inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hydrothermally synthesized a-Ba₂P₂O₇

Carla Heyward, Matthew Mann and Joseph Kolis*

Department of Chemistry, Clemson University, Clemson, SC 29634, USA Correspondence e-mail: kjoseph@clemson.edu

Received 7 September 2010; accepted 25 October 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (P–O) = 0.005 Å; R factor = 0.047; wR factor = 0.127; data-to-parameter ratio = 32.0.

Single crystals of α -Ba₂P₂O₇, dibarium diphosphate, were obtained under hydrothermal conditions. The structure belongs to the diphosphate $A_2P_2O_7$ series with A being an alkaline earth cation. α -Ba₂P₂O₇ crystallizes isotypically with α -Sr₂P₂O₇. All atomic sites have site symmetry m with the exception of two O atoms which reside on general positions. Both Ba²⁺ cations are coordinated by nine terminal O atoms from eclipsed diphosphate P₂O₇ anions to form a three-dimensional network throughout the structure.

Related literature

For general background, see: Brown & Calvo (1970); ElBelghitti *et al.* (1995); Mehdi *et al.* (1977); Mohri (2000). For the uses of alkaline earth diphosphates, see: McKeag & Steward (1955); Ranby *et al.* (1955); Ropp & Mooney (1960); Srivastava *et al.* (2003). For structurally related compounds, see: Calvo (1968); Barbier & Echard (1998). For an independent refinement of the α -Ba₂P₂O₇ structure based on data from a crystal grown by solid-state reactions, see: Zakaria *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} \text{Ba}_2\text{P}_2\text{O}_7 \\ M_r = 448.62 \\ \text{Orthorhombic, $Pnma$} \\ a = 9.2842 \ (19) \ \text{\AA} \\ b = 5.6113 \ (11) \ \text{\AA} \\ c = 13.796 \ (3) \ \text{\AA} \end{array}$

Data collection

Rigaku AFC-8S Mercury CCD diffractometer Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{min} = 0.080, T_{max} = 0.281$ $V = 718.7 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 11.32 \text{ mm}^{-1}$ T = 298 K $0.45 \times 0.15 \times 0.15 \text{ mm}$

7205 measured reflections 1854 independent reflections 1510 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.127$ S = 1.111854 reflections 58 parameters $\Delta \rho_{\text{max}} = 6.71 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -3.53 \text{ e } \text{\AA}^{-3}$

Table 1			
Selected	geometric parameters	í (Å,	°).

Ba1-O5 ⁱ	2.564 (6)	Ba2-O5 ^{vii}	3.084 (3)
Ba1-O1 ⁱⁱ	2.730 (4)	P1-O1	1.514 (5)
Ba1-O4 ⁱⁱⁱ	2.799 (4)	P1-O1 ^{viii}	1.514 (5)
Ba1-O1	2.903 (4)	P1-O2	1.519 (6)
Ba1-O2 ^{iv}	2.9272 (18)	P1-O3	1.588 (6)
Ba2-O1 ^{iv}	2.765 (4)	P2-O4	1.515 (4)
Ba2-O4 ⁱⁱ	2.767 (4)	P2-O4 ^{viii}	1.515 (4)
Ba2-O2 ^v	2.800 (5)	P2-O5	1.519 (6)
Ba2-O4 ^{vi}	2.836 (4)	P2-O3	1.598 (5)

Р1-О3-Р2 134.7 (4)

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 2, y + \frac{1}{2}, -z + 1$; (iii) $x - \frac{1}{2}, y, -z + \frac{1}{2}$; (iv) -x + 2, -y, -z + 1; (v) $x - \frac{1}{2}, y, -z + \frac{3}{2}$; (vi) $-x + \frac{5}{2}, y + \frac{1}{2}, z + \frac{1}{2}$; (vii) $-x + \frac{5}{2}, -y, z + \frac{1}{2}$; (viii) $x, -y + \frac{1}{2}, z$.

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Science Foundation (grant No. DMR 0907395). The authors would also like to thank Dr Colin McMillen and Don VanDerveer for their help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2406).

References

Barbier, J. & Echard, J.-P. (1998). Acta Cryst. C54, IUC9800070.

- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, I. D. & Calvo, C. (1970). *J. Solid State Chem.* **1**, 173–179.
- Calvo, C. (1968). Inorg. Chem. 7, 1345–1351.

ElBelghitti, A. A., Elmarzouki, A., Boukhari, A. & Holt, E. M. (1995). Acta Cryst. C51, 1478–1480.

- Jacobson, R. (1998). *REQAB*. Private communication to the Rigaku Corporation, Tokyo, Japan.
- McKeag, A. H. & Steward, E. G. (1955). Br. J. Appl. Phys. 6, S26-S31.

Mehdi, S., Hussain, M. R. & Rao, B. R. (1977). Indian J. Chem. 15, 820-821.

Mohri, F. (2000). Acta Cryst. B56, 626-638.

Ranby, P. W., Mash, D. H. & Henderson, S. T. (1955). Br. J. Appl. Phys. 6, S18– S24.

Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.

Ropp, R. C. & Mooney, R. W. (1960). J. Electrochem. Soc. 107, 15-20.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Srivastava, A. M., Comanzo, H. A. & McNulty, T. F. (2003). US Patent No. 6 621 211 B1.

Zakaria, D., Erragh, F., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2010). Acta Cryst. E66, i76–i77.

supporting information

Acta Cryst. (2010). E66, i84 [doi:10.1107/S1600536810043527]

Hydrothermally synthesized α-Ba₂P₂O₇

Carla Heyward, Matthew Mann and Joseph Kolis

S1. Comment

Traditionally, alkaline earth diphosphates (or pyrophosphates) have been of interest as phosphor matrices in fluorescent lamps, among other applications (McKeag & Steward, 1955; Ranby *et al.*, 1955; Ropp & Mooney, 1960). More recently, research is focused on using these phosphor materials for multi-colored white LED devices (Srivastava *et al.*, 2003) to eliminate the use of mercury in fluorescent lamps. The activators ranged from metals such as manganese and tin to rare-earth elements like europium.

In the diphosphate $A_2P_2O_7$ series (A = alkaline earth metal), when the ionic radius of A is greater than 0.97 Å, the structure is of the dichromate type and the P_2O_7 anion is in the eclipsed conformation as shown in Fig. 1 (Brown & Calvo, 1970). These structures include α -Ca₂P₂O₇ which crystallizes in the monoclinic space group $P2_1/n$ (Calvo, 1968) and α -Sr₂P₂O₇ in the orthorhombic space group *Pnma* (Barbier & Echard, 1998). In the case of barium, a hexagonal high-temperature form σ and an orthorhombic low-temperature form α are known to exist (ElBelghitti *et al.*, 1995). The structure of σ -Ba₂P₂O₇ has been previously characterized from single crystal data in space group $P\overline{62m}$ and reported to have a very different structure from other known alkaline earth $A_2P_2O_7$ diphosphates (ElBelghitti *et al.*, 1995). The more stable and common form α -Ba₂P₂O₇ has been characterized by X-ray powder diffraction (Mehdi *et al.*, 1977), but there has been no previous report of the crystal structure determined from single-crystal data therefore, it is presented here. The cell parameters from our single-crystal data are in agreement with those of the previous powder diffraction study. The α nomenclature has been used for the orthorhombic Ba₂P₂O₇ (Barbier & Echard, 1998).

The α -Ba₂P₂O₇ structure contains two unique Ba atoms each surrounded by nine terminal oxygen atoms from diphosphate groups. The Ba1—O bond lengths range from 2.564 (6) - 2.9272 (18) Å and Ba2—O range from 2.765 (4) - 3.084 (3) Å. The Ba2 atoms connect to O4 along the *a*-axis to give a layered pattern. Ba1 atoms lie in between the layers and connect to O1 along the *c* axis resembling a ladder housing two eclipsed P₂O₇ groups in each section. Additional criss-cross action takes place with Ba1 connected to a terminal O5 atom and Ba2 connected to a terminal O2 atom of the diphosphate anion (Fig. 1). As mentioned before, α -Ba₂P₂O₇ is isostructural with α -Sr₂P₂O₇, whereas the α -Ca₂P₂O₇ structure differs slightly. In this structure, the eight-coordinate Ca²⁺ cation is edge-sharing three O atoms and cornersharing two O atoms with the P₂O₇ groups (Calvo, 1968). In the α -Ba₂P₂O₇ and α -Sr₂P₂O₇ moiety (Fig. 2). A typical P—O bond length for the tetrahedral PO₄ group is reported as 1.538 Å (Mohri, 2000) and the average terminal P—O bond distance in the title structure is 1.516 Å which is comparable to the average of 1.521 Å observed in both α -Sr₂P₂O₇ (Barbier & Echard, 1998) and α -Ca₂P₂O₇ (Calvo, 1968). In diphosphate groups, the bridging P—O bonds are characteristically longer. In the titled structure, the bridging P1—O3 and P2—O3 bonds are 1.588 (6) Å and 1.598 (5) Å which is in comparison to 1.579 (8) and 1.616 (8) Å reported for α -Ca₂P₂O₇ (Calvo, 1968) and 1.599 (2) and 1.615 (2) Å

observed in α -Sr₂P₂O₇ (Barbier & Echard, 1998). The bridging O3 atom has longer bonds to P1 and P2. The P1—O3—P2 angle of 134.7 (4)° is wider than 130 (4)° reported for both α -Sr₂P₂O₇ (Barbier & Echard, 1998) and α -Ca₂P₂O₇ (Calvo, 1968) to help reduce structural strain resulting from the larger Ba²⁺ cation.

An independent refinement of the α -Ba₂P₂O₇ structure based on data from a crystal grown by solid state reactions has been reported by Zakaria *et al.* (2010). The results of both refinements in terms of geometric parameters are the same within the threefold standard deviation.

S2. Experimental

The crystals were synthesized by combining 0.17 g of BaHPO₄ and 0.05 g of NH₄H₂PO₄ with 0.4 mL of 1*M* Ba(OH)₂ solution in a sealed silver ampoule for 7–10 days at 773 K with a counter pressure of 19000 psi (131 MPa). The contents of the ampoule were washed with deionized water. Colorless needle shaped single crystals of α -Ba₂P₂O₇ were the minor product and colorless polyhedrally shaped crystals of BaHPO₄ were the major product.

S3. Refinement

Despite multiple data collections to high 2θ angles, the bridging oxygen atom O3 of the diphosphate group always appeared as non-positive definite when refined anisotropically. Therefore, we have refined this atom isotropically. The highest remaining peak is located 0.37 Å away from O3 and the deepest hole is 0.58 Å away from Ba1. The large density arises from O3 being defined as isotropically. The *xyz* coordinates for Q1 are 1.34 0.25 0.41 and for Q2 are 1.43 0.25 0.42 which are close to O3 at 1.38 0.25 0.42. The Q peaks are 0.37 and 0.54 Å away from O3 instead of the heavier atom Ba.

Figure 1

A view of the α -Ba₂P₂O₇ structure along the *b* axis. Some Ba—O bonds are omitted for clarity. The purple polyhedra represent the diphosphate P₂O₇ groups.

Figure 2

A view of the asymmetric unit of α -Ba₂P₂O₇ with additional symmetry-related atoms displayed to show the tetrahedral environment around phosphorus. The Ba—O bonds were left out for clarity. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (ii) *x*, -*y* + 1/2, *z*].

Dibarium diphosphate

Crystal data Ba₂P₂O₇ $M_r = 448.62$ Orthorhombic, Pnma Hall symbol: -P 2ac 2n a = 9.2842 (19) Å b = 5.6113 (11) Å c = 13.796 (3) Å V = 718.7 (3) Å³ Z = 4

Data collection

Rigaku AFC-8S Mercury CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 14.6306 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{\min} = 0.080, T_{\max} = 0.281$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.127$ F(000) = 792 $D_x = 4.146 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3690 reflections $\theta = 2.7-36.3^{\circ}$ $\mu = 11.32 \text{ mm}^{-1}$ T = 298 KNeedle, colorless $0.45 \times 0.15 \times 0.15 \text{ mm}$

7205 measured reflections 1854 independent reflections 1510 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 36.3^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 15$ $k = -7 \rightarrow 9$ $l = -21 \rightarrow 22$

S = 1.111854 reflections 58 parameters 0 restraints

Primary atom site location: structure-invariant	$w = 1/[\sigma^2(F_o^2) + (0.0617P)^2 + 4.9464P]$
direct methods	where $P = (F_0^2 + 2F_c^2)/3$
Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} = 0.001$
map	$\Delta \rho_{\rm max} = 6.71 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -3.53 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ba1	0.86006 (5)	0.2500	0.41750 (3)	0.01365 (12)	
Ba2	0.84160 (5)	0.2500	0.74453 (3)	0.01249 (12)	
P1	1.2179 (2)	0.2500	0.45777 (12)	0.0120 (3)	
P2	1.4529 (2)	0.2500	0.31494 (13)	0.0120 (3)	
01	1.1427 (4)	0.0289 (8)	0.4204 (3)	0.0163 (8)	
O2	1.2271 (6)	0.2500	0.5677 (4)	0.0164 (10)	
03	1.3792 (6)	0.2500	0.4196 (3)	0.0118 (9)*	
04	1.4045 (4)	0.0278 (7)	0.2617 (3)	0.0154 (7)	
05	1.6144 (7)	0.2500	0.3326 (4)	0.0230 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic di	isplacement	parameters	$(Å^2)$)
		P	<u>ر</u> ۱	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.0139 (2)	0.0148 (2)	0.0122 (2)	0.000	-0.00132 (12)	0.000
Ba2	0.01179 (19)	0.0128 (2)	0.01293 (18)	0.000	0.00048 (12)	0.000
P1	0.0126 (7)	0.0131 (8)	0.0103 (6)	0.000	0.0008 (5)	0.000
P2	0.0105 (7)	0.0119 (7)	0.0138 (7)	0.000	0.0002 (5)	0.000
01	0.0170 (18)	0.0134 (19)	0.0187 (18)	-0.0009 (14)	0.0018 (12)	0.0001 (13)
02	0.018 (2)	0.018 (3)	0.013 (2)	0.000	-0.0009 (17)	0.000
04	0.0149 (17)	0.0108 (17)	0.0205 (15)	-0.0033 (13)	0.0000 (13)	-0.0010 (13)
05	0.011 (2)	0.037 (3)	0.022 (2)	0.000	0.001 (2)	0.000

Geometric parameters (Å, °)

Ba1—O5 ⁱ	2.564 (6)	Ba2—O2 ^{viii}	2.800 (5)
Ba1—O1 ⁱⁱ	2.730 (4)	Ba2—O4 ^{ix}	2.836 (4)
Ba1—O1 ⁱⁱⁱ	2.730 (4)	Ba2—O4 ^x	2.836 (4)
Ba1—O4 ^{iv}	2.799 (4)	Ba2—O5 ^{xi}	3.084 (3)
Ba1—O4 ^v	2.799 (4)	Ba2—O5 ^x	3.084 (3)
Ba1—O1 ^{vi}	2.903 (4)	P1—O1	1.514 (5)
Ba1—O1	2.903 (4)	P1—O1 ^{vi}	1.514 (5)

supporting information

D 1 02	2 0272 (10)	D1 00	1 510 (0)
Ba1—O2 ^m	2.9272 (18)	P1-02	1.519 (6)
Ba1—O2 ^{vii}	2.9272 (18)	P1O3	1.588 (6)
Ba1—P2 ^{iv}	3.320 (2)	P1—Ba1 ^{vii}	3.3700 (11)
Ba1—P1	3.369 (2)	P1—Ba1 ⁱⁱⁱ	3.3700 (11)
Ba1—P1 ^{vii}	3.3700 (11)	P2—O4	1.515 (4)
Ba2-O1 ⁱⁱⁱ	2 765 (4)	$P2 - \Omega 4^{vi}$	1 515 (4)
$B_{a2} = O1^{ii}$	2.765(4)	P2 05	1.519 (4)
$D_{a2} = O_1$	2.703(4)	n2 02	1.519(0) 1.509(5)
Ba204***	2.767 (4)	P2—03	1.598 (5)
Ba2—O4 ⁿ	2.767 (4)		
O5 ⁱ —Ba1—O1 ⁱⁱ	111.47 (14)	$O2^{viii}$ —Ba2—O4 ^x	103.79 (13)
O5 ⁱ —Ba1—O1 ⁱⁱⁱ	111.47 (14)	O4 ^{ix} —Ba2—O4 ^x	66.70 (16)
O1 ⁱⁱ —Ba1—O1 ⁱⁱⁱ	69.95 (18)	O1 ⁱⁱⁱ —Ba2—O5 ^{xi}	146.29 (14)
O5 ⁱ —Ba1—O4 ^{iv}	74.19 (15)	O1 ⁱⁱ —Ba2—O5 ^{xi}	78.59 (14)
$O1^{ii}$ Ba1 $O4^{iv}$	168 60 (12)	$O4^{iii}$ —Ba2—O5 ^{xi}	129 35 (14)
01^{iii} Ba1 04^{iv}	118 01 (12)	$O4^{ii}$ Ba2 $O5^{xi}$	66 99 (14)
O_{1}^{5i} Bal O_{4}^{v}	74 10 (15)	$O^{2^{\text{viii}}}$ B_{2}^{2} $O^{5^{\text{xi}}}$	71.70(11)
$O_3 - Ba_1 - O_4$	(13)	$O_2 - Ba_2 - O_3$	(11)
$O1^{}Da1^{}O4^{+}O4^{+}O4^{+}O4^{+}O4^{+$	118.01 (13)	$O4^{\text{m}}$ $Ba2 = O5^{\text{m}}$	49.98 (14)
Ol ^m —Bal—O4 ^v	168.60 (12)	04 [*] —Ba2—05 ^{**}	110.92 (14)
$O4^{iv}$ —Ba1—O4 ^v	52.90 (17)	$O1^{m}$ —Ba2—O5 ^x	78.59 (14)
$O5^{i}$ —Ba1—O1 ^{vi}	144.13 (12)	$O1^{ii}$ —Ba2—O5 ^x	146.29 (14)
O1 ⁱⁱ —Ba1—O1 ^{vi}	75.66 (12)	$O4^{iii}$ —Ba2—O5 ^x	66.99 (14)
O1 ⁱⁱⁱ —Ba1—O1 ^{vi}	104.02 (8)	$O4^{ii}$ —Ba2—O5 ^x	129.35 (14)
O4 ^{iv} —Ba1—O1 ^{vi}	93.97 (11)	O2 ^{viii} —Ba2—O5 ^x	71.70 (11)
$O4^v$ —Ba1—O1 ^{vi}	71.85 (11)	$O4^{ix}$ —Ba2—O5 ^x	110.92 (14)
O5 ⁱ —Ba1—O1	144.13 (12)	$O4^{x}$ —Ba2— $O5^{x}$	49.98 (14)
01 ⁱⁱ —Ba1—01	104.02 (8)	$O5^{xi}$ —Ba2—O5 ^x	130.9 (2)
01^{iii} Ba1 - 01	75 66 (12)	$O1 - P1 - O1^{vi}$	110.0(3)
O_{4}^{iv} Ba1 O1	71.85 (11)	01 - P1 - 02	110.0(3) 111.48(19)
O_4^{V} P_{21} O_1^{V}	(11)	$O1_{11} O2$	111.40(1)
O4 - Ba1 - O1	93.97 (11) 50.(1.(19)	01 - F1 - 02	111.46 (19)
	50.61 (18)	01 - P1 - 03	108.79 (19)
$O5^{i}$ —Ba1— $O2^{in}$	77.64 (11)	OI^{v_1} PI $O3$	108.79 (19)
$O1^{n}$ —Ba1— $O2^{m}$	119.32 (14)	O2—P1—O3	106.1 (3)
O1 ⁱⁱⁱ —Ba1—O2 ⁱⁱⁱ	52.47 (14)	$O4$ — $P2$ — $O4^{vi}$	110.7 (3)
O4 ^{iv} —Ba1—O2 ⁱⁱⁱ	71.07 (13)	O4—P2—O5	111.7 (2)
O4 ^v —Ba1—O2 ⁱⁱⁱ	121.96 (13)	$O4^{vi}$ —P2—O5	111.7 (2)
O1 ^{vi} —Ba1—O2 ⁱⁱⁱ	131.20 (15)	O4—P2—O3	108.14 (19)
O1—Ba1—O2 ⁱⁱⁱ	80.75 (14)	O4 ^{vi} —P2—O3	108.14 (19)
O5 ⁱ —Ba1—O2 ^{vii}	77.64 (11)	O5—P2—O3	106.1 (3)
O1 ⁱⁱ —Ba1—O2 ^{vii}	52.47 (14)	P1—O1—Ba1 ⁱⁱⁱ	101.23 (18)
01^{iii} Ba1 -02^{vii}	119 32 (14)	$P1 \longrightarrow D1 \longrightarrow Ba2^{iii}$	1360(2)
$O4^{iv}$ Ba1 $O2^{vii}$	121.96 (13)	$Ba1^{iii} - O1 - Ba2^{iii}$	110.49(16)
$O_4 = Da1 = O_2$	71.07(13)	$\mathbf{D}_{\mathbf{a}1} = \mathbf{O}_1 = \mathbf{D}_{\mathbf{a}2}$ $\mathbf{D}_1 = \mathbf{O}_1 = \mathbf{D}_{\mathbf{a}2}$	04.1(2)
$O_{T} = -Da_{1} = O_{2}$	(1.07 (13))	$D_{a1} = O_1 = D_{a1}$	104.24(12)
$OI - DaI - O2^{iii}$	00.73(14)	Da1 - UI - Da1	104.34 (12)
	151.20 (15)		106.17 (13)
$O2^{m}$ —Bal— $O2^{vn}$	146.9 (2)	$P1 - O2 - Ba2^{x_{11}}$	160.9 (4)
$O1^{m}$ —Ba2— $O1^{n}$	68.95 (18)	P1—O2—Ba1 ^m	93.11 (12)
O1 ⁱⁱⁱ —Ba2—O4 ⁱⁱⁱ	72.50 (12)	Ba2 ^{xii} —O2—Ba1 ⁱⁱⁱ	92.31 (11)

O1 ⁱⁱ —Ba2—O4 ⁱⁱⁱ	109.70 (12)	P1—O2—Ba1 ^{vii}	93.11 (12)
O1 ⁱⁱⁱ —Ba2—O4 ⁱⁱ	109.70 (12)	Ba2 ^{xii} —O2—Ba1 ^{vii}	92.31 (11)
O1 ⁱⁱ —Ba2—O4 ⁱⁱ	72.50 (12)	Ba1 ⁱⁱⁱ —O2—Ba1 ^{vii}	146.9 (2)
O4 ⁱⁱⁱ —Ba2—O4 ⁱⁱ	68.58 (18)	P1—O3—P2	134.7 (4)
O1 ⁱⁱⁱ —Ba2—O2 ^{viii}	141.37 (10)	P2—O4—Ba2 ⁱⁱⁱ	136.3 (2)
O1 ⁱⁱ —Ba2—O2 ^{viii}	141.37 (10)	P2—O4—Ba1 ^{xiii}	96.06 (19)
O4 ⁱⁱⁱ —Ba2—O2 ^{viii}	73.45 (13)	Ba2 ⁱⁱⁱ —O4—Ba1 ^{xiii}	95.85 (12)
O4 ⁱⁱ —Ba2—O2 ^{viii}	73.45 (13)	P2—O4—Ba2 ^{xiv}	104.2 (2)
O1 ⁱⁱⁱ —Ba2—O4 ^{ix}	109.63 (12)	Ba2 ⁱⁱⁱ —O4—Ba2 ^{xiv}	111.96 (14)
O1 ⁱⁱ —Ba2—O4 ^{ix}	73.36 (12)	Ba1 ^{xiii} —O4—Ba2 ^{xiv}	107.08 (13)
O4 ⁱⁱⁱ —Ba2—O4 ^{ix}	176.88 (2)	P2—O5—Ba1 ^{xv}	162.0 (4)
O4 ⁱⁱ —Ba2—O4 ^{ix}	112.28 (14)	P2—O5—Ba2 ^{xiv}	93.88 (15)
O2 ^{viii} —Ba2—O4 ^{ix}	103.79 (13)	Ba1 ^{xv} —O5—Ba2 ^{xiv}	93.56 (13)
O1 ⁱⁱⁱ —Ba2—O4 ^x	73.36 (12)	P2—O5—Ba2 ^{xvi}	93.88 (15)
O1 ⁱⁱ —Ba2—O4 ^x	109.63 (12)	Ba1 ^{xv} —O5—Ba2 ^{xvi}	93.56 (13)
O4 ⁱⁱⁱ —Ba2—O4 ^x	112.28 (14)	Ba2 ^{xiv} —O5—Ba2 ^{xvi}	130.9 (2)
O4 ⁱⁱ —Ba2—O4 ^x	176.88 (2)		

Symmetry codes: (i) x-1, y, z; (ii) -x+2, y+1/2, -z+1; (iii) -x+2, -y, -z+1; (iv) x-1/2, y, -z+1/2; (v) x-1/2, -y+1/2, -z+1/2; (vi) x, -y+1/2, z; (vii) -x+2, -y+1, -z+1; (viii) x-1/2, y, -z+3/2; (ix) -x+5/2, y+1/2, z+1/2; (x) -x+5/2, -y, z+1/2; (xi) x+1/2, y, -z+3/2; (xiii) x+1/2, y, -z+1/2; (xiv) -x+5/2, -y, z+1/2; (xiv) -x+5/2, -y-1, z+1/2; (xii) x+1/2, y, -z+3/2; (xiii) x+1/2, y, -z+1/2; (xiv) -x+5/2, -y, -z+1/2; (xiv) -x+5/2, -y-1, z+1/2; (xii) x+1/2, y, -z+3/2; (xiii) x+1/2, y, -z+1/2; (xiv) -x+5/2, -y, -z-1/2; (xv) x+1, y, z; (xvi) -x+5/2, -y+1, z-1/2.