elements required, and l is the rank of Ψ .

3.2 Some Necessary Conditions of a GILTS

Let Γ ′ = {A|A is a set of t− 1 participants } and let B′ ∈ Γ ′. sB′ represent all
the (sub)shares used by the participants in B′, and CB′ represent the corre-
sponding rows of C used to form sB′ . Further let XB′ represent the first column
of CB′ and YB′ the remaining R columns of CB′ . i.e. CB′ = [XB′ |YB′ ]. In [18]
the authors established sB′ = kXB′ + YB′ [r1, . . . , rR]T where kXB′ represents a
scalar operation of k with XB′ .

Due to space limitations we omit many of the proofs, and will provide them in
the final version of the paper.

Theorem 4. If a GILTS satisfies Definition 3 then for all B′ ∈ Γ ′, the rank of
CB′ ≤ R.

Theorem 5. If a GILTS satisfies Definition 3 then for all B′ ∈ Γ ′, rank of CB′

= rank of YB′ .

Theorem 6. For each i = 1, . . . , n, either the rank of Ai equals the size of si
or participant Pi can reduce his share size to the rank of Ai. That is, participant
Pi can form share s′′i, which is of size equal to rank of Ai, and Pi can form a
new submatrix A′′i of rank equal to the rank of Ai such that Aisi = A′′i s′′i.

For each i = 1, . . . , n, CPi denotes those rows of C which pertain to participant
Pi. That is, si = CPi [k, r1, . . . , rR]T .

Theorem 7. For each i, either the rank of CPi equals ai or it is possible to
replace si by a share s′i whose size is equal to rank of CPi .
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The matrix Ai represents the manner in which participant Pi computes a partial
secret using his subshares. The matrix CPi represents the manner in which the
distributor (or dealer) forms the subshares for participant Pi. What we see is
that the rank of both matrices can be assumed to be equal, otherwise there exists
some dependency either in the way Pi computes partial secrets or in the way
the distributor forms the subshares. In this case, it is possible to reduce share
size, which removes the dependency. (Hence an agreement in the ranks of these
matrices). In [19], it was noted by Desmedt et. al. that within the Desmedt-
Frankel scheme[17], there exists dependencies in the matrix which described the
manner in which the partial secret were computed. Hence the authors were able
to reduce the share size by one-half.

Definition 8. We say that Pi possesses independent subshares provided the
share size is equal to the rank of Ai = rank of CPi

Observe that all group independent t out of n threshold schemes can be
reformed so that all participants possess independent subshares. Further observe
that the participants may reform their subshares (as described in these theorems)
and not affect other participants. That is, it is possible for a participant to do
this independent of the participation of the others. The notion of independent
subshares was defined for the general scheme, once a specific group is adopted,
independent subshares may become dependent.

4 Bounds on Randomness

Randomness plays an important role in protecting information, it’s role within
cryptography has been studied extensively. Randomness represents a compu-
tational requirement. A large requirement of randomness represents a burden
on computational resources. Further the generation of random elements can be
expensive. There has been a considerable amount of investigation in the area
of randomness required in secret sharing schemes, see [4,6,7,8,12,14,28]. In the
cases of [6,12] it was to develop randomness bounds for secret sharing schemes,
that were not necessarily threshold sharing schemes. In [7,8], bounds were de-
veloped for multisecret sharing scheme and/or dynamic threshold scheme. The
work that most closely impacts our discussion is [4,14] where bounds were de-
veloped for the amount of randomness required in ramp schemes and multiparty
ramp schemes, because threshold schemes are special cases of ramp schemes.

4.1 Some Background in Randomness Requirement – within Ramp
Schemes

Ramp schemes are useful for developing secure multi-party communications in a
fault-tolerant model. A (c, t, n) ramp schemes in set S is a protocol to distribute
a secret s chosen in set S among a set of n participants P in such a way that:
(1) sets of cardinality greater than or equal to t can compute the secret; (2) sets
of cardinality less than or equal to c have no information on s; and (3) sets of
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cardinality greater than c but less than t may have some information about s.
They described the requirements using entropy

1. for all A ⊆ P with |A| ≥ t it holds that H(S|A) = 0
2. for all A ⊆ P with |A| ≤ c it holds that H(S|A) = H(S)

Note: If c = t+ 1, then a (c, t, n) ramp scheme is a (t, n) threshold scheme.
LetΣ be a ramp scheme andΠS be the probability distribution on S. Blundo,

DeSantis, and Vaccaro defined the dealer’s randomness as

µr(c, t, n,ΠS , Σ) = H(P1, P2, . . . , Pn|S)

and in [4] derived the following.

Theorem 9. [4] Let the number of secrets be |S| = 2ν > n + t − c for some
positive ν. The optimal number of random bits to set up a (c, t, n) ramp scheme
is equal to

µr(c, t, n, US, Σ) =
c

t− c log2 |S|.
Here US denotes the uniform probability distribution on the set of secrets S.
Notice that Blundo et. al. are discussing the optimal number of random bits, i.e.
a lower bound on the amount of random bits needed. When we discuss R we are
discussing the amount of random elements. That is, to compare our work with
their bound, we must compare R · log2 |S| with c

t−c log2 |S|, or compare R with
c

t−c . This comparison only makes sense when talking about t out of n threshold
schemes. To make a comparison, we set t = c + 1. Thus R ≥ t−1

t−(t−1) = t− 1.
Further Blundo, DeSantis, and Vaccaro ’s randomness bound can be interpreted
as:

Theorem 10. [4] The number of random bits used in a (t, n) threshold scheme
must be (t− 1) log2 |S|.

5 Bounds on Randomness in a GILTS

The bound derived by Blundo, DeSantis, and Vaccaro showed that R ≥ t − 1
show that Shamir’s scheme is optimal, in the sense that it requires the minimum
amount of randomness generated by the dealer.

Any lower bound on randomness in a threshold sharing scheme over a field
is a lower bound of randomness in a GILTS. Thus R ≥ t − 1 in a GILTS. In
the 2 out of 3 GILTS described in Example 1, R = 2 which is greater than
t − 1. In the 2 out of 4 GILTS described in Example 2, R = 2 which is also
greater than t−1. In both of these examples we will find that a minimal amount
of randomness will be required by the dealer, and so we see that the Blundo,
DeSantis, and Vaccaro randomness lower bound does not effectively state the
needed randomness within a GILTS.

In the GILTS described within [17], the amount of randomness R satisfies
R ≥ n(t − 1). So we see a great difference between the Blundo et. al. bound
and the randomness needed by the scheme in [17]. We now derive bounds which
better describe the randomness required in a GILTS.
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Theorem 11. If Ψ is a t out of n group independent linear threshold scheme,
with independent shares, then for all i the randomness required satisfies R ≥
ai + (t− 2).

Of course every participant must be given a share. Hence |ai| ≥ 1. So we see
that R ≥ 1 + (t− 2) = t− 1 which is the same bound, as Blundo, DeSantis, and
Vaccaro had derived. Therefore if any participant is given 2 or more subshares,
our bound on the amount of randomness is an improvement on this bound. Note
that any bounds concerning participant share size ai and total share size

∑
ai

provide three bounds: one concerning the amount of information that needs to
be passed from dealer to participant, two, memory requirements for the partic-
ipants, and lastly, they provide a lower bound on randomness required. Some
examples concerning constructing bounds on share size include [3,5,10,11,27,33].

Recall that we have used Γ ′ to denote all sets of participants of cardinality
t−1. For each set A ⊆ {P1, . . . Pn}, let lA denote the rank of CA. Further let UA

and VA to denote the matrices belonging to GL(
∑

Pi∈A ai,Z) and GL(R+1,Z),
respectively, which reduces CA to Smith-normal form. Observe that UACA has
been reduced so that the only nonzero rows occur in the first lA rows. Represent
UACA by

UACA = [ζ1,A, . . . , ζla,A, 0, . . . , 0]T . (4)

Define
KNOW (A) = {

∑
i=1

λi(ζi,A · ω) : λi ∈ Z}. (5)

where ω = [k, r1, . . . , rR]T . KNOW (A) can be thought of as the span of the
“information” collectively held by the participants in A.5

Whenever a group K is adopted to be used within the threshold scheme, we
will assume that we would perform operations (Smith-normal form reduction,
etc.) using the group K. One effect is that entries would be reduced modulo the
exponent of K. However there may be other effects, for example the exponent
of the group maybe prime and so all entries of the matrices belong to a field.
The consequence is that we can use row/column operations of type II, and all
square matrices of full rank are units. If K is the group adopted, then we will
use UA,K and VA,K which place CA,K into Smith-normal form. We will also use
KNOW (A,K) to denote the knowledge given by the shares of A when working
with group K.

Theorem 12. Let Ψ be a GILTS. For all finite abelian groups K and A1, A2 ∈
Γ ′ with A1 �= A2 KNOW (A1,K) �= KNOW (A2,K).

Theorem 13. For all GILTS the randomness R required satisfies 2R(R+1) ≥
1 +

(
n

t−1

)
.

5 KNOW (A) is a subgroup of the free abelian group generated by < k, r1, . . . , rR >
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Proof. Let K be a finite abelian group with exponent 2. For all B′, B′′ ∈ Γ ′ with
B′ �= B′′ we have KNOW (B′,K) �= KNOW (B′′,K). Since KNOW (B′,K) is
formed from CB′K we see that UB′,KCB′,K �= UB′′,KCB′′,K. Observe that each
UB′,KCB′,K is a

∑
i∈B′ ai,K × (R + 1) matrix. 6 However the rank of CB′,K is

≤ R. Therefore

UB′,KCB′,K =




TB′,K
0 · · · 0
...

...
0 · · · 0


,

where TB′,K is a R× (R+ 1) matrix. Further, for B′, B′′ ∈ Γ ′, with B′ �= B′′, we
have TB′,K �= TB′′,K. Since entries in a TB′,K consist of only 0 or 1’s, there are

exactly 2R(R+1) to determine a R×R+ 1 matrix. As there are
(

n
t−1

)
elements

in Γ0 we conclude 2R(R+1) ≥
(

n
t−1

)
.

Theorem 14. For all GILTS the randomness R satisfies

R+ 1 ≥
√

log2(1 +
(
n

t− 1

)
).

Theorem 14 is an improvement on the Blundo et.al. bound whenever 2t2 ≤
1 +

(
n

t−1

)
. Notice that there are infinitely many t and n which satisfy the above

inequality. For example, the above inequality is true whenever t ≤ 4
√
n.

Suppose Ψ is a GILTS, such that every participant had independent sub-
shares. Despite the fact that everyone possesses independent subshares, once a
group is adopted, shares may become dependent or shares may become irrelevant
(no longer needed to compute the secret). A subshare will be called degenerate
if the subshare is not used to compute k. In Theorem 6 and Theorem 7 we
described how to generate independent subshares. If a share is degenerate we
assume the participant will throw it away. In some instances it is preferred that
a set of participants belonging to the access structure can compute the secret
key k but also have the ability to compute all other shares. That is, they would
together possess all information within the system. We will formally describe the
requirements for this model.

Model 5.1 A t out of n GILTS is called “all-revealing” provided for any finite
abelian group K and for all k ∈ K

(1) Prob(k|si1 , . . . , sit−1) = Prob(k)
(2) Prob(k|si1 , . . . , sit) = 1
(3) Prob(sj |si1 , . . . , sit) = 1 for all j, where sj represents the nondegenerate

subshares belonging to Pj used in the threshold scheme when working with group
K.
6 ai,K represents the number of subshares participant uses within the threshold scheme

ΨK. Thus ai,K ≤ ai. Further ai,K is the rank of Ai,K.
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Observe that when the group K has exponent 2, then all the invariant factors
in the reduced CK are 1. We see that in the all-revealing model, all sets belonging
to Γ cannot only determine all shares but compute all random elements. That is,
they can determine ri for i = 1, . . . , R. The following illustrates that all-revealing
schemes naturally exist.

Theorem 15. Every n− 1 out of n GILTS is all-revealing.

As we will soon see, the model for all-revealing schemes provides the tools to
improve the result given by Theorem 14.

5.1 Some Observations Concerning All-Revealing Schemes when K
Has Exponent 2

Consider the secret sharing scheme ΨK where we adopt a group K with exponent
2. For each B′ ∈ Γ ′, let LB′ denote the matrix belonging to GL(

∑
Pi∈B′ ai,Z2)

such that LB′CB′,K is in Gauss Jordan form. Recall that CB′,K has rank ≤ R.
The number of nonzero rows is ≤ R. Observe that for different B′ ∈ Γ ′ the
number of rows in LB′CB′,K may differ. To make effective comparison between
LB′CB′,K and LB′′CB′′,K forB′, B′′ ∈ Γ ′ we use preciselyR+1 rows of LB′CB′,K,
if LB′CB′,K lacks that many rows insert enough zero rows. If LB′CB′,K has more
than R+1 rows delete enough zero rows to achieve a matrix with R+1 rows. Al-
though we may have formed a new matrix, the nonzero rows are the same, we will
use Υ1(LB′CB′,K) to denote this new matrix. Second, note that Υ1(LB′CB′,K) is
still in Gauss Jordan form. To achieve an even more consistent representation
between all the Υ1(LB′CB′,K) for different B′, we perform one more manipula-
tion. For each nonzero row z in Υ1(LB′CB′,K) if the leading nonzero term in
z occurs in column i interchange rows so that z is rotated to row i. We use
Υ2(LB′CB′,K) to represent this matrix.

For each B′ ∈ Γ ′, let us represent each row i of Υ2(LB′CB′,K) by βi−1,B′ for
i = 1, . . . , R+ 1. Then Υ2(LB′CB′,K) = [β0,B′ , . . . ,βR,B′ ]T where each βi,B′ is
a (R + 1)-tuple. Therefore an equivalent representation of KNOW (B′,K) is :

KNOW (B′,K) = {
R∑

i=0

θi(βi,B′ · ω) : θi ∈ Z2}. (6)

That is, it is trivial to show that Definition (6) is equivalent to Definition (4).
Secondly, observe that (

∑R
i=0 θiβi,B′) · ω =

∑R
i=0 θi(βi,B′ · ω).

Denote ΘB′(θ) =
∑R

i=0 θiβB′ , where θ = [θ0, . . . , θr]. Observe that ΘB′(θ)
is a R+ 1 tuple, and that for distinct B′ ∈ Γ ′ we get distinct ΘB′(θ). For each
B′ ∈ Γ ′, we have ΘB′(θ) = (ξ0, . . . , ξR) where ξj is some linear combination
of θi’s. Further, θi cannot be used in the linear combination that represents ξj
whenever i > j. This follows from our construction of Υ2(LB′CB′,K).

Define Λ0 = {ΘB′(θ) : B′ ∈ Γ ′ and ξ0 �= θ0}. Inductively, for i = 1, . . . , R
we define Λi = {ΘB′(θ) : B′ ∈ Γ ′ , ξ0 = θ0, . . . , ξi−1 = θi−1 and ξi �= θi}.
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Lemma 16. For i = 0, . . . , R,

|Λi| ≤ 2i.

Theorem 17. For all GILTS (group independent linear threshold schemes)
which satisfy the all-revealing model, the amount of randomness R satisfies

2R+1 ≥ 1 +
(
n

t− 1

)
.

Proof. Let K be a group of exponent 2. What we will establish is that the
amount of randomness required in such a group exceeds log2(1 +

(
n

t−1

)
), this

will establish the result.
Recall that for each B′ ∈ Γ ′ we have defined ΘB′(θ) such that for distinct

B′ we get distinct ΘB′(θ). Therefore we see that |{ΘB′(θ) : B′ ∈ Γ ′}| ≥
(

n
t−1

)
.

Some observations:

– for i, j = 0, . . . , R, i �= j we see that by definition Λi ∩ Λj = ∅, and
– for each ΘB′(θ) = (ξ0, . . . , ξR), if there θi is used in some linear combination

for ξj , then j ≥ i.
The second observation implies that each ΘB′(θ) belongs to some Λi (where

0 ≤ i ≤ R). This follows from the argument that if ΘB′(θ) does not belong
to Λi for all i, then ξ0 = θ0, ξ1 = θ1, . . . , ξR = θR. Consequently the original
matrix LB′CB′ has rank R+ 1, which of course implies that CB′ has rank R+ 1,
contradicting Theorem 4.

The first observation implies that |⋃R
i=0 Λi| =

∑R
i=0 |Λi|. Using Lemma 16,

we see that
∑R

i=0 |Λi| ≤ 1 + 2 + · · · + 2R = 2R+1 − 1. Now using both ob-
servations we see that |{ΘB′(θ) : B′ ∈ Γ ′}| ≤ ∑R

i=0 |Λi| = 2R+1 − 1. Hence(
n

t−1

)
≤ 2R+1 − 1. Therefore, 2R+1 ≥ 1 +

(
n

t−1

)
.

5.2 Remarks

Let us say that if a GILTS requires the minimal amount of randomness, then
it is efficient. Observe that the 2 out of 3 GILTS described in Example 1 is all-
revealing, and it is efficient (requires a minimal amount of randomness) in that
R = 2. This last remark follows from the fact that this scheme possess a minimal
amount of subshares. (This is due to a result in [3], which implies that for a 2 out
of n scheme,

∑
ai ≥ n log2 n), and Theorem 11 which implies R ≥ ai + (t − 2).

Thus for all 2 out of 3 schemes R ≥ 2. Observe that Theorem 17 fails to give us
the true minimal bound, since R+ 1 ≥ log2(1 +

(
3
1

)
) = 2.

The 2 out of 4 GILTS given in Example 3 is also an example of an efficient
GILTS (minimal amount of randomness required), again R = 2. This follows
from the same argument as above. First

∑
ai ≥ 4 log2 4 = 8, by [3]. Secondly,

by Theorem 11, R ≥ ai + (t − 2) = 2. It is trivial to show that this scheme is
all-revealing. In this example we find that Theorem 17 provides a tight bound
for the 2 out of 4 schemes. That is R + 1 ≥ log2(1 +

(
4
1

)
) > 2. That is, integer

R+ 1 must exceed 2, hence R ≥ 2.
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6 Conclusion

We have formalized the definition of group independent linear threshold sharing
and introduced new lower bounds for randomness in a GILTS. In addition, we
have provided some examples of cases when these bounds would be tight. We still
see that there exists an enormous gap between our bounds on randomness and

the randomness required by the scheme [17]. That is, R+1 ≥
√

log2(1 +
(

n
t−1

)
)

and in [17] we have R ≥ n(t− 1). Future work may include examining this gap.
We have also introduced randomness bounds, which incorporate share size. That
is, Theorem 11. It would be worthwhile to develop bounds on share size within a
GILTS. That is, the bounds on 2 out of n threshold schemes within [3], helped us
to show that Examples 1 and 3 were efficient. Lastly, we have found that both of
these efficient GILTS were all-revealing, is it true that all efficient GILTS must
be all-revealing? That is, if a scheme requires a minimal amount of randomness
does this imply that it must be all-revealing?
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7 Appendix

Example 2. [16] Consider the following 2 out of 4 scheme, such that each partic-
ipant is given 2 shares. Participant Pi is given share si such that si1 and si2 are
defined by the following table.

s11 s12 s21 s22 s31 s32 s41 s42
k − r2 k − r1 k − r2 r1 r2 k − r3 r2 r3

.

For all K ∈ K, let Si,K = K2. k represents the secret, r1, r2, r3 represent three
random elements that will be chosen from the finite abelian group uniformly
random. Here −r represents the inverse of r. Each row represents one of the

(
4
2

)
sets B (sets of cardinality 2) and indicates how that set can compute the secret.
The corresponding Ψ will be

Ψ =




1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1




So we have Ψs = [k, k, . . . , k]T , and
∑
ai = 8.

Example 3. [16]
One can easily see that to have two distinct random elements r2 and r3 is

not necessary. We can choose r1 = r3 and still achieve Definition 3.

s11 s12 s21 s22 s31 s32 s41 s42
k − r2 k − r1 k − r2 r1 r2 k − r1 r2 r1

It can easily be established that this scheme is as secure as the first example. The
share size is the same as before, but to create a more efficient scheme (i.e. reduce
the amount of randomness), we have increased the rank of Ψ (this was done by
introducing an additional dependency between shares). The corresponding Ψ
will be

Ψ =




1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 −1



,

where Ψs = [k, k, k, k, k, k, 0]T . This last row of Ψ is needed. This row infers that
the second share of P2 is the same as the second share of P4. (i.e. r1 = r3.)
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Abstract. Digital signature is a breakthrough of modern cryptographic
systems. A (t, n) threshold digital signature allows every set of cardinality
t or more (out-of n) co-signers to authenticate a message. In almost all
existing threshold digital signatures the threshold parameter t is fixed.
There are applications, however, in which the threshold parameter needs
to be changed from time to time. This paper considers such a scenario,
in order to discuss relevant problems, and proposes a model that solves
the related problems.

1 Introduction

In democratic organizations a majority of members rules. So if an organization
has n members, any collection of t, where t ≥ �n

2 � + 1, has to have the power
to act on behalf of the organization. Examples of such organizations include
legislative bodies governing countries (parliaments, senates, etc.), cities (city
councils), companies and other democratic institutions. Cryptography developed
a (t, n) threshold digital signature which can be generated by any group of t
members. The fact that a (democratic) group successfully generated a signature
means that a majority of its members agreed on the form of the signed message
(that may be a piece of legislation). In general, (t, n) threshold signature scheme
allows a group of n participants to collectively hold a group secret key. Each
participant, using his share from the secret key, can generate a partial signature
such that

– any collection of t or more partial signatures enables the group to compute
a valid signature of the group,

– any collection of t − 1 or less partial signatures is not enough to yield the
valid group signature.

Additionally, we require that the knowledge of partial signatures does not allow
either the group secret or the shares of the group secret held by participants to
be recovered. The group signature is computed

1. with no help of a combiner – a collection of currently active participants
pool their partial signatures and recover collectively the group signature
(each active participant acts as a combiner),

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 392–402, 2001.
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2. with the help of a combiner – a collection of active participants submit their
partial signatures to a trusted combiner, who performs the computation for
them and generates the group signature.

Threshold signatures must apply secret sharing schemes. It is worth noting that
a threshold secret sharing scheme is typically one-time or once an authorised set
of participants has reconstructed the secret, both the secret and all shares have
become known to everyone within the group. For a threshold signature, however,
a collection of participants reveal their partial signatures without compromising
their shares so the signature scheme can be used a (polynomial) number of times.
The concept of group signatures was invented by Boyd [4] who demonstrated

how to adapt the RSA system to implement a (2, 2) multisignature and a (2, n)
threshold RSA signature. A general (t, n) threshold RSA signature scheme has
been proposed by Desmedt and Frankel [6]. Implementations of threshold and
multisignature schemes based on the ElGamal and its variants (the DSS signa-
ture schemes) were the subject of extensive investigations (see, for example, [10],
[14], [11], [12] and [16]).
In general, a (t, n) threshold signature is set up by a trusted dealer or key

authentication center (KAC), who generates the secret key K, designs a (t, n)
threshold secret sharing scheme and distributes the shares of the secret key
among the participants. Note that the underlying secret sharing is static so the
threshold parameter t is fixed for all signatures generated by the scheme.
There are, however, some applications for which the threshold parameter of

the signature needs to be changed from time to time [13]. For example, consider
a legislative body (parliament) with 100 members. If all members are present,
then any majority with at least 51 is able to pass a bill. To support the voting
on the bill by using cryptography in these circumstances, it is enough to design
a (51, 100) threshold signature. In practice, however, the presence of the whole
house is a rare event and most of the time the number of members present is
smaller than 100. There is also a lower bound imposed on the number of members
below which all bills passed do not have any legal significance. The quorum is
the smallest group of members whose decisions are still legally binding. In our
example the cardinality of the smallest quorum is 51. So if there are 51 sitting
members voting on a bill, then the bill becomes a law if there are 26 members
voting for it. To support this scenario cryptographically, one would need to
implement a (26, 51) threshold signature. It is obvious by now that to enable
members of parliament to generate valid signatures, the threshold parameter
must be adjusted depending on the number of currently sitting members. The
range of possible thresholds spans from 26 to 51.
Hence, we would need a dynamic (ti, ni) threshold signature scheme which

allows us to transfer signing power from a set of t members to a set of ti (t > ti)
members. Note that, the transfer of power must be temporary and applicable
for signing a single message, and must not be useful for signing any other mes-
sage. Thus, a solution which allows us to go from a (t, n) threshold scheme to
a (ti, ni) threshold scheme (such as, [7]) on the underlying threshold scheme of
the threshold signature scheme is not acceptable.
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1.1 The Scenario

Consider a parliament with n members. A quorum must have at least �n
2 � + 1

members to result in legally binding proceedings. Sessions are typically run by
a chair-person or a committee and there may also be secretaries and even an
audience. The secretaries and audience are playing a passive role. The chair-
person puts forward the motion (a proposed bill, or simply the message) for
voting. The voting can be conducted in two ways, either by casting public or
secret ballot. Public voting is in many cases considered to be undemocratic as
the voters may be subject to an undue pressure (such as the party discipline).
Secret ballot is preferred in these situations where the way participants have
voted is to remain secret. The ballot in the voting is binary “yes/no” – the
members may agree or disagree with the proposed motion. The motion is passed
if the number of “Yes” votes is bigger than �ni

2 �, where ni is the number of
members present in the session; otherwise it is rejected. The result, whatever it
is, will be recorded by secretaries and the documentation keeps track of events
in sessions. Note that, the motion should not be known to participants prior to
the beginning of the session. Otherwise participants may want the motion to be
delayed by walking out of the session and making a quorum unachievable.

1.2 Requirements

The acceptance or rejection of a motion in a democratic group with n partici-
pants can be supported by an electronic system based on a threshold signature
which needs to satisfy the following conditions.

1. Initially, we need to design a (�n
2 � + 1, n) threshold signature scheme. In

order to sign a message during the i-th session with the presence of ni par-
ticipants (ni ≥ �n

2 �+ 1), the power to sign a message must be transfered to
ti participants (ti = �ni

2 �+ 1), where ti is a new threshold.
2. Transfer of the power to sign must be

– for a single message only – partial signatures generated by active partic-
ipants during the i-th session, do not compromise security of threshold
signatures generated during other sessions (and vice versa),

– for a duration of the i-th session only – the validity of partial signatures
generated during the i-th session is limited for the duration of the session.
This is to say that “if a message is not signed at the i-th session (because
the majority has not agreed), then later the message cannot be signed
(even if the circumstances have dramatically changed).” To force this
requirement, we let participants generate valid group signatures only
with the help of a trusted combiner. Note that the chair-person can play
the role of the combiner.

3. Voting for/against the motion is to be conducted using a secret ballot so
nobody (currently active participants and other participants) is able to dis-
cover how the participants voted apart from the knowledge that the motion
has been successfully moved (and the corresponding message signed) or that
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the motion failed. The trusted combiner is, however, allowed to know how
the participants voted.

4. Any minority of dishonest participants cannot create bogus sessions. This is
another reason why we use the trusted combiner.

2 The Model

The necessary cryptographic components include the following

– A (t, n) threshold signature – this is the basic signature scheme to be used
repeatedly for all consecutive sessions. The parameter t = �n

2 �+ 1 specifies
the size of a smallest quorum which still has the power to run legally binding
sessions.

– A cryptographic protocol used to distribute partial signatures of a message
(blinded by the combiner) from the current quorum with ni participants
into a (ti, ni) threshold scheme. The resulting one-time threshold signature
is unblinded – the message which corresponds to the threshold signature is
known.

– The combiner must be active in all legally binding sessions. To give the com-
biner the required power, the secret key K is split into two parts (K1,K2)
such that K = K1 + K2. The first part K1 is distributed among the par-
ticipants and the second one K2 is assigned to the combiner. The valid
signature can be generated only if both a majority of the current quorum
and the combiner collaborate. One may argue that assigning a portion of the
secret key to the combiner is not reasonable – what happens if the combiner
loses the key? This problem can be solved by putting a committee in place
of a single combiner and distributing shares of K2 among the members of
the committee.

– Generation of a signature for a motion can be blocked by the combiner who
may refuse to collaborate in signing. The combiner later may claim that there
was not enough support for the motion. To avoid these problems, we assume
that the participants are voting for or against the motion by signing either
“yes” message M or “no” message M ′. Hence, at the end of the session one
and only one of these messages will be signed, which indicates the decision
of the members (not the combiner) regarding the motion.

3 Components of the System

This section considers the basic tools which we will use for the implementation
of our system.

3.1 Communication Channel

Each member and the combiner is connected to a common broadcast medium
with the property that messages sent to the channel instantly reach every party
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connected to it. We assume that the broadcast channel is public, that is, every-
body can listen to all information communicated via the channel, but cannot
modify them. We assume also there exists private channels between every pair
of members, with the property that nobody neither can listen to nor can modify
the messages sent via these private channels.

3.2 Threshold Scheme

Threshold secret sharing schemes were introduced in [19,3]. Due to its nice alge-
braic structure, the Shamir scheme [19] is frequently applied in society-oriented
cryptographic systems. The Shamir (t, n) threshold scheme is based on polyno-
mial interpolation. Let the secret be an element of a finite field, that is, K ∈Zp,
where p is a prime number. Shamir suggests the following algorithm for con-
structing a (t, n) threshold scheme.

1. The dealer, D, chooses n distinct and non-zero elements of Zp, denoted
x1, . . . , xn and sends xi to Pi via a public channel.

2. D secretly chooses (independently at random) t− 1 elements of Zp, denoted
a1, . . . , at−1 and forms the polynomial

f(x) = K +
t−1∑
i=1

aix
i.

3. For 1 ≤ i ≤ n, the dealer computes si, where

si = f(xi) (mod p).

4. D sends (via private channel) share si to participant Pi; i = 1, . . . , n.

At the reconstruction phase of the secret, every set of at least t participants
can apply the Lagrange interpolation formula to reconstruct the polynomial and
hence recover the secret. Alternatively, participants could give their shares to a
trusted authority, called the combiner, to perform the computation for them.

3.3 Threshold Signature

The first solution for democratic systems was proposed by Desmedt and King
[8] and it was based on the RSA threshold signature scheme. In [15] Li, Hwang
and Lee have argued that a (t, n) threshold signature scheme does not only
require that less than t users must not be able to generate a correct signature,
but also a particular set of t participants should not be forged by another set
of t participants. They also pointed out that the Desmedt-Frankel’s [6] (t, n)
threshold RSA signature is subject to the conspiracy attack. That is, if t (or more)
participants conspire, then the group secret key and all participants’ shares will
be revealed. Once the shares are revealed, the set of collaborating participants
can impersonate another set of shareholders to sign a message without holding
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the responsibility of the signatures, and can deny having signed a message though
in fact they have signed it.
This is a common shortcoming of almost all threshold signature schemes. We

design our system using an ElGamal-type threshold signature scheme that re-
moves this shortcoming. In our system, even if all members collaborate, they can
get K1 which is useless without knowing K2. On the other hand, the combiner
(or the members of committee) cannot obtain anything more than K2. That is,
the group secret key can be recovered if and only if the participants and the
combiner (the committee members) collaborate.

3.4 Verifiable Transfer of Signature Shares

The main assumption of threshold schemes is that the dealer is trustworthy.
In our model, the transfer of power to sign a message requires that a subset of
members (with cardinality equal to or greater than t) applies a threshold scheme
and distributes its partial signatures on the motion among all present members
in a session. Since the honesty of members is not guaranteed, the correctness
of the shares given to each member could be questionable. A solution to these
sorts of problems has been discussed in verifiable secret sharing schemes (see, for
example, [2], [17], [9]).
Verifiable secret sharing schemes allow the honest participants to ensure that

their shares are correct (related to the secret) and thus in the secret reconstruc-
tion phase they will recover the original secret. Stadler [18] proposed a publicly
verifiable secret sharing scheme in which not only the participants but also an
outsider can verify that the shares are correctly distributed. The underlying ver-
ifiable secret sharing scheme which we will use in our implementation is due to
Pedersen [17]. We will propose a protocol that convinces the participants, the
combiner, and even outsiders about the correctness of the signature and relevant
shares.

4 Implementation

In this section, we implement the proposed democratic scheme that satisfies the
requirements of its corresponding real-life application.

4.1 Initialization

We employ the Harn [10] (t, n) threshold digital signature. This system utilises
the Shamir threshold scheme and a modified version of the ElGamal signature. A
dealer or trusted key authentication centre (KAC) selects the system parameters
as,

– p, a prime modulus, where 2511 < p < 2512;
– q, a prime divisor of p− 1, where 2159 < q < 2160;
– a random integer K2 ∈ Zq as the secret key of the combiner (or a committee
that plays the role of combiner);
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– compute K1, such that K = K1 +K2 (mod q), where K is the secret key
associated with the organization;

– a polynomial f(x) = K1+a1x+ · · ·+at−1x
t−1 mod q, where K1 is the secret

associated with the members and ai are random integers in Zq;
– g = h(p−1)/q (mod p), where h ∈ GF (p) is a primitive element (g is an
element of order q in GF (p));

The parameters p, q and g are public, but K, K1, K2, and a1, . . . , at−1 are secret
values.
The KAC uses the Shamir (t, n) threshold scheme to share the secret K1

among the set P = {P1, . . . , Pn} of the group members. That is, it assigns
si = f(xi) to participant Pi (1 ≤ i ≤ n). It assigns K2 to the combiner. For
simplicity, we assume the system has a single combiner. It is not difficult to
show how it works if a committee runs the sessions. The KAC also publishes
k = gK mod p as the group public key and ui = gf(xi) mod p as the public key
of participant Pi (1 ≤ i ≤ n).

4.2 Opening a Session

The combiner/chair-person sends an announcement via the public communica-
tion channel. Those participants who want to take part in the session will respond
to the announcement. If the number of participants is large enough (i.e., satisfies
the quorum) then the session can be started. Note that, at this stage everyone
knows the identity of all other members present in the session.
A common practice in generating digital signatures is to apply an appropriate

hash function [5] on the message and then sign the hash value. Fundamental
characteristics of all such hash functions are that they are one-way and collision
free. Obviously, knowing the hash value of a message gives no knowledge about
the message itself.
Let {P1, P2, . . . , Pni} be the set of present members in the i-th session (ni ≥

t). The combiner/chair-person, who is supposed to collect the member’s vote to
motion mi, applies the hash function on the motion and sends the hash value of
the motion, Mi, via the communication channel.

4.3 Transfer of Signature Shares

In order to sign the message Mi, each participant Pi of an authorised set A
(|A| ≥ t) chooses a random value r′i (1 < r′i < q − 1) and computes a public
value ri, as

ri = gr′
i (mod p)

and makes ri publicly available through the broadcast channel. The combiner
also chooses a random value r′c (1 < r′c < q− 1) and computes a public value rc,
as

rc = gr′
c (mod p)
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Once rc and all ri are available, collaborating participants of the set A compute,

r = rc ×
∏

Pi∈A
ri (mod p).

Participant Pi ∈ A uses his secret f(xi) and his chosen one-time random r′i, to
sign the message Mi as,

σi = f(xi)×Mi ×



∏

Pi∈A
i�=j

−xj

xi − xj


− r′i × r (mod q).

In order to distribute partial signatures among the members present such that
every subset of cardinality ti (out-of ni members present in the i-th session) is
able to reconstruct the signature, participant Pi generates a polynomial fi(x) =
σi + ai1x+ · · ·+ aiti−1x

ti−1 mod q, where aij are random integers in Zq. Then
Pi publishes gσi , gai� (1 ≤ � ≤ ti − 1) and privately sends shares sij = fi(xj)
(1 ≤ j ≤ ni) to all present participants in the i-th session (Pi keeps his share,
sii). Two verifications can be done at this stage:

1. Every participant, Pj , can verify that the share sij given by Pi is in fact
relevant to the partial signature σi, by using

gsij
?= gσi ×

ti−1∏
�=1

(gai� )xj
�

(mod q).

2. Simultaneously, every participant, the combiner, and even an outsider can
verify the correctness of the partial signature of participant Pi using,

(uMi

i )

(∏
Pi∈A

i�=j

−xj
xi−xj

)
?= rr

i × gσi (mod p).

If the equation holds true, the partial signature (ri, σi) of message Mi gen-
erated by participant Pi is valid.

Note that, in spite of the verifiability of the partial signatures, nobody can get
any information about the partial signatures and therefore about the signature
itself (considering the fact that discrete logarithm is a hard problem). Also note
that dishonest members can be detected and removed from the system at this
stage.

4.4 Signing Motion Messages

Once all partial signatures of an authorised set are distributed and verified, the
combiner discloses the messages mi and m′i (note that partial signatures are
generated as discussed previously for two yes and no messages).
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Active participants are making up their minds as to which motion they sup-
port – they have to be either for or against the motion. Abstention is not an
option. There is always a motion that has attracted the support of at least
ti members present in the session. They submit their partial signatures to the
combiner and thus they collectively compute the valid signature for either the
message Mi or M ′i .
In particular, participant Pi keeps a share sii = fi(xi) corresponding to the

partial signature σi generated by himself. Pi also has received at least t−1 shares
from other co-signers relevant to partial signatures σj (1 ≤ j ≤ t, j �= i). If Pi

adds all these shares (computation is done modulo q), then the resulting value
is his share from the secret

∑t
i=1 σi (according to the (+,+)-homomorphism

property of Shamir’s threshold scheme –see [1] for further details). That is, every
participant’s share is derived from the following polynomial

F (x) = A0 +A1X +A2X
2 + · · ·+Ati−1X

ti−1 (mod q)

when A0 =
∑t

i=1 σi is the signature of Mi corresponding to the partial secret
K1, and Ai (1 ≤ i ≤ ti − 1) are random integers in Zq.
Each member transmits his share (on messages Mi or M ′i as “Yes” or “No”

vote) to the combiner. The combiner either is able to generate the valid signature
of Mi (if at least ti partial signatures are available) or to generate the valid
signature of the messageM ′i (if at least ti partial signatures ofM

′
i are available).

For example, if a majority of members present have given their votes to the
motionmi, the combiner then uses his secretK2 and his chosen one-time random
r′c, to sign the message Mi as,

σc =Mi ×K2 − r′c × r (mod q).

Finally, the group signature on the message Mi can be computed using

σ = σc +
∑

Pi∈A
σi (mod q).

To verify the signature, every one who knows the group public key can check,

kMi
?= rr × gσ (mod p).

If the equation holds true, the group signature (r, σ) is valid. If a single
combiner is replaced by a committee, then the committee performs a similar
interaction (as performed by participants) in order to generate their signature
on the message and to compute the group signature.
Note that, although the Shamir scheme is susceptible to cheating, the partic-

ipants cannot cheat the combiner by giving false shares because, the combiner
can easily verify the correctness of shares of each participant and thus be able
to detect any possible cheating. In fact, if participant Pj submits Sj as his share
then the combiner can verify the correctness of Sj using

gSj
?=
∏

Pi∈A

(
gσi ×

ti−1∏
�=1

(gai� )xi
�

)
(mod q).
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5 Security Analysis

The security of underlying cryptographic tools has been discussed in relevant
papers. The security of the entire system will be considered in the final version
of the paper.
Note that, the major effort in our design (similar to the design of any other

electronic schemes) is to satisfy the requirements imposed by a real-life system.
One of the assumptions was the chair-person/combiner is unbiased and simply
wants to get the decisions of the members on a motion. This is not the case
in all real-life applications. There are situations in which a distrusted organiza-
tion/government wants to get its members’/citizens’ vote in its favour. In such
cases, the result of voting is questionable (since the combiner can swap “Yes”
and “No” votes). A commonly used solution is to get the help of some arbiters,
such as an international committee to control the voting procedure.
In our scheme, even if the combiner is biased it cannot change the result of

voting as long as the underlying signature scheme is unforgeable. However, the
proposed scheme can be corrupted if the basic assumption in almost all secret
sharing schemes –that considers an honest dealer distributes the shares of a secret
key among all parties in the system– fails. Being more realistic, experiences have
shown that having such a trusted authority in crucial and disputable situations
is not an easy task. In order to avoid this problem, in the final version of this
paper, we will consider the case where the dealer is removed from the system.
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Abstract. In this paper, we describe how to construct an efficient and
unconditionally secure verifiable threshold changeable scheme, in which
any participants can verify whether the share given by the dealer is
correct or not, in which the combiner can verify whether the pooled
shares are correct or not, and in which the threshold can be updated
plural times to the values determined in advance. An optimal threshold
changeable scheme was defined and given by Martin et. al., and an un-
conditionally secure verifiable threshold scheme was given by Pedersen.
Martin’s scheme is based on Blakley’s threshold scheme whereas Peder-
sen’s is based on Shamir’s. Hence these two schemes cannot directly be
combined. Then we first construct an almost optimal threshold change-
able scheme based on Shamir’s, and after that using Pedersen’s scheme,
construct a unconditionally secure verifiable threshold scheme in which
the threshold can be updated plural times, say N times. Furthermore,
our method can decrease the amount of information the dealer has to be
publish, comparing with simply applying Pedersen’s scheme N times.

1 Introduction

In a secret sharing scheme, a secret is broken into several pieces so that certain
subsets of those pieces can reconstruct the secret. In a protocol, a dealer has a
secret, and breaks it into several pieces called shares. An entity given a share
is called a participant, a shareholder or a member simply. In this paper, we
adopt the term participant. The entity to gather shares and recover the secret, is
called the combiner. Basically, a secret sharing is regarded as a strategy for some
important data protection. On the other hand, it is useful also for multiparty
computation, for example, electronic auction, electronic voting, and so on.

As the most popular secret sharing schemes, we can see Shamir’s polynomial-
based scheme [Sha79] and Blakley’s geometry-based scheme [Bla79]. In that
scheme, a secret is broken into n pieces so that the secret can reconstruct with
any t (≤ n) pieces, and not so that any (t− 1) pieces can determine the secret.
Such a t is called the threshold of the scheme. Also we call such secret sharing
schemes with the property given above (t, n)-threshold schemes.
� Current affiliation of the first author: Alpha systems corporation.
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There are some threshold schemes in which the threshold can be changed
without reconstructing the system [TTO99, MPSW99]. In this paper, we gener-
ically call such schemes threshold changeable schemes. In [TTO99] and in the
first part of [MPSW99], after the initial setting, no secure channels is required,
and the schemes before and after the threshold is changed are set to be perfect.
However the required share size, precise to say the entropy of each share, has to
be equal to or greater than the twice of that of the secret. Hence if we construct
a scheme in which the threshold can be changed N times, the required share
size is equal to or greater than (N +1) times of that of the secret. On the other
hand, in the latter part of [MPSW99], an optimal (t, n)-threshold scheme that is
threshold changeable to t′ (> t) is defined, and a concrete construction is actually
given. (As described later, we write as a (t→ t′, n)-threshold changeable scheme
instead of writing as a (t, n)-threshold scheme that is threshold changeable to t′.)
In that kind of a threshold changeable scheme, the scheme after the threshold
change sacrifices the perfect security, but is an optimal (t−1, t′, n)-ramp scheme.
Furthermore the scheme requires only the share size coinciding with the secret
size. Even in changing the threshold N times, this scheme requires the same size
share as the secret size.

In Section 3, we define a (t→ t, n)-threshold changeable scheme, in which the
threshold can be changed N(≥ 1) times, where t = (t1, t2, . . . , tN ) with t < tk
for 1 ≤ k ≤ N . Note that in case N = 1, that scheme has already been defined
by [MPSW99]. Each tk is the threshold after the threshold is changed k times.
The optimal (t → t′, n)-threshold changeable scheme given by [MPSW99] can
easily be extended to be a (t→ t, n)-threshold changeable scheme.

In this paper, we discuss to make a (t → t, n)-threshold changeable scheme
verifiable. By the technique by [Ped92], we can make a scheme non-interactive
and unconditionally secure. The optimal (t→ t′, n)-threshold changeable scheme
given by [MPSW99] is unfortunately based on [Bla79]. Since Pedersen’s scheme
[Ped92] is based on Shamir’s one [Sha79], it cannot directly be applied to that
optimal (t→ t, n)-threshold changeable scheme. Then we first construct, based
on [Sha79], an almost optimal (t → t, n)-threshold changeable scheme. After
that we contrive to make such a scheme verifiable so that the whole scheme
required the dealer to publish much less information including the commitment
than we simply construct a (t→ t, n)-threshold changeable scheme by combining
a (t→ t1, n)-threshold changeable, a (t→ t2)-threshold changeable scheme, . . .,
and a (t→ tN , n)-threshold changeable scheme, and apply, to the whole scheme,
the technique by [Ped92] (N + 1) times for the (t, n)-threshold scheme and for
each (tk, n)-threshold scheme (1 ≤ k ≤ N).

2 Preliminaries

First of all, we review some definitions on secret sharing schemes after giving
our notations. Let s be a secret belonging to a set S. The secret s is broken into
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n shares s1, . . . , sn. Let P = {P1, . . . , Pn} be the set of participants. We assume
that each share si is securely distributed to the i-th participant Pi. Let Pi denote
also the set of possible shares for the participant Pi. Similarly, we denote, by A,
the set of the shares the participants in A ⊂ P hold. We say that a set A ⊂ P
of shares can recover the secret s if H(S|A) = 0, where H(∗) denotes Shannon’s
entropy function. Such an A is called an access set. The set consists of all access
sets is called the access structure (of a secret sharing scheme).

2.1 Threshold Scheme

A secret sharing scheme which has n participants, and whose access structure
is of the form {A ⊂ P | #A ≥ t} for some t(≤ n), is called a (t, n)-threshold

(secret sharing) scheme. In a (t, n)-threshold scheme, we, in general, have the
following properties: H(S|A) = 0 if #A ≥ t and H(S|A) > 0 otherwise.

Definition 1. A (t, n)-threshold scheme is said to be perfect, ifH(S|A) = H(S)
holds for any set A ⊂ P such that #A < t. A perfect threshold scheme is said
to be ideal, if H(Pi) = H(S) holds for any i (1 ≤ i ≤ n).

We can easily see that Shamir’s scheme [Sha79] is perfect and ideal. The following
theorem states that there exists the lower bound for the share size in a perfect
threshold scheme.

Theorem 2 (in [Sti95]). In a perfect (t, n)-threshold scheme, for any i (1 ≤
i ≤ n), H(Pi) ≥ H(S) holds.

2.2 Ramp Scheme

As we can see in Theorem 2, in a perfect threshold scheme, there exists the lower
bound for the share size. That means if H(Pi) < H(S) holds for some i, then
the threshold scheme cannot be perfect. As a compromise between security and
efficiency, a ramp scheme is introduced in [MPSW99].

Definition 3. A (t, n)-threshold scheme is said to be a (c, t, n)-ramp scheme if
it satisfies the following properties:





H(S|A) = 0, if #A ≥ t ;

0 < H(S|A) < H(S), if c < #A < t ;

H(S|A) = H(S), if #A ≤ c.

In a ramp scheme, each share size can be smaller than the secret size. However the
smaller the share size gets, the more the information on the secret is disclosed.

Definition 4. A (c, t, n)-ramp scheme is said to be optimal, if it has the prop-

erty that H(S|A) = t− r

t− c
H(S) holds for any A ⊂ P such that #A = r and

c ≤ r ≤ t.



406 Ayako Maeda, Atsuko Miyaji, and Mitsuru Tada

It is shown by [JM96], that a (c, t, n)-ramp scheme with the property that

H(Pi) =
H(S)
t− c

holds for each i (1 ≤ i ≤ n) is optimal.

2.3 Threshold Changeable Scheme

In a secret sharing scheme, it often occurs that the access structure should to be
changed before the secret is reconstructed. Furthermore the dealer may often be
suspended after distributing shares. This is why we need a threshold scheme in
which the threshold can be changed without any dealer assistance, and hereafter
call such a scheme a threshold changeable scheme.

Here in a threshold changeable scheme, the first (t, n)-threshold scheme is
denoted by Π , and the derived (t′, n)-threshold scheme is denoted by Π ′. The
whole scheme is denoted by 〈Π,Π ′〉.

As seen in Definition 5 given above, for a subset A ⊂ P , we denote the
set of the images of respective elements by h∗ by H(A). That is, for A =
{Pi1 , . . . , Pi�

} ⊂ P , we define H(A) as follows:

H(A) := hi1(Pi1 )× hi2(Pi2 )× · · · × hi�
(Pi�

).

Definition 5 (in [MPSW99]).We say that a perfect (t, n)-threshold scheme is
called threshold changeable to t′, if there exist known functions hi for 1 ≤ i ≤ n,
such that H(S|H(A)) = 0 for any A ≥ t′, and H(S|H(A)) > 0 for any #A < t′

where A ⊂ P . (In this paper, we simply write as a perfect (t → t′, n)-threshold

changeable scheme instead of a perfect (t, n)-threshold scheme that is threshold
changeable to t′.)

In the definitions given above, each known function hi has to satisfy the property
that for any Pi (1 ≤ i ≤ n), H(Pi|hi(Pi)) > 0 holds not so that si can uniquely
figured out from s′i. In this paper, we call each si a full share (or share simply),
and each hi(si) a subshare.

Though [TTO99] presents an efficient way to deriveΠ ′ from Π both of which
are perfect, in that scheme, the functions {hi} do not satisfy the property given
above. Hence when the threshold is changed, the corresponding secret also has
to be simultaneously changed. Since we need to change not the secret but the
threshold, we focus the methods given by [MPSW99]. The method given by
the first part of [MPSW99] presents a threshold changeable scheme in which
both Π and Π ′ are perfect. But that method requires each share of a threshold
changeable scheme to be quite large. Concrete to say, letting α and β denote
the secret size and the share size, respectively, we have β ≥ 2α holds in such
a threshold changeable scheme. Hence as described in the following section, if
we extend a threshold changeable scheme so that the threshold can be changed
plural times, say N(≥ 2) times, then the required share size β is equal to or
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greater than (N +1) times of the secret size, i.e. β ≥ (N +1)α. For efficiency of
the whole scheme, we aim at a perfect threshold changeable scheme in which Π

is ideal as the latter part of [MPSW99] even if the perfect security is lost.
We can easily see that a perfect (t → t′, n)-threshold changeable scheme

〈Π,Π ′〉, in which Π is a (t, n)-threshold scheme and Π ′ is a (t′, n)-threshold
scheme, has the property that H(S|H(A)) = 0 if #A ≥ t′ and H(S|H(A)) =
H(S) if #A < t, since #A < t implies H(S) ≥ H(S|H(A)) ≥ H(S|A) = H(S).

2.4 Efficiency Measure

Let 〈Π,Π ′〉 be a perfect (t → t′, n)-threshold changeable scheme. Then the
efficiency of such a scheme can be measured by the followings:

(1) The maximum and average size of the share which needs to be stored by
participants, and which is denoted by H(Pi) for 1 ≤ i ≤ n;

(2) The amount of information which needs to be derivered for reconstruction of
the secret at the pooling time, and denoted by

∑
i∈AH(hi(Pi)) for A ⊂ P

where #A = t′;
(3) The size of shares after update of the threshold denoted by H(hi(Pi)) for

1 ≤ i ≤ n.

Theorem 6 (in [MPSW99]). Let 〈Π,Π ′〉 be a perfect (t → t′, n)-threshold
changeable scheme using functions {hi}1≤i≤n. Then the followings hold:

(1) H(Pi) ≥ H(S) holds for each i (1 ≤ i ≤ n);

(2)
∑

i∈AH(hi(Pi)) ≥ t′

t′ − t+ 1
H(S) holds for every A ⊂ P with #A = t′;

(3) max1≤i≤n{H(hi(Pi))} ≥ 1
t′ − t+ 1

H(S) holds.

Note that max1≤i′≤n{H(hi′(Pi′ ))} = H(hi(Pi)) for each i (1 ≤ i ≤ n), if {hi}
is common among the participants, and if all Pi’s come from the same domain
with the same probability.

Definition 7 (in [MPSW99]). We say that a perfect (t → t′, n)-threshold
changeable scheme that is threshold changeable to t′ is optimal, if each bound
in Theorem 6 is met with equality.

Corollary 8. If a perfect (t → t′, n)-threshold changeable scheme 〈Π,Π ′〉, is
optimal, then Π is ideal and then Π ′ is an optimal (t− 1, t′, n)-ramp scheme.

In addition to the definition given above, we define the slightly loose property
of a threshold changeable scheme.

Definition 9. Let 〈Π,Π ′〉 be a perfect (t→ t′, n)-threshold changeable scheme
using functions {hi}1≤i≤n. Then the whole scheme is defined to be almost opti-

mal if the following holds:
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(1) H(Pi) = H(S) holds for each i (1 ≤ i ≤ n);

(2) 0 ≤ ∑
i∈AH(hi(Pi)) − t′

t′ − t+ 1
H(S) ≤ c1 holds for every A ⊂ P with

#A = t′ and some c1 ≥ 0 independent of H(S) or n;

(3) 0 ≤ max1≤i≤n{H(hi(Pi))} − 1
t′ − t+ 1

H(S) ≤ c2 holds for some c2 ≥ 0

which does not depend upon H(S), t, t′ or n.

From the definition, we can immediately see that an optimal threshold change-
able scheme is an almost optimal one in a special case c1 = c2 = 0.

2.5 Verifiable Secret Sharing Scheme

A verifiable secret sharing scheme enables each participant to check whether
her share given by the dealer is indeed correct, or not, and also the combiner
to check whether each pooled share is indeed correct, or not. A verifiable secret
sharing scheme is applied as tools for secure multi-party computation and for key
management. In this paper, we extend our proposed threshold changeable scheme
to be verifiable using the method given by [Ped92], since it provides unconditional
security and non-interactivity among the dealer and the participants.

3 Threshold Scheme with N -time Threshold
Changeability

In this section, we first extend a perfect (t→ t′, n)-threshold changeable scheme
〈Π,Π ′〉 to a perfect (t → t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉,
where t = (t1, . . . , tN ) with t < tk for each k (1 ≤ k ≤ N) and with tk �= tk′

for k �= k′. In such a scheme, without the dealer assistance, the threshold can
be changed one after another, that is, from t to t1, from t1 to t2, and so on1,
under the assumption that the secret has not been recovered before the threshold
is changed, and that no share has been pooled. We name each derived (tk, n)-
threshold scheme Πk. The dealer publishes a set of functions {h(k)

i }1≤k≤N so
that the participants can compute their subshare for {Πk}1≤k≤N by themselves.
For a participant Pi given a share si, her subshare forΠk is computed as h(k)

i (si).
For a set A ⊂ P , the set of their subshares for Πk is denoted by H(k)(A), that
is, we define H(k)(A) as follows:

H(k)(A) := h
(k)
i1

(Pi1)× h
(k)
i2

(Pi2 )× · · · × h
(k)
i�

(Pi�
),

where A = {Pi1 , Pi2 , . . . , Pi�
}. Note that the thresholds (t1, . . . , tN ) have to be

determined in advance, since we assume that the dealer is suspended after the
initial setting of the scheme. Formally, a (t→ t, n)-threshold changeable scheme
is defined as follows.
1 We may regard this kind of scheme as one in which the threshold can be changed to
an arbitrary values among {t1, t2, . . . , tN} each of which is, in advance, determined.
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Definition 10. Let t be (t1, . . . , tN ) with tk > t for each k (1 ≤ k ≤ N). A

(t → t, n)-threshold changeable scheme is a (t, n)-threshold scheme, in which
for 1 ≤ i ≤ n and 1 ≤ k ≤ N , there exist known functions h

(k)
i such that

H(S|H(k)(A)) = 0 for any A ≥ tk, and H(S|H(k)(A)) > 0 for any #A < tk
where A ⊂ P .
The properties of “optimal” and “almost optimal”, can be defined also for a
perfect (t→ t, n)-threshold changeable scheme.

Definition 11. A perfect (t→t,n)-threshold changeable scheme 〈Π,Π1,...,ΠN 〉
is said to be optimal (or almost optimal), if each threshold changeable scheme
〈Π,Πk〉 (1 ≤ k ≤ N) is optimal (or almost optimal, respectively), and if for
distinct k and k′, Πk and Πk′ are independent of each other, that is, if it holds
that I(h(k)

i (Pi);h
(k′)
i (Pi)) = 0 for any k and k′ with k �= k′.

The equation I(h(k)
i (Pi);h

(k′)
i (Pi)) = 0 means that the subshare for Πk gives

no information on the subshare for Πk′ . In the following, we construct a perfect
(t → t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉 based on [Sha79], in
which Π is ideal. From now on, we omit the subscript of h

(k)
i and write as

h(k), since in this paper, {h(k)
i } is common among the participants for each k

(1 ≤ k ≤ N). By defining {h(k)} as in Section 3.2, the following (t → t, n)-
threshold changeable scheme can be shown to be almost optimal.

3.1 Construction of a Perfect Threshold Changeable Scheme with
N-time Threshold Changeability

Let n be the number of participants. For simplicity, we assume that the thresh-
olds t and t = (t1, . . . , tN) with t < tk ≤ n for 1 ≤ k ≤ N , satisfy (2 ≤)t < t1 <

t2 < · · · < tN ≤ n. Let q be a prime of the length L such that L is a multiple
of lcm(t1 − t + 1, . . . , tN − t + 1). Note that the prime q satisfies q = 2L − ε

with ε < 2L−1. Then for the secret s ∈ ZZq, the dealer constructs a perfect
(t→ t, n)-threshold scheme as follows:

(i) First the dealer constructs Shamir’s (t, n)-threshold scheme for the secret
s ∈ ZZq. That means, the dealer chooses a degree at most (t−1) polynomial
f(x) = a0,1x+ a0,2x

2 + · · ·+ a0,t−1x
t−1 ∈ ZZq[x] with f(0) = s. Each (full)

share si for Pi is defined to be f(i) (mod q).
(ii) The dealer provides N public function {h(k)}1≤k≤N such that for all i and

k, H(h(k)(Pi)|Pi) = 0 and H(Pi|h(k)(Pi)) > 0, (1 ≤ i ≤ n, 1 ≤ k ≤ N). (A
concrete example of the set {h(k)} is given the following subsection.) For
each participant Pi, her subshare s

(k)
i for the (tk, n)-threshold scheme Πk,

is defined by h(k)(si).
(iii) To construct Π1 from Π , the dealer figures out the polynomial f1(x) for a

(t1, n)-threshold scheme Π1 using f(x). f1(x) is of the form:

f1(x) = f(x) + a1,tx
t + a1,t+1x

t+1 + · · ·+ a1,t+n−1x
t+n−1,
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where each coefficient a1,j (t ≤ j ≤ t+ n− 1) is found by the n equations
f1(i) = h(1)(si) (1 ≤ i ≤ n). Here we define as follows:

f s
1 := f(x) + atx

t + · · ·+ at1−1x
t1−1;

fp
1 := f1(x) − f s

1(x).

Then if the polynomial fp
1 (x) is open, the (secret) polynomial f1(x) can be

disclosed by any t1 subshares from {h(1)(i)}1≤i≤n.
(iv) For k (1 ≤ k ≤ N − 1), to construct Πk+1 from Πk, the dealer figures out

the polynomial fk+1(x) for Πk+1 using f s
k(x). fk+1(x) is of the form:

fk+1(x) = f s
k(x) + ak+1,tk

xtk + · · ·+ ak+1,tk+n−1x
tk+n−1,

where the n coefficients ak+1,j (tk ≤ j ≤ tk + n − 1) are found by the n

equations fk+1(i) = h(k+1)(si) (1 ≤ i ≤ n). Here we similarly define as
follows:

f s
k+1(x) := f s

k(x) + ak+1,tk
xtk + · · ·+ ak+1,tk+1−1x

tk+1−1;

fp
k+1(x) := fk+1(x)− f s

k+1(x).

(v) The dealer securely distributes each si to Pi, and publishes N polynomi-
als fp

1 (x), . . . , f
p
N(x) and the N functions h(1), . . . , h(N) which derive the

subshares from shares.

If no threshold changing has happened, the combiner recovers the secret s by
gathering any t (full) shares sij (1 ≤ j ≤ t) as well as in Shamir’s scheme. On
the other hand, in case that the combiner attempts to recover the secret in the
scheme Πk (1 ≤ k ≤ N), she gathers any tk subshares s(k)

i�
(1 ≤ � ≤ tk). Then

the secret s can be figured out by the following formula which resembles so-called
Lagrange polynomial interpolation:

s =
tk∑

j=1

(
s
(k)
ij
− fp

k (ij)
) ∏

1≤�≤tk
� �= j

�

�− j
.

Note that in the scheme given above, Π1 is constructed using Π , and each Πk

(2 ≤ k ≤ N) is constructed usingΠk−1. On the other hand, we can also construct
〈Π,Π1, . . . , ΠN 〉 by the way that every Πk (1 ≤ k ≤ N) is constructed using
Π , not using the previous Πk−1. Such a scheme is, however, less efficient in
the viewpoint of the amount of information the dealer has to publish, than the
scheme we have just constructed in this subsection. We show the detail in Section
5.

3.2 Example of the Functions {h(k)}
As far as we construct the scheme given in the previous subsection, we cannot
make any 〈Π,Πk〉 (1 ≤ k ≤ N) exactly optimal. If we constructed the scheme on
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a field ZZα
q′ with a prime q′ and α being a multiple of lcm(t1−t+1, . . . , tN−t+1),

then we could make each 〈Π,Πk〉 exactly optimal. But in that case, we cannot
efficiently apply the technique by [Ped92] to that threshold changeable scheme.
In a (t → t, n)-threshold changeable scheme, if Π is ideal, then the possible
frequency N of threshold changing is restricted as the following proposition
states:

Proposition 12. In a (t→ t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉,
if Π is ideal, and if the whole scheme is (almost) optimal, then the possible
frequency N of the possible thresholds satisfy

∑N
k=1 1/(tk − t+ 1) ≤ 1.

Proof. Since Π is ideal, we have the following:

H(S) = H(Pi) ≥ H(P (1)
i ) + · · ·+H(P (N)

i )

≥
(

1
t1 − t+ 1

+ · · ·+ 1
tN − t+ 1

)
H(S),

for each i (1 ≤ i ≤ n), which is what we claim.

For example in case t1 = t+1, t2 = t+2 and t3 = t+5, since
∑3

k=1 1/(tk−t+1) =
1, the correlation yields among {P (k)

i } if the threshold is changed more than
four times. Hereafter we implicitly assume that for the set of the thresholds
{t, t1, . . . , tN} and the number N of the threshold changing satisfy the statement
of the previous proposition.

Now we define the functions h(k) (1 ≤ k ≤ N) as follows. Note that q is of
the length L and that L is a multiple of lcm(t1 − t+ 1, . . . , tN − t+ 1).

– For an element x ∈ ZZq, h(1)(x) is the substring of x from the first (rightmost)
bit to the (L/(t1 − t+ 1))-th bit. That is, for x ∈ ZZq, we define h(1)(x) :=
x (mod 2L/(t1−t+1)).

– Define Tk to be
∑k

=1 1/(t − t + 1). For an element x ∈ ZZq and k (2 ≤
k ≤ N), h(k)(x) is the substring of x from the (1 + LTk−1)-th bit to (LTk)-
th bit. That is, for x ∈ ZZq and k (2 ≤ k ≤ N), we define h(k)(x) :=⌈ x

2LTk−1

⌉
(mod 2L/(tk−t+1)).

In the following, we show that the proposed (t → t, n)-threshold changeable
scheme using functions {h(k)} given above, is almost optimal.

Proposition 13. The (t→ t, n)-threshold changeable scheme 〈Π,Π1, . . . , ΠN 〉
in Section 3.1, is almost optimal, if it uses the functions {h(k)} given above.

Proof. We will prove that our scheme satisfies the conditions in Definition 11,
that is, the conditions (1), (2) and (3) in Definition 9 and the condition that for
k and k′ with k �= k′, Πk and Πk′ are independent of each other.

The first condition (1) follows immediately from the fact that Π is just
Shamir’s scheme.
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Next we show the third condition. Since we suppose that q is a prime such
that q = 2L − ε with ε < 2L−1, then we have the following:

H(S) = log(2L − ε) ≥ log(2L − 2L−1) = L− 1.

Furthermore from H(h(k)(Pi)) ≤ L/(tk − t+ 1) for each k (1 ≤ k ≤ N), we can
get the following:

0 ≤ H(h(k)(Pi))− H(S)
tk − t+ 1

≤ L

tk − t+ 1
− L− 1

tk − t+ 1
=

1
tk − t+ 1

≤ 1
2
.

Hence the third condition is satisfied. The second one is immediately obtained
from the third one.

Finally, the last condition that I(h(k)(Pi);h(k′)) = 0 for each k, k′ with k �= k′,
comes from the fact that for any x ∈ ZZq, the strings h(k)(x) and h(k′)(x) are
indeed disjoint.

4 Efficient VSS for (t → t, n)-Threshold Changeable
Scheme

In this section, we make the (t → t, n)-threshold scheme 〈Π,Π1, . . . , ΠN 〉 veri-
fiable. Denote, by Πv, the verifiable (t, n)-threshold scheme derived by making
Π verifiable. Also for each k (1 ≤ k ≤ N), denote, by Πv

k , the verifiable (tk, n)-
threshold scheme derived by making Πk verifiable. To provide the unconditional
security and non-interactivity among the entities for verification, we adopt Ped-
ersen’s technique [Ped92]. Of course, by constructing Π and Πk’s independently
and by applying that technique to Π and each Πk, we can accomplish our pur-
pose, but here we contrive to make the amount of information the dealer has to
publish, by applying [Ped92] to the very (t→ t, n)-threshold changeable scheme
given in the previous section.

How to set up the parameters q, t, tk (1 ≤ k ≤ N), N and {h(k)} (1 ≤ k ≤ N)
is exactly the same as the previous section. In addition to those parameters, we
let p be a prime such that q divides p− 1 and such that q2 < p holds2, and let α
and β be order-q elements in ZZ∗p. Those two bases α and β should be randomly
picked up by the dealer, or should be chosen by some trusted third party, not
so that logα β may be known to any entities joining the scheme. Note that for
s and u belonging to ZZq, the dealer can find another pair (s′, u′) ∈ ZZq × ZZq

such that αsβu = αs′
βu′

(mod p) if and only if she knows the discrete logarithm
logα β under the modulo p.

In the following, we describe how to construct an almost optimal (t→ t, n)-
threshold changeable scheme with verifiability.

2 Usually we let p and q be a 1024-bit prime and a 160-bit prime, respectively. Hence
this assumption q2 < p restricts quite little for p and q.
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(i) First the dealer constructs a perfect and verifiable (t, n)-threshold scheme
Π just like [Ped92]. That means for a secret s ∈ ZZq, the dealer randomly
picks up a degree at most (t − 1) polynomial f(x) ∈ ZZq[x] such that
f(0) = s, and also picks up a random u ∈ ZZq and a degree at most (t− 1)
polynomial g(x) ∈ ZZq[x] such that g(0) = u. The full share for Pi is defined
by f(i). Also ui is defined by g(i) and called a twin share for Pi. Here let
f(x) = s+ a0,1x+ . . .+ a0,t−1x

t−1 and g(x) = u+ b0,1x+ . . .+ b0,t−1x
t−1.

The commitments E0, E1, . . . , Et−1 for (s, u), (a0,1, b0,1), . . . , (a0,t−1, b0,t−1)
are defined by E0 := E(s, u) and Ej := E(a0,j , b0,j) (1 ≤ j ≤ t− 1), where
for x, y ∈ ZZq, E(x, y) := αxβy (mod p).

(ii) For each i and k (1 ≤ i ≤ n, 1 ≤ k ≤ N), the dealer computes s(k)
i and u

(k)
i

defined by h(k)(si) and h(k)(ui), respectively. Each s
(k)
i and each u

(k)
i are

called a subshare and a twin subshare, respectively.
(iii) To construct Πv

1 from Πv, the dealer figures out the polynomials f1(x) and
g1(x) of the form:

f1(x) = f(x) + a1,tx
t + · · ·+ a1,t+n−1x

t+n−1;

g1(x) = g(x) + b1,tx
t + · · ·+ b1,t+n−1x

t+n−1,

where the n coefficients a1,j and the n coefficients b1,j (t ≤ j ≤ t + n− 1)
are determined by the n equations f1(i) = s

(1)
i and by the n equations

g1(i) = u
(1)
i , respectively. Here we define as follows:

f s
1(x) := f(x) + a1,tx

t + · · ·+ a1,t1−1x
t1−1;

fp
1 (x) := f1(x) − f s

1(x).

Similarly we define gs
1(x) := g(x) + b1,tx

t + · · ·+ b1,t1−1x
t1−1 and gp

1 (x) :=
g1(x)−gs

1(x). For each j (t ≤ j ≤ t1−1), the commitment Ej for (a1,j , b1,j)
is defined by E(a1,j , b1,j).

(iv) For k (1 ≤ k ≤ N − 1), to construct Πv
k+1 from Πv

k , the dealer figures out
the polynomials fk+1(x) and gk+1(x) using f s

k(x) and gs
k(x), respectively.

fk+1(x) and gk+1(x) are of the form:

fk+1(x) = f s
k(x) + ak+1,tk

xtk + · · ·+ ak+1,tk+n−1x
tk+n−1;

gk+1(x) = gs
k(x) + bk+1,tk

xtk + · · ·+ bk+1,tk+n−1x
tk+n−1,

where the n coefficients ak+1,j and the n coefficients bk+1,j (tk ≤ j ≤
tk + n− 1) are determined by the n equations fk+1(i) = s

(k+1)
i and by the

n equations gk+1(i) = u
(k+1)
i , respectively. Here we define as follows:

f s
k+1(x) := f s

k(x) + ak+1,tk
xtk + · · ·+ ak+1,tk+1−1x

tk+1−1;

fp
k+1(x) := fk+1(x)− f s

k+1(x).
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Similarly we define gs
k+1(x) := gs

k(x) + b1,tk
xt + · · · + bk+1,tk+1−1x

tk+1−1

and gp
k+1(x) := gk+1(x) − gs

k+1(x). For each j (tk ≤ j ≤ tk+1 − 1), the
commitments Ej for (ak+1,j , bk+1,j) are defined by E(ak+1,j , bk+1,j).

(v) The dealer securely distributes each (si, ui) to Pi, and publishes the 2n
polynomials {fp

k (x)}1≤k≤N and {gp
k(x)}1≤k≤N , {h(k)}1≤k≤N and the com-

mitments {Ej}0≤j≤N .

Each participant Pi given (si, ui) can verify whether her share and twin share
are correct, or not, by the following verification:

E(si, ui) =
t−1∏
j=0

Eij

j (mod p),

and also can, for each k (1 ≤ k ≤ N), verify whether each pair (s(k)
i , u

(k)
i ) of her

subshares and twin subshares is correct, or not, by the following verification:

E(s(k)
i − fp

k (i), u
(k)
i − gp

k(i)) =
tk−1∏
j=0

Eij

j (mod p).

In recovering the secret, the combiner can similarly verify whether the full shares
or the subshares she has gathered, are correct, or not, by the verification given
above.

5 Efficiency of the Proposed Scheme

In this section, we estimate the efficiency of the proposed verifiable threshold
changeable scheme with N -time threshold changeability. For simple description,
we name the various types of the schemes as follows:

Scheme-I: A verifiable (t→t, n)-threshold changeable scheme 〈Πv, Πv
1 , . . . , Π

v
N 〉

in which Π and all Πk (1 ≤ k ≤ N) are independently constructed by
using Shamir’s method, and in which Pedersen’s technique is independently
applied to Π and each Πk.

Scheme-II: A verifiable (t→t,n)-threshold changeable scheme 〈Πv,Πv
1 , . . . ,Π

v
N 〉

in which each (t→ tk, n)-threshold changeable scheme 〈Π,Πk〉 (1 ≤ k ≤ N)
is independently constructed, and in which Pedersen’s technique is indepen-
dently applied to each 〈Π,Πk〉.

Scheme-III: The proposed verifiable (t → t, n)-threshold changeable scheme
〈Πv, Πv

1 , . . . , Π
v
N 〉 we have constructed in Section 4.

In the following, we show the efficiency for the dealer. Precisely, we, in Fig-
ure 1, show the amount of information she has to securely distributed and the
amount of information she has to publish, in Scheme-I, in Scheme-II and in
Scheme-III, respectively. As seen in Figure 1, to be sure that Scheme-I is su-
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Scheme
By-SC

(×H(S))

COP

(× log q)

Commitment

(× log p)
Security

I 2(N + 1) 0 t+

N∑
k=1

(tk−1) Π : perfect (t, n)-TS

Πk : perfect (tk, n)-TS

II 2 2

N∑
k=1

(n−tk+1) t+

N∑
k=1

(tk−1) Π : perfect (t, n)-TS

Πk : (t − 1, tk, n)-RS

III 2 2(nN + t − tN ) max1≤k≤N tk

Π : perfect (t, n)-TS

Πk : (t − 1, tk, n)-RS

By-SC : The amount of information per one participant, which the dealer has to dis-
tribute by some secure channel.

COP : The amount of information of the coefficients of the open polynomials {fp
k (x)}

and {gp
k (x)}, which the dealer has to publish to control the thresholds.

Commitment : The amount of information of the commitments, which the dealer has
to open for verification of the full shares and the subshare.

Security : The security of the schemes Π, Π1, . . . , ΠN as threshold schemes. The
terms “TS” and “RS” stand for “threshold scheme” and “ramp scheme”, respec-
tively.

Fig. 1. Comparison of the efficiency of Scheme-I,II,III

perior to the others in view of the security of each Πk, but that scheme re-
quires much more amount of information to be securely distributed. Since in
Scheme-II and Scheme-III, such amount does not depend upon the number of
the frequency of the threshold changing, we discuss Scheme-II and Scheme-III.

Denote, by AII and AIII, the total amount of information the dealer has to
publish in Scheme-II and in Scheme-III, respectively.

Proposition 14. Suppose that t ≥ 2, tk > 2 (1 ≤ k ≤ N) and p, q are prime
such that q|(p − 1) and such that q2 < p. Then AIII < AII holds. That means
Scheme-III is more efficient than Scheme-III in view of the amount of infor-
mation the dealer has to publish.

Proof. First note that we may let max1≤k≤N tk = tN without loss of generality.
From the definition, we have

AII =

(
t+

N∑
k=1

(tk − 1)

)
log p+ 2

(
N∑

k=1

(n− tk + 1)

)
log q;

AIII = tN log p+ 2(nN + t− tN ) log q.

Then we can get the following:

AII −AIII =

(
t+

N−1∑
k=1

tk −N

)(
log p− log q2

)
,
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which is necessarily positive, since p > q2 and t +
∑N−1

k=1 tk − N > 2N − N =
N > 0.

6 Conclusion

Remember that a (t→ t, n)-threshold changeable scheme simply constructed by
an optimal (t, n)-threshold scheme that is threshold changeable to t′ given by
[MPSW99], cannot be efficiently made verifiable by the technique [Ped92]. Then
in this paper, we have constructed a (t → t, n)-threshold changeable scheme
〈Π,Π1, . . . , ΠN 〉 based on Shamir’s threshold scheme. This is an almost opti-
mal (t → t, n)-threshold changeable scheme, and can be easily made a verifi-
able (t → t, n)-threshold changeable scheme with unconditional security and
non-interactivity among the entity for verification. As seen in the primitive one
(Scheme-I) in Figure 1, the perfect security of each Πk (1 ≤ k ≤ N) requires
much more size full shares to be securely distributed. On the other hand, though
in the proposed scheme (that is, Scheme-III), each scheme Πk (1 ≤ k ≤ N)
sacrifices the perfect security, the entropy of the full share does not depend upon
the number of the frequency of the threshold changing. Furthermore we decrease
the amount of information the dealer has to publish by constructing Πk using
Πk−1 (1 ≤ k ≤ N), whereΠ0 := Π . This difference is indicated by the inequality
AII −AIII > 0 appearing Proposition 14 in Section 5.
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Abstract. In a (t, n) threshold digital signature scheme, t out of n sign-
ers must co-operate to issue a signature. We present an efficient and ro-
bust (t, n) threshold version of Schnorr’s signature scheme. We prove it to
be as secure as Schnorr’s signature scheme, i.e., existentially unforgeable
under adaptively chosen message attacks. The signature scheme is then
incorporated into a (t, n) threshold scheme for implicit certificates. We
prove the implicit certificate scheme to be as secure as the distributed
Schnorr signature scheme.

1 Introduction

Threshold Cryptography. Threshold cryptography addresses the issue of
performing cryptographic tasks such as signing, encrypting/decrypting etc. in a
distributed way. For example, in a (t, n) threshold signature scheme, any set of t
players can issue a signature for an arbitrary message while any set of less than
t players cannot issue a signature at all (see [8] for a threshold DSS signature
scheme). We refer to [4, 9] for a detailed survey of threshold cryptography.

Certificates. Certificates provide a way to authenticate data, usually a public
key. They can be realized using different techniques.

Traditional certificates contain an identity string, the public key, and a signa-
ture on these values. To issue a traditional certificate, a Certification Authority
(CA) first verifies the authenticity of the public key and the identity string and
then issues a digital signature on it. The certificate is therefore as secure as the
signature scheme: Certificates cannot be forged because signatures cannot be
forged.

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 417–434, 2001.
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Implicit certificates contain an identity string, but neither an explicit public
key nor a signature. Instead, they contain public reconstruction data. The public
key itself must be computed from the public reconstruction data and the public
key of the CA who issued the certificate. The advantage of implicit certificates
is their size: Besides the identity string, they only contain public reconstruction
data, whereas traditional certificates contain a public key and a digital signa-
ture. This is particularly useful in bandwidth constrained environments such
as wireless communication and digital postmarks. A survey of various types of
implicit certificates and applications is given in [13].

In contrast to traditional certificates, where the security lies directly on the
underlying signature scheme, there are special security issues concerning implicit
certificates. In particular, any public reconstruction data and identity string
together with a CA’s public key, would yield a public key. However, it should
be hard to choose the public reconstruction data and compute the private key
corresponding to the implied public key, without knowing the CA’s private key.
Another issue is that — since one usually uses a slightly modified signature
scheme to issue a certificate — one has to make sure that no information about
the CA’s or the user’s private key is leaked.

Our Work. We first present a distributed Schnorr signature scheme and prove
it to be as secure as the non distributed version, i.e., existentially unforgeable
under adaptively chosen message attacks. Second, this scheme is incorporated
into the construction of a distributed implicit certificate scheme.

In all proofs, we assume the random oracle model as described in [1]. For all
protocols we assume a synchronous communication model, where all players are
connected via private channels and a global broadcast channel.

Organization. Our digital signature threshold scheme is based on Pedersen’s
Verifiable Secret Sharing scheme [12] and a multi-party protocol to generate
a random shared secret [7]. These primitives are briefly discussed in Section
2. In Section 3 we recall Schnorr’s signature scheme [15]. Then we propose in
Section 4 a (t, n) threshold version of this signature scheme. We prove the security
of the scheme in Section 5, adapting the proof techniques used in [10]. The
non-distributed implicit certificate scheme is introduced in Section 6. The (t, n)
threshold version of this scheme is presented in Section 7, and a security proof
is presented in Section 8.

2 Secret Sharing Schemes

2.1 Parameters

We use elliptic curve notation for the discrete logarithm problem. Suppose q is
a large prime and G,H are generators of a subgroup of order q of an elliptic
curve E. We assume that E is chosen in such a way that the discrete logarithm
problem in the subgroup generated by G is hard, so it is infeasible to compute
the integer d such that G = dH .
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2.2 Shamir’s Secret Sharing Scheme

In a (t, n) secret sharing scheme, a dealer distributes a secret s to n players
P1, . . . , Pn in such a way that any group of at least t players can reconstruct the
secret s, while any group of less than t players do not get any information about
s. In [16], Shamir proposes a (t, n) threshold secret sharing scheme as follows. In
order to distribute s ∈ Zq among P1, . . . , Pn (where n < q), the dealer chooses
a random polynomial f(·) over Zq of degree at most t − 1 satisfying f(0) = s.
Each player Pi receives si = f(i) as his share.

There is one and only one polynomial of degree at most t − 1 satisfying
f(i) = si for t values of i. Therefore, an arbitrary group P of t participants can
reconstruct the polynomial f(·) by Lagrange’s interpolation as follows:

f(u) =
∑
i∈P

f(i)ωi(u) , where ωi(u) =
∏
j∈P
j �=i

u− j

i− j
mod q.

Since it holds that s = f(0), the group P can reconstruct the secret as follows:

s = f(0) =
∑
i∈P

f(i)ωi , where ωi = ωi(0) =
∏
j∈P
j �=i

j

j − i
mod q.

Each ωi is non-zero and can be easily computed from public information.
Note that the constant term of a polynomial of degree at most t − 1 is not
defined through t − 1 equations of the form f(i) = si. Furthermore, since the
dealer chooses f(·) uniformly at random, every value for the constant term is
equally probable. A coalition of t− 1 players can therefore neither compute the
secret nor get any information about it.

2.3 Verifiable Secret Sharing Scheme

A Verifiable Secret Sharing scheme (VSS) prevents the dealer from cheating. In a
VSS scheme, each player can verify his share. If the dealer distributes inconsistent
shares, he will be detected. Pedersen presented a VSS scheme in [11] which we
will use in this paper. His scheme is as follows.

Assume the dealer has a secret s ∈ Zq and a random number s′ ∈ Zq, and
is committed to the pair (s, s′) through public information C0 = sG+ s′H . The
secret s can be shared among P1, . . . , Pn as follows.

The dealer performs the following steps

1. Choose random polynomials

f(u) = s + f1u + · · ·+ ft−1u
t−1 and f ′(u) = s′ + f ′1u + · · ·+ f ′t−1u

t−1

where s, s′, fk, f
′
k ∈ Zq for k ∈ {1, . . . , t− 1}. Compute (si, s

′
i) = (f(i), f ′(i))

for i ∈ {1, . . . , n}.
2. Send (si, s

′
i) secretly to player Pi for i ∈ {1, . . . , n}.

3. Broadcast the values Ck = fkG + f ′kH for k ∈ {1, . . . , t− 1}.
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Each player Pi performs the following steps

1. Verify that

siG + s′iH =
t−1∑
k=0

ikCk. (1)

If this is false, broadcast a complaint against the dealer.
2. For each complaint from a player i, the dealer defends himself by broadcast-

ing the values f(i), f ′(i) that satisfy (1).
3. Reject the dealer if

– he received at least t complaints in step 1, or
– he answered to a complaint in step 2 with values that violate (1).

Pedersen proved that any coalition of less than t players cannot get any infor-
mation about the shared secret, provided that the discrete logarithm problem
in E is hard.

2.4 Generating a Random Secret

For the key generation phase of our scheme, it is necessary to generate a random
shared secret in a distributed way. The early protocol proposed by Feldman [5]
has been shown to have a security flaw, and a secure protocol has been proposed
in [7], which we will use for our schemes. We recall it in the following.

Suppose a trusted dealer chooses r, r′ at random, broadcasts Y = rG and
then shares r among the players Pi using Pedersen’s VSS scheme. We would like
to achieve this situation without a trusted dealer. This can be achieved by the
following protocol.

Each player Pi performs the following steps

1. Each player Pi chooses ri, r
′
i ∈ Zq at random and verifiably secret shares

(ri, r
′
i), acting as the dealer according to Pedersen’s VSS scheme. Let the

sharing polynomials be fi(u) =
∑t−1

k=0 aiku
k, f ′i(u) =

∑t−1
k=0 a′iku

k, where
ai0 = ri, a

′
i0 = r′i, and let the public commitments be Cik = aikG+ a′ikH for

k ∈ {0, . . . , t− 1}.
2. Let H0 be the index set of players not detected to be cheating at step 1.

The distributed secret value r is not explicitly computed by any player,
but it equals r =

∑
i∈H0

ri. Each player Pi sets his share of the secret as
si =

∑
j∈H0

fj(i) mod q, and the value s′i =
∑

j∈H0
f ′j(i) mod q.

3. Extracting Y =
∑

j∈H0
rjG: Each player in H0 exposes Yi = siG via Feld-

man’s scheme:
(a) Each player Pi for i ∈ H0 broadcasts Aik = aikG for k ∈ {0, . . . , t− 1}.
(b) Each player Pj verifies the values broadcast by the other players in H0.

In particular, every player Pi for i ∈ H0, Pj checks if

fi(j)G =
t−1∑
k=0

jkAik. (2)
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If the check fails for an index i, Pj complains against Pi by broadcasting
the values fi(j), f ′i(j) that satisfy (1) but do not satisfy (2).

(c) For players Pi who received at least one valid complaint, i.e., values
which satisfy (1) but do not satisfy (2), the other players run the recon-
struction phase of Pedersen’s VSS scheme to compute ri, fi(·), Aik for
k = 0, . . . , t− 1 in the clear1. All players in H0 set Yi = riG.

After executing this protocol, the following equations hold:

Y = rG

f(u) = r + a1u + · · ·+ at−1u
t−1, where ak =

∑
j∈H0

ajk for k ∈ {1, . . . , t− 1}

f(j) = sj for j ∈ H0.

In [7] this scheme has been proven to be robust under the assumption that
t ≤ n

2 , i.e., if less than t players are corrupted, the values computed by the
honest players satisfy the above equations.

For convenience, we introduce the following notation for this protocol:

(s1, . . . , sn)
(t,n)←→ (r|Y, akG,H0), k ∈ {1, . . . , t− 1}.

This notation means that sj is player Pj ’s share of the secret r for each j ∈ H0.
The values akG are the public commitments of the sharing polynomial f(·) (they
can be computed using public information), and (r, Y ) forms a key pair, i.e., r is
a private key and Y is the corresponding public key. The set H0 denotes the set of
players that have not been detected to be cheating. In the further protocols, we
do not need the values Yj , Cjk, s

′
j , r
′ for j ∈ H0, k ∈ {0, . . . , t− 1} and therefore

we omit these values in the short notation.

3 Schnorr’s Signature Scheme

In [14], Schnorr introduced the following signature scheme. Let (x, Y ) be a user’s
key pair, let m be a message, let h(·) be a one-way hash function, and let G be a
generator of an elliptic curve group having prime order q. Then a user generates
a Schnorr signature on the message m as follows.

1. Select e ∈ Zq at random
2. Compute V = eG
3. Compute σ = e + h(m||V )x mod q
4. Define the signature on m to be (V, σ)

A verifier accepts a signature (V, σ) on a message m if and only if σ ∈ Zq and

σG = V + h(m||V )Y.
1 Every player in H0 simply reveals his share of ri. Each player can then compute ri

by choosing t shares that satisfy (1).
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In [14], Schnorr signatures were shown to be existentially unforgeable under
adaptively chosen message attacks in the random oracle model, using the fork-
ing lemma, provided that the discrete logarithm problem is hard in the group
generated by G.

4 A (t, n) Threshold Signature Scheme

In this section, we propose a robust and efficient (t, n) threshold digital signature
scheme for Schnorr signatures. We use the primitives presented in Section 2.

Our protocol consists of a key generation protocol and a signature issuing
protocol. Let P1, . . . , Pn be the set of players issuing a signature and let G be a
generator of an elliptic curve group of order q.

4.1 Key Generation Protocol

All n players have to co-operate to generate a public key, and a secret key share
for each Pj . They generate a random shared secret according to the protocol
presented in Section 2.4. Let the output of the protocol be

(α1, . . . , αn)
(t,n)←→ (x|Y, bkG,H0), k ∈ {1, . . . , t− 1}.

For each j ∈ H0, αj is the secret key share of Pj and will be used to issue a
partial signature for the key pair (x, Y ).

4.2 Signature Issuing Protocol

Let m be a message and let h(·) be a one-way hash function. Suppose that
the players with index set H1 ⊆ H0 wants to issue a signature. They use the
following protocol:

1. If |H1| < t, stop. Otherwise, the subset H1 generates a random shared secret
as described in Section 2.4. Let the output be

(β1, . . . , βn)
(t,n)←→ (e|V, ckG,H2), k ∈ {1, . . . , t− 1}.

2. If |H2| < t, stop. Otherwise, each Pi for i ∈ H2 reveals

γi = βi + h(m||V )αi.

3. Each Pi for i ∈ H2 verifies that

γjG = V +
t−1∑
k=1

ckj
kG + h(m||V )

(
Y +

t−1∑
k=1

bkj
kG

)
for all j ∈ H2. (3)

Let H3 be the index set of players not detected to be cheating at step 3.
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4. If |H3| < t, then stop. Otherwise, each Pi for i ∈ H3 selects an arbitrary
subset H4 ⊆ H3 with |H4| = t and computes σ satisfying σ = e+ h(m||V )x,
where

σ =
∑

j∈H4

γjωj and ωj =
∏
l �=j

l∈H4

l

l − j
.

The signature is (σ, V ). The signature can be verified as in Schnorr’s original
scheme:

σG = V + h(m||V )Y and σ ∈ Zq.

Remarks.

1. The scheme can easily be modified such that a trusted combiner calculates
the signature, instead of the players. The γi’s would be sent secretly to
the trusted combiner, who proceeds with the verification and the signature
generation. In such a scenario, the players would not be able to generate a
signature without the combiner.

2. The only property required by the underlying secret sharing scheme is that
it must be homomorphic. This signature scheme could therefore be gener-
alized to non-threshold access structures by a suitable linear general access
structure secret sharing scheme as for example [17].

4.3 Correctness

We have to show that the signature σ computed in Step 4 is the Schnorr signature
on m, i.e., σ = e + h(m||V )x mod q. Let F1(·) be the sharing polynomial of the
key generation protocol (αi = F1(i) for i ∈ H0), and let F2(·) be the sharing
polynomial implied by the generated random shared secret in Step 1 (βi = F2(i)
for i ∈ H1). Furthermore, let F3(·) := F2(·) + h(m||V )F1(·). Since γi = F3(i)
for i ∈ H3, it follows from Lagrange’s interpolation formula that the players
compute σ = F3(0). We can now argue as follows:

σ = F3(0) = F2(0) + h(m||V )F1(0) = e + h(m||V )x.

4.4 Robustness

We have to show that if less than t players are corrupted, the scheme always
produces a valid signature. We assume that t ≤ n

2 .
From the robustness property of the protocol to generate a random shared

secret it follows that every honest player Pi computes correct values αi, βi, γi.
Because there are at least t honest players, and because they can identify the
correct γi by verifying (3), it follows directly by the correctness property that
the honest players will always compute a valid certificate.
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5 Security

5.1 Notion of Security

In this section, we show that the proposed (t, n) threshold signature scheme
is as secure as Schnorr’s signature scheme, i.e., existentially unforgeable under
adaptively chosen message attacks in the random oracle model.

We define an adaptively chosen message attack against our (t, n) threshold
scheme as follows. An adversary ADistSchnorr is allowed to have the signature
issuing protocol executed by any t or more signers to compute signatures on
messages of his own choice. She also might corrupt up to t− 1 arbitrary players.
ADistSchnorr then tries to forge a new signature from the signatures she obtained
in this way and from her view, where the view is everything that ADistSchnorr

sees in executing the key generation protocol and the signature issuing protocol.
Let ANormSchnorr be a successful adversary that can break (in the sense of

an existential forgery under adaptively chosen message attack) Schnorr’s scheme
(denoted by DNormSchnorr ), and let ADistSchnorr be a successful adversary that
can break the distributed Schnorr scheme (denoted by DDistSchnorr ) presented
in this paper. To proof the security of our scheme, we will show that given
ANormSchnorr , one can construct an adversary ADistSchnorr , and visa versa. This
implies that DDistSchnorr is as secure as DNormSchnorr is.

The idea of how to construct ANormSchnorr given the adversary ADistSchnorr ,
a public key Y and a signing oracle goes as follows. ANormSchnorr simulates the
roles of the uncorrupted players during all stages of DDistSchnorr , i.e., from the
key generation protocol that outputs Y up to the signature issuing protocols for
ADistSchnorr ’s chosen message attack, and lets them interact with ADistSchnorr

(see Section 5.3). Because ADistSchnorr cannot distinguish her view during this
simulation from her view during a real run of DDistSchnorr , she will succeed and
output a valid forgery, and therefore so will ANormSchnorr . Indistinguishability
is used in the sense of the traditional notion of polynomial indistinguishability
of two probability distributions as specified in [6].

The next section explains precisely what a view is. We also explain how to
build a simulator SIM that simulates the honest players during the generation
of a distributed random shared secret such that it produces for an arbitrary but
given public key Y a view that is indistinguishable for the adversary from a view
during a real run of the protocol which outputs Y . This simulator is then used
later as a subroutine of a simulator that computes the adversary’s entire view
of our threshold signature scheme.

5.2 View

During an arbitrary multi-party protocol, a player will choose values on his own,
see public broadcast values and receive private values. We define his view of the
protocol to consist of all these values. Notice that in order to simulate the view
for a player one does not have to simulate the values which the player chooses
on his own.
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In the following, we will analyze the adversary’s view during the generation of
a random shared secret. In particular, the goal is to build a simulator SIM that
succeeds in the following game. Let B be the index set of corrupted players. The
corrupted players Pi for i ∈ B first run the protocol with honest players such that
the public value of the random shared secret outputs a random value Y . Now we
run the protocol again, but instead of communicating with the honest players,
the players Pi for i ∈ B communicate with the simulator. This simulator will now
produce messages exactly as the honest players do, such that the public value of
the random shared secret is Y , and furthermore, the adversary controlling players
Pi for i ∈ B cannot distinguish this simulated view from the view resulting from
the honest players.

When generating a distributed random shared secret, as explained in Section
2.4, the view of a player Pi would be the following:

the sharing polynomials fi(·), f ′i(·),
the temporary shares fj(i), f ′j(i) for j ∈ H0,

the public commitments Cjk, Ajk for j ∈ H0, k ∈ {0, . . . , t− 1},
answers on a valid complaint against Pl fl(j), f ′l (j) for j ∈ H0,

and the content of his random tape. If an adversary corrupts Pi and Pj , then
the adversary’s view is {view of Pi} ∪ {view of Pj}.
Definition 1. Suppose that a set H0 of players compute a random shared secret
on input (q,G) and produce output Y . Let Ã be an adversary that corrupts up to
t−1 players. Let view (Ã, G, q, Y ) denote the view of the adversary for this proto-
col. Let VIEW (Ã, G, q, Y ) be the random variable induced by view (Ã, G, q, Y )2.

Lemma 1. For any probabilistic polynomial time adversary Ã there exists a
probabilistic polynomial time simulator SIM that can compute a random variable
SIM(G, q, Y ) which has the same probability distribution as VIEW (Ã, G, q, Y ).

Proof of Lemma 1. Assume that Ã corrupts players Pi for i ∈ B = {1, . . . , t−
1}. Furthermore, let B′ be the index set that denotes the players who publish in-
consistent values Aik. Then, view (Ã, G, q, Y ), when generating a random shared
secret, is as follows:

1. The content of the random tape of Ã
2. fi(·), f ′i(·) for i ∈ B
3. fj(i), f ′j(i) for j ∈ H0, i ∈ B
4. Cjk for j ∈ H0, k ∈ {0, . . . , t− 1}
5. Ajk for j ∈ H0, k ∈ {0, . . . , t− 1}
6. fi(j), f ′i(j) for j ∈ H0, i ∈ B′

2 view(.) contains random variables and static values. VIEW (.) can be regarded as
the interpretation of view (.) as one large bit string, so it is a random variable.
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We show how to construct a simulator SIM that can act in the protocol as the
honest players, such that the resulting view has the same probability distribution
(we use the same simulator as in [7]). Note that SIM does not have to compute
the sharing polynomials (2) itself since they are chosen by the adversary. The
same holds for the content of the random tape (1) which is part of the adversary’s
internal state that does not have to be simulated.

1. (3, 4) Perform step 1 of the protocol on behalf of the honest players Pt, . . . , Pn

exactly as specified in the protocol. This includes receiving and processing
the information sent privately and publicly from corrupted players to honest
ones. After this step, SIM knows all polynomials fi(·), f ′i(·) for i ∈ H0. In
particular, SIM knows all the shares fi(j), f ′i(j), the coefficients aik, bik and
the public values Cik for i, j ∈ H0 and k ∈ {0, . . . , t− 1}.

2. (5) When extracting the values riG, the simulator acts as follows:
– Compute Aik = aikG for i ∈ H0 \ {n}, k ∈ {0, . . . , t− 1}
– Compute An0 = Y −∑i∈H0\{n}Ai0

– Compute Ank = λk0An0 +
∑t−1

i=1 λkifn(i)G for k ∈ {1, . . . , t− 1}, where
λki’s are the Lagrange interpolation coefficients of the set H0.

– Broadcast Aik for i ∈ H0, k ∈ {0, . . . , t− 1}
3. (6) To handle the messages resulting from complaints, SIM acts as follows:

– For each honest player, verify the values Aik for i ∈ B by checking
(2). If the verification fails for some i ∈ B, j ∈ H0 \ B, broadcast a
complaint fi(j), f ′i(j). Notice that the corrupted players can publish a
valid complaint only against one another, and there will be no complaints
against an honest player that is simulated by SIM.

– For each valid complaint against Pi, perform the reconstruction phase of
Pedersen’s VSS scheme to compute ri and Yi in the clear.

After step 1, the polynomials fi(·), f ′i(·) for i ∈ H0 \B are chosen at random. All
associated values Cik, fi(j), f ′i(j), aik, bik therefore have the exact same proba-
bility distribution as in a real run of the protocol.

The broadcasted values Aik are all uniformly random since the corresponding
aik are random. This holds also for the specially computed Ank for k ∈ {0, . . . , t−
1}, since for each such coefficient there is at least one random value it depends on.
Notice that the fact that these Ank’s are not consistent with the corresponding
ank’s does not appear in the adversary’s view: She never sees the ank’s but only
the consistent public commitments of these values.

During the handling of complaints (step 3) there can only be valid complaints
against a corrupted server. To reconstruct ri, SIM has to reveal the values
fi(j), f ′i(j) for j ∈ H0 \ B. But SIM knows all the polynomials fi(·), f ′i(·) for
i ∈ H0 \B. Therefore, SIM has only to broadcast these values, which will always
be consistent with the adversary’s view.

A more detailed analysis of the distribution can be found in [7]. The computed
view, and the induced random variable SIM (Ã, G, q, Y ) has the same probability
distribution as VIEW (Ã, G, q, Y ). 2
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5.3 Unforgeability

In this section, we will show how to reduce the distributed Schnorr signature
scheme to the regular Schnorr signature scheme, and visa versa. This implies
that the security of the two schemes is identical.

Definition 2. Let ANormSchnorr be a probabilistic polynomial time adversary
who can ask a signer for valid signatures. By ANormSchnorr (G, q, Y ) we denote
a random variable which specifies the probability of the event that ANormSchnorr

queries (m1,m2, . . . ) to the signer and outputs (m̃, σ̃, Ṽ ) (on input (G, q, Y )).
The probability is taken over all the coin tosses of ANormSchnorr and the signer.

Definition 3. Let ADistSchnorr be a probabilistic polynomial time adversary who
can corrupt up to t−1 players. He also may have t or more arbitrary signers issue
a signature upon his request. By ADistSchnorr (G, q|Y )3 we denote the random
variable that has the probability distribution of ADistSchnorr asking for signatures
on (m1,m2, . . . ) (on input (G, q)) and finally computing (m̃, σ̃, Ṽ ) under the
condition that the key generation protocol outputs Y. The probability is taken
over all the coin tosses of ADistSchnorr and the signers.

Theorem 1. For any adversary ANormSchnorr against DNormSchnorr , there ex-
ists an adversary ADistSchnorr against DDistSchnorr such that

Pr[ADistSchnorr (G, q|Y ) = (m1, . . . , (m̃, σ̃, Ṽ ))]
= Pr[ANormSchnorr (G, q, Y ) = (m1, . . . , (m̃, σ̃, Ṽ ))].

Proof. We show how to construct ADistSchnorr given ANormSchnorr . Suppose the
key generation protocol of DDistSchnorr generates Y . ADistSchnorr feeds (G, q, Y )
and the content of the random tape of ANormSchnorr into ANormSchnorr and starts
ANormSchnorr . Whenever ANormSchnorr asks for a signature on a message m,
ADistSchnorr has some t signers execute the signature issuing protocol for m and
returns the signature (σ, V ) to ANormSchnorr . Thus, ANormSchnorr can perform his
chosen message attack. ADistSchnorr outputs (m̃, σ̃, Ṽ ) if ANormSchnorr outputs
(m̃, σ̃, Ṽ ). 2

Theorem 2. For any adversary ADistSchnorr against DDistSchnorr , there exists
an adversary ANormSchnorr against DNormSchnorr such that

Pr[ANormSchnorr (G, q, Y ) = (m1, . . . , (m̃, σ̃, Ṽ ))]
= Pr[ADistSchnorr (G, q|Y ) = (m1, . . . , (m̃, σ̃, Ṽ ))].

3 ADistSchnorr (G, q|Y ) is different from ADistSchnorr (G, q, Y ). It contains not only the
values G, q, Y , but also ADistSchnorr ’s view from the key generation protocol. For
ANormSchnorr this view is empty, while for ADistSchnorr this is not the case (since he
can corrupt t − 1 signers)
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Proof. We show how to construct ANormSchnorr given ADistSchnorr . In partic-
ular, we will show how ANormSchnorr can simulate — with the help of a signing
oracle (used in the chosen message attack assumption) — the role of the honest
players in DDistSchnorr for a given public key Y . Because ADistSchnorr cannot
distinguish this simulation, it will be successful and output a forgery which is a
forgery in DNormSchnorr , too.

Let B be the index set of players corrupted by ADistSchnorr . Using the simula-
tor described in Section 5.2, ANormSchnorr lets SIM execute the key generation
protocol for the given public key Y . Note that ANormSchnorr knows after this
simulation the values αi for i ∈ B. Next, ANormSchnorr runs ADistSchnorr . When-
ever ADistSchnorr requests a signature for a message mi, ANormSchnorr asks a
signer and provides ADistSchnorr with the signature (mi, σi, Vi). ANormSchnorr

also has to provide ADistSchnorr with the values she sees during the signature
issuing protocol. These values include the view resulting from generating the
random shared secret e and the values γi for i ∈ H2 \ B. To compute these
values, ANormSchnorr lets SIM interact with ADistSchnorr during the generation
of the random shared secret e. After this simulation ANormSchnorr knows βi for
i ∈ B and can compute γi for i ∈ B. Finally, ANormSchnorr computes γj for
j ∈ H2 \ B as follows. W.l.o.g. we assume that B∩H2 = t− 1. Then we have for
every j ∈ H2 \ B (see Section 4.2):

σi =
∑

k∈B∪{j}
γkωk, where ωk =

∏
l �=k

l∈B∪{j}

l

l − k
.

Hence, γj is computed as

γj =
σi −

∑
k∈B γkωk

ωj
.

ANormSchnorr feeds γj for j ∈ H2 \ B to ADistSchnorr . Since ADistSchnorr

now has her whole view, she can perform her adaptive chosen message attack.
ANormSchnorr outputs (m̃, σ̃, Ṽ ) if ADistSchnorr outputs (m̃, σ̃, Ṽ ). 2

6 The Implicit Certificate Scheme

To motivate the (t, n) threshold scheme for implicit certificates, we give a short
overview of the non-distributed version of this scheme. In [3], security proofs for
this scheme in the random oracle model are given.

Assume a CA with the key pair (x, Y ) issues an implicit certificate to a
user, and let h(·) be a one-way hash function. The operation of the scheme is as
follows.

1. The user generates a random integer c ∈ Zq and computes V = cG. Further,
he sends V to the CA.
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2. The CA authenticates the user. Together, the CA and the user determine
an identifier string Iu (containing the user’s identity and other information
such as, for example, a serial number for the certificate).

3. The CA chooses a random integer e ∈ Zq, and computes C = V + eG and
σ = e + h(Iu||C)x. Further, the CA sends (Iu, C, σ) to the user.

4. The user computes his private key SKu = c + s mod q, and verifies the
certificate by checking that following equation holds: SK u = C +h(Iu||C)Y .

The user’s public key can be computed from the certificate (Iu, C) as follows:
PK u = C + h(Iu||C)Y . Note that the equation used to compute σ is exactly
Schnorr’s signing equation. The only difference from Schnorr’s signature scheme
is the construction of the point C. Here, this point contains an additive compo-
nent that the user provides. This is necessary to guarantee that only the user
knows his secret key.

7 (t, n) Threshold Scheme for Implicit Certificates

In this section, we incorporate the distributed Schnorr signature scheme into a
(t, n) threshold scheme for implicit certificates in the same way as was done in
Section 6. In such a scheme, n players P1, . . . , Pn represent a CA with public key
PK 0. A group of t players together can reconstruct SK 0 and issue an implicit
certificate. Any coalition of less than t players do not have any information about
SK 0.

Our scheme consists of three steps. First, the players representing the CA
have to generate a key pair. Everybody will know the value of PK 0, while only
a coalition of at least t players shall be able to recover SK 0 or issue certificates.
Second, the players issue a certificate to a user. Finally, the user verifies if the
certificate is valid.

7.1 Key Generation Protocol

We would like to generate a random shared secret SK 0 such that each player Pi

who follows the protocol holds a share si in this key. Moreover, a coalition of
less than t players cannot get any information about SK 0.

This situation corresponds exactly to the generation of a shared secret, as de-
scribed in Section 2.4. Using the notation introduced in Section 2.4, the situation
is as follows:

(α1, . . . , αn)
(t,n)←→ (SK 0|PK 0, bkG,H0), k ∈ {1, . . . , t− 1}.

7.2 Certificate Issuing Protocol and Public Key Reconstruction

Suppose the players with index set H1 ⊆ H0 want to issue an implicit certificate.

1. The user selects a random number cu and sends Vu = cuG to the players.
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2. If |H1| < t, stop. Otherwise, H1 generates a random shared secret as shown
in Section 2.4. Let the public output be

(β1, . . . , βn)
(t,n)←→ (e|V, ckG,H2), k ∈ {1, . . . , t− 1}.

3. If |H2| < t, stop. Otherwise, each Pi for i ∈ H2 computes C = V + Vu and
reveals

γi = βi + h(Iu||C)αi. (4)

4. Each Pi for i ∈ H2 verifies that

γjG = V +
t−1∑
k=1

ckj
kG + h(Iu||C)

(
Y +

t−1∑
k=1

bkj
kG

)
for all j ∈ H2. (5)

Let H3 be the index set of players not detected to be cheating at step 3.
5. If |H3| < t stop. Otherwise, each Pi for i ∈ H3 selects an arbitrary set

H4 ⊆ H3 with |H4| = t and computes σ satisfying σ = e + h(Iu||C)x by

σ =
∑

j∈H4

γjωj, where ωj =
∏
l �=j

l∈H4

l

l − j
. (6)

The implicit certificate is (σ,C), which every player sends to the user.
6. At most t − 1 of the certificates the user receives may be incorrect. To

identify the correct certificates, the user computes his private key SK u as
SK u = cu + σ and verifies

SK uG = C + h(Iu||C)Y and σ ∈ Zq. (7)

The public key of the user can be computed from the implicit certificate as
follows:

σPK u = C + h(Iu||C)Y. (8)

7.3 Correctness

We have to verify that the private key SKu computed by the user corresponds
to the public key PK u implied by the implicit certificate, i.e., we have to verify
that following holds:

SKuG = C + h(Iu||C)PK 0. (9)
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Let P (|P| = t) be a group of players which have not been detected to be cheating
when issuing the certificate. Then we have

SKuG
(6)
= (cu +

∑
i∈P

γiωi)G

(4)
= cuG +

(∑
i∈P

(βi + h(Iu||C)αi)

)
Gωi

= Vu +
∑
i∈P

(βiωiG + αiωih(Iu||C)G)

= Vu + V + h(Iu||C)PK 0

= C + h(Iu||C)PK 0.

7.4 Robustness

We have to show that if less than t players are corrupted, the scheme always
produces a valid certificate that is accepted by the user. We assume that t ≤ n

2 .
From the robustness property of the protocol to generate a random shared

secret it follows that every honest player Pi computes correct values αi, βi, γi.
Because there are at least t honest players, and because they can identify the
correct γi by verifying (5), it follows directly by the correctness property that
the honest players will always compute a valid certificate. Finally, the user can
identify a valid certificate by verifying (7).

8 Security Analysis

8.1 Notion of Security

Let (SKCA,PKCA) be the key pair of the CA. An implicit certificate scheme is
secure if the following two properties hold:

unforgeability It is hard for an adversary who does not know the CA’s secret
key to forge implicit certificates in such a manner that the adversary knows
the corresponding private key

non-impersonating It is hard for the CA to obtain the user’s private key
provided that the user followed the protocol.

The term “hard” means that there is no polynomial-time adversary who can
solve the task with non-negligible probability. These conditions must hold for
adversaries defined as follows.

We define a forging adversary Af as a probabilistic, polynomial-time Turing
machine which, on input PKCA does the following:

– It may watch other entities requesting and receiving implicit certificates from
the CA.

– It may request implicit certificates from the CA.
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– Finally, it produces an implicit certificate and the corresponding private key
in time t and with probability p.

We define an impersonating adversary Ai as a probabilistic, polynomial-time
Turing machine which, on input (PKCA,SKCA) does the following:

– It may act as a CA and issue implicit certificates to requesting entities.
– It can produce an implicit certificate and the corresponding private key in

time t and with probability p.

An adversary Af (respectively, Ai) is successful if t is polynomial and p is non-
negligible.

8.2 Unforgeability

Let (x, Y ) be the (SK ,PK ) key pair of the CA. Let DNormSchnorr denote
Schnorr’s signature scheme and ANormSchnorr be a successful adversary against
it as defined earlier in Section 5.1. We define a successful adversary ADistCert

against the implicit certificate scheme DDistCert as a successful forging adversary
as defined in Section 8.1.

One can show that a successful adversary ANormSchnorr is equivalent to a
successful adversary ADistCert , in the sense that each of them can construct
the other one. This implies that the distributed implicit certificate scheme is as
secure as Schnorr’s signature scheme.

The same proof technique as was used for the distributed Schnorr signature
scheme can be applied in a straightforward way. That is, one can show how to
simulate the view of the given adversary without knowing the private key of the
players. Since the adversary cannot distinguish a simulated view from an actual
view, she will perform her attack and output a forgery. This forgery can then be
used to construct the other adversary.

8.3 Non-impersonating

By proving the unforgeability of our scheme, we implicitly proved that the user
does not learn the players’ private key shares. We also have to show that the
players do not learn the user’s private key and impersonate the user. But it
follows directly from the scheme that if the players could compute the user’s
private key, then they could compute discrete logarithms.

8.4 Further Issues

Consider the scenario where a digital signature on a certain message and an
implicit certificate authenticating the according verification key are sent to a
user. Even though we proved that it is hard to forge an implicit certificate
without knowing the CA’s secret key such that one knows the corresponding
private key, we did not prove that it is hard to forge a digital signature and
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an implicit certificate such that the public key implied by the certificate just
validates the signature.

This is not an issue with traditional certificates. However, whenever implicit
certificates are used to authenticate a public key for some application, a specific
security proof for the particular application is necessary. For example, in [2],
a proof is given in the random oracle model that it is secure to use implicit
certificates as authentication for public keys that verify Schnorr signatures.

9 Conclusion

We have presented a (t, n) threshold version of Schnorr’s signature scheme, and a
(t, n) threshold scheme for implicit certificates. Both schemes are efficient, robust
and provably secure in the random oracle model.

From a practical point of view, the implicit certificate scheme has the follow-
ing drawbacks:

– The scheme itself generates a key pair for the user. Therefore, it cannot be
used to generate an implicit certificate for a given key pair of the user.

– The scheme produces a key pair which is defined over the same group as the
CA’s key pair is. Therefore, the security parameters for the certified public
keys are always inherited from the certifying CA.

Acknowledgments

This work was done while I was visiting Certicom as an intern during the period
August - November, 2000. I would like to thank Certicom for this opportunity.
Furthermore, we would like to thank Simon Blake-Wilson for his ideas on the
general concepts, Minghua Qu for reviewing the security proofs and for pointing
out the special security issues that arise in the context of implicit certificates,
and Dan Brown for all the instructive discussions about implicit certificates.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for de-
signing efficient protocols. In First Annual ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[2] D. Brown. Implicitly certifying signatures securely. manuscript.
[3] R. Gallant D. Brown and S. Vanstone. Provably secure implicit certificate schemes.

In Financial Cryptography ’01, to appear.
[4] Y. G. Desmedt. Threshold cryptography. European Trans. on Telecommunica-

tions, 5(4):449–457, 1994.
[5] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In

28th FOCS, pages 427–437, 1987.
[6] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof systems. SIAM J. on Computing, 18/1:186–308, 1989.



434 Douglas R. Stinson and Reto Strobl

[7] R. Gennaro S. Jarecki H. Krawczyk and T. Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. In Eurocrypt ’99, pages 295–310,
1999.

[8] S. K. Langford. Threshold DSS signatures without a trusted party. In Crypto
’95, pages 397–409, 1995.

[9] E. Okamoto, G. Davida, and M. Mambo. Some recent research aspects of threshold
cryptography. In Workshop on Information Security Applications, 1997.

[10] C. Park and K. Kurosawa. New elgamal type threshold digital signature scheme.
IEICE Trans., E79-A:86–93, 1996.

[11] T.P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Crypto ’91, pages 129–140, 1991.

[12] T.P. Pedersen. A threshold cryptosystem without a trusted party. In Eurocrypt
’91, pages 522–526, 1991.

[13] L. Pintsov and S. Vanstone. Postal revenue collection in the digital age. In
Financial Cryptography ’00, 2000.

[14] D. Pointcheval and J. Stern. Security proofs for signature schemes. In Eurocrypt
’96, pages 387–399, 1996.

[15] C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4:161–174, 1991.

[16] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613,
1979.

[17] M. van Dijk. A linear construction of secret sharing schemes. Designs, Codes and
Cryptography, 12:161–201, 1997.



How to Construct Fail-Stop Confirmer Signature

Schemes

Rei Safavi-Naini�, Willy Susilo, and Huaxiong Wang

Centre for Computer Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong 2522, AUSTRALIA

{rei, wsusilo, huaxiong}@uow.edu.au

Abstract. In a confirmer signature, verification of a signature requires
collaboration of the confirmer. A Fail-Stop Confirmer signature provides
protection against an enemy with unlimited computational power. A
Fail-Stop Confirmer signature is a combination of Fail-Stop Signature
and Confirmer Signature Schemes which was first constructed in [15]. In
this paper we discuss security issues that will arise in naive construction
of such systems.

1 Introduction

An ordinary digital signature [8] is verifiable by anyone who has access to the
correct public key. If only a single recipient is to verify the signature, a zero-
knowledge proof [10] can be used. Undeniable signatures [4] are between these
two: an undeniable signature can be verified by everyone but requires the help of
the signer. The signer is able to reject invalid signatures, but he must not be able
to deny valid signatures. If the signer is unavailable or unwilling to cooperate,
the signature would no longer be verifiable. To overcome this shortcoming, the
notion of confirmer signatures [3] is proposed. In confirmer signatures, the ability
to verify or deny signatures is transferred to a designated confirmer. A generic
construction of a confirmer signature scheme from a ordinary signature scheme
is proposed in [2].

Security of traditional signature schemes relies on some computational as-
sumptions. This means that if an enemy can solve the underlying hard prob-
lem, he can successfully forge a signature and there is no way for the signer to
prove that a forgery has occurred. To provide protection against an enemy with
unlimited computational power, Fail-Stop Signature (FSS) schemes have been
proposed [25,17]. An FSS scheme is a signature scheme equipped with an algo-
rithm to prove a forgery has happened. To achieve this property, many secret
keys match to the same public key and the sender uses a specific one of them. An
unbounded enemy can find out the set of all secret keys but cannot determine
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which secret key is actually used. So in the case of forgery, that is generating a
signed message that passes the verification test, the sender can use his secret key
to generate a second signature for the same message which with overwhelming
probability will be different from the forged one. The two signatures on the same
message can be used as a proof that the underlying computational assumption
is broken and the system must be stopped - hence the name fail-stop. Thus, FSS
schemes provide information-theoretic security for the signer. However security
for the receiver is computational. An FSS in its basic form is a one-time dig-
ital signature that can only be used for signing a single message. However, it
is possible to extend an FSS scheme to be used for signing multiple messages
[5,23,1].

A Fail-Stop Confirmer Signature (FSCS) scheme, introduced in [15], com-
bines the confirmer signature property with the fail-stop property. The purpose
of FSCS is to provide information-theoretic security for the signer and maintain
the confirmer property, so that when the signer is unavailable, the confirmer is
able to verify the signature.

In this paper, we propose a model of FSCS scheme and show the difficulties
of constructing one.

1.1 Previous Works

Confirmer Signature Scheme is introduced in [3]. Okamoto presented a formal
model and proved that the existence of confirmer signature schemes are equiva-
lent to the public-key encryption schemes [16] and presented a practical scheme.
However, it is shown [14] that Okamoto’s scheme is insecure because the con-
firmer can forge a signature. Michels and Stadler [14] proposed a solution to
Okamoto’s problem by introducing a new model. However, as pointed out in
[2], their model is vulnerable to an adaptive signature-transformation attack
(which is similar to security against adaptive chosen-ciphertext attacks [11] for
encryption schemes) and that all previous schemes are vulnerable to this attack.
Camenisch and Michels presented a generic construction for confirmer signature
schemes that does not suffer from the adaptive signature-transformation attack.

Fail-Stop Signature (FSS) schemes protects the signer information theoreti-
cally against an unlimited forger. The first construction of FSS [25] uses a one-
time signature scheme (similar to [13]) and results in bit by bit signing of the
message, which is impractical. In [18] an efficient single-recipient FSS to protect
clients in an on-line payment system, is proposed. The main disadvantage of this
system is that signature generation is a 3-round protocol between the signer and
the recipient which makes it expensive from communication point of view. van
Heijst and Pedersen [23] proposed an efficient FSS that uses the difficulty of dis-
crete logarithm problem as the underlying assumption. In the case of a forgery,
the presumed signer can solve an instance of the discrete logarithm problem,
and prove that the underlying assumption is broken.

In [17,19], a formal definition of FSS schemes is given and a general construc-
tion using bundling homomorphism is proposed. The important property of this
construction is that it is provably secure against the most stringent type of attack
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on signature schemes, that is adaptive chosen message attack [12]. The proof of
forgery is by showing two different signatures on the same message, the forged
one and the one generated by the valid signer. To verify the proof of forgery
the two signatures are shown to collide under the ‘bundling homomorphism’.
The scheme by van Heijst and Pedersen [23] is an example of this construction.
Heijst, Pedersen and Pfitzmann [24] also gave an example of this construction
that uses the difficulty of factoring as the underlying computational assumption
of the system [24]. Other works in this area include [23,24,22]. A general con-
struction of FSS from authentication codes has been given in [20] and has been
used to construct an efficient FSS to sign long messages [21].

A Fail-Stop Confirmer Signatures (FSCS) combines the property of Con-
firmer Signature and FSS schemes. The first construction of FSCS was proposed
in [15]. The scheme is an extension of an FSS scheme proposed in [23].

1.2 Our Contributions

In this paper, we define a model of FSCS scheme that has separability property
[2], that is, it allows all parties to independently run their key generation algo-
rithms (cf. [15]). We propose a generic method for converting an FSS scheme
into an FSCS scheme while maintaining its security properties. We show that
an FSCS can be constructed from an FSS scheme combined with an encryption
scheme. We discuss the security issues that arise in the FSCS scheme because
of the unbounded enemy. In particular we show that the confirmer does not
have any significance from security point of view and is mainly to provide non-
transferability for the signatures. This shows that a simple combination of FSS
and encryption schemes to construct an FSCS scheme is insecure.

The paper is organized as follows. In the next section, we give a model for
FSCS schemes and outline its security requirements. Section 3 proposes a generic
construction for FSCS schemes from FSS scheme and a secure encryption scheme.
In section 4 we discuss the problem that happens in an FSCS model. Section 5
concludes the paper.

2 FSCS Model

There exists a signer S, a confirmer C and a signature verifier V who are poly-
nomially bounded. There is a trusted third party T A whose role is only required
during prekey generation (and it can be eliminated by replacing its role with the
recipient or the signature verifier). The enemy E has unlimited computational
power.

A Fail-Stop Confirmer Signature (FSCS) scheme consists of the following pro-
cedures:
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– Prekey Generation:
Let PKG(k, σ, 	) → (xD, yD) is a probabilistic algorithm where k and σ
are the security parameters for the receiver and sender, respectively, and
(xD, yD) is a secret/public key pair for the TA (or trusted dealer). 	 is the
security parameter of the confirmer.

– Key Generation:
Consists of two probabilistic algorithms: KGS() and KGC(), where KGS()
is performed by S and KGC() is performed by C. KGS(k, σ, yD)→ (xS , yS)
where yD is the public key of T A with the same security level (k, σ) ob-
tained from the algorithm PKG, and KGC(	, yD)→ (xC , yC). (xS , yS) is a
secret/public key pair for the signer S, and (xC , yC) is a secret/public key
pair for the confirmer C.

– Signing:
A probabilistic algorithm CSig(m, xS , yS , yC) → δ that generates a signa-
ture for a message m ∈ {0, 1}∗.

– Confirmation and Disavowal:
A signature verification protocol V er() between a confirmer C and a ver-
ifier V . The private input of C is xC and their common input consists of
m, δ, yS, yC . The output of this protocol is either 1 (true) or 0 (false).

– Proof of Forgery:
A probabilistic algorithm PoF (m, δ, δ̃) → {η,⊥} will be performed by S
to generate a proof of forgery in the case of dispute, where δ and δ̃ de-
note two signatures that pass V er(). The output of this protocol is either η
(the proof of forgery) or ⊥ (fail). If an enemy has successfully constructed a
signature δ̃ on a message m, in which V er() outputs 1, then with an over-
whelming probability the presumed signer S can run PoF (m, δ, δ̃), where
δ ← CSig(m, xS , yS, yC) to show that the underlying hard assumption of
the system has been broken.
An probabilistic algorithm V erPoF (η, yS , yC)→ {0, 1} that allows everyone
to verify the proof of forgery. It takes as input the proof of forgery η together
with the public information (yS , yC) and returns 1 if the proof of forgery is
valid, or 0 otherwise.

– Selective Convertibility:
An algorithm CConv(m, δ, yS , xC , yC)→ {s,⊥} that allows a confirmer C to
convert a confirmer signature δ into an ordinary signature, that allows anyone
to verify the signature without the help of the confirmer. If the conversion
fails, the algorithm outputs ⊥.

– Signature Verification (Ordinary):
An algorithm COV er(m, s, yS) → {0, 1} that allows everyone to verify the
ordinary signature that is the output of CConv(). It takes as input a message
m, a signature s and the signer’s public key yS .

Notions of Security
The FSS scheme used in FSCS must be provably secure against adaptive chosen-
message attack [11]. In this type of attack, the adversary can choose messages
and get the corresponding signatures. His task is to sign a different message that
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has not been signed by the original signer such that the signature is identical to
the one that should have been produced by the original signer. An algorithm is
secure against adaptive chosen-message attack if the probability of the adversary
producing such signature is negligible.

Security Requirements
In the following, we define the security requirements for the sender, confirmer
and recipient of FSCS schemes.

– Security for the Sender:
Security for the sender S ensures that the confirmer signature and the con-
verted signatures are unforgeable under an adaptive chosen-message attack.
The signer S is protected information theoretically against an enemy with
unlimited computational power, with security level σ. For each message many
signatures can be generated that pass verification test. The chance of an un-
bounded enemy to construct the one produced by the true signer is bounded
by 2−τ , where τ is the bundling degree homomorphism [17] which is the rel-
evant security parameter. In the case of forgery, the presumed signer S can
generate a proof of forgery with an overwhelming probability.

– Security for the Confirmer:
If the confirmer’s confirmation is forged, the presumed signer will always be
able to generate a proof of forgery with overwhelming probability.

– Security for the Receiver:
The receiver is protected computationally against the sender and the con-
firmer, which are polynomially bounded. The sender and the confirmer can-
not falsely confirm or deny the signature with overwhelming probability. To
be more precise, the security level for the receiver against the sender is mea-
sured by k and the security level against the confirmer is measured by 	.
Therefore, for a sufficiently large k and 	 and c > 0, we require that

P
{

η ← PoF (m, δ, δ̃)|
(δ ← CSig(m, xS, yS , yC)) ∧ (1← V er(m, yS , yC , δ̃)) ∧
(δ̃ = δ) ∧ (η is valid)

}
≤ (min(k, 	))−c

– Collusion Attack against the Sender:
The strongest attack in FSCS can be performed by an unbounded enemy
who is colluding with the confirmer against the sender. In this case, the
enemy (or the colluding confirmer) has the knowledge of xC together with
his unbounded ability to solve the hard underlying assumption. Under this
attack, we require that the signer is still protected information theoretically
from the colluding enemy and confirmer, with appropriate security level (e.g.
σ).
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An FSCS scheme must satisfy the following security requirements.

– Unforgeability of Signatures:
There exists no polynomial time algorithm which on input yS , yC outputs
with non-negligible probability an arbitrary correct message-signature pair
(m, δ̃) where δ̃ = δ for δ ← CSig(m, xS , yS , yC) and ⊥← PoF (m, δ, δ̃).

– Consistency of Verification:
If the confirmer is honest, for all V er() between a confirmer C and a verifier
V and all (correct and incorrect) message-signature pairs (m, δ) the following
equation must hold

V er(m, yS , yC , δ) =

{
1 if δ

?= CSig(m, xS , yS, yC)
0 otherwise

Informally, this means that the honest confirmer will always confirm cor-
rectly.

– Non-transferability of Verification:
The verification protocol V er() must be a minimum knowledge bi-proof (ac-
cording to the definition of [9]). Receiving the confirmation from C, the
verifier V cannot reuse this proof to show someone else that the signature is
valid.

Definition 1. A (k, σ, 	)-secure FSCS scheme is an FSCS scheme in which the
security level for the signer against an unbounded forger is σ, security level for
the confirmer is 	, and the recipient is protected computationally against the
sender and the confirmer with security level min(k, 	).

3 A Generic Construction for FSCS Schemes

In this section, we propose a generic construction for a FSCS scheme from an
FSS scheme. This is a variation of the construction proposed in [2].

Let SIG = (SPKG, SKG, Sig, V er) denote an FSS scheme, where SPKG
is the prekey generation algorithm, SKG is the key generation algorithm, Sig
is the signing algorithm and V er is the verification algorithm [17]. Let ENC =
(EKG, Enc, Dec) denote a public key encryption scheme. On input a security
level, EKG outputs a key pair (x′, y′) where x′ is a secret key and y′ is the
corresponding public key. On input y′ and a message m, Enc outputs a ciphertext
c, and on input the secret key x′ and a ciphertext c, Dec outputs m. If c is not
valid Dec outputs ⊥.

Given an FSS scheme and a secure encryption scheme, an FSCS can be
constructed as follows:

1. The key generators are chosen as
– PKG(k, σ)

�
= SPKG(k, σ);

– KGS(k, σ, yD)
�
= SKG(k, σ, yD), and

– KGC(	)
�
= EKG(	).
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2. The signer signs a message m ∈ {0, 1}∗ by constructing s := Sig(m, xS , yS)
and δ := Enc(s, yC). The confirmer signature on m is given by δ.

3. The confirmation and disavowal protocol V er() between the confirmer and
a verifier is as follows:
Receiving a confirmer signature δ, the confirmer C decrypts δ to obtain s̃ :=
Dec(δ, xC). If V er(m, s̃, yS) = 1, then C declares the signature valid. This
is through a concurrent zero-knowledge [7] protocol between the confirmer
and the verifier that proves to the verifier that “γ1 = Dec(δ, γ2, yC) and
V er(m, γ1) = 1, and γ2 is the secret key corresponding to yC”. Otherwise,
the confirmer declares the signature invalid and proves in concurrent zero-
knowledge that “(γ1 = Dec(δ, γ2) and V er(m, γ1, yS) = 0, where γ2 is the
secret key corresponding to yC , or decryption fails)”.

4. The protocol to prove forgery is run by S in the case that there is a signa-
ture δ̂ on a message m that passes the verification test performed with the
confirmer C.
S generates his signature on the same message s := Sig(m, xS , yS) and
publishes it as the proof of forgery.
The proof of forgery verification can be performed as follows:
– Verify that V er(s, yS)

?= 1.

– Compute δ = Enc(s, yC) and verify that δ
?

= δ̂.
The above conditions show that δ is different from δ̂ and both of the sig-
natures pass the verification test. If the above conditions hold, the proof of
forgery is valid and the scheme has to be stopped at this stage.

5. The selective conversion algorithm CConv(m, δ, yS , xC , yC) outputs s :=
Dec(δ, xC) if V er(m, Dec(δ, xC), yS) = 1. Otherwise, outputs ⊥.

6. The public verification algorithm for converted signatures is defined as

COV er(m, s, yS)
�
= V er(m, s, yS)

3.1 Properties of the Signature and Encryption Schemes

The above construction is based on a generic construction proposed in [2] and
uses an FSS that is secure against adaptive chosen-message attack with a deter-
ministic public key encryption scheme.

Unlike [2], we do not require an encryption scheme that is secure against
adaptive chosen-ciphertext attacks which demands the encryption scheme (for
instance [6]) to be probabilistic. Using a probabilistic public key encryption
scheme allows the signer to be able to deny his signature as shown below:

1. The signer constructs s := Sig(m, xS, yS) and calculates δ = EncP (s, yC , r),
where EncP is a probabilistic encryption scheme and r is randomly selected.

2. Publish δ as an FSCS on m.

The signer can always deny his own signature δ by publishing s. This is because
the verifier (who does not know r) will select an r̂ which with overwhelming
probability will be different from r, and produces a proof of forgery as follows:
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– Verify V er(s, yS)
?= 1, which will be true; and

– Calculate δ̃ = EncP (s, yC , r̂) and check δ̃
?

= δ, which will also be true.

Theorem 1. The above construction satisfies the security requirements men-
tioned in section 2.

Proof (sketch).

– Security for the Sender:
The signature on m, s := Sig(m, xS , yS), is obtained from an FSS that is
secure against adaptive chosen message attack, with σ as the security level
of the signer. In the case of dispute, the proof of forgery PoF can always
be generated with an overwhelming probability. The output of the selective
conversion algorithm CConv() is an FSS that has the same property as the
original FSS signature.

– Security for the Receiver:
In the above construction, with overwhelming probability the sender cannot
deny his signature and an honest confirmer cannot falsely confirm a signa-
ture. The security level of the system for the receiver against the sender is k
and against the confirmer is 	. Since the signer is computationally bounded,
he cannot find another secret key that matches with his public key and use it
to create a signature that could be used for a proof of forgery (hence denying
his own signature). In fact the chance of finding such a key is ≤ k−c where
k is as defined above, and c > 0.

4 Security Problems in FSCS

The enemy in FSCS is unbounded and can solve the underlying hard problem(s)
of the system. Hence he can always create a signature that will be confirmed.
On the other hand this signature can be shown to be a forgery with a very high
probability. This means that the confirmer’s role is strictly limited to making
the signature untransferable and does not have any significance from the security
point of view.

On the other hand an unlimited enemy can find the secret key of the confirmer
and fully impersonate him, not only generate false signatures but also run a false
verification protocol with the recipient of a signature generated by the sender
and reject the signature. That is, correctly generated signatures may be rejected.

Both above security flaws exist in the scheme proposed in [15]. It seems that
there is no easy way of correcting these problems as they are direct result of
assuming the enemy has unlimited computational power.

5 Conclusion

In this paper we defined a model for Fail-Stop Confirmer signature (FSCS)
schemes and proposed a generic construction for FSCS schemes using a com-
bination of Fail Stop Signature schemes and encryption schemes. However as
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discussed above, the resulting system will have security flaws that are not easily
correctable. These flaws exist in a construction proposed in [15] and so modelling
and constructing a secure FSCS remains an interesting open problem.
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Abstract. In this paper, we propose two digital signature schemes based
on a third order linear feedback shift register. One of them is a normal
signature scheme for signing document and the other is with encryption
for intended reciever. These two signature schemes are different from
most of the signature schemes which are based on discrete logarithm
problem, elliptic curves discrete logarithm problem, RSA or quadratic
residues. The efficient computational algorithm for computing kth term
of a sequence is also presented. The advantage of these two schemes is
that the computation is carried out in the ground field and not in an
extension field. We also show that the security of these two signature
schemes is equivalent to that of Schnorr signature scheme and Signed-
ElGamal encryption scheme respectively.

Key words : Cryptography; digital signature; shift register; discrete logarithm

1 Introduction

1.1 Background and Previous Results

Since the concept of public-key cryptography was first invented by Diffie and
Hellman [6] in 1976 which is based on the hardness of discrete logarithm problem
(DL), many public key cryptosystems have been proposed and broken.

Most successful unbroken and practical public key cryptosystems are RSA
[22] and elliptic curves cryptosystem [10, 16]. RSA was introduced by Rivest,
Shamir and Adleman [22] in 1978 and based on the intractibility of factorization.
Elliptic curves cryptosystem was discovered independently by Koblitz [10] and
Miller [16] in 1985 and based on the hardness of elliptic curve discrete logarithm.
All these public-key cryptographic algorithms are believed to be secured based on
the assumption that no efficient algorithm has been found to solve the hardness of
these problems. During the early eighties, although the public key cryptography
was found not suitable for encryption due to their speeds, the concept of public
key cryptosystem is risen to a new remarkable notion : digital signature. Since
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then, many digital signature schemes were proposed based on discrete logarithm
problem and RSA, for example, blind signatures [2], ElGamal signature [7], group
signature [3], Schnorr signature [24], signature with message recovery [17] and
RSA-based undeniable signature [9], etc.

There were also many efforts to design alternative signature scheme that are
based on other mathematical problems. For example, Ong-Schnorr-Shamir [19]
schemes proposed in 1984 based on low degree polynomials modulo a compos-
ite number, namely, x2 + ky2 ≡ m (mod n). This scheme was subsequently
broken by Pollard and Schnorr [21] in 1987. A similar scheme was proposed
by Shamir [27] in 1993 and soon was broken by Coppersmith, Stern and Vau-
denary [5]. In 1997, Satoh and Araki proposed a signature scheme based on the
non-commutative ring of quaternions and this scheme is a generalization of the
Ong-Schnorr-Shamir [19] scheme. But, this scheme was also subsequently broken
by Coppersmith [4] in 2000. In this paper, we propose an alternative method to
design signature schemes based on third order linear feedback shift registers.

1.2 Our Contributions

In this paper, we propose two new digital signature schemes based on third order
linear feedback shift register and the hardness of discrete logarithm problem in
an extension field GF (q3). The paper is organised as follows :

In the following section, we discuss the cryptographic properties of a third
order linear feedback shift register over GF (q). In section three, we give an
efficient computational method for computing kth term of sequences on third
order shift registers. In section four, we construct two digital signature schemes
based on shift registers. Our signature schemes have the following features :

1. Our two signature schemes are proved to be based on the discrete logarithm
problem over extension fields GF (q3).

2. The security of these two schemes are equivalent to that of Schnorr signa-
ture scheme and Signed-ElGamal encryption scheme respectively.

3. The computational complexity to compute (k+n)th term of sequences on
third order shift registers is 11H(n) + 3 multiplications in GF (q), where H(n)
is the Hamming weight of integer n represented in binary representation.

In section five, we examine the security of our two digital schemes and show
that the security of our schemes are equivalent to that of Schnorr signature
scheme and Signed-ElGamal encryption scheme respectively.

2 Third Order Linear Feedback Shift Registers

Let p be an odd prime and e any positive number. Let GF (q) be a finite field
where q = pe and

f(x) = x3 − ax2 + bx− 1, a, b ∈ GF (q)
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be an irreducible polynomial over GF (q) of order Q = q2 + q + 1. A sequence
s = {sk} generated by the polynomial f(x) is called the third order linear
feedback shift register (LFSR) sequence over GF (q) if the elements of s satisfy

sk = ask−1 − bsk−2 + sk−3, k ≥ 3.

with the initial values s0 = 3, s1 = a and s2 = a2 − 2b.
In order to distinguish the sequence {sk} generated by f(x) = x3 − ax2 +

bx−1, we also denote sk by sk(a, b). Assume that α1, α2, α3 are all roots of f(x)
in the extension field of f(x) over GF (q), then according to Newton’s formula,
the elements of s can be represented by the symmetric kth power sum of the
roots as follows :

sk = αk
1 + αk

2 + αk
3 .

Remarks :

1. As the roots of f(x) conjugate each other, we have α2 = αq
1 and α3 = αq2

1 ,
then we have sk = sqk = sq2k.

2. The number of k coprime to q2 + q + 1 is φ(q2 + q + 1) and is approximately
to 3Q

2π2 where φ is a Euler function.

Let Sk = [sk, sk+1, sk+2] be a vector over GF (q), then s can also be obtained
through matrix representation as follows :

Sk = AkST
0 ,

where ST
0 is a transpose of a vector S0 = [s0, s1, s2] and

A =



0 1 0
0 0 1
1 −b a


 .

If given an initial state Sk, we can represent a sequence sk+n in the following
form :

Sk+n = AnST
k .

Let Q = q2 + q + 1 and for any k such that (k,Q) = 1, then we define fk(x)
as follows :

fk(x) = (x− αk
1)(x − αk

2)(x − αk
3)

= x3 −
3∑

i=1

αk
i x+ (

3,3∑
i�=j

αk
i α

k
j )x−

3∏
i=1

αk
i
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By some calculations, we have

3∑
i=1

αk
i = sk,

3,3∑
i�=j

αk
i α

k
j = s−k,

3∏
i=1

αk
i = 1.

Hence, we have

fk(x) = x3 − skx
2 + s−kx− 1. (1)

Lemma 1. (Corollary 3.47, [11]) An irreducible polynomial over GF (q) of de-
gree n remains irreducible over GF (qk) if and only if (k, n) = 1.

With the above Lemma, we know that an irreducible polynomial of degree 3
over GF (p) will be irreducible over GF (p2). For example, x3+x−1 is irreducible
over GF (7) and it is also irreducible over GF (72) by Lemma 1.

Now, we list the following Theorem that has important properties to con-
struct digital signature schemes :

Theorem 1. Let f(x) = x3 − ax2 + bx − 1 be an irreducible polynomial over
GF (q) of order Q where Q = q2 + q + 1 and let s be the sequence generated by
f(x). Then,
(a) For any integer k with (k,Q) = 1 and fk(x) = x3−skx

2+s−kx−1, we have
(i) The order of fk(x) is Q,
(ii) fk(x) is irreducible iff f(x) is irreducible,

(b) For any positive integers k and d, we have

sk(sd(a, b), s−d(a, b)) = skd(a, b)
= sd(sk(a, b), s−k(a, b))

Proof :
(a) (i) Note that αk

i and αi are roots of fk(x) and f(x) respectively and both
have the same order iff (k,Q) = 1. (ii) follows (i) immediately and the fact that
Q|(q3 − 1) and Q > q2.
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(b) Since sd(a, b) = αd
1 + αd

2 + αd
3 and sk(a, b) = αk

1 + αk
2 + αk

3 , we have

sk(sd(a, b), s−d(a, b)) = (αd
1)

k + (αd
2)

k + (αe
3)

k

= αdk
1 + αdk

2 + αdk
3

= skd(a, b).

We also have the following :

sd(sk(a, b), s−k(a, b)) = (αk
1)

d + (αk
2)

d + (αk
3)

d

= αdk
1 + αdk

2 + αdk
3

= skd(a, b).

Hence, we complete the proof.

We denote a coset leader of a set S = {tqi mod Q | 0 ≤ i ≤ 2} be a smallest
integer in a set S. In fact, a coset leader is closely related to distinct polynomials.
We state this property in the following theorem.

Theorem 2. Let f(x) = x3−ax2+ bx−1 be an irreducible polynomial of order
Q over GF (q), where Q = q2 + q + 1. Let k and k′ be relatively prime to Q and
different coset leaders modulo Q, then

(sk, s−k) 
= (sk′ , s−k′).

Proof : If (sk, s−k) = (sk′ , s−k′), then the polynomials fk(x) and fk′(x) are equal
and let their roots be αk and αk′

respectively. Then αk and αk′
are conjugate

of each other. This means that there exists an integer t where 1 ≤ t ≤ 2 such
that k = k′qt mod Q. This contradicts the fact that k and k′ are different coset
leaders modulo Q. Hence, we have the result.

3 Fast Computational Methods

In [8], the authors give an algorithm to calculate the kth term of a third order
sequence over GF (q) through the following formula :

s2n = s2n − 2s−n

snsm − sn−ms−m = sn+m − sn−2m
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Now, we simply extend the algorithm given in [8] to GF (q) as follows :

Algorithm 1 : Given f(x) = x3 − ax2 + bx− 1 be an irreducible polynomial over
GF (q) and k any number, we express k =

∑r
i=0 ki2r−i, where ki ∈ {0, 1} and

r = log q3. Let Kj = kj + 2Kj−1 with K0 = k0 
= 0, then sk and s−k can be
calculated as follows :

1a) For kj = 0, we have

sKj−1 = sKj−1sKj−1−1 − bs−Kj−1 + s−(Kj−1+1)

sKj = s2Kj−1
− 2s−Kj−1

sKj+1 = sKj−1sKj−1+1 − as−Kj−1 + s−(Kj−1−1)

1a) For kj = 1, we have

sKj−1 = s2Kj−1
− 2s−Kj−1

sKj = sKj−1sKj−1+1 − as−Kj−1 + s−(Kj−1−1)

sKj+1 = s2Kj−1+1 − 2s−Kj−1+1

The author in [8] also further showed that with the above algorithm, to
calculate the kth terms of sk and s−k, we need 9logk modulo q multiplications
on the average.

As the algorithm 1 is only suitable for those k which is known and it is not
possible to calculate those sequences sk+n for unknown k and known n. We give
an algorithm, called Algorithm 2, to calculate such sequence as follows :

Let p be an odd prime and e any positive integer. Let GF (q) be a finite field
where q = pe and

f(x) = x3 − ax2 + bx− 1, a, b ∈ GF (q)
be an irreducible polynomial over GF (q) of order Q = q2 + q + 1. Then, a
sequence s = {sk} can be calculated as follows :

Sn+k = AnST
k ,

where Sk = [sk, sk+1, sk+2] be a vector overGF (q) and ST
k a transpose of a vector

Sk. We know that the complexity of the general method for matrix multiplication
is 27 multiplications in GF (q). Furthermore, Blaser [1] showed that the lower
bound for multiplicative complexity of nxn matrix multiplication is 5

2n
2 − 3n

and for n = 3, the lower bound is 13.5. Therefore, in this section, we will discuss
an efficient method for matrix multiplication and then derive an efficient method
to compute An.

For any xn mod f(x), where n > 2, we can express it as follows :

xn = c2x
2 + c1x+ c0 mod f(x),
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where ci are in GF (q) for 0 ≤ i ≤ 2. Then, there is a one-to-one expression for
matrix An as follows :

An = c2A
2 + c1A+ c0I mod f(x),

where I is an identity matrix.

Algorithm 2 : Given f(x) = x3 − ax2 + bx − 1, a, b ∈ GF (q) be an irreducible
polynomial over GF (q) and its companion matrix A. For any integer n, we can
calculate An as follows :
Step 1 : Let r = log2(q2+q+1), express n =

∑r−1
i=0 ni2i as a binary representation,

where ni ∈ {0, 1} and 0 ≤ i ≤ r − 1.
Step 2 : Compute x22

, · · · , x2r−1
mod f(x) and stores these values. Also computes

A2 as follows :

A2 =



0 0 1
1 −b a
a 1− ab a2 − b


 .

Step 3 : Compute xn =
∏r−1

i=0 (x
2i

)ni mod f(x) and the result, say,

xn = c2x
2 + c1x+ c0 mod f(x)

Step 4 : Compute An as follows :

An = c2A
2 + c1A+ c0I mod f(x).

Let the two polynomial be a2x
2+a1x+a0 and b2x

2 + b1x+ b0, where ai and
bi are in GF (q), where 0 ≤ i ≤ 2, then the usual multiplication is

(a2x
2 + a1x+ a0) ∗ (b2x2 + b1x+ b0)

= a2b2x
4 + (a1b2 + a2b1)x3 + (a2b0 + a0b2 + a1b1)x2 + (a1b0 + a0b1)x+ a0b0

This will take 9 multiplications. Now, we do the multiplications as follows :

(a0 + a1) ∗ (b0 + b1) = a1b1 + a0b1 + a1b0 + a0b0 (2)
(a1 + a2) ∗ (b1 + b2) = a1b1 + a2b1 + a1b2 + a2b2 (3)
(a0 + a2) ∗ (b0 + b2) = a0b0 + a2b0 + a0b2 + a2b2 (4)

Then, we have

a1b2 + a2b1 = (3)− a1b1 − a2b2

a1b0 + a0b1 = (2)− a1b1 − a0b0

a2b0 + a0b2 + a1b1 = (4)− a0b0 − a2b2 + a1b1
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With the above calculations, we only require to carry out 6 multiplications
in GF (q) which is faster than the usual polynomial multiplications. For x4 and
x3 mod f(x) will take 5 multiplications in GF (q). Hence, the total number of
multiplications in GF (q) for two polynomials multiplication modulo f(x) is 11.

The complexity of an algorithm of computing sk+n is discussed in the fol-
lowing theorem.

Theorem 3. Given a matrix A and initial vector Sk = [sk, sk+1, sk+2], then
there is an efficient algorithm that computes Sk+n = [sk+n, sk+n+1, sk+n+2] by
Sk+n = AnST

k with the computational complexity of (11H(n)+3) multiplications
in GF (q) and 3(r − 2) log2q bits of memory to store polynomials x

22
, · · · , x2r−1

mod f(x), where H(n) is the Hamming weight of n in the binary representation
and r = log2(q2 + q + 1).

Proof : In step 2 of the Algorithm 2, it is easily calculated that the number of
memory to store x2i

mod f(x) for 2 ≤ i ≤ r − 1 is about 3(r − 2) log2 q. There
is no storage required for A2 as the first row is (0,0,1), the second row is the
polynomial representation of f(x) and the third row is the same as that of the
coefficient of x22

mod f(x). In step 3, the number of polynomials multiplication
required is H(n) and the complexity of two polynomial multiplications take 11
multiplications in GF (q). Hence, we have the result and completed the proof.

Remarks :
1. If log q3 = 1024, then the memories required to store x2i

, for 2 ≤ i ≤ r − 1 is
85 K bytes.
2. The above algorithm is suitable for parallel computing implementation, for
example, we can implement three multipliers in GF (q) with less complexity than
one multiplier in GF (q3).

4 Digital Signature Schemes

A digital signature is an electronic version of handwritten signature for digital
documents and these are used in many applications, for example, signing docu-
ment, electronic cash, electronic payment system, electronic voting and electronic
auction, etc. We will discuss some of the applications by the different require-
ments of the signature schemes in the following subsections. A signature scheme
normally involves three stages, that is key generation, signature generation and
verification of message. We now give a formal definition as follows :

Definition 1. A signature is defined as :
- The key generation algorithm G. On input 1k, where k is the security parameter,
the algorithm G produces a pair (Kp,Ks) of public and secret keys.
- The signing algorithm Σ. Given a message m and a pair of public and secret
keys (Kp,Ks), Σ produces a signature σ.
- The verification algorithm V. Given a signature σ, a message m and a public
key Kp, V tests whether σ is a valid signature of m with respect to Kp.
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Now, we describe various digital signature schemes in the following subsec-
tion:

4.1 A Normal Digital Signature Scheme

This scheme is usually used as a digital signature for signing document to provide
non-repudiation and anyone who knows the public key could verify the signa-
ture. Among the best known signature schemes were constructed by ElGamal
[7] and Schnorr [24]. Both were constructed from finite field over GF (p). In this
subsection, we construct a new signature scheme which is based on 3th order
shift registers. The construction is described as follows :

Key Generation : Let h be a one way hash function, p an odd prime number and
e any positive number. Let q = pe and f(x) = x3−ax2+bx−1 be an irreducible
polynomial over GF (q) of order Q = q2 + q + 1. A signer, Alice, first chooses a
secret key z that satisfies 0 < z < Q and (z,Q) = 1 and computes her public
key sz(a, b), s−z(a, b) by using Algorithm 1.

Signature Generation : To sign a message m, Alice performs the following to
generate a signature for message m :
(S-1) Choose a random number k that satisfies 0 < k < Q and (k,Q) = 1.
(S-2) Compute sk(a, b), sk+1(a, b), sk+2(a, b) by using algorithm 1.
(S-3) Compute h1 = h(m, sk, sk+1, sk+2). If (h1, Q) 
= 1, then go back to S-1
otherwise proceed to S-4.
(S-4) Compute t such that t+ k = h1z mod Q.

Then, (t, sk, sk+1, sk+2) is a signature for messagem that Alice sends to Bob.

Signature Verification : After Bob receives the signature (t, sk, sk+1, sk+2), he
first computes h1 = h(m, sk, sk+1, sk+2) and checks the following equation :

sk+t = szh1

where sk+t and szh1 can be computed using Algorithm 2 and Algorithm 1 re-
spectively as follows :

Sk+t = AtSk

and

szh1 = sh1(sz(a, b), s−z(a, b))

If sk+t and szh1 are equal, then it is a correct signature, otherwise it is
incorrect.

The security of this signature scheme will be discussed in section 5.



454 Chik How Tan, Xun Yi, and Chee Kheong Siew

4.2 A Signed Encryption Scheme

In some cases, we want to encrypt a message with a signature for an intended
receiver. This type of signature can only be verified and decrypted by the in-
tended receiver. This is different from the previous signature and could only be
verified by intended receiver, which is called signed encryption. One of the best
well-known signed encryption scheme is signed ElGamal encryption scheme [26].
In this subsection, we construct a new signed encryption scheme as follows:

Key Generation : Let h be a one way hash function, p an odd prime number
and e any number. Let q = pe and f(x) = x3 − ax2 + bx − 1 be an irreducible
polynomial over GF (q) of order Q = q2 + q + 1. A signer, Alice, first chooses a
secret key z that satisfies 0 < z < Q and (z,Q) = 1 and computes her public
key sz(a, b), s−z(a, b) by using Algorithm 1. If a signer, Alice, wishes to send an
encrypted and signed message to Bob, she needs to know Bob’s public key. First,
Bob chooses a secret key r that satisfies 0 < r < Q and (r,Q) = 1 and computes
his public key sr(a, b), s−r(a, b) by using Algorithm 1.

Signature Generation : To sign and encrypt a message m, Alice performs the
following steps for a signature of message m :
(SS-1) Choose random number u that satisfies 0 < u < Q and (u,Q) = 1
and compute su, s−u and sur = su(sr(a, b), s−r(a, b)) by using Algorithm 1. If
sur = 0, then go back to SS-1 otherwise proceed to SS-2.
(SS-2) Choose random number k that satisfies 0 < k < Q and (k,Q) = 1 and
compute sk, sk+1, sk+2 by using Algorithm 1.
(SS-3) Compute m1 = msur and h1 = h(sk, sk+1, sk+2, su, s−u,m1). If (h1, Q) 
=
1, then go back to SS-2, otherwise proceed to SS-4.
(SS-4) Compute t such that t+ k = h1z mod Q.

Then Alice will send (sk, sk+1, sk+2, su, s−u,m1, t) to Bob as a signature and
encryption of message m.

Signature Verification : Upon receipt of the signature (sk, sk+1, sk+2, su, s−u,
m1, t), Bob first computes h1 = h(sk, sk+1, sk+2, su, s−u,m1) and checks the
following equation :

sk+t = sh1z,

where sk+t and sh1z can be calculated using Algorithm 2 and Algorithm 1 re-
spectively as follows :

Sk+t = AtSk

and

sh1z = sh1(sz(a, b), s−z(a, b)).

If sk+t and sh1z are equal, then it is a correct signature, otherwise it is
incorrect. For the correct signature, Bob is able to obtain message m as follows:
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m = m1/sur,

as Bob knows his own secret key r and he is able to calculate sur as sur =
sr(su(a, b), s−u(a, b)) by using Algorithm 1.

5 Security of Signature Schemes

To cryptanalyse a signature scheme, it is basically done by forgeries. There are
three kinds of well known cryptanalysis for forgeries.
a) Total break : An adversary is able to recover the secret key of the signer. This
is the most serious attack of the system. It means that the scheme cannot be
used totally.
b) Universal forgery : An adversary is able to construct an efficient algorithm
which is able to sign any message.
c) Existential forgery : An adversary is able to generate new message-signature
pair but the message may not be meaningful.

Based on the above type of attacks, we analyse the security of these signature
schemes in the following Theorems. Normal and signed encryption schemes are
quite similar except that the later is with encryption. We will analyse the two
schemes together. First, we show that the security of these signature schemes
are based on the difficulty of solving the discrete logarithm problem in GF (q3)
and in general linear group. Following that, we show that the security of a
normal signature scheme and a signed encryption scheme are equivalent to that
of Schnorr scheme and Signed-ElGamal encryption scheme.

Definition 2. The discrete logarithm problem (DL) is the following : given a
finite cyclic group G, a generator g of G and an element a, find an integer x,
1 ≤ x ≤| G | −1 such that a = gx holds.

Now, we define a similar concept of discrete logarithm problem in shift reg-
ister as follows :

Definition 3. The shift register type of discrete logarithm problem (SR-DL) is
the following : given (sk, s−k) and (s1, s−1), find an integer k, 1 ≤ k ≤ q3 − 1
such that sk = sk(s1, s−1) holds.

Theorem 4. The SR-DL is equivalent to DL problem.

Proof :

(=⇒) Given (sk, s−k) and (s1, s−1), then a polynomial fk(x) can be formed by
Theorem 1 and its roots can be easily calculated. Let α and β be the roots
representation of f(x) and fk(x) in the field GF (q3) respectively. Then, there
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exists some i, 0 ≤ i ≤ 2 such that β = αqik in GF (q3). Now, if there exists an
efficient algorithm to find k from (sk, s−k) and (s1, s−1), then we can also easily
find qik such that β = αqik which is a DL problem. Hence, SR-DL implies DL
problem.

(⇐=) Given α and β, if we can find k such that β = αk, then we have βqi

= αqik

for 0 ≤ i ≤ 2 and we can form the polynomial fk(x). Then, we have (sk, s−k).
Hence, for a given (sk, s−k) and (s1, s−1), there is an efficient algorithm to find
k such that sk = sk(s1, s−1). Therefore, this shows that DL problem implies
SR-DL. Hence, we proved that SR-DL is equivalent to DL problem.

In [14], Menezes and Wu showed that the discrete logarithm problem in
general linear group GL(n, q), a set of nxn nonsingular matrices over GF (q),
can be reduced to the discrete logarithm in the small extension field of GF (q).
The discrete logarithm problem in GL(n, q) is to find k, given nxn matrices A
and B and in GF (q) such that B = Ak. Let the factorization of the characteristic
polynomial pA(x) of A over GF (q) be pA(x) = fe1

1 fe2
2 · · · feu

u , where the degree
of fi is mi. Menezes and Wu showed the following theorem :

Theorem 5. [14] The discrete logarithm problem in GL(n, q) is reduced to the
discrete logarithm in GF (qmi), 1 ≤ i ≤ u.

If a characteristic polynomial is irreducible and we called its companion ma-
trix an irreducible matrix, then we have the following corollary.

Corollary 1. The discrete logarithm of irreducible matrix in GL(n, q) is reduced
to the discrete logarithm in GF (qn).

From the above Theorem 4, we know that it is impossible for adversary to
find the secret key with the knowledge of sz and s−z. Furthermore, it is also
difficult to find random number k. From the Corollary 1 and Theorem 4, it is
also difficult to find k + t with the knowledge of sk+t. Hence, the two signature
schemes can withstand the first attack.

In [20] and [26], the authors have showed that Schnorr signatures over GF (p)
is secured against the adaptive chosen message attack using random oracle
model. In the following theorem, we show that our normal signature scheme
and Schnorr signature scheme are equivalent under the same group of order Q.
Let g be a generator of a group of order Q and h is a one-way hash function.
Let z be a secret key and public key is gz. Choose a random number k, then a
signature of a message m is generated as follows:

h1 = h(m, gk), k + t = h1z and gk+t = gh1z.

The signature of m is (gk, t).
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Theorem 6. Our normal signature scheme is equivalent to Schnorr signature
scheme.

Proof :
(=⇒) Given our normal signature scheme, we have a signature (t, sk−2, sk−1, sk)
and the following relations :

sk+t = sh1z

and

k + t = h1z mod Q.

Hence, we have
−(k + t) = −h1z mod Q

and
s−(k+t) = s−h1z.

As we know (h1z,Q) = 1, where Q = q2 + q + 1, then (k + z,Q) = 1.
Then, by equation (1), we can form polynomials fk+t(x) and fh1z(x). These two
equations are equal and their roots can easily be calculated. Let αk+t and αh1z

be their roots of fk+t(x) and fh1z(x) respectively, where α is a root of f(x)
and in GF (q3). Then, we have αk+t = αh1z with k + t = h1z which is Schnorr
signature scheme. Hence, our normal signature scheme is reduced to Schnorr
signature scheme.

(⇐=) Similarly, given Schnorr signature scheme, we have αk+t = αh1z and k+t =
h1z. We have

(αk+t)q = (αh1z)q

and
(αk+t)q

2
= (αh1z)q

2
.

Therefore, we have sk+t = sh1z and k + t = h1z, which forms our normal
signature scheme. Hence, our normal signature scheme and Schnorr signature
scheme are equivalent. This completes the proof.

As our signed encryption scheme is quite the same as a normal signature
scheme, except that the first is with encrypted message. Therefore, we have the
following theorem.

Theorem 7. Our signed encryption scheme is equivalent to Signed-ElGamal
encryption signature scheme.

Hence, from Theorem 6 and Theorem 7, we can conclude the following the-
orem.

Theorem 8. (i) The security of our normal signature scheme is equivalent to
the security of Schnorr signature scheme.
(ii) The security of our signed encryption scheme is equivalent to the security of
Signed-ElGamal encryption scheme.
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6 Conclusion

In this paper, we proposed two digital signature schemes based on a 3rd order
linear feedback shift register over GF (q). We show a method of implementing
these two schemes efficiently. We show that the security of the two schemes re-
lies on the discrete logarithm over GF (q3). Furthermore, we also show that the
security of these two signature schemes is equivalent to that of Schnorr signa-
ture scheme and Signed-ElGamal encryption scheme respectively. The methods
presented here can lead to many construction of digital signature schemes over
GF (q3) and it is expected that more signatures could be constructed from 3rd
order linear feedback shift register. The other advantage of this method is that
the computation is carried out in GF (q) and not in GF (q3).
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Abstract. A distributor of digital contents desires to collect users’ at-
tributes. This is because the distributor can grasp the image of users, and
work out the marketing strategy. On the other hand, the users do not
desire to offer the attributes owing to the privacy protection. For anony-
mous surveys, a protocol to generate statistical results of the attributes is
previously proposed, where the extra information is not released beyond
the statistical results. However, in the simple application of this protocol
to the surveys, the correctness of the statistical results is not assured,
since the users do not necessarily offer the correct attributes. In this
paper, under the assumption that some trusted third parties exist, an
anonymous statistical survey system of attributes with the correctness
is proposed.

Keywords: Statistical survey of attributes, Anonymity, Group signature
scheme, Shuffle, Threshold cryptosystem

1 Introduction

Recently, digital contents have been distributed on the computer network for the
commercial purpose, where the distributor sends users the digital contents in-
cluding texts, images and sound, while the users watch advertisements or pay the
distributor the money. It is desirable that these services are conducted anony-
mously, since otherwise the distributor can collect the history that indicates
which contents a user utilizes and furthermore the distributor may leak the his-
tory to others. By contrast, the distributor wants to grasp the image of users,
since the distributor can work out the strategy according to the image. This
may also benefit the users, since they may obtain the more suitable contents.
One method to grasp the image is to collect the attributes of the users, which
are concretely the gender, age, job and so on. However, even if offering the at-
tributes during the services is conducted anonymously, offering many attributes
may help the distributor to trace the identity of the user. Only the statistical
results of the attributes may give the distributor useful information to grasp the
image.

In [1], Sako proposes a protocol executed among several trusted third parties
(TTPs) in order to generate statistical results of attributes for anonymous survey
systems. The merit of this protocol is that it releases no extra information beyond
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the statistical results. Each TTP is in charge of each attribute type, and the TTP
obtains only the information of the corresponding attribute type. The TTP’s
input is the set of the ciphertexts encrypted with the TTP’s public key from
attribute values on the corresponding attribute type. The output is only the
statistical result of the attribute type. By using this protocol, the anonymous
survey system of attributes is simply constructed as follows: A user sends the
distributor the ciphertexts of the user’s attribute values, and the distributor
collects them. After collecting a certain amount of ciphertexts, the distributor
gives the TTPs them to execute this protocol. Then, the distributor can obtain
the statistical results of all attribute types without the extra information. This
protocol has a mechanism to detect a TTP that does not obey the protocol, and
thus it is assured that the results are correct if the inputs are correct, that is,
the attribute values in the ciphertexts are correct. However, in the above simple
survey system, since the user does not necessarily send the correct attribute
values, it is not assured that the statistical results are correct.

This paper proposes an anonymous statistical survey system of attributes
with the correctness. In this system, a set of multiple TTPs, called trustees, is in
charge of every attribute type. Unless a quorum of the trustees is corrupted, the
statistical results are generated without releasing any extra information to even
each trustee. In addition, to verify that a user commits the correct attribute
values, this system introduces an attribute authority as the additional TTP.
The attribute authority assures the correspondence between the user’s genuine
attribute values and the committed values. In the proposed system, extensions of
the group signature scheme [2], verifiable shuffle protocols [3] and the threshold
cryptosystem [4] produce the correctness along with the anonymity.

This paper is organized as follows: Section 2 shows a model of the anonymous
statistical survey system of attributes. Next, as the cryptographic tools used in
the proposed system, signatures based on zero-knowledge proofs of knowledge
(SPKs) which are also used in the group signature scheme, a verifiable shuffle
protocol and a threshold cryptosystem are reviewed in Section 3. Then, the
overview and detailed construction of an anonymous statistical survey system of
attributes are described in Section 4 and 5, respectively. Its security is discussed
in Section 6. Finally, Section 7 concludes this paper.

2 A Model of Anonymous Statistical Survey System of
Attributes

The participants in an anonymous statistical survey system of attributes are an
attribute authority, users, a distributor, and trustees. The attribute authority
is a TTP, and the authority assures the correspondence between the user’s gen-
uine attribute values and the encrypted values which are offered from the user.
The trustees are also TTPs, and it is assumed that a quorum of them is not
corrupted. The survey system consists of the setup, registration, offering, and
generating protocols. In the setup protocol, the secret and public keys of the at-
tribute authority and the trustees are set up. In the registration protocol, a user
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generates his secret key and public key, and is issued the attribute certificate for
a registered value from the attribute authority. In the offering protocol, a user
sends the distributor the encrypted values correspondent with user’s attribute
values, whose validity is assured by the attribute certificate. In the generating
protocol, given the encrypted values of many users, a quorum of the trustees
outputs the statistical result of every attribute type.

The requirements of anonymous survey system of attributes are as follows:

Correctness: The statistical result is correct if the participants obey the pro-
tocols. If a participant disobeys the protocols, it can be detected.

Anonymity: The offering protocol is conducted anonymously. That is, the
other party can not identify the user from a transcript of this protocol,
and can not also link two transcripts w.r.t. the sameness of the user. Fur-
thermore, the other party can not link a transcript of the offering protocol
to the corresponding attribute values.

3 Preliminaries

3.1 Signatures Based on Zero-Knowledge Proofs of Knowledge

The proposed system uses an extension of the group signature scheme in [2]. In
this scheme, as primitives to prove the knowledge of secret values without leaking
any useful information, signatures based on zero-knowledge proofs of knowledge
(SPKs) are used. Since the proposed system also uses some types of SPKs, this
subsection reviews the SPKs. These are converted from zero-knowledge proofs of
knowledge (PKs) by the so-called Fiat-Shamir heuristic [5]. That is, the prover
determines the challenge by applying a collision-resistant hash-function to the
commitment and the signed message and then computes the response as usual.
The resulting signature consists of the challenge and the response. Such SPKs
can be proven to be secure in the random oracle model [6] given the security
of the underlying PKs. Let SPK{(α, β, . . .) : Predicates}(m) be the signature
on message m proving that the signer knows α, β, . . . satisfying the predicates
Predicates . In this notation, Greek letters denote the secret knowledge and the
other letters denote public parameters between the signer and the verifier. The
proposed system is based on the hardness of the discrete logarithm problem as
well as the group signature scheme [2]. Thus, the relations among the discrete
logarithms from cyclic groups are used as the predicates to prove. In the follow-
ing, let G be a cyclic group with order q. The discrete logarithm of y ∈ G to the
base z ∈ G is x ∈ Zq satisfying y = zx if such an x exists. This is extended to the
representation of y ∈ G to the bases z1, z2, . . . zk ∈ G which is x1, x2, . . . xk ∈ Zq

satisfying y = zx1
1 · zx2

2 · · · zxk

k if such xi’s exist. The e-th root of the discrete
logarithm of y ∈ G to the base z ∈ G is x ∈ Zq satisfying y = z(xe) if such an x
exists.

The first type of SPK is the signature proving the knowledge of represen-
tations of y1, . . . , yw ∈ G to the bases z1, . . . , zv ∈ G on message m, and it is
denoted as
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SPK{(α1, . . . , αu) : (y1 =
∏l1

j=1 z
αe1j

b1j
)

∧ · · · ∧ (yw =
∏lw

j=1 z
αewj

bwj
)}(m),

where constants li ∈ {1, . . . v} indicate the number of bases on representation of
yi, the indices eij ∈ {1, . . . , u} refer to the elements α1, . . . , αu and the indices
bij ∈ {1, . . . , v} refer to the elements z1, . . . , zv. For example, SPK{(α, β) : y1 =
zα1 ∧y2 = zβ1 z

α
2 }(m) is the SPK on m of an entity knowing the discrete logarithm

of y1 to the base z1 and a representation of y2 to the bases z1 and z2, where
the z2-part of this representation equals the discrete logarithm of y1 to the base
z1. The second type is the SPK proving the knowledge of the e-th root of the
discrete logarithm of y ∈ G to the base z ∈ G on m, and is denoted as

SPK{β : y = zβ
e}(m).

The third type is the SPK proving the knowledge of the e-th root of the z2-part
of a representation of y ∈ G to the bases z1, z2 ∈ G on m, and is denoted as

SPK{(γ, δ) : y = zγ1 z
δe

2 }(m).

The efficient constructions of these types of signatures are concretely described
in [2].

3.2 Shuffle and Threshold Cryptosystem

We define a shuffle protocol as the following protocol: Given a list of ciphertexts
(c1, . . . , cN ), multiple parties output a list of permuted ciphertexts (c′1, . . . , c

′
N )

satisfying Dec(cj) = Dec(c′π(j)) for all j, where Dec is the decryption function
and π is a permutation. Furthermore, it is infeasible to determine π(j) for any
j with non-negligibly better probability unless the parties cooperate, since the
permuted ciphertexts are randomized. In [3], a shuffle protocol of the ElGamal
encryption is proposed for constructing the Mix-net. Since the parties may dis-
obey the shuffle, the shuffle should be verifiable, which is brought by the parties’
proving the correctness of their actions without revealing their random factors.
In [3] a PK to prove the correctness is also proposed, which is used in this survey
system together with the shuffle protocol.

We also use the idea of threshold cryptosystem [4], where a quorum of parties
cooperatively decrypts a ciphertext w.r.t. the parties’ public key. As well as the
above shuffle, since the parties may disobey the decryption, the decryption pro-
tocol should be also verifiable, that is, the correctness should be proved without
revealing their secret keys. In [3], an ElGamal threshold decryption protocol and
a PK to prove the correctness are also proposed.

4 Overview

Before the proposed system is described, the overview is shown. In the system,
the group signature scheme [2] is used to assure that a user offers the correct
attribute values.
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Group signature scheme [2]: The group signature scheme allows a group mem-
ber to anonymously sign on group’s behalf. Furthermore, the anonymity of the
signature can be revoked by a revocation manager. The scheme consists of setup,
registration, signing, verification, anonymity revocation protocols. The protocols
are informally as follows:

Setup protocol: The group manager sets up public and secret keys on a digital
signature scheme, and the revocation manager sets up public and secret keys
on a public encryption scheme.

Registration protocol: When a user wants to participate in the group, the
user sends the group manager f(x) together with his identity, where f is a
public one-way function and x is the user’s secret key. Then, the manager re-
turns his digital signature on f(x), denoted as DS(f(x)), as the membership
certificate.

Signing and verification protocol: As the group signature on a message m,
a group member computes d = Enc(f(x)) and p = SPK{(α, β) : d =
Enc(f(α))∧β = DS(α)}(m), where Enc is the encryption function with the
revocation manager’s public key. Its verification is accomplished by verifying
the SPK.

Anonymity revocation protocol: When the anonymity of a signature (d, p)
is revoked, the revocation manager decrypts d to obtain f(x). Through the
registration transcript including f(x), the identity of the signer is found.

The proposed anonymous statistical survey system uses the group signature
scheme, where the group manager is replaced by the attribute authority and
the revocation manager is replaced by the trustees. The informal descriptions of
protocols are as follows. For the simplicity, the case of one attribute type is only
described.

Setup protocol: The setup protocol of the group signature scheme is con-
ducted, where the trustees cooperatively set up keys of the threshold cryp-
tosystem.

Registration protocol: The registration protocol of the group signature
scheme is conducted, where the attribute authority preserves the attribute
value of the registering user instead of the identity. Thus, each f(x) is cor-
respondent with each attribute value, and f(x) is called the attribute index.
The list of the indices and attribute values of all users is made public. Fur-
thermore, the membership certificate plays the role of the attribute certifi-
cate.

Offering protocol: To offer the attribute value, the user sends the distribu-
tor the user’s group signature on a random message. The distributor can
check the correctness of the attribute value by verifying the signature. The
distributor collects signatures of users.

Generating protocol: To obtain the statistical result of the attribute type,
the distributor sends the trustees the received signatures. Each signature
includes the ciphertext of the attribute index, that is Enc(f(x)). The trustees
cooperatively shuffle the ciphertexts. After that, for each ciphertext, the
following steps are executed.
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1. The trustees cooperatively shuffle all registered attribute indices, where
the indices are randomized by the same random factor while the cipher-
text is randomized by the same factor.

2. The quorum of trustees decrypts the randomized ciphertext to make the
decrypted value correspondent with a randomized attribute index, which
indicates only the attribute value, not the attribute index itself.

By counting the attribute values made correspondent with all ciphertexts,
the statistical result is computed. In this protocol, furthermore, the correct-
ness of the shuffles and decryption are proved with zero-knowledge.

The correctness of this system is satisfied as follows: The SPK in the group
signature assures that the signature includes the ciphertext of the attribute
index. The correspondence between the attribute index and the attribute value
is assured by the attribute authority through the digital signature. Furthermore,
the proofs of the shuffles and decryption assure that the statistical result is
correctly computed from the ciphertexts.

The anonymity is satisfied as follows: Since the group signature is anonymous,
the transcript of the offering protocol is anonymous. In the generating protocol,
the ciphertexts are shuffled, and are made correspondent to the attribute values,
from which anyone can compute only statistical result. Furthermore, proving the
correctness of the shuffles and decryption reveals no information.

5 An Anonymous Statistical Survey System of Attributes

In this section, the detailed protocols are described. For the simplicity of de-
scription, assume that there are two attribute types, A and B. Let U be a user,
and let D be a distributor. Let AA be the attribute authority. Let T1, . . . , T� be
the trustees.

Assume that the communication between the participants is authenticated
(e.g., by the digital signature) except the offering protocol. Let 0̃ be the empty
string. If S is a set, e ∈R S means that e is chosen at random from S according
to the uniform distribution.

5.1 Setup Protocol

In this protocol, AA and trustees T1, . . . , T� generate the secret and public keys.

1. AA computes an RSA modulus n, two public exponents e1, e2 > 1, and two
integers f1, f2 > 1. Note that e1, e2, f1 and f2 must satisfy that solving the
congruence f1x

e1 +f2 ≡ ve2 (mod n) is infeasible. The choices for e1, e2, f1

and f2 are discussed in [2]. AA chooses a cyclic group G of order n. Then, AA
chooses bases gA, gB, h ∈ G in which it is infeasible to compute and compare
the discrete logarithms. AA’s public key is (n, e1, e2, f1, f2, G, gA, gB, h), and
the secret key is the factorization of n.
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2. The trustees cooperatively generate their secret keys and the public key,
where a secret key xT ∈R Z∗n are shared with the trustees by Shamir’s
threshold scheme. Then, they publish yT = hxT as the trustees’ public key.
Note that the normal (threshold) ElGamal encryption is constructed on a
multiplicative subgroup of order prime q in Z∗p such that p = 2q + 1, while
the encryption in this system is constructed on a cyclic group of order n that
is the RSA modulus, since the underlying group signature scheme [2] uses
the encryption.

5.2 Registration Protocol

When a user U participates in this system, U is issued the attribute certificate
from AA by this protocol, which is similar to the registration of the original
group signature scheme. Assume that AA is convinced of U ’s attribute values.

1. U chooses x ∈R Z∗n to compute y = xe1 (mod n), zA = gyA and zB = gyB.
Then, U chooses r ∈R Z∗n to compute ỹ = re2 (f1y + f2) (mod n) and the
following SPKs:

V1 = SPK{α : zA = gα
e1

A }(0̃),

V2 = SPK{β : gỹA = (zf1A gf2A )β
e2 }(0̃),

V3 = SPK{γ : zA = gγA ∧ zB = gγB}(0̃).

Note that V1 and V2 are the same as the original. V3 proves the correctness
of zA and zB.
U sends (ỹ, zA, zB, V1, V2, V3) to AA.

2. If V1, V2 and V3 are correct, AA sends ṽ = ỹ1/e2 (mod n) to U .
3. U computes v = ṽ/r (mod n) to obtain the attribute certificate (x, v),

where v ≡ (f1x
e1 + f2)1/e2 (mod n). This is the same as the membership

certificate of the original.

After the registration, AA publishes (zA, a), where a is U ’s value on the
attribute type A. Similarly, AA publishes (zB, b), where b is U ’s value on the
attribute type B. The values zA and zB are the attribute indices.

5.3 Offering Protocol

U offers the encrypted attribute indices by the following offering protocol. D
collects the encrypted attribute indices of users.

1. D sends a random message m to U .
2. U computes C̃1A = yr̃A

T gyA and C̃2A = hr̃A for r̃A ∈R Z∗n, and computes
C̃1B = yr̃B

T gyB and C̃2B = hr̃B for r̃B ∈R Z∗n. Note that (C̃1A, C̃2A) and
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(C̃1B , C̃2B) are the ElGamal encryptions for zA and zB with the public key
yT . Furthermore, to prove their validity, U computes the following SPKs:

Ṽ1 = SPK{(α, β) : C̃1A = yαT g
βe1

A }(m),

Ṽ2 = SPK{(γ, δ) : C̃f1
1Ag

f2
A = yγT g

δe2

A }(m),

Ṽ3 = SPK{(ε, ζ, η) : C̃1A = yεT g
ζ
A

∧C̃2A = hε ∧ C̃1B = yηT g
ζ
B

∧C̃2B = hη}(m).

Note that Ṽ1 and Ṽ2 prove that the user knows the attribute certificate (x, v),
which is similar to the proof of the knowledge of the membership certificate
in the original group signature scheme.
U sends D (C̃1A, C̃2A, C̃1B, C̃2B , Ṽ1, Ṽ2, Ṽ3).

3. D verifies its correctness by checking Ṽ1, Ṽ2 and Ṽ3.

5.4 Generating Protocol

Assume that D collects u transcripts of offering protocol. Note that u should be
large to some degree. By the following generating protocol, the trustees T1, . . . , T�
cooperatively compute the statistical result of every attribute type from the
transcripts, while the anonymity of users is kept. For the simplicity of description,
only the case of the attribute type A is shown, and assume that the values of A
are a and a′. The public lists of the attribute indices zA registered by all users
with the value a and a′ are denoted as Pa = (z1, . . . , zN ) and Pa′ = (z′1, . . . , z

′
N ′),

respectively.

1. D sends the trustees u transcripts of offering protocol.
2. Each Ti verifies Ṽ1, Ṽ2 and Ṽ3 in the transcripts, and rejects if they are not

valid. The ciphertexts (C̃1A, C̃2A) in u transcripts are numbered as L̃ =
{(C̃1,1, C̃2,1), . . . , (C̃1,u, C̃2,u)}.

3. For the list L̃, T1, . . . , T� cooperatively shuffle the list to output the list
L̂ = {(Ĉ1,1, Ĉ2,1), . . . , (Ĉ1,u, Ĉ2,u)} by using the shuffle protocol [3]. Note
that this shuffle makes the ciphertexts in the original list unlinkable to the
attribute values, which are correspondent with the ciphertexts in the shuffled
list. Then, the trustees cooperatively prove to D the correctness of the shuffle
by the proof protocol [3].

4. For every ciphertext (Ĉ1,k, Ĉ2,k) (1 ≤ k ≤ u) in L̂, T1, . . . , T� cooperatively
execute the following sub-steps:
(a) The trustees cooperatively shuffle the public lists Pa and Pa′ by using a

same random factor while the ciphertext (Ĉ1,k, Ĉ2,k) is also randomized
by the factor. The concrete protocol SHUFFLE-SAME-RAND is shown
afterward. The outputs of SHUFFLE-SAME-RAND are denoted as Ṗa =
(ż1, . . . , żN ), Ṗa′ = (ż′1, . . . , ż′N ′) and (Ċ1,k, Ċ2,k). After this protocol,
the following relations are satisfied:
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żj = ztπ(j) for all 1 ≤ j ≤ N,

ż′j′ = z′tπ′(j′) for all 1 ≤ j′ ≤ N ′,

Ċ1,k = Ĉt
1,k, and

Ċ2,k = Ĉt
2,k,

for random permutations π, π′, and t ∈R Z∗n. Furthermore, the trustees
cooperatively prove to D the correctness of the SHUFFLE-SAME-RAND
by the protocol SHUFFLE-SAME-RAND-PROOF, which is also shown
afterward.

(b) For the output of SHUFFLE-SAME-RAND Ṗa = (ż1, . . . , żN), Ṗa′ =
(ż′1, . . . , ż′N ′) and (Ċ1,k, Ċ2,k), a quorum of the trustees cooperatively
decrypts the ciphertext by ż = Ċ1k/Ċ

xT

2k . Furthermore, the trustees coop-
eratively prove to D the correctness. Their concrete protocols are shown
in [3]. Note that, if the attribute index z is encrypted into (Ĉ1,k, Ĉ2,k),
ż should equal zt, which is in Pa or Pa′ . Therefore, if ż is in list Pa,
the ciphertext (Ĉ1,k, Ĉ2,k) is proved out to be correspondent with the
attribute value a. Otherwise, it is proved out to be correspondent with
the value a′.

5. D obtains the statistical result of the attribute type A by calculating the
numbers of all attribute values which are correspondent with all ciphertexts
in the shuffle list L̂.

Next, the protocol SHUFFLE-SAME-RAND is concretely shown.

SHUFFLE-SAME-RAND: In this protocol, for inputs Pa = (z1, . . . , zN), Pa′ =
(z′1, . . . , z′N ′) and (Ĉ1,k, Ĉ2,k), the trustees cooperatively output Ṗa =
(ż1, . . . , żN), Ṗa′ = (ż′1, . . . , ż′N ′) and (Ċ1,k, Ċ2,k) such that

żj = ztπ(j) for all 1 ≤ j ≤ N,

ż′j′ = z′tπ′(j′) for all 1 ≤ j′ ≤ N ′,

Ċ1,k = Ĉt
1,k, and

Ċ2,k = Ĉt
2,k,

for random permutations π, π′, and t ∈R Z∗n.
The task of each trustee is as follows. Trustee Ti receives two lists
(zi−1,1, . . . , zi−1,N ) and (z′i−1,1, . . . , z

′
i−1,N ′), and two values Ei−1 and Fi−1,

where z0,1 = z1, . . . , z0,N = zN , z′0,1 = z′1, . . . , z
′
0,N ′ = z′N ′ , E0 = Ĉ1,k and

F0 = Ĉ2,k. Ti chooses two random permutations πi and π′i and a random
factor ti ∈R Z∗n. Then, Ti computes

zi,j = ztii−1,πi(j)
for all 1 ≤ j ≤ N,

z′i,j′ = z′tii−1,π′
i
(j′) for all 1 ≤ j′ ≤ N ′,

Ei = Eti
i−1, and

Fi = F ti
i−1.
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Ti’s output consists of (zi,1, . . . , zi,N ), (z′i,1, . . . , z
′
i,N ′), Ei and Fi. The next

trustee works in the same way, and the process continues up to T�. The
output of this protocol consists of Ṗa = (ż1 = z�,1, . . . , żN = z�,N), Ṗa′ =
(ż′1 = z′�,1, . . . , ż′N ′ = z′�,N ′) and (Ċ1k = E�, Ċ2k = F�). 	

For above random permutations πi and π′i and factors ti, t =

∏�
i=1 ti, π =

π1 · · ·π� and π′ = π′1 · · ·π′� should hold.

The following protocol is SHUFFLE-SAME-RAND-PROOF, which is de-
rived from the shuffle proof protocol in [3].

SHUFFLE-SAME-RAND-PROOF: In this protocol, the trustees cooperatively
prove that they honestly conduct the protocol SHUFFLE-SAME-RAND.
The trustees cooperatively conduct the followings σ times, which indicates
the error probability 1/2σ.
1. Ti receives (z̃i−1,1, . . . , z̃i−1,N ) and (z̃′i−1,1, . . . , z̃′i−1,N ′), and two values

Ẽi−1 and F̃i−1, where z̃0,1 = z1, . . . , z̃0,N = zN , z̃′0,1 = z′1, . . . , z̃′0,N ′ =
z′N ′ , Ẽ0 = Ĉ1,k and F̃0 = Ĉ2,k. Ti chooses two random permutations λi
and λ′i and a random factor si ∈R Z∗n. Then, Ti computes

z̃i,j = z̃si

i−1,λi(j)
for all 1 ≤ j ≤ N,

z̃′i,j′ = z̃′
si

i−1,λ′
i
(j′) for all 1 ≤ j′ ≤ N ′,

Ẽi = Ẽsi

i−1, and

F̃i = F̃ si

i−1.

Ti sends (z̃i,1, . . . , z̃i,N ), (z̃′i,1, . . . , z̃′i,N ′), Ẽi and F̃i to the next trustee
Ti+1. The last trustee sends (z̃�,1, . . . , z̃�,N), (z̃′�,1, . . . , z̃′�,N ′), Ẽ� and F̃�
to D and all trustees.

2. D sends c ∈R {0, 1} to all trustees.
3. If c = 0, each Ti computes a commitment bi = BC(i, λi, λ′i, si) and dis-

tributes the commitment to D and all trustees, where BC is a bit com-
mitment scheme. After all commitments are distributed, each Ti opens
his commitment by revealing λi, λ

′
i and si. The last trustee T� computes

λ = λ1 · · ·λ�, λ′ = λ′1 · · ·λ′� and s =
∏�

i=1 si (mod n). Every trustee
verifies that all commitments, λ, λ′ and s are correctly made. If this
verification fails, this protocol stops.
If c = 1, each Ti computes ϕi = π−1

i ϕi−1λi, ϕ
′
i = π′−1

i ϕ′i−1λ
′
i and

wi = wi−1si/ti (mod n), where ϕ0, ϕ
′
0 are the identity permutations

and w0 = 1 (mod n). The last T� sends ϕ = ϕ�, ϕ
′ = ϕ′� and w = w� to

D and the other trustees.
4. D and each trustee verify that, if c = 0,

z̃�,j = zsλ(j) for all 1 ≤ j ≤ N,

z̃′�,j′ = z′sλ′(j′) for all 1 ≤ j′ ≤ N ′,

Ẽ� = Ĉs
1,k, and

F̃� = Ĉs
2,k,
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and if c = 1,

z̃�,j = żwϕ(j) for all 1 ≤ j ≤ N,

z̃′�,j′ = ż′
w

ϕ′(j′) for all 1 ≤ j′ ≤ N ′,

Ẽ� = Ċw
1,k, and

F̃� = Ċw
2,k.

	


6 Discussion

Before the satisfaction of the requirements is discussed, two lemmas are shown.
The following lemma for the protocol SHUFFLE-SAME-RAND holds, since it
is infeasible to determine the sameness of the discrete logarithms.

Lemma 1. Given all zi−1,πi(j), zi,j, z′i−1,π′
i
(j′) and z′i,j′ , no adversary can de-

termine πi(j) for any j or π′i(j
′) for any j′ with non-negligibly better probability.

The next lemma shows the security of SHUFFLE-SAME-RAND-PROOF.
The proof of this lemma is similar to that of the shuffle proof protocol in [3].
The sketch of the proof is shown in the appendix.

Lemma 2. SHUFFLE-SAME-RAND-PROOF is a honest verifier zero-knowl-
edge proof of knowledge.

Now, we discuss that the proposed system satisfies the requirements in Sec-
tion 2. For the simplicity, only the case of the attribute type A is shown.

Correctness: Owing to the soundness of SPKs Ṽ1, Ṽ2 and Ṽ3, and the protec-
tion of the replay attack that is brought by the use of the random message
m, it is assured that the user knows the attribute certificate (x, v) such that
the ciphertext (C̃1A, C̃2A) is encrypted from zA = gx

e1

A . Owing to the un-
forgeability of (x, v) and the soundness of SPKs V1, V2 and V3, it is assured
that the user, in advance, registered zA, which is published with the genuine
attribute value a. Therefore, the user can offer only the ciphertext of zA
correspondent with a.
The remain is to show that, in the generating protocol, the ciphertext
(C̃1A, C̃2A) is revealed as only the genuine attribute value a. After the list
of the ciphertexts is shuffled, let (Ĉ1A, Ĉ2A) be the permuted ciphertext of
(C̃1A, C̃2A). Then, since both ciphertexts can be decrypted into the same
plaintext, the following is satisfied.

Ĉ1A/Ĉ
xT

2A = C̃1A/C̃
xT

2A .

In Step 4-(a) of the protocol, all users’ zA with the attribute value a, which
are denoted zj , are transformed into ztπ−1(j) for trustees’ random permutation
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π and random factor t, and (Ĉ1A, Ĉ2A) is also transformed into (Ċ1A =
Ĉt

1A, Ċ2A = Ĉt
2A). Then, the decrypted value ż satisfies the following:

ż = Ċ1A/Ċ
xT

2A

= Ĉt
1A/(Ĉt

2A)xT

= (Ĉ1A/Ĉ
xT

2A )t

= (C̃1A/C̃
xT

2A )t

= ztA.

Since the value ztA should be in the list Pa of ztπ−1(j), the ciphertext

(Ĉ1A, Ĉ2A) is made correspondent with the genuine value a. Thus, the orig-
inal ciphertext (C̃1A, C̃2A) is revealed as only the genuine attribute value a.
Therefore, the correctness of the statistical result is assured.

Anonymity: In the proposed protocols, since the SPKs and PKs release no
information on secrets, they are ignored in the following discussion. Similarly,
the blinded message ỹ is ignored. Furthermore, note that the ciphertext of
the ElGamal encryption does not also release the information on secrets, but
it should be only discussed that the ciphertext itself appears in both offering
and generating protocols.
The first discussion is to trace the owner’s identity from the transcript of
the offering protocol. This is possible if the transcript is linked to each at-
tribute index z of which AA knows the owner. In the generating protocol,
the transcript is not directly linked to z, but zt for a random factor t. In
addition, the correspondence of zt with z is concealed through the permuta-
tion and randomization, which is shown in Lemma 1. Therefore, the tracing
is infeasible.
The second is to link between the transcripts w.r.t. the sameness of the
owner. This is possible if the attribute indices z and z′ of the transcripts are
linkable. However, the transcripts are only linked to zt and z′t

′
for different

random factors t and t′. And, given zt and z′t
′
, it is infeasible to determine

the sameness of z and z′ since it is infeasible to determine the sameness of
the discrete logarithms. Thus, the link between the transcripts is infeasible.
The final is to link from the transcript to the attribute value. In the gener-
ating protocol, though it is proved that the transcript is correspondent with
something of the attribute values, the corresponding value itself is unknown
owing the shuffle protocol in Step 3 of the generating protocol. Furthermore,
as stated above, it is infeasible to link the transcript to the attribute index.
Therefore, this link is also infeasible.

7 Conclusion

In this paper, a statistical survey system of attributes is proposed, where both
correctness and anonymity are satisfied. Though the complexity of users’ offering
their attributes is comparable to the practical group signature [2], the complexity
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of the trustees’ proving the correctness is proportional to the number of all users.
This implies the inefficiency when many users join the system in order to obtain
the attributes of many users. Thus, our future work is to propose the system
overcoming the inefficiency.
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Appendix: Sketch of Proof of Lemma 2

In this appendix, the sketch of the proof of Lemma 2 is shown.

Lemma 2. SHUFFLE-SAME-RAND-PROOF is a honest verifier zero-knowl-
edge proof of knowledge.

Sketch of proof. The completeness holds as follows. In the case of c = 0, it is
clear that the verification equations are satisfied if trustees compute the correct
values. In the case of c = 1,

z̃�,j = zsλ(j),

for λ = λ1 · · ·λ� and s =
∏�

i=1 si (mod n). On the other hand, from żj = ztπ(j),

ϕ = π−1
� · · ·π−1

1 λ1 · · ·λ� = π−1λ and w =
∏�

i=1 si/ti = (
∏�

i=1 si)/(
∏�

i=1 ti) =
s/t (mod n),

żwϕ(j) = (ztπϕ(j))
w

= (ztππ−1λ(j))
s/t

= zsλ(j).
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Thus,

z̃�,j = żwϕ(j).

Similarly, other verification equations of c = 1 are satisfied if the trustees com-
pute the correct values.

Next, the soundness is proved as follows. Assume that the trustees correctly
answer both c = 0 and c = 1 cases for the same λ, λ′ and (z̃�,1, . . . , z̃�,N),
(z̃′�,1, . . . , z̃′�,N ′), Ẽ� and F̃�. Then, by using ϕ and λ, one can extract π as
λϕ−1 = λ(π−1λ)−1 = π. Similarly, π′ is extracted. Furthermore, by using s and
w, one can extract t as s/w = s/(s/t) = t (mod n). Though it is complex
to extract the knowledge of the individual trustee, it can be extracted by the
similar way to [3].

Finally, to prove the zero-knowledge, 9 simulators S1, . . . , S� are constructed
as well as [3]. First, the simulators cooperatively choose c ∈R {0, 1}. If c = 0, they
honestly conduct the protocol. They can accomplish it, since the knowledge is
not needed in this case. If c = 1, each simulator Si chooses fake permutations λ̃i
and λ̃′i and a fake factor s̃i ∈R Z∗n. Then, the simulators except the last simulator
S� honestly obey the protocol. In Step 1, the last simulator S� computes

z̃�,j = żs̃	

λ̃	(j)
for all 1 ≤ j ≤ N,

z̃′�,j′ = ż′
s̃	

λ̃′
	(j′) for all 1 ≤ j′ ≤ N ′,

Ẽ� = Ċ s̃	

1,k, and

F̃� = Ċ s̃	

2,k,

and sends them to D and all simulators. In Step 3, S� sends D and all simulators
ϕ = λ̃�, ϕ

′ = λ̃′� and w = s̃�, which satisfy the verification equations of Step 4.
The views of the simulators and trustees (in the real protocol) are indistinguish-
able except the 9-th party in the case of c = 1, since they honestly obey the
protocol. Consider T� and S� in the case of c = 1. In Step 1, z̃�,j of T� is the
form gRA for a random factor R ∈R Z∗n, since the original zj is the form and it
is raised to the power si ∈R Z∗n. On the other hand, from the same reason, żj
is also the form, and so is z̃�,j of S�. Thus, the distributions of z̃�,j of T� and
S� are the same. It similarly holds for the other values in Step 1. In Step 3, the
values w of T� and S� distribute uniformly on Z∗n and so do the permutations
ϕ, ϕ′. Therefore, the views of them are also indistinguishable.
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Abstract. It is expected that mobile agent will be widely used for elec-
tronic commerce as an important key technology. If a mobile agent can
sign a message in a remote server on behalf of a customer without ex-
posing his/her private key, it can be used not only to search for special
products or services, but also to make a contract with a remote server. To
construct mobile agents, [KBC00] used an RSA-based undetachable sig-
nature scheme, but it does not provide server’s non-repudiation because
the undetachable signature does not contain server’s signature.

Mobile agent is a very good application example of proxy signature,
and the undetachable signature can be considered as an example of
proxy signature. In this paper we show that secure mobile agent can be
constructed using strong non-designated proxy signature [LKK01] which
represents both the original signer’s (customer) and the proxy signer’s
(remote server) signatures. We provide RSA-based and Schnorr-based
constructions of secure mobile agent, and moreover we show that the
Schnorr-based scheme can be used very efficiently in multi-proxy mobile
agent situation.

Keywords. Secure mobile agent, strong non-designated proxy signature,
multi-proxy signature.

1 Introduction

1.1 Mobile Agent

Mobile agents [FGS96, KKC99, LM99] are autonomous software entities that are
able to migrate across different execution environments through network. The
characteristics of mobile agents, mobility and autonomy, make them ideal for
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electronic commerce applications because permanent connections between cus-
tomers and servers are unnecessary and low-bandwidth connections and asyn-
chronous communications are possible. Furthermore, they provide better support
for heterogeneous environments. Mobile agents can be used for electronic com-
merce in many ways; search and buy special products or services on behalf of a
customer, negotiate something with other entities, and sell products on behalf
of a shopping mall server.

We consider a scenario that a mobile agent is ordered to search the price
of a flight ticket and book it on behalf of a customer. If the mobile agent finds
a proper bid presented by a server, the mobile agent will book it by digitally
signing the server’s bid and the customer’s requirement with both customer’s
and server’s keys. To make it possible, the mobile agent must carry in any form
the customer’s private key and compute with it.

However, mobile agents are vulnerable to several attacks, particularly by
malicious hosts. Fundamental problems of executing mobile code in a remote
host can be listed as follows [ST97]:

1. Code and execution integrity: Can a mobile agent protect itself against tam-
pering by a malicious server?

2. Code privacy: Can a mobile agent conceal the program it wants to have
executed?

3. Computing with secrets in public: Can a mobile agent remotely sign a doc-
ument without disclosing user’s private key?

There have been extensive researches to solve these problems. A reasonable
and practical approach is to provide software-based mechanism to prevent any
kind of vulnerability actively. Implementing any kind of secure function in mobile
agent is difficult because all the code and data of mobile agent are exposed
to remote server. One of the best ways to conceal customer’s private key and
keep the integrity of mobile code is to use cryptographic hard problems such
as integer factorization problem or discrete logarithm problem. Undetachable
signature scheme is an example.

1.2 Undetachable Signature Scheme

[ST97] introduced the concept of Computing with Encrypted Function (CEF)
which tried to conceal the signature function by composing it with encryption
function. [KBC00] implemented CEF using an RSA-based undetachable signa-
ture scheme. The customer signs his requirement information using RSA signa-
ture and builds up an encrypted signature function, and then gives it to mobile
agent. Then the server can generate customer’s signature on the bid information
on behalf of the customer. Customer’s private key is hidden in the encrypted
signature function and its secrecy is based on the RSA assumption.

Although the undetachable signature scheme of [KBC00] hides customer’s
private key successfully, it does not provide the fairness of contract. The basic
requirement of fair contract is non-repudiations of both parties. The undetach-
able signature represents only customer’s signature and it can be computed by
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any party, so the server can repudiate his signature generation later. After the
booking process of the flight ticket is finished with customer’s payment, the
server can repudiate his signature generation and refuse to deliver the flight
ticket.

A simple solution for this problem is that the server signs his final messages
before giving them to the mobile agent, but this is not a neat solution. In Section
4, we propose an efficient strong proxy signature scheme which represents both
the customer’s and the server’s signatures providing the fairness of contract.

The basic concept of undetachable signature scheme is very similar to the
delegation of customer’s signing capability to unspecified proxy signers. Hereafter
we review proxy signature schemes briefly.

1.3 Proxy Signature

Proxy signature is a signature scheme that an original signer delegates his/her
signing capability to a proxy signer, and then the proxy signer creates a signature
on behalf of the original signer. When a receiver verifies a proxy signature, he
verifies the signature itself and original signer’s delegation together. The basic
methodology of proxy signature is that the original signer creates a signature
on delegation information (ID of the proxy signer, or any warrant information)
and gives it secretly to the proxy signer, and then the proxy signer uses it to
generate a proxy key pair. Because the proxy key pair is generated using origi-
nal signer’s signature on delegation information, any verifier can check original
signer’s agreement from a proxy signature.

[MUO96] firstly introduced the concept of proxy signature. They classified
proxy signatures based on delegation type as full delegation (giving the origi-
nal signer’s private key itself), partial delegation (issuing a new key pair), and
delegation by warrant (issuing a certificate stating the delegation information).
Partial delegation is further classified as proxy-unprotected and proxy-protected
according to protection of proxy signer. They provided various constructions of
proxy signature schemes and their security analysis. [KPW97] extended them
by using Schnorr signature and including warrant information in partial delega-
tion schemes (partial delegation with warrant). [LKK01] provided several attacks
against previous proxy signature schemes and introduced the concept of strong
proxy signatures which represent both original signer’s and proxy signer’s signa-
tures. They also introduced the concept of strong non-designated proxy signature
where the original signer does not specify proxy signers in the delegation stage.
It is useful when proxy signers cannot be determined in the delegation stage.

Mobile agent is one of the best application areas of proxy signature scheme,
because the original signer (customer) has to delegate his/her signing capability
to the mobile agent (and to the server) for it to execute any authentic operation
on behalf of the original signer. [KBLK01] applied proxy signature scheme to
mobile agent and introduced one-time proxy signature to guarantee one-timeness
of signature generation. [OSM01] considered multi-proxy situation where plural
customers delegate their signing capabilities to a mobile agent and proposed
an efficient mobile agent scheme. Multi-proxy signature is also considered in
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[YBX00]. But [OSM01] and [YBX00] have used weak version of proxy signature,
so they cannot provide non-repudiation of the server.

1.4 Our Contribution

To provide strong undeniability, i.e., non-repudiation of the server, we construct
Secure Mobile Agent (SMA) using the Strong Non-designated Proxy Signature
(SNPS) [LKK01]. We provide two implementation examples of SMA. Firstly,
we construct RSA-based SMA which is an extension of [KBC00] and show that
it satisfies all the requirements of SNPS. Secondly, we construct Schnorr-based
SMA using [LKK01, KBLK01] and show that it also satisfies all the requirements
of SNPS. Moreover, we show that the Schnorr-based SNPS can be used very
efficiently in multi-proxy situation providing efficiency in communication and
computation.

In Section 2, we describe SNPS briefly with its security requirements. In Sec-
tions 3 and 4, we construct Schnorr-based SMA and RSA-based SMA, respec-
tively. In Section 5, we describe multi-proxy SMA using multi-proxy signature.
Finally, we conclude in Section 6.

2 Strong Non-designated Proxy Signature

[LKK01] has shown several attacks against previous proxy signature schemes
[MUO96, PH97, KPW97]. There are possibilities of proxy signer’s repudiation
or misuse of the proxy key pair. They classified proxy signatures as strong and
weak ones. Strong proxy signatures represent both original signer’s and proxy
signer’s signatures, while weak ones represent only original signer’s signature.
In real situation, assuming the trustedness of original signer or proxy signer is
difficult, specially in distributed environment as mobile agent. So weak versions
of proxy signature cannot be used. If the proxy signature scheme is strong, it
can be used without designating the proxy signer in delegation stage. We define
the Strong Non-designated Proxy Signature (SNPS) as follows.

Definition 1 (Strong Non-designated Proxy Signature). Let A be an
original signer who has authentic key pair (skA, pkA) and B be a proxy signer
who has authentic key pair (skB, pkB). Let mw be A’s warrant information for
the delegation which does not specify a proxy signer. Let σA = S(skA,mw) be A’s
signature on warrant mw using her private key skA. Then SNPS is constructed
as the following three algorithms (PKG,PS,PV).

– PKG is a proxy key issuing algorithm that takes original signer’s signa-
ture σA and proxy signer’s private key skB and outputs a proxy key pair
(skP , pkP ). It is executed by the proxy signer.

(skP , pkP )← PKG(σA, skB).
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– PS is a proxy signing algorithm that takes proxy private key skP and message
m and outputs proxy signature σP . It is executed by the proxy signer.

σP ← PS(skP ,m).

– PV is a proxy verification algorithm that takes (σP ,m,mw, pkA, pkB) and
outputs either accept or reject. It is executed by any verifier.

PV(σP ,m,mw, pkA, pkB) ?= accept or reject.

SNPS should satisfy the following security requirements [LKK01].

R1. Verifiability: From a proxy signature a verifier can be convinced of the orig-
inal signer’s agreement on the signed message.

R2. Strong unforgeability: A proxy signer can create a valid proxy signature for
the original signer. But the original signer and any third party cannot create
a valid proxy signature with the name of proxy signer.

R3. Strong identifiability: Anyone can determine the identity of the corresponding
proxy signer from a proxy signature.

R4. Strong undeniability: Once a proxy signer creates a valid proxy signature on
behalf of an original signer, the proxy signer cannot repudiate his signature
creation against anyone.

R5. Prevention of misuse: It should be confident that proxy key pair cannot be
used for other purposes. In the case of misuse, the responsibility of proxy
signer should be determined explicitly.

A proxy signature represents both the original signer’s signature (by R1) and
the proxy signer’s signature (by R2, R3, and R4). Requirement R5 guarantees
that the proxy key pair cannot be used for other purposes.

In mobile agent environment, the customer (original signer) cannot deter-
mine a proper server (proxy signer) in the delegation stage who will suggest a
conforming bid. In this case mobile agent has the role of transferring customer’s
delegation information to possible proxy signers. To provide fairness of contract,
proxy signature scheme should contain proxy signer’s signature together with
original signer’s agreement. Therefore, SNPS is a perfect solution to construct
SMA.

Because SNPS represents both the original signer’s and the proxy signer’s
signatures, it can be considered as an efficient integration scheme of two related
signatures. As stated in [MUO96] and [KPW97], partially delegated proxy signa-
ture is more efficient than that of delegation by warrant which is represented by
two signatures. We will discuss the efficiency issue of proxy signatures in more
detail in Section 5.

3 Schnorr-Based SMA

We apply the SNPS of [LKK01] to mobile agent situation. Firstly we review
Schnorr signature briefly. Let p and q be large primes with q|p − 1. Let g be a
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generator of a multiplicative subgroup of Z∗p with order q. h() denotes a collision
resistant cryptographic hash function. Assume that a signer A has a private key
xA and the corresponding public key yA = gxA . To sign a message m, A chooses
a random number k ∈R Z∗q and computes r = gk, s = xAh(m, r) + k. Then
the tuple (m, r, s) becomes a valid signed message. The validity of signature is
verified by gs ?= y

h(m,r)
A r. Note that the verification of signature requires two

modular exponentiations.
Let A be a customer who has an authentic key pair (xA, yA) and B be a

server who has also an authentic key pair (xB, yB). Let IDA and IDB denote
the identities of A and B, respectively. Let reqA be A’s requirement for a pur-
chase (any necessary information such as price range, date, delivery requirement,
etc) and bidB be B’s bid information which conforms to reqA.

Preparing the agent (by the customer A):
A chooses a random number kA ∈R Z∗q and computes rA = gkA , sA =

xAh(reqA, rA) + kA. The tuple (reqA, rA, sA) is A’s Schnorr signature on reqA.
A gives (reqA, rA, sA) to the mobile agent. Note that A does not specify any
server in this stage. Mobile agent will migrate to servers through the network.

Executing the agent (by the server B):
B gets the mobile agent and tries to sell the product to A.

– B verifies the validity of the mobile agent by checking gsA
?= y

h(reqA,rA)
A rA.

– B generates a secure proxy key pair as

xP = sA + xB , yP ≡ gxP = y
h(reqA,rA)
A rAyB.

– B generates a bid information bidB which conforms to reqA. He signs m =
(IDA, reqA, IDB, bidB, rA) with the proxy private key xP to generate σP =
S(xP ,m) using the Schnorr signature scheme S(). He gives the following
messages to the agent.

(IDA, reqA, IDB, bidB, rA, σP ).

The mobile agent will get back to A with these messages as a receipt for her
purchase.

Verifying the signature (by anyone):
When A receives (IDA, reqA, IDB, bidB, rA, σP ) from the mobile agent, she

can verify the validity of her purchase as follows:

1) Verify the signature by V (yP ,m, σP ) ?= true where yP = y
h(reqA,rA)
A rAyB

and m = (IDA, reqA, IDB, bidB, rA).

2) Verify the conformance of bid: bidB

?∈ {reqA}.
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If the signature verification holds, it represents both the validity of signature
itself and the authenticity of customer’s delegation.

We show that the proposed Schnorr-based SMA satisfies all the security
requirements of SNPS.

Theorem 1. The proposed Schnorr-based SNPS is as secure as the Schnorr
signature scheme.

Proof. We consider two attack scenarios; the first case is that A tries to forge
a SNPS with the name of B without B’s agreement, and the second case is
that B tries to forge a SNPS without A’s delegation. Let σP = (r, s) be a valid
Schnorr-based SNPS for the message m = (IDA, reqA, IDB, bidB, rA) generated
by using the proxy private key xP where r = gk for a random number k ∈R Z

∗
q

and s = xPh(m, r) + k. Note that xP is not known to A and B in both attack
scenarios.

1. Forgery by A: Assume that there is a SNPS breaker (oracle) which takes
(m, k) and A’s delegation as input and outputs a valid proxy signature (σP , rA)
which satisfies the verification equation. An attacker A chooses a random number
k and computes r = gk. She gives (m, k) and her delegation s′ = xAh(reqA, rA)+
kA to the SNPS breaker, then it will output a valid SNPS (σP , rA) which satisfies
the verification equation gs = (yh(reqA,rA)

A rAyB)h(m,r)r. Because of the group
property of discrete logarithm problem,

s = (xAh(reqA, rA) + kA + xB)h(m, r) + k
= (s′ + xB)h(m, r) + k

should hold. Then A can compute

xBh(m, r) + k = s− s′h(m, r)

which is B’s Schnorr signature on the message m. Using the SNPS breaker, A
can forge B’s Schnorr signature without knowing xB .

2. Forgery by B: Assume that there is a SNPS breaker which takes
(m, reqA, k) as input and outputs a valid proxy signature (σP , rA) which sat-
isfies the verification equation. An attacker B chooses a random number k
and computes r = gk. He gives (m, reqA, k) to the SNPS breaker, then it will
output a valid SNPS (σP , rA) which satisfies the verification equation gs =
(yh(reqA,rA)

A rAyB)h(m,r)r. Because of the group property of discrete logarithm
problem,

s = (xAh(reqA, rA) + kA + xB)h(m, r) + k

should hold. Then B can compute

xAh(reqA, rA) + kA = (s− k)/h(m, r)− xB

which is A’s Schnorr signature on reqA. Using the SNPS breaker, B can forge
A’s Schnorr signature without knowing xA.

Therefore the proposed Schnorr-based SNPS is as secure as the Schnorr sig-
nature scheme. �
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From Theorem 1, the proposed Schnorr-based SMA satisfies all the security
requirements of SNPS.

(i) Verifiability: A’s agreement on reqA is included in yP . If the proxy signature
is verified to be valid, A’s agreement is also verified explicitly.

(ii) Strong unforgeability: Anyone except the proxy signer B cannot generate a
valid proxy key pair under the name of B because it contains proxy signer’s
private key xB. Only the legitimate proxy signer can create a valid proxy
signature.

(iii) Strong identifiability: Identity information of the proxy signer B is included
explicitly in a valid proxy signature as a form of public key yB. So anyone
can determine the identity of the corresponding proxy signer.

(iv) Strong undeniability: Once the proxy signer B creates a valid proxy sig-
nature, he cannot repudiate it because the proxy key pair can be computed
only by himself.

(v) Prevention of misuse: If the proxy signer B uses the proxy key pair for
other purposes that are not specified in reqA, it is his responsibility because
he is the only person who can generate it.

4 RSA-Based SMA

In this Section, we propose an RSA-based SNPS scheme and apply it to construct
SMA. It is an extension of [KBC00] scheme to include proxy signer’s signature.

To generate RSA keys, each participant selects a modulus n which is the
product of two large primes p, q and a number e, such that 1 < e < ϕ(n) =
(p − 1)(q − 1) and gcd(e, ϕ(n)) = 1. Let d be such that de = 1 mod ϕ(n). Let
h() denote collision resistant cryptographic hash function.

Let A be a customer who has an authentic RSA key (nA, eA, dA) and B be a
server who has an authentic RSA key (nB, eB, dB). Let IDA and IDB denote the
identities of A and B, respectively. Let reqA be A’s requirement for a purchase
(any necessary information such as price range, date, delivery requirement, etc)
and bidB be B’s bid information which conforms to reqA.

Preparing the agent (by the customer A):
A computes k = h(IDA, reqA)dA mod nA which is her RSA signature on

(IDA, reqA). She gives (IDA, reqA, k) to the mobile agent. Note that A does
not specify any server (proxy signer) in this stage. Mobile agent will migrate to
servers through the network.

Executing the agent (by the server B):
B gets the mobile agent and tries to sell the product to A.

– B verifies the validity of the mobile agent by checking

keA mod nA
?= h(IDA, reqA).



482 Byoungcheon Lee, Heesun Kim, and Kwangjo Kim

– B generates a bid information bidB which conforms to reqA and computes

x = h(IDA, reqA, IDB, bidB)dB mod nB

which is B’s RSA signature on (IDA, reqA, IDB, bidB).
– B computes y = h(IDA, reqA)x mod nA and z = kx mod nA. He gives

following messages to the mobile agent.

(IDA, reqA, IDB, bidB, x, y, z).

The mobile agent will get back to A with these messages as a receipt for her
purchase.

Verifying the signature (by anyone):
When A receives (IDA, reqA, IDB, bidB, x, y, z) from the mobile agent, she

can verify the validity of her purchase as follows:

1) Verify B’s signature: xeB mod nB
?= h(IDA, reqA, IDB, bidB).

2) Verify the validity of y: y ?= h(IDA, reqA)x mod nA.
3) Verify A’s signature: zeA mod nA

?= y.

4) Verify the conformance of bid: bidB

?∈ {reqA}.
The proxy signature is valid only when all the verifications above are passed.

We show that the proposed RSA-based SMA satisfies all the security require-
ments of SNPS.

Theorem 2. The proposed RSA-based SNPS is as secure as the RSA signature
scheme.

Proof. We consider two attack scenarios; the first case is that A tries to forge
a SNPS with the name of B without B’s agreement, and the second case is
that B tries to forge a SNPS without A’s delegation. Obviously the first at-
tack cannot happen because a valid SNPS contains x which is B’s signature for
(IDA, reqA, IDB, bidB). Consider the second attack scenario where B tries to
forge a SNPS without k.

Assume that there is a SNPS breaker (oracle) which takes (IDA, reqA, IDB,
bidB, x) as input and outputs (y, z) which satisfy the verification equations. B
prepares a warrant reqA and a conforming bid bidB and generates his signature
x = h(IDA, reqA, IDB, bidB)dB mod nB. He gives (IDA, reqA, IDB, bidB, x) to
the SNPS breaker, then it will provide a valid (y, z). y = h(IDA, reqA)x mod nA

can be verified from the known values (IDA, reqA, x). To satisfy the third veri-
fication equation, the following equation should hold.

z = ydA mod nA = h(IDA, reqA)xdA mod nA.

Then B can compute

z1/x mod nA = h(IDA, reqA)dA mod nA = k
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which is A’s RSA signature on message (IDA, reqA). Using the SNPS breaker,
B can forge A’s RSA signature without knowing dA. Therefore the proposed
RSA-based SNPS is as secure as the RSA signature scheme. �

From Theorem 2, the proposed RSA-based SMA satisfies all the security
requirements of SNPS.

(i) Verifiability: Original signer’s agreement on the purchase can be verified by
the third verification equation.

(ii) Strong unforgeability: Only the proxy signer B can generate a valid signature
x satisfying the first verification equation.

(iii) Strong identifiability: Anyone can determine the identity of the correspond-
ing proxy signer by the first verification equation.

(iv) Strong undeniability: Once B creates a valid proxy signature which passes
all the verification equations, he cannot repudiate it later against anyone
because a valid proxy signature can be generated only by himself.

(v) Prevention of misuse: k is A’s signature on (IDA, reqA) and it cannot be
used for other purposes which are not stated in reqA. The proxy signature
scheme is executed using B’s signature x, so any possible misuse of k is B’s
responsibility.

5 Multi-proxy Mobile Agent

In this Section, we propose an efficient mobile agent scheme when plural cus-
tomers delegate their signing capabilities to a mobile agent. For example, we
consider a situation that a mobile agent is ordered to book flight tickets for
plural customers. Using the Schnorr-based SMA scheme where plural customers
share the common system parameters p, q, and g, we can build an efficient mobile
agent.

[OSM01] considered a similar application, but their scheme is based on the
proxy signature of [MUO96] and customer’s requirements are not used. So cus-
tomers delegate their full signing capabilities to unspecified proxy signers and a
server can sign any message on behalf of customers. [YBX00] also proposed proxy
multi-signature scheme based on [MUO96]. We apply the strong non-designated
proxy signature [LKK01] to multi-proxy mobile agent.

5.1 Multi-proxy Mobile Agent Scheme

Let Ai (i = 1, ..., n) denote plural customers who have certified key pairs (xi, yi)
and requirements reqi. They try to delegate their signing capabilities to unspec-
ified servers through the mobile agent. Let B be a server who has certified key
pair (xB , yB) and is willing to sell flight tickets to customers. He has to create a
proxy signature on behalf of {A1, ..., An} under requirements {req1, ..., reqn}.
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Preparing the agent (by plural customers Ai):
Plural customers Ai (i = 1, ..., n) choose random numbers ki ∈R Z∗q and

compute ri = gki , si = xih(reqi, ri) + ki. The tuple (reqi, ri, si) is Ai’s Schnorr
signature on reqi. Ai gives (reqi, ri, si) to the mobile agent. Mobile agent will
migrate to servers through the network with this information.

Executing the agent (by the server B):
The server B gets the mobile agent and tries to sell the product to customers

{A1, ..., An}.

– B verifies the validity of the delegation information by checking gsi
?=

y
h(reqi,ri)
i ri for i = 1, ..., n.

– If this tests have passed, B generates a secure proxy key pair as

xP = s1 + · · ·+ sn + xB, yP = gxP .

– B generates his bid bidB which conforms to all reqi (i = 1, ...n). He signs
on m = (req1, · · · , reqn, bidB) with the proxy private key xP to generate
σP = S(xP ,m) using the Schnorr signature scheme S(). The tuple

(bidB, σP , req1, r1, y1, ..., reqn, rn, yn, yB)

is a valid proxy signature and represents valid flight tickets for {A1, ..., An}.

Verifying the signature (by anyone):
When plural customers receives the tuple from the mobile agent, they can

verify the validity of their tickets as follows:

1) Verify the signature by V (yP ,m, σP ) ?= true where

yP = y
h(req1,r1)
1 r1 · · · yh(reqn,rn)

n rnyB, m = (req1, · · · , reqn, bidB).

2) Check whether bidB confirms to {req1, · · · , reqn}.

5.2 Comparison with Multiple Signatures

As stated in [MUO96], proxy signature schemes of partial delegation are more
efficient than those of delegation by warrant. Consider a traditional approach
of multiple independent signatures that plural customers Ai publish their signa-
tures (reqi, ri, si) and the server B just signs on bidB with his certified key pair
(xB , yB). The proposed multi-proxy signature scheme is more efficient than the
traditional approach of multiple independent signatures in the following sense.

– A valid signature can be created by the proxy signer himself without any
interaction with original signers, while traditional scheme requires n com-
munications with original signers.
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– Message size is reduced by n|q| because (s1, ..., sn) are not necessary in pro-
posed scheme.

– Verification of signature is more efficient because proposed scheme requires
only n+2 exponentiations (one signature verification and n exponentiations)
while traditional scheme requires 2(n+ 1) exponentiation for n+ 1 signature
verifications. Moreover, simultaneous multiple exponentiation with distinct
bases can be computed very efficiently [MOV97].

Proposed scheme can be used in a very flexible way because the server can
choose different combinations of delegations by himself among n delegations
depending on the property of his bid. If he has only l < n flight tickets to sell,
he can sell them only to l customers of his choice.

6 Conclusion

We have pointed out the necessity of using SNPS to construct SMA. To provide
the fairness of a purchase, the proxy signature should represent both customer’s
and server’s signatures. The validity of bid information is verified by comparing
it with customer’s requirement. From the observation that the features of unde-
tachable signatures are very similar to those of proxy signatures, we extended
[KBC00] to provide an RSA-based SNPS scheme and applied it to mobile agent.
Very similarly, we provided a Schnorr-based SMA scheme. In multi-proxy situ-
ation, Schnorr-based SNPS can be used in very efficient manner because plural
customers can share the same system parameters.

Proxy signatures are very useful tools when one needs to delegate his/her
signing capability to other party. But in distributed environment like the Inter-
net, it is very difficult to assume the trustedness of original signer, proxy signer,
and the proxy key issuing protocol between them. Because the delegation of sign-
ing capability to others can be risky, proxy signature schemes should be designed
carefully such that proxy signer’s responsibility is determined explicitly and any
possibility of misuse is prevented. But if we can delegate signing capabilities
safely using strong proxy signature schemes, many cryptographic applications in
distributed environment such as electronic commerce and mobile agent can be
implemented in more efficient and flexible way.
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Abstract. We investigate password authenticated key exchange (PAKE)
protocols in low resource environments, such as smartcards or mobile de-
vices. In such environments, particularly in the future, it may be that
the cryptosystems available for signatures and/or encryptions will be
based on elliptic curves, because of their well-known advantages with
regard to processing and size constraints. As a result, any PAKE pro-
tocols which the device requires should also preferably be implemented
over elliptic curves. We show that the direct elliptic curve (EC) analogs
of some PAKE protocols are insecure against partition attacks. We go
on to propose a new EC based PAKE protocol. A modified version of
the protocol for highly constrained devices, such as smartcards, is also
presented.

1 Introduction

A protocol that allows two parties to agree on a shared secret key is commonly
known as a key exchange protocol. The protocol is said to be authenticated if the
protocol authenticates one party to the other during the protocol run. Further,
if the means of authentication is by a simple password known by both entities,
the authenticated key exchange protocol is said to be password-based.

Recently, password authenticated key exchange (PAKE) has received signif-
icant interest from the research community. One of the reasons for this is that
PAKE protocols can be used to establish an authenticated and secret channel
between two parties without relying on the existence of a Public Key Infras-
tructure (PKI), and provides security against both active and off-line dictionary
attacks. This is certainly appealing in many environments where the deployment
of a PKI is not possible or would be overly complex.

The first PAKE protocol, known as Encrypted Key Exchange (EKE), was
suggested by Bellovin and Merritt [3]. Subsequently many other PAKE protocols
have been proposed. Nonetheless, most of the protocols have been proposed for
only RSA or Discrete Logarithm (DL) settings so far. It seems that most authors
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have presumed that the adaptation of DL based protocols to the elliptic curve
(EC) environment is straightforward. To the best of our knowledge, no concrete
EC based PAKE protocol has been proposed in the literature.

In a low resource environment, the natural choice for cryptographic protocols
would be an EC implementation. This is due to the low computation and storage
costs of EC based protocols. Since EC primitives may be the only ones available
in certain environments, it is important to study the precise adaptation of DL-
based PAKE protocols to an EC setting.

In this paper, we investigate EC analogs of PAKE protocols. We show that
direct EC analogs of the EKE protocol and its variants are susceptible to parti-
tion attacks. We then go on to propose an EC encrypted key exchange protocol
that is secure against partition attacks. We further propose a modification of
the protocol for low resource (e.g. smartcard) applications. Here we stress that
the EC analogs of other PAKE protocols such as SPEKE[5] or PAK[4] do not
immediately appear to suffer from the partition attack described in this paper.

The remainder of this paper is organized as follows. Section 2 gives an intro-
duction to PAKE. This includes a discussion on the possible attacks against a
PAKE protocol. Section 3 gives a detailed description of the EKE protocol. A
discussion on how a partition attack can be applied to the protocol is also given
in this section. Section 4 reviews the concept of elliptic curves and twisted ellip-
tic curves, establishing some notation and elementary results for the subsequent
sections. Section 5 proposes a new elliptic curve encrypted key exchange proto-
col. In the section, we also justify our solution by showing that trivial solutions
are insecure against partition attacks. A modification of the proposed protocol
for smartcard applications is also included in the section. This has a DL analog,
which is briefly described and discussed. Finally, conclusions are presented in
Section 6.

2 Password Authenticated Key Exchange

In its simplest form, a PAKE protocol involves two parties both possessing the
same secret, referred to as the password. This password is typically short, since
it usually has to be memorised by a human participant. The PAKE protocol
allows the involved parties to exchange information from which each party can
derive a secret key. This secret key satisfies all requirements of a conventional
Diffie-Hellman key exchange protocol. In particular, this shared secret key is not
known to any parties not involved in the exchange protocol. Furthermore, the
nature of password authentication ensures that a party can follow the protocol
correctly (and thus be accepted by the other party) only if the party knows the
correct password. During the protocol, a party can always detect whether the
other party in the exchange possesses the correct password.

The first PAKE protocol was the EKE protocol proposed by Bellovin and
Merritt [3]. The idea of their proposal is to use the password to symmetrically
encrypt the protocol messages of a standard Diffie-Hellman key exchange. An
attacker could decrypt the symmetric encryption by guessing the password but
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could not tell whether the decryption results in a valid message. However, Patel
subsequently showed [6, 7] that EKE protocols are susceptible to a partition at-
tack (see below for further details). The solution to prevent the partition attack,
is to carefully choose the system parameters so that the attack is no longer appli-
cable. Fortunately, such restrictions on the system parameters do not introduce
any performance penalty or security issues.

Another well-known PAKE protocol is Simple Password-authenticated Ex-
ponential Key Exchange (SPEKE) proposed by Jablon [5]. The idea of the pro-
tocol is to involve the password in computing the base used in conventional
Diffie-Hellman key exchange. The protocol also introduces two extra steps for
authenticating the generated secret key for each party respectively.

Recently two new PAKE protocols with provable security have been pro-
posed. Bellare et al. [1] have given a specific variant of EKE which is provably
secure in the ideal cipher model. The protocol of Boyko et al. [4] is also a variant
of EKE in which the symmetric encryption takes the form of multiplication in
the Diffie-Hellman group; it is provably secure in the random oracle model.

The security of a standard key exchange protocol may be measured against
both passive attacks in which the adversary wiretaps valid instances of the key
exchange protocol, and against active attacks in which the adversary may also
masquerade as a valid protocol principal. Attacks may be aimed at obtaining
information about the generated secret or about the long-term keying material.

The classical Diffie-Hellman key exchange and its EC analog are known to
be secure against passive attacks. However, it is clearly insecure against an im-
personation attack, because of the lack of an authentication mechanism being
deployed. To prevent such attacks long-term keys are required, which in a PAKE
protocol takes the form of the password. The password allows each party in the
protocol to authenticate the other party and thus prevents an adversary from
impersonating an authorized party in the PAKE protocol run.

However, the low entropy of a typical password opens a new possible attack
against a PAKE protocol. This type of attack is often known as the off-line
dictionary attack. In such an attack, the adversary tries to interact (even if un-
successfully) with an honest party and also gathers information from exchanges
between two honest parties. The adversary then applies a brute-force attack over
the domain of the passwords (i.e. the dictionary) off-line. The attacker is success-
ful if the gathered information can confirm which password in the dictionary is
the valid one. A special class of the dictionary attack is the partition attack. In a
partition attack, the adversary tries to use the gathered information to partition
the password space (the dictionary) into feasible and infeasible passwords; if the
latter set is large then the adversary may simply search through and eliminate
all passwords in this set. Typically the correct password may be recovered after a
number of valid sessions have been observed from the intersection of the feasible
partition of the passwords for each session.
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3 Diffie Hellman Encrypted Key Exchange

In this section, we give an overview of the Diffie-Hellman based encrypted key
exchange (DH-EKE) protocol. This is one of the three variants of EKE pro-
posed by Bellovin and Merritt in [3]. We also provide a brief description of how
a partition attack can be applied against the protocol. Patel [6] gives further
details.

3.1 The DH-EKE Protocol

The DH-EKE protocol involves two parties, Alice - the initiator of the protocol
and Bob. Alice and Bob share a secret password P that is not known to any
other party. There is also a publicly known prime number p and a publicly known
generator g of the field GF(p). Also a symmetric encryption algorithm Enc(), its
corresponding decryption algorithm Dec() and a one-way hash function H() are
publicly known. A variant of the DH-EKE protocol is as follows (see also figure

Alice Bob
rA ∈R GF(p) rB ∈R GF(p)
gA ← grA mod p gB ← grB mod p

EncP (gA)−−−−−−−−−−−−−−−→
gA ← DecP (EncP (gA))

KB ← grB
A mod p

AuthB ←H(KB‖B)
EncP (gB),AuthB←−−−−−−−−−−−−−−−

gB ← DecP (EncP (gB))
KA ← grA

B mod p
AuthA ←H(KA‖A)

AuthB
?
= H(KA‖B)

AuthA−−−−−−−−−−−−−−−→
AuthA

?
= H(KB‖A)

Fig. 1. A variant of the DH-EKE protocol

1):

1. Alice and Bob generate random numbers rA and rB and compute gA =
grA mod p and gB = grB mod p respectively.

2. Alice and Bob encrypt gA and gB using the shared password P to generate
EncP (gA) and EncP (gB) respectively.

3. Alice sends EncP (gA) to Bob.
4. Upon receiving EncP (gA), Bob computes gA = DecP (EncP (gA)). Bob then

computes the key KB = grB

A . Bob then generates the authenticator AuthB =
H(KB‖B) of KB.
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5. Bob sends EncP (gB) and AuthB to Alice.
6. Upon receiving EncP (gB) and AuthB, Alice applies DecP to EncP (gB)

to recover gB. Alice then computes KA = grA

B and verifies that AuthB ≡
H(KA‖B).

7. If the verification passes, Alice accepts AuthB and sends to Bob AuthA =
H(KA‖A).

8. In turn, Bob checks that AuthA ≡ H(KB‖A). If the verification passes, Bob
accepts AuthA.

The protocol is successful if both Alice and Bob accept AuthB and AuthA re-
spectively. The generated key then is K = KA = KB. The completeness is due
to KA = grA

B = grArB = grB

A = KB.
The protocol described here is not the exact description of the original DH-

EKE. It is in fact an instance of the construction described by Bellare and
Rogaway [2]. The difference between this protocol and the original DH-EKE
protocol is the existence of values AuthA and AuthB. These two values are to
authenticate Alice to Bob and Bob to Alice respectively. In the original DH-
EKE, a different authentication mechanism is used. Nonetheless both methods
achieve the same goal.

3.2 Variants of the DH-EKE Protocol

The DH-EKE protocol can be modified in many ways. One type of variant
changes the construction of the authentication part as shown above.

Another modification that can be made to the protocol is to omit the encryp-
tion with the password P by either Bob or Alice (but not both). Then instead
of sending the encryption of gA or gB, Alice or Bob shall send the plaintext gA

or gB to the other party. In this variant, the order of authentication between
Alice and Bob must also be modified. The rule is that the party who does not
perform any encryption in the first part, must initiate the authentication step.
This prevents an active adversary using the authentication field to mount an
off-line dictionary attack. Patel [6] discusses the security of such omissions in
detail.

3.3 A Partition Attack against DH-EKE Family

Patel [7, 6] has shown that the DH-EKE protocol and its variants are susceptible
to a partition attack if the values of g and p are not chosen carefully.

If the value g is not a generator of GF(p) but only a generator of a subgroup of
order q over GF(p), an adversary can mount a partition attack as follows. Firstly
the adversary obtains EncP (gA) by wiretapping an exchange between Alice and
Bob. Next, the adversary tries to decrypt EncP (gA) using a password Pi. If the
password Pi is correct, the decryption will result in a value gA which is of order
q. If Pi is not the correct password, it is likely that the decryption will result in a
value g′A which is not of order q. The probability that the decryption will result
in a value of order r, r|p−1, for a random Pi is φ(r)

p . The attacker can check, by
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raising the result to the power q and checking whether 1 is obtained, whether
the order divides q. It can then be seen that the probability that 1 is obtained,
for an incorrect password, is q

p−1 . Thus the possible space of valid passwords is
reduced by a factor of q

p−1 , on average, by observing one exchange session. Over
a number of sessions the space of valid passwords will be narrowed down to a
single password at a logarithmic rate.

To avoid the attack, it is suggested that g has to be a generator of GF(p) and
that if Alice is allowed to choose p and g for the protocol, Bob must check that
g is indeed a generator.

Similar partition attacks are possible if the value of p is not chosen carefully.
In this case, if trial decryption of EncP (gB) with candidate passwords leads
to values equal to or larger than p, then these candidate passwords may be
eliminated.

4 Elliptic Curves and Twisted Elliptic Curves

In this section, we review the basic notation and definitions of elliptic curves, as
well as the concept of the twist of an elliptic curve. This concept is crucial to
the construction of our new protocol.

The use of elliptic curve groups in public key cryptography was first proposed
by Koblitz [9] and Miller [8]. Recently there has been much focus on such cryp-
tosystems, with adoption in various standards, such as WAP [10], IEEE P1363
[11] and ANSI X9.62 [12]. This is because public key methods based on elliptic
curve groups typically have lower processing requirements, and can achieve the
same level of security with considerably shorter key sizes than cryptosystems
based on the more traditional RSA and standard discrete logarithm schemes. As
such, elliptic curve cryptographic systems are ideal for environments where pro-
cessing power, time and/or network bandwidth are at a premium. Consequently,
there is a drive for the adoption of elliptic curve based protocols in wireless
environments and smartcard based applications.

For the sake of simplicity, we consider the case of a curve in a field of charac-
teristic greater than 3. For the case of characteristic two, analogous statements
hold true [13]. A more general discussion of twists of elliptic curves is given by
Silverman [14].

Following Blake et al [13], we consider a curve defined over the field K =
GF(q), where q = pm and p > 3 is a prime. Consider the curve in short Weier-
strass form, i.e.

Ea,b : Y 2 = X3 + aX + b.

Set g(X) = X3 + aX + b, so that the equation of the curve becomes Y 2 = g(X).
As shown in the literature, we may define an additive (abelian) group on the
set of points on this curve (taken together with the point at infinity). It is this
group, and the discrete logarithm problem defined therein, which may be used
to define cryptographic primitives.

In the following sections, use shall be made of the concept of the twist of an
elliptic curve. Consider then the curve Ea′,b′ where a′ = v2a and b′ = v3b for
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some v ∈ K∗. If we set gv(X) = v3g(X/v), then we have the equation of the
curve Ea′,b′ given by Y 2 = gv(X). However, EA,B is isomorphic to Ea,b over K
if and only if A = u4a and B = u6b for some u ∈ K∗. Hence the curve Ea′,b′ is
isomorphic to Ea,b if v is a quadratic residue. Furthermore, if v is not a quadratic
residue, then there is a unique such curve, up to isomorphism over K. This is
called the twist of Ea,b. [Note that over GF(q2) the original curve and its twist
are isomorphic.]

An observation (see e.g [13]) that will be of use in the subsequent sections is
the following. Consider X ∈ K for which g(X) �= 0. Then if g(X) is a non-zero
quadratic residue, X is the x-coordinate of a point on Ea,b. Otherwise, gv(vX)
is a quadratic residue, and hence vX is the x-coordinate of a point on Ea′,b′ .
The following lemma summarises the relevant properties about the connection
between a curve and its twist.

Lemma 1. Let

C = {X ∈ K|g(X) is a quadratic residue in K}
T = {X ∈ K|gv(vX) is a quadratic residue in K}

Then

1. C ∩ T = ∅. If g(X) �= 0 then X ∈ C ∪ T .
2. X ∈ C ⇐⇒ g(X) �= 0 and ∃Y such that (X, Y ) ∈ Ea,b.
3. X/v ∈ T ⇐⇒ g(X/v) �= 0 and ∃Y such that (X, Y ) ∈ Ea′,b′ .

Note also in the following sections that we will need to represent the points
of the elliptic curve in a compressed form. Denoting the points naively, an affine
point (X, Y ) requires 2n bits, where n is the bit length of the underlying field.
There is a trivial reduction to n+1 bits by observing that, given X , the value of
Y is one of the two solutions of a quadratic equation. A single bit may be used to
distinguish between these two solutions. While this compressed form is clearly
convenient and cost effective (particularly in situations in which transmission
bandwidth is limited) in the following we shall see that it is essential in order to
obviate simple attacks on the protocols described.

In order for the elliptic curve Ea,b to be suitable for use in a cryptosystem,
it is required that [13]:

– the group has a subgroup of large prime order,
– the curve is not anomalous (q = Na,b = p, where Na,b is the group order),
– the curve satisfies the MOV condition [13, 11] (the smallest value of l such

that ql = 1 mod Na,b should be large).

In the protocols we will describe in which both the curve and its twist are used,
these properties are also required of the twist. [The order of the group of the
twisted curve is given by the relation Na,b+Na′,b′ = 2q+2, in the case that Ea′,b′

is the twist of Ea,b. Hence there is little additional effort required in verifying
these properties hold for any generated curve and its twist over and above for
the curve alone.] We shall assume in the following that the elliptic curves we use
satisfy these security constraints.
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5 Elliptic Curve Encrypted Key Exchange

In this section, we present our elliptic curve encrypted key exchange (EC-EKE)
protocol. We further show an unbalanced variant of the protocol. Such a protocol
may be utilized in a situation in which one of the parties has limited processing
power, such as communication between a smartcard or mobile device and a
terminal or server. First, however, we will show that the direct EC analog of
DH-EKE protocol is insecure and thus justify our design.

Throughout this section, we shall use the notation of the preceding section,
and consider a curve Ea,b, together with its twist Ea′,b′ , for suitably chosen a′

and b′. For further simplicity, we restrict to the case q = p, i.e. consider the
curve over GF(p).

5.1 Trivial Protocols Are Insecure against Partition Attacks

Following the usual methodology of replacing the DL group operations with
operations in an EC group, the obvious procedure would be to design the EC-
EKE protocol as the direct EC analog of a variant of the DH-EKE protocol.

The principle of any variant of the DH-EKE protocol is that Alice, say, will
encrypt and send the encryption of gA = grA to Bob. The direct analog in EC is
that Alice will encrypt the point GA = rA∗G and send the encryption EncP (GA)
to Bob.

The trivial encryption method is to encrypt (XA, YA) in EncP (GA), where
GA = (XA, YA). In this case, the adversary can simply apply an off-line dictio-
nary attack for a valid EncP (GA) by decrypting EncP (GA) with every password
Pi in the password space. Clearly, if Pi is incorrect, the decryption should result
in a random pair (Xi, Yi). Even if Xi, Yi ∈ GF(p), the point (Xi, Yi) is on the
elliptic curve Ea,b only if it satisfies

Y 2
i = g(Xi) mod p.

This happens with a probability of order 1/p for a random pair (Xi, Yi) ∈ GF(p)2.
Typically the size of the password space is much less than p. Hence the adversary
should be able to identify the correct password P given a single valid encryption
EncP (GA) using such a dictionary attack.

As discussed in the previous section, an alternative more compact form for
the representation of, GA of the point is its compressed form, in which the
y-coordinate is replaced by a single bit. If the adversary applies a dictionary
attack on the encryption EncP (GA) in this situation, the adversary will be able
to recover the x-coordinate Xi for the password choice Pi and a bit indicating
which solution Yi to choose. If the password Pi is incorrect, Xi will be essentially
random. Observe however that a random Xi is a valid x-coordinate only if g(Xi)
is a quadratic residue. ¿From Hasse’s theorem (see e.g. [13]), we know that the
number of such values Xi in GF(p) is in the range [(p+1)/2−√p, (p+1)/2+

√
p].

Thus a random Xi in GF(p) is a valid x-coordinate of Ea,b with a probability in
the range [1/2−O(1/

√
p), 1/2+O(1/

√
p)]. Hence the adversary can successfully
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apply a partition attack by reducing the possible password space by roughly
half given a valid EncP (GA). This means the password can be recovered given
a number of sessions of the order of the log of the size of the password space.

5.2 An Elliptic Curve Encrypted Key Exchange Secure against
Partition Attacks

In the previous subsection, we have shown that the direct EC analog of any
variant of the DH-EKE protocol is insecure. In this subsection, we propose a
new EC-EKE protocol and show that the protocol is secure against partition
attacks.

In order to avoid the elementary attacks described in the previous subsec-
tion, the simplest approach would be to ensure that any candidate x-coordinate
observed by an adversary is valid. This would then obviate the partition attack.

We recall from Lemma 1 that for X ∈ GF(p) for which g(X) �= 0, then if g(X)
is a non-zero quadratic residue, X is the x-coordinate of a point on the curve.
Otherwise, gv(vX) is a quadratic residue, and hence vX is the x-coordinate of
a point on the twist of the curve. Using this observation, an EC-EKE protocol
is designed as follows.

Let Ea′,b′ be a twisted curve of Ea,b. Let G be a generator point of the
curve Ea,b and H be a point which generates the curve Ea′,b′ . Here we assume
that the points in Ea,b and Ea′,b′ respectively form a cyclic group. There are
two important remarks that should be made in relation to the choice of these
parameters.

– Generation of suitable curve/twist pairs will inevitably take considerably
longer than when the properties of the twist are irrelevant. However, this is
a one time setup cost and a single curve may be re-used for a large number
of different users.

– It is common to run Diffie-Hellman exchange in prime order subgroups in
order to avoid small subgroup attacks. To preserve the properties which
prevent partition attacks we have to use generators of the whole of the curve
groups. Therefore we need to additionally require either that the curve group
and its twist have prime order, or (more practically) check that all received
values are not in any small subgroup. The latter may be achieved by making
a number of simple checks depending on the factorisation of the curve co-
factor. We regard this matter as an implementation detail and therefore
ignore it in the protocol description.

To generate a password-authenticated shared secret key K, Alice and Bob
proceed as follows (see figure 2):

1. Alice randomly selects either the curve Ea,b or Ea′,b′ for use in this run of
the protocol.

2. Alice chooses a random rA and computes GA = rA ∗G if the selected curve
is Ea,b or HA = rA ∗H otherwise.
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Alice Bob
Select Ea′,b′

rA ∈R GF(p) rB ∈R GF(p)
HA ← rA ∗H
(XA, YA)← HA

EncPA
(XA/v‖yA)−−−−−−−−−−−−−−−→

X ′‖y′
A ← DecPB (EncPA(XA/v‖yA)

As g(X ′) is a quadratic non
residue, X ′

A ← vX ′

Recover H ′
A ← (X ′

A, Y ′
A)

HB ← rB ∗H
KB ← rB ∗H ′

A

GB ∈R Ea,b

AuthB ←H(KB‖B)
GB ,HB ,AuthB←−−−−−−−−−−−−−−−

KA ← rA ∗HB

AuthA ←H(KA‖A)

AuthB
?
= H(KA‖B)

AuthA−−−−−−−−−−−−−−−→
AuthA

?
= H(KB‖A)

Fig. 2. The EC-EKE protocol: the chosen curve is the twisted curve Ea′,b′

3. Alice compresses the point GA = (XA, YA) (or HA = (XA, YA)) to (XA, yA)
where yA is a single bit representing YA in the compressed form.

4. If the (untwisted) curve Ea,b is chosen, Alice sends EncPA(XA‖yA) to Bob.
Otherwise Alice sends EncPA(XA/v‖yA) to Bob.

5. Upon receipt of the ciphertext, Bob decrypts it to obtain X ′‖y′A. If Bob finds
that g(X ′) is a quadratic residue, then Alice’s chosen curve is the untwisted
curve and the x-coordinate is X ′A = X ′. Otherwise, Alice’s chosen curve is
the twisted curve and the x-coordinate is X ′A = vX ′.

6. Once Bob has determined the x-coordinate X ′A, Bob recovers the point G′A
(or H ′A) from X ′A and yA. Bob also chooses a random value rB. Bob then
computes GB = rB ∗G and KB = rB ∗GA if the untwisted curve is chosen
by Alice and chooses a random point HB on the twisted curve. Otherwise
Bob computes the points HB = rB ∗H and KB = rB ∗HA, and chooses a
random point GB on the untwisted curve.

7. Next Bob sends the points GB and HB and the authenticator AuthB =
H(KB‖B) to Alice.

8. In turn, Alice computes KA = rA ∗GB if the untwisted curve Ea,b is chosen.
Otherwise Alice computes KA = rA ∗HB .

9. Alice then verifies AuthB ≡ H(KA‖B). If so, Alice sends AuthA = H(KA‖A)
to Bob.

10. Finally, Bob verifies that AuthA ≡ H(KB‖A). If so, the protocol is com-
pleted.
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The shared secret key K is derived from KA or KB using a publicly known
algorithm. As this step is not important in our protocol, we omit it here and
simply assume that KA and KB are Alice’s and Bob’s copy of the shared secret
key respectively.

The completeness of the protocol is as follows (assuming Alice chooses the
untwisted curve - clearly a similar result holds in the other case). If PA = PB, at
step 4, Bob will recover X ′A = XA and thus can determine that Alice chose the
untwisted curve at step 1. This means that at step 6, Bob will recover the point
G′A = GA that is chosen by Alice. Thus we have KB = rB ∗G′A = rB ∗ rA ∗G =
rA ∗GB = KA and the checks

AuthB = H(KB‖B) ≡ H(KA‖B)

and
AuthA = H(KA‖A) ≡ H(KA‖A)

follow.

5.3 Security

Formally proving the security for this protocol is difficult as this uses a sym-
metric encryption scheme for which no formal proof model exists. Under passive
attacks, the security of this protocol is based on the fact that both Ea,b and
Ea′,b′ are cyclic and G and H generate Ea,b and Ea′,b′ respectively. Thus the
triplet {GA, GB, K} (or {HA, HB, K}) is indistinguishable from a random set in
Ea,b (or Ea′,b′). This implies that passive attacks are not feasible assuming that
H() leaks no information to the attacker. For active attacks, we consider the
protocol under three different types of attacks, namely impersonation attacks,
off-line dictionary attacks and partition attacks.

For the impersonation attack:

– If the attacker impersonates Bob, the attacker will need to supply a valid
AuthB to Alice given EncPA(XA‖yA). Alice will accept AuthB only if
AuthB ≡ H(KA‖B). This requires Bob to know KA when Bob computes
AuthB. This is possible only if Bob can derive the correct point GA from
the encryption EncPA(XA‖yA). This happens only if Bob knows the correct
password.

– If the attacker impersonates Alice, the attacker will have to give Bob the
value EncPi(XA‖yA) for a password Pi of the attacker’s choice. Unless Pi =
PA, the point G′A or H ′A that Bob recovers will differ from the point GA (or
HA) that the attacker has chosen in the first place. Bob accepts the protocol
only if Bob accepts AuthA. This happens only if KA = KB or that the
attacker is able to compute KB. Assuming that H() is a random oracle, the
attacker will have to compute KB = rB ∗ G′A (or rB ∗ H ′A) from GA and
GB (or HA and HB). This is solvable only if the attacker can solve the EC
discrete logarithm problem for G′A and GA (or H ′A and HA).
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For dictionary and partition attacks, an attacker can decrypt EncPA(X‖y)
using a password Pi to obtain (Xi‖yi) where Xi is random. However, as we
have seen above, all Xi ∈ GF(p) are valid, with the X where g(X) = 0 being
sufficiently negligible in practise. Furthermore as Ea,b (Ea′,b′) is cyclic, the point
Gi (or Hi) is indistinguishable from a random point under the EC Diffie-Hellman
assumption. Thus the decryption gives no useful information about the plaintext
to the attacker provided the value of p is chosen suitably, exactly as for DH-
EKE as discussed in section 3.3 and by Patel [7]. Note that it is essential in this
protocol that the points be represented in compressed form prior to encryption.
If not, then sufficient information will remain to perform a parition attack.

5.4 An Unbalanced Variant for Smartcards

As we have discussed, the use of EC methods is often advantageous in envi-
ronments in which there are limited resources for computation. In severely con-
strained devices, such as smartcards, further optimizations may be required. In
this subsection, we describe a suitable protocol for this case.

An example of the sort of situation we have in mind is that a user is required
to authenticate to a smartcard by means of a password. The link between the
user’s password entry device (a terminal) and the smartcard may be insecure. A
PAKE protocol is an ideal solution for this particular problem. In this scenario,
authentication of the card back to the user is not required. However, it may
easily be added to our proposed protocol if required.

The idea of the protocol is to optimize the number of scalar (EC) multi-
plications that the card has to perform, since this is the operation which is
computationally expensive. This is achieved by fixing the value rA generated by
the card for all transactions. The price we pay is the loss of forward secrecy.
However if we link this value to the secret stored in the card, the use of which
the user authentication is there to protect, then if rA is compromised the secret
in the card is compromised, and thus there is no longer anything to protect. This
means that forward secrecy is no longer a significant requirement.

The protocol is as follows. Again, we use the notation of section 4. To set up
the protocol, the card chooses either Ea,b or Ea′,b′ . For the sake of simplicity, let
us assume that the card chooses Ea,b. The card then chooses a random value rA,
preferably linked to the secret stored in the card. It then computes GA = rA ∗G.
The above process is performed only once. The card then stores rA and GA for
future use. It also stores a counter c initially set to 0. When a user requires to
establish a password-authenticated secret session with the card, the card and
the user perform the following variant of the EC-EKE protocol:

1. The card increases the counter c = c+1 and sends to the user EncPA(XA‖yA)
where XA is the x-coordinate of GA and yA is the bit representing the y-
coordinate YA of GA.

2. The user decrypts EncPA(XA‖yA) to obtain X ′. The user then determines
whether g(X ′) is quadratic residue and thus determines which is the chosen
curve. In the case here, the user determines that Ea,b is the chosen curve.
Then the user constructs the point G′A from X ′A = X ′ and yA.
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3. Next the user chooses a random value rB and computes GB = rB ∗ G and
KB = rB ∗G′A. Also the user chooses a random point HB of Ea′,b′ . The user
also constructs the authenticator Auth = H(KB‖c). Then the user sends
Auth, GB and HB to the card.

4. The card computes KA = rA ∗GB and verifies that Auth ≡ H(KA‖c). If so,
the card accepts the user and the protocol is completed.

The advantage of this scheme is that the card only needs to perform a single
scalar multiplication, a saving of one scalar multiplication compared with the
original protocol. This reduces the computational requirement for the card by
about a half. There is a potential replay attack on the protocol if an old KA or
KB value is available to an attacker; this is discussed further below.

It is clear that this protocol is secure against partition and dictionary attacks.
A similar argument as for our EC-EKE protocol can be applied here. Imperson-
ating the user would be as difficult as for the original protocol. This is because
the tasks that the user has to perform and the card has to verify in regard to the
user’s information remain unchanged. The value c is introduced to compensate
for the fixing of rA. Thus, each session is different and a straight replay attack
is not possible.

5.5 Some Comments on the DL Analog

For completeness, we make a few points regarding the DL analog of the above
unbalanced scheme. The relevance is that the following discussion also touches
on points of difference between the EC and DL schemes, showing again that the
map between protocols is not always straightforward.

There is a naive analog of the above EC protocol as follows.
Let us suppose that we are working over the field GF(p) with g a generator.

As before, the counter c is initialized to zero. In addition, the card chooses a
random value rA, preferably linked to the secret stored in the card. It then
computes gA = grA mod p, and stores rA and gA for future use.

The protocol may then be as follows:

1. The card increases the counter c = c + 1 and sends to the user EncPA(gA).
2. The user decrypts this to obtain gA.
3. Next the user chooses a random value rB and computes gB = grB mod p

and KB = g′A
rB mod p. The user also constructs the authenticator Auth =

H(KB‖c). Then the user sends Auth and gB to the card.
4. The card computes KA = gB

rA mod p and verifies that Auth ≡ H(KA‖c).
If so the card accepts the user and the protocol is completed.

This naive protocol satisfies the same security properties as for the EC case.
However, we note that compromise of KA or KB would allow an adversary to
impersonate the user in subsequent protocol runs by replaying the compromised
session. Though these values are temporary (the session key should be derived
from them and then they should be deleted) and this vulnerability is therefore
not of major significance, it is easily fixed by the following version of the protocol:
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1. The card increases the counter c = c + 1 and sends to the user EncPA(gA).
2. The user decrypts this to obtain gA.
3. Next the user chooses a random value rB and computes gB = grB mod p

and KB = g′A
rB mod p. The user also constructs the authenticator Auth =

H(KB). Then the user sends Auth and EncPB (c + gB) to the card.
4. The card recovers gB and computes KA = gB

rA mod p and verifies that
Auth ≡ H(KA). If so, the card accepts the user and the protocol is com-
pleted.

Note that the tying of the counter c to the user’s DH value gB by the password PB

prevents the sort of replay attack noted above should KA or KB be compromised.
Of course, compromise of rA is still fatal as discussed above.

It is interesting to note however that there does not seem to be an EC analog
of the above protocol. The encryption on the data sent by the user could be
mapped, as we have done above, to a protocol using a curve and its twist.
However, the card would also have to use the same protocol ideas, and the user
and card cannot make an independent choice of curve to use, i.e. if the card
chooses the twisted curve then so must the user. A partition attack therefore
becomes feasible again. We omit the details, but simply note it as an example of
the distinction between DL and EC schemes which is not immediately apparent
from a naive approach.

6 Conclusion

Motivated both by the recent interest in PAKE protocols and by the uptake of
EC cryptographic schemes, we have considered the transition of the DL based
PAKE protocol DH-EKE to the EC environment. We have demonstrated that
the naive EC analogs of such schemes are vulnerable to partition attacks. Fur-
thermore, we have proposed a secure EC variant, using the concept of the twist
of an elliptic curve in order to render the effectiveness of the partition attack
negligible. Unbalanced schemes, in both the DL and EC settings, adapted to
severely resource limited participants on one side of the protocol, have also been
proposed and examined. It is observed throughout that the transition to EC
schemes cannot be made naively, and it is suggested that distinct protocols for
the DL and EC environments may need to be considered.

Further development of these ideas is the subject of ongoing work. In partic-
ular, given that a curve and its twist over GF(p) are isomorphic over GF(p2), it
might seem that the problems touched on in section 5.5 regarding introducing
encryption of the data sent by both parties may be resolved if the two parties
are able to derive the shared secret elliptic curve point in this larger structure.

Note that though PAKE schemes such as SPEKE [5] and PAK [4] do not
immediately appear to suffer from the problems encountered above in transition-
ing to an EC analog, further investigation is required to clarify this statement.
We have at the very least demonstrated that the development of EC analogs of
PAKE protocols can be non-trivial.
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Abstract. The market for Personal Digital Assistants (PDA) is growing
rapidly and PDAs are becoming increasingly interesting for commercial
transactions. One requirement for further growing of eCommerce with
mobile devices is the provision of security. We implemented elliptic curves
over binary fields on a Palm OS device. We chose the NIST recommended
random and Koblitz curves over GF (2163) that are providing a sufficient
level of security for most commercial applications. Using Koblitz curves
a typical security protocol like Diffie-Hellman key exchange or ECDSA
signature verification requires less than 2.4 seconds, while ECDSA sig-
nature generation can be done in less than 0.9 seconds. This should be
tolerated by most users.

Keywords: Elliptic Curves, Koblitz Curves, Binary Fields, Palm OS

1 Introduction

The market for Personal Digital Assistants (PDA) is growing rapidly and PDAs
are becoming increasingly interesting for commercial transactions. For eCom-
merce, provision of security is a must. Since elliptic curve cryptosystems are a
promising match for embedded systems because of their short operand lengths
and efficient arithmetic, we implemented elliptic curves over binary fields on a
Palm OS device to investigate if today’s PDAs are sufficient for secure trans-
actions. The most popular PDAs use the Palm Operating System (Palm OS).
We used a Handspring Visor model with 2 MB of memory. This device has a
Motorola Dragonball CPU that provides eight data registers and seven address
registers, all of them 32-bit in size [15]. The processor offers 16-bit and 32-bit
operations and runs at 16 MHz. To the author’s knowledge there were only two
elliptic curve implementations on a Palm Pilot reported yet. In [2] PGP was
ported to wireless devices and [3] analyzes electronic commerce applications on
a Palm Pilot. However, the first implementation was not optimized for the Palm
Pilot while the second one uses a commercial library. Both papers also point out
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that the popular RSA system is very slow on a Palm Pilot. For most electronic
commerce applications the security provided by elliptic curves over GF (2163)
should be sufficient as long as there are no substantial improvements in solving
the elliptic curve discrete logarithm problem (DLP). This bit length is often con-
sidered to be security-equivalent to RSA with 1024-bit key length [1]. We chose
the NIST recommended random and Koblitz curves over GF (2163) and selected
binary curves since the integer multiplication unit of the Dragonball processor is
very slow. Koblitz curves allow shorter run times while they provide nearly the
same level of security according to current knowledge about attacks. Our imple-
mentation is mostly based on the algorithms used in a comprehensive software
implementation for a PC [4] and Solinas’ work about Koblitz curves [19].

2 Arithmetic in GF (2m)

2.1 Field Representation

For our implementation we used a polynomial basis representation. Let f(x) =
xm + r(x) be an irreducible binary polynomial of degree m with small weight,
that is a trinomial or pentanomial. The elements of GF (2m) are represented by
the binary polynomials of degree at most m − 1. Addition and multiplication
in GF (2m) are performed as polynomial operations modulo f(x). An element
a ∈ GF (2m) is written as the polynomial a(x) =

∑m−1
i=0 aix

i and is stored as
binary vector a = (am−1, . . . , a0). We store a in an array A of 16-bit words of
size s = �m/16� and write A = (A[s− 1], . . . , A[0]). The rightmost bit of A[0] is
a0 and am−1 is part of A[s − 1]. The bits left of am−1 are set to zero. For our
implementation we used an array of twelve 16-bit words to store an element of
GF (2163) such that we can also consider A to be an array of s′ = 6 32-bit words.

2.2 Addition

Addition over binary fields is performed by a bitwise XOR. Since the Motorola
Dragonball CPU performs one 32-bit XOR faster than two 16-bit XORs [15] we
add two binary vectors A and B by performing five 32-bit XORs and one 16-bit
XOR. We denote this operation by ⊕.

2.3 Multiplication

To compute c = a · b we first compute the polynomial c′(x) = a(x) · b(x) and
then reduce it to c(x) ≡ c′(x) mod f(x).

Polynomial Multiplication Algorithm 1 computes c′ = a·b by using a window
method [12]. First polynomials Bu = u · b(x) are precomputed for 0 ≤ u < 2w

where w is the window size. In each step of the loop w bits of a are considered.
We unrolled the two nested FOR loops completely which resulted in a slight
performance gain. By C{j} we denote the bit vector (C[s−1], . . . , C[j]). In step
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Algorithm 1 Comb method with window size w = 4
INPUT: Binary polynomials a(x) and b(x) of degree at most m− 1.
OUTPUT: The binary polynomial c′(x) = a(x) · b(x).
1: Compute Bu(x) = u(x) · b(x) for all polynomials u(x) of degree at most 3.
2: C′ ← 0
3: for i = 3 down to 0 do
4: for j = 0 to s− 1 do
5: Let u = (u3, u2, u1, u0), where uk is bit (4i+ k) of A[j].
6: C′{j} = C′{j} ⊕Bu

7: end for
8: if i �= 0 then
9: C′ ← C′x4

10: end if
11: end for
12: Return c′(x)

6 the m-bit vector Bu is added to C′ where the rightmost bit of Bu is added to
the rightmost bit of C′{j}.

We also experimented with the Karatsuba Algorithm [7] as described in Algo-
rithm 2. However, our results were always slower than the above described comb
method. We implemented the Karatsuba Algorithm three times recursively and
applied the comb method with windows size w = 3 to the resulting degree-20
polynomials.

Algorithm 2 Karatsuba Algorithm
INPUT: Binary polynomials a(x) and b(x) of degree at most m− 1.
OUTPUT: The binary polynomial c′(x) = a(x) · b(x).
1: Write a(x) = a1(x)x

m/2 + a0(x) and b(x) = b1(x)x
m/2 + b0(x)

2: D0(x)← a0(x)b0(x)
3: D1(x)← a1(x)b1(x)
4: D2(x)← (a0(x)⊕ a1(x))(b0(x)⊕ b1(x))
5: c′(x)← D1(x)x

m ⊕ (D2(x)⊕D0(x)⊕D1(x))x
m/2 ⊕D0(x)

6: Return c′(x)

Polynomial Reduction If f(x) is a trinomial or a pentanomial with middle
terms close to each other, reduction of c′(x) modulo f(x) can be efficiently
performed one word at a time. Algorithm 3 performs the modulo reduction by
f(x) = x163 + x7 + x6 + x3 + 1. It is based on the fact that

x163 ≡ x7 + x6 + x3 + 1 mod f(x)
...

x324 ≡ x168 + x167 + x164 + x161 mod f(x)
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A word C[i] is now reduced by adding C[i] four times to C, with the rightmost bit
of C[i] properly aligned as described on the right side of the above congruences.
For example, reduction of C[9] is performed by adding C[9] four times to C, with
the rightmost bit of C[9] added to the bits 132, 131, 128 and 125 of C. Note that
we used 32-bit arithmetic and 32-bit words since XOR and shift operations for
32-bit words have lower runtime than for two 16-bit words. Therefore the array
value C[0] describes the bits 0 to 31 of the value c.

Algorithm 3 Modular reduction by f(x) = x163 + x7 + x6 + x3 + 1
INPUT: A binary polynomial c(x) of degree at most 324.
OUTPUT: c(x) mod f(x).

1: for i = 10 down to 6 do
2: T ← C[i]
3: C[i− 6]← C[i− 6]⊕ (T << 29)
4: C[i− 5]← C[i− 5]⊕ (T << 4)⊕ (T << 3) ⊕ T ⊕ (T >> 3)
5: C[i− 4]← C[i− 4]⊕ (T >> 28) ⊕ (T >> 29)
6: end for
7: T ← C[5] AND 0xFFFFFFF8
8: C[0]← C[0]⊕ (T << 4)⊕ (T << 3) ⊕ T ⊕ (T >> 3)
9: C[1]← C[1]⊕ (T >> 28)⊕ (T >> 29)
10: C[5]← C[5] AND 0x00000007
11: Return (C[5], . . . , C[0])

2.4 Squaring

Squaring in GF (2m) is a linear operation and much faster than multiplying
two arbitrary elements [17]. To square a(x) =

∑m−1
i=0 aix

i we compute a(x)2 =∑m−1
i=0 aix

2i which is obtained by inserting a 0-bit between consecutive bits of
the binary representation of a. The result is reduced modulo f(x). Algorithm 4
describes how this can be done using a precomputed table. As before we used
32-bit words and 32-bit operations.

2.5 Modular Division

Instead of using the Extended Euclidean Algorithm to compute an inversion, we
used Algorithm 5 to compute a modular division a

b directly [18]. It has roughly
the same running time as the Extended Euclidean Algorithm and therefore saves
one multiplication to compute a field division. Note that division by x is accom-
plished by a right-shift operation. The comparison between two elements a(x)
and b(x) is done by considering the bit vectors a and b as integers.
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Algorithm 4 Squaring in GF (2m)
INPUT: a ∈ GF (2m)
OUTPUT: c = a2 ∈ GF (2m).

1: Precompute for each byte b = (b7, . . . , b0) the 16-bit vector T (b) = (0, b7, . . . , 0, b0).
2: for i = 0 to s′ − 1 do
3: Let A[i] = (A3[i], A2[i], A1[i], A0[i]) where Aj [i] are bytes.
4: C′[2i]← (T (A1[i]), T (A0[i]))
5: C′[2i+ 1]← (T (A3[i]), T (A2[i]))
6: end for
7: c(x) = c′(x) mod f(x)
8: Return c(x)

Algorithm 5 Modular Division in GF (2m)
INPUT: a, b �= 0 ∈ GF (2m)
OUTPUT: c = a

b
mod f(x) ∈ GF (2m).

1: u← b, v ← f(x), c← a, d← 0.
2: while u �= v do
3: if u mod 2 = 0 then
4: u← u

x

5: if c mod 2 = 0 then
6: c← c

x

7: else
8: c← c⊕f(x)

x

9: end if
10: else if v mod 2 = 0 then
11: v ← v

x

12: if d mod 2 = 0 then
13: d← d

x

14: else
15: d← d⊕f(x)

x

16: end if
17: else if u > v then
18: u← u⊕v

x
, c← c⊕ d

19: if c mod 2 = 0 then
20: c← c

x

21: else
22: c← c⊕f(x)

x

23: end if
24: else
25: v ← u⊕v

x
, d← c⊕ d

26: if d mod 2 = 0 then
27: d← d

x

28: else
29: d← d⊕f(x)

x

30: end if
31: end if
32: end while
33: Return c(x)
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2.6 Timings

Table 1 displays the timings for one field operation. We spent most time imple-
menting the comb method since the field multiplication is the crucial operation.
Reduction and squaring can be implemented efficiently. Division is very expen-
sive and will be avoided where possible.

Table 1. Timings in ms. for one field operation

time

Multiplication Comb Method 2.35
Karatsuba 4.41

Reduction 0.24

Squaring 0.49

Division 38.01

3 Elliptic Curve Basics

3.1 Arithmetic

An elliptic curve over GF (2m) is defined by the (affine) curve equation

E : Y 2 +XY = X3 + aX + b (1)

where a, b ∈ GF (2m) and b �= 0. If a, b ∈ GF (2), i.e., b = 1 and a = 0 or 1
the curve has special properties that can be used for efficient arithmetic and it
is called Koblitz curve. All points P = (x, y) that satisfy (1) and an additional
point at infinity O form a group E(GF (2163)). Assume P1 = (x1, y1) �= O, P2 =
(x2, y2) �= O and P1 �= −P2. Then P3 = (x3, y3) = P1 + P2 is computed as
follows.

If P1 �= P2

λ =
y1 + y2

x1 + x2

x3 = λ2 + λ+ x1 + x2 + a

y3 = (x1 + x3)λ + x3 + y1

If P1 = P2

λ =
y1

x1
+ x1

x3 = λ2 + λ+ a

y3 = (x1 + x3)λ+ x3 + y1
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The group operation requires one division and one multplication in either
case. By using projective coordinates as described later the division can be
avoided. A scalar or point multiplication is defined as repeated addition via

k · P = P + . . .+ P︸ ︷︷ ︸
k times

There are no efficient attacks known on elliptic curves. The DLP for random
curvesE(GF (2m)) can be solved on average in 2m/2 steps, e.g., by using Pollard’s
Rho method [13]. Therefore a curve over GF (2163) is considered appropriate to
obtain a secret key for a symmetric cipher with a key length of around 80 bits.
An attack on Koblitz curves using the special structure shortens the running
time by a factor of

√
m [20].

3.2 Point Representation

If inversion in GF (2m) is expensive relative to multiplications it may be more
efficient to represent points in projective coordinates. Since a field division is
more expensive than 10 multiplications we use projective coordinates as pro-
posed in [10] where the projective point (X,Y, Z) corresponds to the affine point
(X/Z, Y/Z2). The doubling formula (X2, Y2, Z2) = 2(X1, Y1, Z1) for projective
coordinates is given by

Z2 = Z2
1X

2
1

X2 = X4
1 + bX4

1

Y2 = bZ4
1Z2 +X2(aZ2 + Y 2

1 + bZ4
1)

The projective form of the addition formula is

(X0, Y0, Z0) + (X1, Y1, Z1) = (X2, Y2, Z2)

For the special case Z1 = 1, i.e., (X1, Y1) are affine coordinates this can be
computed as follows:

A = Y1Z
2
0 + Y0, B = X1Z0 +X0, C = Z0B

D = B2(C + aZ2
0 ), Z2 = C2, E = AC, X2 = A2 +D + E

F = X2 +X1Z2, G = X2 + Y1Z2, Y2 = EF + Z2G

In case that a = 0 or 1 point doubling requires 4 field multiplications. Mixed
Point Addition requires 9 multiplication. We based all point multiplication meth-
ods on these projective point doubling and mixed point addition. We only used
affine point operations for point precomputations.
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4 Random Curves

4.1 Curve Parameters

For our implementation we used a NIST recommended random curve [16] with
the parameters

a = 1

b = 0x 2 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD

and group order

#E(GF (2163)) = 2 · 5846006549323611672814742442876390689256843201587
NIST also recommends the randomly chosen base point G = (Gx, Gy) where

Gx = 0x 3 F0EBA162 86A2D57E A0991168 D4994637 E8343E36

Gy = 0x 0 D51FBC6C 71A0094F A2CDD545 B11C5C0C 797324F1

4.2 Point Multiplication

There are several methods known to compute kP ∈ E(GF (2m)) where k ≈ 2m.
The binary double-and-add method [13] requires m doublings and m/2 addi-
tions on average. The addition-subtraction method requires only m/3 additions
on average [14]. It is based on the nonadjacent form (NAF) of the coefficient
k. NAF(k) is a unique signed binary expansion with the property that no two
consecutive coefficients are nonzero. It has the fewest nonzero coefficients of any
signed binary expansion of k, on average m/3. Window methods precompute
some values and operate on more than one bit of the coefficient k at the same
time. Window methods also reduce the number of additions. The sliding window
method uses a variable window size. It has an effect equivalent to using fixed
windows one bit larger [1]. On average this method requires m+1 doublings and
2w−1 − 1 + m

w+1 additions where w is the largest window size. A slight improve-
ment can be gained by using a windowed addition-subtraction method [8]. This
is accomplished by using a windowed NAF. A width-w NAF of k is a unique
expression k =

∑l−1
i=0 ki2i where each nonzero kj is odd and less than 2w−1 in

absolute value, and among any w consecutive coefficients at most one is nonzero.
This method requires m+ 1 doublings and 2w−2 − 1 m

w+1 additions on average.
A different approach for point multiplication based on Montgomery’s idea was
proposed in [11]. It requires 6m field multiplications and squarings and does not
need any extra memory storage.

If a fixed base point is used we can use precomputed points as done by the
fixed base comb method [9]. Using 2w precomputed points this method requires
d − 1 doublings and (d − 1)(2w − 1)/2w additions where d = �m/w�. We im-
plemented this method with a window size of w = 4 and w = 8. This requires
24 = 16 precomputed points and 16 · 2 · 22 = 704 bytes, and 28 = 256 precom-
puted points and 256 ·2 ·22 = 11264 bytes, respectively. The precomputed points
can easily be stored on the Palm device.
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4.3 Timings

Table 2 displays the timings for one point multiplication on a Handspring Vi-
sor with 2 MB of memory. The implementation was done in C using the Code
Warrior IDE. One can see that the differences are relatively small. While the
Montgomery method has always the same running time the other methods de-
pend on the coefficient k. The timings were obtained by taking the average time
of multiply test runs with random coefficients. When precomputed points can
be used the running time is small. A typical key-exchange protocol like Diffie-
Hellman or the ECDSA signature verification require one point multiplication
by a random point and one point multiplication by a fixed point. This can be
done in 3.5 seconds using the Montgomery method and fixed base comb method
with w = 8. ECDSA signature generation requires a point multiplication by a
fixed base point which can be done in 0.8 seconds.

Table 2. Timings in sec. for one point multiplication on random curves

time

Addition-subtraction 3.31

Sliding windows (w = 4) 3.07

Width-w addition-subtraction (w = 4) 2.96

Montgomery 2.73

Precomputation (Fixed base comb, w = 4) 1.43

Precomputation (Fixed base comb, w = 8) 0.79

5 Koblitz Curves

Koblitz curves were first introduced in [6]. All described facts and methods are
due to Solinas [19]. The advantage of Koblitz curves is that point multiplication
methods can be changed in such a way that point doublings is replaced by the
Frobenius map. The Frobenius τ : E(GF (pm)) → E(GF (pm)) is defined as
τ(x, y) = (xp, yp). Since p = 2 this can be done efficiently using only two field
squaring operations. There are two Koblitz curves that use a = 0 or a = 1. Let
µ = (−1)1−a and τ be the Frobenius map. It is known that (τ2 + 2)P = µτP
for all P ∈ E(GF (2m)). Therefore τ can be expressed as the complex number
τ = (µ +

√−7)/2. Since τ2 + 2 = µτ every integer k can be expressed as
r1τ + r0 where r0, r1 ∈ ZZ. The main idea is to replace a coefficient k by a τ -adic
number k′ =

∑l−1
i=0 k′i 2i with k = k′ and to compute k′P . When computing

k′P = k′l−1τ
l−1(P ) + . . .+ k′0P , a point multiplication is reduced to a sequence

of point additions without point doublings involved. The τ -adic representation
of k has to be computed in such a way that it has short bit length. This is
done using modulo reduction in ZZ[τ ]. Note that this reduction requires multi-
precision integer arithmetic.
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5.1 Curve Parameters

Again we used a NIST recommended curve [16] with the parameters

a = 1, b = 1

and group order

#E(GF (2163)) = 2 · 5846006549323611672814741753598448348329118574063
NIST also provides the base point G = (Gx, Gy) where

Gx = 0x2 FE13C053 7BBC11AC AA07D793 DE4E6D5E 5C94EEE8

Gy = 0x2 89070FB0 5D38FF58 321F2E80 0536D538 CCDAA3D9

5.2 Point Multiplication

Similar to the addition-subtraction method for random curves we implemented
a signed binary τ -adic method that uses a reduced τ -adic NAF of k. The τ -
adic NAF of k is the unique expression k =

∑l−1
i=0 kiτ

i where ki ∈ {−1, 0, 1}
and no two consecutive coefficients ki are nonzero. Since the Frobenius map can
be computed very efficiently the expected running time is m/3 point additions.
The cost to compute the NAF of k is much more expensive than for random
curves though. The method can be improved by using a window technique. This
is called the τ -adic width-w window method. It is based on the τ -adic width-w
NAF that is defined very similar as the binary width-w NAF for random curves.
This method requires 2w−2 − 1 + m

w+1 additions on average. As before we used
mixed projective point addition.

If a fixed base point is used precomputation reduces the time for one point
multplication. This is easily achieved by applying the τ -adic width-w window
method. Instead of precomputing points for each multiplication the points are
only precomputed once such that the window size can be chosen larger.

5.3 Timings

Table 3 displays the values for one point multiplication. Note that the windows
τ -adic version with w = 4 is faster than with w = 5 although the later one has
a slightly lower complexity. Also, precomputation using more points is not as
efficient as for random curves since the computational overhead to compute the
τ -adic representation of the scalar k′ increases. The usual time for a key exchange
or signature verification is around 2.4 seconds while a signature generation can
be done in 0.9 seconds. This is significiantly faster than for random curves.

6 Conclusion

We implemented a NIST recommended random and Koblitz curve overGF (2163)
on a Palm OS device. A normal transaction such as a key exchange or signature
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Table 3. Timings in sec. for one point multiplication on Koblitz curves

time

τ -adic 1.67

τ -adic width-w (w = 4) 1.51

τ -adic width-w (w = 5) 1.68

Precomputation (w = 6) 1.08

Precomputation (w = 10) 0.87

verification can be done in less than 2.4 seconds while signature generation can
be done in less than 0.9 seconds. Koblitz curves are particular suitable for these
devices since they allow running times that will probably be tolerated by most
users.
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Abstract. We construct a variant of Weil pairing to reduce the elliptic
curve discrete logarithm problem to the discrete logarithm problem in the
multiplicative subgroup of a finite field. We propose an explicit reduction
algorithm using a new pairing and apply the algorithm to the case of two
trace elliptic curves.

Key words : Anomalous curve, supersingular curve, Weil pairing, elliptic
curve discrete logarithm.

1 Introduction

The discrete logarithm problem for a general group G can be stated as follows:
given α ∈ G and β ∈ G, find an integer x such that β = αx, provided that such
an integer exists. The integer x is called the discrete logarithm of β to the base
α. If we replace the group G by the elliptic curve group over a finite field then
it is the elliptic curve discrete logarithm problem (ECDLP).

In [4] and [7], Koblitz and Miller independently propose how to use the
group of points on an elliptic curve over a finite field to construct public key
cryptosystems. The security of these cryptosystems is based upon the presumed
intractability of computing logarithms in the elliptic curve group. The best al-
gorithms known for solving this problem are the exponential square root attacks
that can be applied to any finite group and have a running time that is propor-
tional to the square root of the largest prime factor dividing the order of the
group. In [7], Miller argues that the index-calculus methods, which produced
dramatic results in the computation of discrete logarithms in the multiplicative
subgroup of a finite field, do not extend to elliptic curve groups. Consequently,
if the elliptic curve is chosen so that its order is divisible by a large prime, then
even the best attacks take exponential time.

The integrity of ECDLP cryptographic tools would be widely accepted, how-
ever, there exist two exceptional families of elliptic curves ( i.e., supersingular
and anomalous curves) and for each case powerful cryptanalysis method has been
invented. But both classes of elliptic curves may be easily avoided in practice.

At first Menezes, Okamoto and Vanstone [6] propose a subexponential time
algorithm to solve the ECDLP over a supersingular elliptic curve E defined over a
finite field Fq (q = pn, p > 3), the so-called MOV algorithm. It employed the Weil

V. Varadharajan and Y. Mu (Eds.): ACISP 2001, LNCS 2119, pp. 514–520, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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pairing to reduce ECDLP to the discrete logarithm problem in a multiplicative
subgroup of an extension field Fqk of Fq, k ≤ 6. By using a variant of the Tate
pairing, Frey and Rück [2] gave a generalization of this the discrete logarithm
over the divisor class group of curves, we call this algorithm the FR algorithm.
Furthermore, Balasubramanian and Koblitz [1] showed that if we choose an
elliptic curve at random over a prime finite field Fp whose number of Fp-rational
points is prime, then the MOV algorithm on that curve is not effective with
overwhelming probability.

Recently, Semaev [9], Smart [11], and Satoh and Araki [8] independently
proposed a polynomial time algorithm (SSSA algorithm) for the ECDLP over
an anomalous elliptic curve defined over a prime field Fp, i.e., an elliptic curve
over Fp whose number of Fp-points is p. It is easy to see that we can also apply
the SSSA algorithm to the discrete logarithm problem over the p-part of E(Fq),
where q is a power of p. Semaev employs an algebraic geometrical approach,
while Smart and Satoh-Araki employ a number theoretical approach to reduce
the ECDLP over E to the additive group Fp.

In this paper, we present the following results;

1. We construct a variant of Weil pairing to reduce the ECDLP defined over
Fq to the discrete logarithm problem in F ∗q .

2. We propose an efficient reduction algorithm for ECDLP over elliptic curves
with trace two, more generally, elliptic curves with even trace under a special
condition.

2 Construction of Bilinear Pairing

We want to construct a certain variant of Weil pairing with simple computation.
Let E be an elliptic curve defined over a finite field Fq where q = pn for some
prime p �= 2, 3. Let E(Fq) be the group of rational points of E over Fq. Suppose
that E(Fq) contains a 2-torsion point and let a be a 2-torsion point in E(Fq). If
a divisor D1 = div(f) is principal, for any D2 =

∑r
i=1 ni(ai) ∈ Div0(E)Fq such

that supp(D1) ∩ supp(D2) = ∅, we let f(D2) ≡
∏r

i=1 f(ai)ni where Div0(E)Fq

is the group of divisors of degree zero whose components are Fq-rational. This
value depends only on f since the constant disappears when taking the product
over the points of a divisor of degree zero. We can define a bilinear pairing from
E(Fq)× E(Fq) to F ∗q in the following way,

< ·, · >a: E(Fq)× E(Fq)→ F ∗q , < P,Q >a≡ fP̄ (Q̄)/fQ̄(P̄ ). (1)

where P̄ is a divisor (P ) − (O) corresponding to a point P ∈ E(Fq) via an
isomorphism from E to the divisor class group of E, Pic0(E). We can deduce
that P̄a − P̄ = (P + a)− (a)− (P ) + (O) is a principal divisor, by Cor 3.5 (pp.
67) of [10], namely, there exists a rational function fP̄ such that

div(fP̄ ) = (P + a)− (a)− (P ) + (O).
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Similarly, there exists a rational function such that

div(fQ̄) = (Q+ a)− (a)− (Q) + (O).

These rational functions are uniquely determined up to constants. In fact, this
pairing is similar to the Weil pairing on the group of m-torsion point of elliptic
curve E.

Theorem 1. For the pairing < ·, · >a given in (1), we have the following prop-
erties.

1. < ·, · >a depends only on the divisor class.
2. It is a bilinear pairing.
3. It is alternative, i.e.,< P,Q >a=< Q,P >−1

a .

Proof. (1) Let P̄ ′ be linearly equivalent to P̄ . Then we can express as P̄ ′ = P̄+(g)
for some rational function g. Thus we get

(fP̄ ′) = P̄ ′a − P̄ ′ = P̄a − P̄ + (g)a − (g) = (fP̄ ) + (g)a − (g).

The value of < P,Q >a for P̄ ′ is

fP̄ ′(Q̄)
fQ̄(P̄ ′)

=
fP̄ (Q̄)g(Q− a)g(−a)−1g(0)g(Q)−1

fQ̄(P̄ )fQ̄((g))
.

Since a is a 2-torsion point, i.e., a = −a,
g(Q− a)g(O)
g(Q)g(−a) =

g(Q+ a)g(O)
g(Q)g(a)

= g((fQ̄)),

and by Weil reciprocity law in Lang [5], pp.172, we have fQ̄((g)) = g((fQ̄)).
Hence we conclude that

fP̄ ′(Q̄)
fQ̄(P̄ ′)

=
fP̄ (Q̄)
fQ̄(P̄ )

,

namely, it is independent of the choice of a divisor in the same divisor class.
Similarly, it is well-defined with respect to the second variable. If supp((fP̄ ))∩
supp(Q̄) �= ∅, then we can find a divisor Q̄′ = Q̄+ (g) such that supp((fP̄ )) ∩
supp(Q̄′) = ∅. Thus we can avoid the points at which the rational function are
not defined.

(2) We show < P1 + P2, Q >a=< P1, Q >a< P2, Q >a. Since P1 + P2 is
linearly equivalent to P̄1 + P̄2, we get

(P1 + P2)− (0) ∼ (P1)− (0) + (P2)− (0)

by the square theorem [5]. Thus we have

fP1+P2
(Q̄)

fQ̄(P1 + P2)
=

fP̄1+P̄2
(Q̄)

fQ̄(P̄1 + P̄2)
=
fP̄1

(Q̄)fP̄2
(Q̄)

fQ̄(P̄1)fQ̄(P̄2)
=< P1, Q >a< P2, Q >a .

It is also linear with respect to the second variable by the similar way.
(3) It is obvious by definition.
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We can easily find our rational functions in computation of the pairing of (1)
using the following algorithm.

Algorithm 1
[Description] Algorithm for finding a rational function over E with a given
divisor.
[Input] A divisor of the form (P +Q)− (P )− (Q)+(0) where P,Q ∈ E(Fq).
[Output] A rational function g such that (P +Q)− (P )− (Q) + (O) = (g).

1. Find a line equation L : f(x, y, z) = ax + by + cz = 0 in P 2 through P and
Q where a, b, c ∈ Fq.

2. Compute R the point of intersection of L with E.
3. Find a line equation L′ : f ′(x, y, z) = a′x + b′y + c′z = 0 in P 2 through R

and O where a′, b′, c′ ∈ Fq.
4. Output g = f ′/f .

How the algorithm yields an easy way to compute the rational function g; for a
given divisor P̄ = (P ) − (O), let f(x, y, z) = ax + by + cz = 0 be the line L in
P 2 through P and Q. Also let R be the point of intersection of L with E and
f ′(x, y, z) = a′x + b′y + c′z = 0 the line L′ through R and O. Then, from the
definition of addition on E and the fact that the line z = 0 intersects E at O
with multiplicity 3, we have

div(f/z) = (P ) + (Q) + (R)− 3(O)

and
div(f ′/z) = (R) + (P +Q)− 2(O).

Hence
(P +Q)− (P )− (Q) + (O) = div(f ′/f).

The rational function f ′/f is the function for which we are looking.

Remark 2.2

1. In fact, for general elliptic curves the image of this pairing is very tiny. Let
N be the order of the elliptic curve E then we have

1 =< NP,NQ >a=< P,Q >N2

a .

Hence < P,Q >a has a order dividing gcd(N2, q − 1). Thus this technique
is meaningful when N = q− 1 or gcd(N, q− 1) is of size almost that of q, as
will be seen in the next section.

2. The similar procedure can be used to compute < ·, · >a in the case J is the
Jacobian variety of a hyperelliptic curve.
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3 The Reduction

In fact, the condition of the extension degree for the FR algorithm is usually
weaker than that for the MOV algorithm, theorem 4.2 in [3] shows that the
condition qk ≡ 1 (mod l) is equivalent to the condition E[$] ⊂ E(Fqk ) if $ � | q−1
(mod $), i.e., the effectiveness of the MOV algorithm is the same as that of the
FR algorithm if q ≡ 1 (mod $). The extension degree k is exponential in log q
when $ |q − 1. We consider the case of $ |q − 1.

From a standard cryptographic view point, let |E(Fq)| = 2 ·$, we may assume
that $ is around q, then it is easy to see |E(Fq)| = q − 1 when $ |q − 1. Suppose
that $ is a prime number. Let P ∈ E(Fq) be an element of order $ and R ∈< P >.
Let a �= O be a 2-torsion point in E(Fq) . With the pairing described in section
2, we can obtain the following theorem.

Theorem 2. There exists some point Q ∈ E(Fq) such that the map φQ,a;<
P >→ G defined by φQ,a(R) =< Q,R >a is a group isomorphism where G is a
unique cyclic subgroup of F ∗q .

Proof. There exists a unique 2-torsion point a = −a since $ is prime. This
we need not worry about the choice of the 2-torsion point. If we take Q be
a non 2-torsion point in E(Fq) then we have an one to one homomorphism
φQ,a :< P >→ F ∗q since < P > has a prime order.

We can introduce the following algorithm to reduce the ECDLP when |E(Fq)|
= q − 1 = 2 · $ where $ is a prime number, to the discrete logarithm problem in
the multiplicative subgroup of a underlying finite field.

Algorithm 2
[Description] Reduction the discrete logarithm on E(Fq) to the discrete
logarithm in F ∗q
[Input] An element P ∈ E(Fq) of order $, R ∈< P >.
[Output] An integer m such that R = mP .

1. Find Q ∈ E(Fq) such that α = φQ,a(P ) has order $.
2. Compute β = φQ,a(R).
3. Compute m, the discrete logarithm of β to the base α in F ∗q .

Note that the output of Algorithm 2 is correct since

β = φQ,a(mP ) =< Q,mP >a=< Q,P >m
a = αm.

Thus, in this case, the reduction step of Algorithm 2 takes polynomial time
resulting in a probabilistic subexponential time algorithm for computing elliptic
curve discrete logarithms in these curves. Thus, to select a secure elliptic curve,
we must avoid elliptic curves of trace 2.
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Remark 3.1

1. In our cases, which are important ones for cryptographic reasons, unlike
Algorithm 2 in MOV reduction, which can choose a point Q probabilistically,
we can determine a pointQ easily, because every non 2-torsion point ofE(Fq)
has a prime order $. Consequently, (1) in Algorithm 2 is independent to the
choice of a point Q such that 2Q �= O.

2. We can compare our pairing with Weil pairing and Tate-Lichtenbaum pair-
ing. The fast algorithm used to compute the Weil pairing following V. Miller
consists in a twofold computation of the Tate-Lichtenbaum pairing. But the
Tate-Lichtenbaum pairing is computable in O(log q) steps, where one step
is equivalent to the addition in E(Fq). But the computation of our pairing
is much simpler than that of Tate-Lichtenbaum pairing because the compu-
tation takes a constant number of multiplications in F ∗q .

3. In [3], Kanayama et al., also proposed a reduction algorithm (KKSU algo-
rithm) for the ECDLP over trace two elliptic curves. Their algorithm differ
from the FR algorithm is faster than the FR algorithm. They confirmed
that the reduction part of the proposed algorithm was 1.5 times faster than
that of the FR algorithm. However the reduction part of our algorithm is
faster than the KKSU algorithm since the computation of the pairing used
to reduction consists of only a constant number of multiplications in F ∗q .

4. We know that, to resist the MOV attack, one only needs to check that n,
the order of point P , does not divide qk − 1 for all small k foe which the
DLP in Fqk is tractable- in practice, when n > 2160 then 1 ≤ k ≤ 20 suffices.
More generally, the divisible check rules out all elliptic curves for which the
ECDLP can be efficiently reduced to the DLP in some small extension of Fq.
These include the elliptic curves of trace 2 as well as supersingular elliptic
curves.

We conclude that the we can reduce the discrete logarithm problem on trace
two elliptic curves defined over Fq to the discrete logarithm problem on the
multiplicative subgroup of a underlying finite field Fq.
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