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SELECTED PROBLEMS IN CONTINUUM THEORY

JANUSZ J. CHARATONIK

Abstract. Some open problems in metric continuum theory
are discussed. They concern 1) generalized homogeneity, in
particular monotone homogeneity of dendrites; 2) planability
of curves; 3) means on continua; 4) contractibility of continua;
and 5) selectibility of continua.

Introduction

A continuum means a compact connected metric space. The
aim of this paper is to present a number of problems pertinent to
continuum theory, especially connected with continuous mappings
of continua. The background and the motivation for these problems
come from the author’s investigations in continuum theory. The
formulation of these problems is restricted to the area of metric
continua, although many of them can be posed for wider classes of
spaces (e.g., for Hausdorff continua or for metric connected – not
necessarily compact – spaces). Special attention is paid to topology
of curves (i.e., one-dimensional continua), to their structural as well
as mapping properties. For other collections of continuum theory
problems see historically the first such set [36], and also [35], [59],
[60] and [72].

The reader is referred to [71] for concepts not defined here.
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1. Generalized homogeneity

A space X is said to be homogeneous provided that for every
two points p and q in X there is a homeomorphism h : X → X
such that h(p) = q. Homogeneity of topological spaces, in particu-
lar of continua, has received much attention from specialists since
the 1920s (see e.g. [26, Section 8, p. 733]). Many homogeneity
problems are recalled in survey articles by W. Lewis [62], [63], [64].
Since they are widely known, there is no need to repeat them here.

The concept of homogeneity was generalized in many ways, see
[27]. One of these concepts, due to D. P. Bellamy, is the following.
Let a class M of mappings between continua be given such that
it contains all homeomorphisms and has the composition property,
i.e., the composition of any two mappings belonging toM is also in
M. A space X is said to be homogeneous with respect toM (more
concisely M-homogeneous) provided that for every two points p
and q in X there is a mapping f : X → X such that f(p) = q and
f ∈M. If, in particular,M denotes the class of homeomorphisms,
then X is homogeneous in the previously considered sense. A gen-
eral problem, which can be considered as a research program rather
than a particular question, is to verify what results concerning ho-
mogeneity can be strengthened so that the usual concept of homo-
geneity is replaced by homogeneity with respect to a wider (thus
less restrictive than homeomorphisms) class of mappings. Below
we recall several particular questions of this kind.

1.A. Circle-like continua

Some results on characterizations of solenoids in the realm of
circle-like continua via generalized homogeneity are collected in [13,
Theorem, p. 173]. The following question remains open [13, Ques-
tion 2, p. 173].

Question 1.1. Let a circle-like open-homogeneous continuum that
is not S1 contain an arc. Is it then a solenoid?

In connection with circle-like continua, recall that in 1951, R.
H. Bing constructed a hereditarily indecomposable circle-like con-
tinuum called the pseudo-circle (see [9, p. 48] for the definition)
and asked about its homogeneity. The pseudo-circle was shown to
be unique [39] and not homogeneous [40] and [79]. Thus, natural
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questions arise (see [15, Problem 7, p. 5] and [25, problems 1 and
2, p. 10]), which are (as far as I know) still open.

Question 1.2. Is the pseudo-circle a) open-homogeneous, b) con-
fluent-homogeneous?

1.B. Menger’s universal continua and Urysohn’s

continua

Given a collection C of subsets of a space, we let C∗ denote the
union of all elements of C. For a positive integer n, let C be a col-
lection of n-dimensional cubes in the Euclidean n-space. For each
k ∈ {0, . . . , n}, denote by C(k) the collection of all k-dimensional
faces of cubes from C, and let par C stand for the collection of n-
dimensional cubes which is obtained by partitioning each cube from
C into 3n congruent cubes. Let k ∈ {0, . . . , n} be fixed. Take the
collection C0,k = {[0, 1]n} consisting only of the unit n-cube [0, 1]n,
and define inductively, for each positive integer i, a collection Ci,k
by the formula

Ci,k = {C ∈ par Ci−1,k : C ∩ (C(k)
i−1,k)

∗ 6= ∅}.

Then the Menger universal continua Mn
k are defined by

Mn
k =

⋂
{(Ci,k)∗ : i ∈ {0, 1, 2, . . . }}.

They were characterized in [8].
It can be shown that for each n ∈ N the set Mn

0 is homeomorphic
to the Cantor middle-third set, so it is homogeneous as a topological
group. M2

1 is the Sierpiński universal plane curve which is not
homogeneous as a locally connected plane continuum distinct from
the simple closed curve. However, it is known to be homogeneous
with respect to the class of mappings which are open and monotone
simultaneously; thus, it is both open- and monotone-homogeneous,
(see [78, Theorem 23, p. 38] and compare also [80]). M3

1 is the
Menger universal curve, which is homogeneous, (see [1] and [2]).
Further, it is shown in [8] that the continuaM2n+1

n are homogeneous
for each n ∈ {0, 1, 2, . . . }, whence it follows that all Mm

n are for m ≥
2n+1 (note that for m ≥ 2n+1 all Mm

n are topologically stabilized).
Finally, so called intermediate Menger compacta Mm

n for each n ∈
{1, 2, . . . } and m ∈ {1, 2, . . . , 2n} are not homogeneous [61]. In
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connection with the latter result, recall the following problem (see
[25, Problem 3, p. 11] and [27, Problem 4.17, p. 76]).

Problem 1.3. For what classes M of mappings are the intermedi-
ate Menger compacta Mm

n for each n ∈ N and m ∈ {1, 2, . . . , 2n}
M-homogeneous?

Constructions are known, due to P. S. Urysohn, of locally con-
nected plane curves, X(ω) and X(ℵ0) having the property that
each of their points is of Menger-Urysohn order ω or ℵ0, respec-
tively (see [22]). These constructions are not unique, so we can
consider some classes or types of curves of constructions in a pre-
scribed way rather than any particular examples. Obviously, no
such curve is homogeneous (because the only plane homogeneous
locally connected continuum is the simple closed curve [68]), while
each of them is homogeneous with respect to the class of all map-
pings [52, Theorem 1, p. 347]. Homogeneity of these curves with
respect to other classes of mappings (as open, monotone, etc.) is
not known. So, we have the following question.

Question 1.4. Can the above mentioned curves X(ω) and/
orX(ℵ0) be constructed so that the resulting continuum is a) open-,
b) monotone-, c) confluent-homogeneous?

This question is a particular case of a more general problem
concerning locally connected continua.

Problem 1.5. Characterize locally connected continua that are a)
open-, b) monotone-, c) confluent-homogeneous.

1.C. Dendroids and dendrites

A continuum X is said to have the property of Kelley provided
that for each point p ∈ X, for each subcontinuumK ofX containing
p, and for each sequence of points pn converging to p, there exists
a sequence of subcontinua Kn of X containing pn and converging
to the continuum K. It is known [14, Statement, p. 380] that each
open-homogeneous continuum has the property of Kelley. This re-
sult cannot be extended to confluent-homogeneous continua. An-
swering the author’s question, H. Kato has constructed in [48] two
examples of continua (one contractible and 2-dimensional, and the
other 1-dimensional) which are confluent-homogeneous and which
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do not have the property of Kelley. Even monotone homogeneity
does not imply the property of Kelley. A. Illanes has constructed a
plane continuum which is monotone-homogeneous and which does
not have the property of Kelley [44], as well as a dendroid, i.e., an
arcwise connected and hereditarily unicoherent continuum, with
the same properties (unpublished). Since each dendrite (i.e., a lo-
cally connected continuum containing no simple closed curve) has
the property of Kelley, the following problem is natural.

Problem 1.6. Characterize monotone-homogeneous dendroids that
have the property of Kelley.

It is shown in [48, Example 2.4, p. 59] and [49, Proposition
2.4, p. 223] that the standard universal dendrite D3 of order 3
is monotone-homogeneous. After some generalizations, (see [19,
Theorem 7.1, p. 186] and [24, Theorem 3.3, p. 292 and Corollary
3.8, p. 293]), the strongest result in this direction says that if a
dendrite X has the set of its ramification points R(X) dense in
X, then X is monotone-homogeneous [28, Proposition 15, p. 364].
The converse is not true and, moreover, it can be seen that the
condition cl R(X) = X is far from being necessary for a dendrite
X to be monotone-homogeneous. Namely, recall the Omiljanowski
dendrite L0 which is constructed as follows (see [19, Example 6.9,
p. 182] and also [28, p. 365]).

Let L1 be the unit interval in the plane. Divide it into three equal
parts, and in the middle of them, M , locate a thrice diminished
copy of the standard Cantor ternary set. At the mid point of each
contiguous interval K to C (i.e., of a component K of M \C), erect
perpendicularly to L1 a straight line segment whose length equals
the length of K. Denote by L2 the union of L1 and of all erected
segments (there are countably many of them). Perform the same
construction on each of the added segments: divide such a segment
into three equal subsegments, locate in the middle subsegment M
a copy C of the Cantor set properly diminished, and at the mid
point of any component K of M \ C, construct a perpendicular
to K segment as long as K is, and denote by L3 the union of L2

and of all attached segments. Continuing in this manner we get an
increasing sequence of dendrites Ln. Then

L0 = cl (
⋃
{Ln : n ∈ N}).
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Note that the set R(L0) of ramification points of L0 is discrete (thus
nowhere dense in L0). For the proof of monotone homogeneity of
L0 see [19, Example 6.9, p. 182]. It is shown in [28, Proposition
20, p. 366] that if a dendrite contains a homeomorphic copy of L0,
then it is monotone-homogeneous. The converse is not known, and
the following two questions are still open (see [19, Question 7.2, p.
186], and [28, Question 21, p. 366]).

Question 1.7. Does every monotone-homogeneous dendrite con-
tain a homeomorphic copy of the dendrite L0 (equivalently, does it
admit any monotone mapping onto D3)?

Question 1.8. What is an internal (structural) characterization of
monotone-homogeneous dendrites?

The reader is referred to Section 3 of [29] for a summary of known
results on monotone-homogeneous dendrites.

A larger class of mappings than that of monotone ones is the class
of confluent mappings. For dendrites, monotone homogeneity and
confluent homogeneity are equivalent, but it is not known if this
equivalence is valid for wider classes of continua, e.g., for (smooth)
dendroids [28, p. 363 ff].

2. Planability of dendroids

At the end of the 1950s, B. Knaster formulated (and published
in [51]) the following problem.

Problem 2.1. Give necessary and sufficient (structural) conditions
under which a dendroid can be embedded in the plane.

Very little is known about this. The general problem of planabil-
ity of dendroids is discussed in [16] and in [23, Section 6, p. 25],
where references to some partial answers can be found.

There are some partial results about preservation of planabil-
ity of dendroids under mappings satisfying some special conditions.
Monotone ones preserve (even for λ-dendroids, i.e. hereditarily uni-
coherent and hereditarily decomposable continua) while confluent
do not, see [23, Section 6, (6.4) and (6.5), pp. 27-28]. The following
question of T. Maćkowiak is still open, see [65, §5, p. 266].

Question 2.2. Is an open image of a planable dendroid always a
planable dendroid?
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We remark that open mappings do not preserve planability for
graphs [83, Example, p. 189].

3. Means on continua

Given a Hausdorff space X, a mean on X is a mapping m :
X ×X → X such that m(x, x) = and m(x, y) = m(y, x) for every
x, y ∈ X. Means on continua have been studied by many authors.
Some basic information is contained in [70, p. 285], [46, p. 374],
[21], and [30, Section 5] and in references given there.

3.A. Generalities

The basic problem related to the considered topic is to know
what spaces admit a mean (see [70, Theorem 6.17 and Question
6.17.1, p. 285]).

Problem 3.1. Find any structural (intrinsic) characterization of
spaces (of continua) that admit a mean.

A mean m : X ×X → X is said to be associative provided that

m(x,m(y, z)) = m(m(x, y), z) for every x, y, z ∈ X.
A dendroid X is said to be smooth provided that there is a point
p ∈ X such that for each point x ∈ X and for each sequence of
points xn tending to x, the arc px is the limit of the sequence of
the arcs pxn.

Among many other results concerning means, the following ones
are known.

(3.2) If a continuum admits a mean, then it is unicoherent [4,
Theorem 1.1, p. 211]. In particular, the circle S1 does not
admit any mean (compare [70, 0.71.1, p. 50]).

(3.3) A one-dimensional locally connected continuum admits a
mean if and only if it is a dendrite [81, p. 85] (compare also
[30, Theorem 5.31, p. 22]).

(3.4) Let a continuum X be either one-dimensional or hereditar-
ily unicoherent. If X admits an associative mean, then X
is a smooth dendroid [30, Theorem 5.21, p. 20].

(3.5) Each plane smooth dendroid admits a mean [31, Theorem
6.6, p. 497]. Since each smooth fan is embeddable in the
Cantor fan (i.e., the cone over the Cantor ternary set), it is
planable, whence it follows that each smooth fan admits a
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mean [30, Corollary 5.41, p. 24] (also [6, Proposition 4.2, p.
43]). There is a (nonplanable) smooth dendroid that admits
no mean [30, Example 5.52, p. 25] (also [46, Example 76.12,
p. 376, and Exercise 76.33, p. 380]). There exists a non-
smooth fan that admits a mean (see [6, Example 4.8, p. 45];
for a picture, see [46, Figure 30, p. 195]).

(3.6) The sin(1/x)-curve admits no mean [3].
In connection with (3.2)-(3.5) the following problems are of a special
interest [30, Problems 5.50 and 5.56, p. 25 and 28].

Problem 3.7. Find any structural (intrinsic) characterization (a)
of dendroids and (b) of smooth dendroids that admit a mean.

A continuum X is said to be uniformly arcwise connected pro-
vided that it is arcwise connected and that for each ε > 0 there
is a k ∈ N such that every arc in X contains k points that cut
it into subarcs of diameters less than ε. By [54, Theorem 3.5, p.
322], each uniformly arcwise connected continuum is a continuous
image of the Cantor fan (but not conversely; the equivalence holds
for uniquely arcwise connected continua, in particular for dendroids
[54, p. 316]).

As mentioned in (3.5), smoothness of dendroids neither implies
nor is implied by admitting a mean. Smoothness of dendroids is an
intermediate property between the property of Kelley and uniform
arcwise connectedness in the sense that for dendroids the property
of Kelley implies smoothness [38, Corollary 5, p. 730], which in
turn implies uniform arcwise connectedness [32, Corollary 16, p.
318]. It is interesting to know if admitting a mean also is such an
intermediate property. In other words, we have the following two
questions (see [30, questions 5.48 and 5.49, p. 25]).

Question 3.8. Let a dendroid have the property of Kelley. Must
it then admit any mean?

Note that for λ-dendroids the property of Kelley does not imply
existence of a mean, by (3.6).

Question 3.9. Let a dendroid admit a mean. Must it then be
uniformly arcwise connected?
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3.B. No-mean results and questions

Concerning other classes of continua, not necessarily arcwise con-
nected curves, attention was paid to arc-like continua. Let us recall
that the simplest arc-like continuum, that is an arc, admits a mean
according to (3.3). Moreover, the arc is the only known arc-like con-
tinuum admitting a mean. More than thirty years ago, P. Bacon,
in [3, p. 13], asked if it is the only possible one:

Question 3.10. Is the arc the only arc-like continuum that admits
a mean?

The question is still open. Some partial results are known, from
which we conclude that in many particular cases arc-like continua
distinct from an arc do not admit any mean. For example, it is
shown in [3, Theorem, p. 11] that there is no mean on the sin 1/x-
curve. This result is extended in [6, Theorem 3.5, p. 42] by showing
that if a continuum X contains an arc A and two sequences of arcs
that are folded in opposite directions with respect to A, and more-
over, if these sequences converge to A 0-regularly, then X admits
no mean. A further extension is made in [50]. To present it, and
also for other purposes, recall some auxiliary notions.

Chains of (compact) disks in the plane R2 (called links of the
chain) will be considered. For a fixed ε > 0, a chain C is called an
ε-chain provided that each link of C has diameter less than ε.

Let chains C and C′ be given. We say that the chain C′ refines
the chain C if each link L′ of the chain C′ is contained in the interior
of at least one link L of the chain C; i.e., for every L′ ∈ C′ there
exists a link L ∈ C such that L′ ⊂ L and the disk L′ has no common
points with the boundary of the disk L.

Let m and m′ be numbers of links of the chains C and C′, re-
spectively, such that C′ refines C, and let ϕ : {1, 2, . . . ,m′} →
{1, 2, . . . ,m} be a function defined by

ϕ(i) = min{j : Li ⊂ L′j for Li ∈ C and L′j ∈ C′}.

Consider chains C and C′ and points a and b, such that a ∈ L′u ⊂
Ls and b ∈ L′v ⊂ Lt, where L′u, L

′
v ∈ C′ and Ls, Lt ∈ C. We say that

C′ is straight in C between points a and b provided that

(a) C′ refines C;
(b) |s− t| > 2;
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(c) the partial function ϕ|{u, . . . , v} : {u, . . . , v} → {s, . . . , t} is
either nondecreasing or nonincreasing.

Let k ≥ 2 be an integer. Take a set Sk = {e1, . . . , ek} of k
distinct points in the plane R2. For each positive integer n let Cn
be a chain, the union of all links of which (being a continuum) is
denoted by Kn, such that, for each n ∈ N, the following conditions
are satisfied:

(d) Cn is a 1
2n -chain;

(e) Cn+1 refines Cn;
(f) Sk ⊂ Kn;
(g) for every two indices i, j ∈ {1, 2, . . . , k} there exists an in-

teger m ≥ n such that the chain Cm contains the point ei
in its first, and the point ej in its last link.

Put

(3.11) X(k) =
⋂
{Kn : n ∈ N}.

Thus, X(k) is an arc-like continuum. It can be verified (see [55,
§48, V, Example 3, Fig. 5, p. 205] for a picture and details in
the case of k = 2; and [71, 1.10, p. 8] and [42, p. 142] for details
in the case of k = 3; for k > 3 the argument is similar) that the
continuum X(k) is irreducible between any pair of points of Sk,
and thus indecomposable, and that the points of Sk are in distinct
composants of X(k).

A point p of an arc-like continuum is called an end point of the
continuum provided that for each ε > 0 there is an ε-chain covering
the continuum such that only the first link of the chain contains p.
By (g) it follows that each of the k points of Sk is an end point of
X(k).

If we additionally assume that
(3.12) for each n ∈ N the chain Cn+1 is straight in Cn between any

two points ei, ej ∈ Sk such that if ei ∈ L′u and ej ∈ L′v,
where L′u, L

′
v ∈ Cn+1, then the union of all links of Cn+1

lying between L′u and L′v does not contain any other points
of Sk; i.e., (L′u ∪ · · · ∪ L′v) ∩ Sk = {ei, ej},

then it can be shown that each of the proper subcontinua of X(k)

is an arc. The continuum X(3) can also be seen as the inverse limit
of an inverse sequence of closed unit intervals Xn = [0, 1] with the
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same piecewise linear bonding mappings fn = f : [0, 1] → [0, 1]
determined by

f(0) = 1
2 , f(1

2) = 1, f(1) = 0

and being linear on [0, 1
2 ] and [1

2 , 1]. It is proved in [5, Theorem 8
and Remarks, p. 168] that each proper subcontinuum of X(3) is an
arc. But note that even with condition (3.12), the continuum X(k)

is not uniquely determined in general.

Definition 3.13. Let A be an arc-like subcontinuum of a con-
tinuum X and let a ∈ A be an end point of A. A sequence
{An : n ∈ N} of subcontinua of X is called a folding sequence
with respect to a (see [50, Definition 2.1, p. 99]), provided that for
each n ∈ N there are subcontinua En and Fn of An such that

(3.13.1) An = En ∪ Fn;
(3.13.2) LimEn = LimFn = A;
(3.13.3) Lim(En ∩ Fn) = {a}.

We say that a chain C = {D1, . . . , Dm} of compact disks Di in R2

is a chain from a point a to a point b provided that a ∈ intD1 \D2

and b ∈ intDn \Dn−1. The points a and b of an arc-like continuum
A are called opposite end points of A if for each ε > 0 there is an
ε-chain from a to b covering A (see [10, p. 661]).

Observe that in the above construction (3.11) of the continuum
X(k) each two points of Sk are opposite end points of X(k).

The following result is shown in [50, Theorem 2.2, p. 99].

Theorem 3.14. Let a continuum X be hereditarily unicoherent. If

(3.14.1) there is an arc-like subcontinuum A ⊂ X with points a, b ∈
A as opposite end points of A, and there are sequences {An}
and {Bn} of subcontinua of X which are folding sequences
with respect to the points a and b, respectively,

then X admits no mean.

Corollary 3.15. Let k ≥ 2 be given. If the continuum X(k) defined
by (3.11) is such that

(3.15.1) each proper subcontinuum of X(k) is an arc,

then it admits no mean.
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Proof: Take A = X(k). Let C1 be the composant of X containing
the point e1. Choose two sequences of points e1

m, e
2
m ∈ C1 such that

e2
m ∈ e1e

1
m ⊂ C1, d(e2, e

2
m) < 1

m , and d(e1, e
1
m) < 1

m .

Then lim e1
m = e1 and lim e2

m = e2. For each m ∈ N define

Em = e1e
2
m, Fm = e2

me
1
m, Am = Em ∪ Fm = e1e

1
m,

and note that (taking convergent sequences, if necessary) the limit
continuum LimEm contains the points e1 and e2, which are opposite
end points of A = X(k). Since A is irreducible between e1 and e2,
it follows that LimEm = A. Similarly, LimFm = A. Further,

(3.15.2) Em ∩ Fm = {e2
m},

and therefore conditions (3.13.1)-(3.13.3) are satisfied. Hence, {Am}
is a folding sequence with respect to e2. A folding sequence with
respect to e1 can be defined in the same way. So, the corollary
follows from Theorem 3.14. �

Corollary 3.16. Let k ≥ 2 be given. If the continuum X(k) defined
by (3.11) satisfies condition (3.12), then it admits no mean.

Remark 3.17. Condition (3.15.1) in Corollary 3.15 is needed to
get (3.15.2) which implies (3.13.3).

Question 3.18. Is condition (3.15.1) essential in Corollary 3.15?

Remark 3.19. Answering the author’s question [21, Question 20,
p. 172], Illanes has shown in [45] that the simplest indecomposable
continuum B with exactly one end point, (i.e., the buckethandle
continuum, see e.g., [71, 2.9, p. 22]), admits no mean. The following
questions are related to this result.

Question 3.20. a) Let X be an arbitrary arc-like continuum with
exactly one end point. Is it true that X admits no mean?

b) Let Y be the union of two copies of B with the end points
identified. Then Y is an arc-like continuum without any end point.
Is it true that Y admits no mean?

c) Let Z be an arbitrary arc-like continuum without any end
point. Is it true that Z admits no mean?

Note that the arc, the sin(1/x)-curve and the buckethandle con-
tinuum B are all arc-like and each of them contains a one-to-one
image of the real half line [0,∞) as a dense subset. Of the three
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examples, the arc is the only one that admits a mean, (see (3.6)
and Remark 3.19). Thus, the following questions are natural.

Question 3.21. Is the arc the only arc-like continuum admitting
a mean that contains (a) a one-to-one image of the real half line
[0,∞) as a dense subset? (b) a dense arc component?

Remark 3.22. Note that the assumption that the continuum un-
der consideration in Question 3.21 is arc-like is essential and it
cannot be replaced by “circle-like.” Indeed, the dyadic solenoid is
circle-like, has dense arc components, and, contrary to S1 (see (3.2)
above), admits a mean (see [50, (3), p. 97], [30, Example 5.47, p.
24] and [46, Example 76.6, p. 374]). In general, any solenoid Σ
different from a circle is determined by a sequence (n1, n2, . . . ) of
integers greater than 1 so that Σ(n1, n2, . . . ) = lim←−{Sk, fk}, where
Sk = S

1 and fk = Sk+1 → Sk is given by fk(z) = znk .
P. Krupski [53, Theorem 2] has shown the following result.

(3.22.1) A solenoid Σ(n1, n2, . . . ) admits a mean if and only if
there are infinitely many even numbers in the sequence
(n1, n2, . . . ).

Remark 3.23. The concept of a folding sequence of continua with
respect to a point and the criterion of the non-existence of a mean
formulated in Theorem 3.14 are related to some other concepts
similarly defined and used to show the non-existence of such prop-
erties as means, contractibility, selectibility, and some others. The
mentioned concepts are:

(3.23.1) of containing a zigzag, see [74, p. 837] and [41, p. 78];
(3.23.2) to be of type N, see [74, p. 837] and [75, p. 393]; compare

also the property (∗) in [37, Theorem, p. 121].
It follows from the definitions that if a continuum contains a zig-
zag, then it is of type N, which in turn implies condition (3.14.1).
A common property of these three conditions is that the considered
(limit) continuum A is arc-like, as in (3.14.1), or even an arc, as
in (3.23.1) and (3.23.2). This restriction is connected with methods
used in proofs (of the non-existence of a mean) rather than that of
the concept of a mean itself.

A less restrictive condition is of being of generalized type N; (see
[17, p. 96]), in which the arc A = xy (mentioned in the definition
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of type N, see [74, p. 837]) is replaced by an arbitrary continuum.
The definition runs as follows.

Definition 3.24. A continuum X is said to be of generalized type
N (between points x and y) provided that there exist in X: a
continuum A containing the points x and y, two sequences of arcs
xnx

′
n and yny

′
n, and points x′′n ∈ yny′n \ {yn, y′n} and y′′n ∈ xnx′n \

{xn, x′n}, such that

(3.24.1) A = Limxnx′n = Limyny′n;
(3.24.2) x = limxn = limx′n = limx′′n;
(3.24.3) y = lim yn = lim y′n = lim y′′n.

Recall that a continuum X is said to be of type N (between points
x and y) provided that the continuum A in the above definition is
an arc from x to y. If X is a dendroid, then A = xy is unique.

Question 3.25. Let a hereditarily unicoherent continuum X be of
generalized type N. Does it follow that X admits no mean?

A more general concept than that of a folding sequence in Def-
inition 3.13 is the one of a bend set, introduced in [66, p. 548].

Definition 3.26. A subset B of a subcontinuum A of a continuum
X is said to be a bend set of A provided that there are two sequences
of subcontinua En and Fn of X, where n ∈ N, such that:

(3.26.1) En ∩ Fn 6= ∅ for each n ∈ N;
(3.26.2) A = LimEn = LimFn;
(3.26.3) B = Lim(En ∩ Fn).

A continuum X is said to have the bend intersection property
provided that for each subcontinuum A ⊂ X the intersection of all
bend sets of A is nonempty, see [66, p. 548]; compare also [57] and
[58].

Observe that in a particular case when the continuum A in the
above definition is arc-like with an end point a and if a folding
sequence An with respect to a does exist, then the singleton {a} is
a bend set of A.

The following question, related to Theorem 3.14, is of great im-
portance; a positive answer to it would be a generalization of The-
orem 3.14.
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Question 3.27. Let a hereditarily unicoherent continuum (in par-
ticular a dendroid) X admit a mean. Does it follow that X has the
bend intersection property?

A result related to this question is the following [58, Theorem 5,
p. 124].

Theorem 3.28. A dendroid X is not of type N if and only if for
each arc A ⊂ X the intersection of all bend sets of A is empty.

Consequently, we have a partial answer to Question 3.27.

Proposition 3.29. Let a dendroid X admit a mean. Then for
each arc A ⊂ X the intersection of all bend sets of A is empty.

Proof: It follows from [6, Theorem 3.5, p. 42] (or from [50,
Theorem 2.2, p. 99]; compare also [30, Corollary 5.40, p. 23]) that
a dendroid admitting a mean is not of type N. Thus, the conclusion
follows from Theorem 3.28. �

Let us recall the following example from [66, Example 3, p. 549]
and consider some questions related to it.

Example 3.30. There is a dendroid D in the plane being the
closure of the unions of two countable families of arcs, each of which
approximates a triod. Further, D is not of (generalized) type N.

Proof: Let (ρ, ϕ) denote a point of the Euclidean plane having ρ
and ϕ as its polar coordinates. Put, for n ∈ N,

p = (0, 0), a = (1, 0), b = (1, π2 ), c = (1, π),

an = (1, 1
n), bn = (1 + 1

n ,
π
2 ), pn = ( 1

n ,
π
4 ), p′n = ( 1

n ,
3π
4 ),

and denote by xy the straight line segment joining points x and y.
Define

D1 = ac ∪ pb ∪
⋃
{(anpn ∪ pnbn ∪ bnp′n ∪ p′nc) : n ∈ N}.

Denote by h the reflection mapping about the origin, and put
(3.30.1) D = D1 ∪ h(D1).

Then the 4-od ac ∪ bh(b) is the limit continuum in D, and

• the arcs can = anpn ∪ pnbn ∪ bnp′n ∪ p′nc approximate the
triod ac ∪ pb,
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• the arcs ah(an) =
ah(p′n)∪h(p′n)h(bn)∪h(bn)h(pn)∪h(pn)h(an) approximate
the triod ac ∪ ph(b).

Note that D is not of (generalized) type N by its construction.
�

Observe further that since each arc-like subcontinuum of D is an
arc, it follows that D does not satisfy condition (3.14.1). Therefore,
there is no general criterion from which it follows that D admits no
mean. So we have a question.

Question 3.31. Does the dendroid D defined by (3.30.1) admit
any mean?

The author conjectures that the answer to Question 3.31 should
be negative. Some other (mapping) properties related to the den-
droid D will be discussed in the next subsection.

Remark 3.32. Example 3.30 can serve as a good illustration of the
concepts in Definition 3.26. Namely, taking the limit 4-od ca∪bh(b)
as A and defining En = h(b)an and Fn = bh(an) = h(En), we have
En ∩ Fn = {p}, whence B = {p} is a bend set of A. Note that D
has the bend intersection property.

It can be observed that all the previously considered concepts of
a folding sequence used in (3.14.1), of a (generalized) type N, and
of a bend set used in the bend intersection property are (in some
sense) too restrictive, so they can be applied rather to a very limited
number of cases. Looking for a more general condition that could
imply non-existence of a mean for a continuum, we can consider
the following one which is a common modification of the conditions
considered above.

Definition 3.33. Let A be a subcontinuum of a continuum X and
let a ∈ A. A pair of sequences {En : n ∈ N} and {Fn : n ∈ N} of
subcontinua of X is called a pair of surrounding sequences for A
with respect to a provided that

(3.33.1) En ∩ Fn 6= ∅ for each n ∈ N;
(3.33.2) A ⊂ LimEn ∪ LimFn;
(3.33.3) Lim(En ∩ Fn) = {a}.
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Question 3.34. Let a hereditarily unicoherent continuum X con-
tain a subcontinuum A, and let two pairs of surrounding sequences
({En}, {Fn}) and ({Gn}, {Hn}) of A with respect to distinct points
a and b, correspondingly, be given. Assume that the irreducible con-
tinuum between the points a and b is contained in the intersections
LimEn ∩ LimFn and LimGn ∩ LimHn. 1) Does it follow that then
X admits no mean? 2) If not, under what additional conditions
does it admit no mean?

Another concept, introduced in [7] and known from investiga-
tions of various phenomena in dendroids (see e.g., [20], [41], or
[75]), is the one of a Q-point. We redefine it here to apply it to a
larger class of continua.

Definition 3.35. A point p of a hereditarily unicoherent contin-
uum X is said to be a Q-point provided that there are in X a
sequence of points pn converging to p and a sequence of continua
I(p, pn) irreducible from p to pn such that LsI(p, pn) 6= {p}; and,
if for each n ∈ N, a point qn is defined so that the irreducible con-
tinuum I(pn, qn) from pn to qn is irreducible between the point pn
and the continuum LsI(p, pn), then the sequence of points qn also
converges to p.

Question 3.36. Let a hereditarily unicoherent continuum X con-
tain a Q-point. Does it follow that X admits no mean?

3.C. Means and mappings

Let us come back to the dendroid D defined by (3.30.1) in Ex-
ample 3.30. Let f : D → E = f(D) be a monotone mapping
that shrinks in D the vertical segment bh(b) to the origin p and is
a homeomorphism on the rest. The obtained dendroid admits no
mean since it is of type N between the points f(a) and f(c). The
following questions are related to this example.

Question 3.37. Let a hereditarily unicoherent continuumX admit
a mean, and let a mapping f : X → f(X) be monotone. Does it
follow that f(X) also admits a mean? If not, is the implication
true under an additional assumption that X is a dendroid?

Note that an affirmative answer to either of these questions im-
plies a negative answer to Question 3.31, as conjectured above.
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Let g : D → F = g(D) be a mapping on D which identifies the
points x and h(x) for each x ∈ D (here h is the reflection about
the origin p as defined in Example 3.30). Then the mapping g is
open, and the obtained dendroid F admits no mean again for the
same reason: it is of type N between points g(b) and g(c). The next
questions arise.

Question 3.38. Let a hereditarily unicoherent and hereditarily
decomposable continuum X (i.e., a λ-dendroid) admit a mean, and
let a mapping g : X → g(X) be open. Does it follow that g(X) also
admits a mean? If not, is the implication true under an additional
assumption that X is a dendroid? If not, is it true under any
additional (nontrivial) condition?

Note that an affirmative answer to either the first or the second
question 3.38 again implies a negative answer to Question 3.31.

Observe also that open mappings do not preserve admitting a
mean for hereditarily unicoherent continua in general: the dyadic
solenoid Σ2 is hereditarily unicoherent and admits a mean (compare
Remark 3.22), while the circle (that is, its open image) admits no
mean according to (3.2).

Questions 3.37 and 3.38 are particular cases of the following.

Question 3.39. What kinds of mappings between continua pre-
serve admitting a mean? What if the domain and/or the range
spaces are a hereditarily unicoherent continuum?

The following property (C) is a modification of a property (∗)
defined in [37, p. 121].

Definition 3.40. Let a surjective mapping f : X → Y between
continua X and Y be given. We say that the triad (X, f, Y ) has
the property (C) provided that

(3.40.1) there is an arc-like subcontinuum A ⊂ X with points a, b ∈
A as opposite end points of A and there are sequences {An}
and {Bn} of subcontinua of X which are folding sequences
with respect to the points a and b, respectively; we assume
that for each n ∈ N we have An = En ∪ Fn and Bn =
Gn∪Hn, respectively, according to Definition 3.13 (in other
words, the continuum X satisfies condition (3.14.1) for the
points a and b of X);
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(3.40.2) the continuum Y is hereditarily unicoherent;
(3.40.3) f(a) 6= f(b);
(3.40.4) f(En) ∩ f(Fn) = f(En ∩ Fn);
(3.40.5) f(Gn) ∩ f(Hn) = f(Gn ∩Hn).

Question 3.41. Let a continuum Y be the image of a continuum
X under a mapping f such that the triad (X, f, Y ) has the property
(C). Does it follow that Y admits no mean?

3.D. Means with special properties

Means with some special properties, such as monotone, open,
and confluent means, have very recently started to be studied, see
[47]. Among many others, the following results have been obtained
in [47].
(3.42) Each dendrite admits a monotone mean, while the harmonic

fan admits no monotone mean.
(3.43) Each n-cell, as well as the dyadic solenoid, admits a mean

that is monotone and open, simultaneously.
(3.44) Each simple n-od (for n ∈ N), as well as the Cantor fan,

admits an open mean, while the harmonic fan admits no
open mean.

(3.45) The harmonic fan admits a confluent mean.
In the light of the above mentioned results, the authors of [47]
asked the following questions. Let me underline that answering
these questions seems to be basic and very important for a further
study in the area.

Question 3.46. Let a dendroid admit a monotone mean. Is it
then a dendrite?

Question 3.47. Does each tree admit an open mean?

Question 3.48. Does there exist a dendrite that is not a tree and
that admits an open mean?

Question 3.49. Does there exist a continuum which admits a
mean but not a confluent one?

Remark 3.50. Recall that a mean m : X ×X → X on a dendroid
X is said to be internal provided that m(x, y) ∈ xy for every two
points x, y ∈ X. It is known that each smooth fan admits an
associative and internal mean [30, Corollary 5.41, p. 24]. Therefore,
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it follows from (3.42) and (3.44) that an associative and an internal
mean has to be neither open nor monotone.

4. Contractibility of continua

Given a space X, a mapping h : X × [0, 1] → X is called a
homotopy. If for each point x ∈ X, the condition h(x, 0) = x holds,
then the homotopy is called a deformation of X. A space X is said
to be contractible provided that there exists a deformation h of X
to a point p ∈ X, i.e., such that h(x, 1) = p for each point x ∈ X.
The following facts are known.

(4.1) if a continuum is 1-dimensional and contractible, then it is
a dendroid (see [11, Proposition 1, p. 73]);

(4.2) each contractible dendroid is uniformly arcwise connected
(see [11, Proposition 4, p. 73] and compare [33, Theorem
3, p. 94]);

(4.3) each smooth dendroid is contractible (see [33, Corollary, p.
93]);

(4.4) a locally connected curve is contractible if and only if it is
a dendrite (this is a consequence of (4.1) and (4.3) above).

During the last three decades, contractibility of continua, in par-
ticular of curves, was studied by a number of authors. Many con-
ditions were considered which either imply or are implied by con-
tractibility of a continuum. These conditions were formulated using
various techniques and were expressed in different ways, so some-
times it is not easy to compare them. Some relations between them
have been investigated in [20]. But the main problem in the area
is still open.

Problem 4.5. Give an internal (structural) characterization of
contractible curves (equivalently, by (4.1), of contractible dendroids).

Recall that the above problem has been solved in a particular
case of fans in [75, Theorem 3.4, p. 393] and in [20, Theorem 3.4,
p. 573].

The following proposition gives a general sufficient condition for
a space to be noncontractible [34, Proposition 1, p. 230].

Proposition 4.6. If a space X contains some two subsets A and
B such that
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(4.6.1) ∅ 6= A ⊂ B 6= X,
(4.6.2) for each deformation h : X × [0, 1] → X we have h(A ×

[0, 1]) ⊂ B,
then X is not contractible.

The next questions were asked in [20, pp. 561 and 562].

Question 4.7. Does every noncontractible dendroid X contain (a)
two subsets A and B satisfying (4.6.1) and (4.6.2); (b) a non-empty
subset A such that for each deformation h : X × [0, 1]→ X and for
each t ∈ [0, 1] we have A ⊂ h(X × {t})?

It is known that if a fan contains a Q-point (see Definition 3.35),
then it is not contractible (see [75, theorems 3.2 and 3.4, p. 393],
[41, Theorem 2.3, p. 81] and [20, Theorem 3.4, p. 573]), but it
is conjectured in [20, Question 2.24, p. 568] that the implication
should be true for all dendroids.

Question 4.8. Does it follow that a dendroid containing a Q-point
is not contractible?

It is known that each contractible fan is locally connected at its
top [77, Theorem 6.1, p. 394], which implies in turn that the fan can
be embedded in the plane [76, Theorem 5.2, p. 502]. Thus, each
contractible fan is embeddable in the plane. This result cannot
be extended to arbitrary dendroids [20, Example 2.32, p. 571].
Therefore, the next question is natural.

Question 4.9. For which dendroids does contractibility imply
planability?

A continuum X is said to be pseudo-contractible provided that
there is a continuum Y , points a, b ∈ Y , and a mapping h : X×Y →
X such that for each point x ∈ X the conditions h(x, a) = x and
h(x, b) = p hold, where p is a constant point of X. Bellamy asked
the following question:

Question 4.10. Is every pseudo-contractible dendroid also con-
tractible?

5. Selectibility of continua

Given a continuum X, we denote by 2X the hyperspace of all
nonempty closed subsets of X equipped with the Vietoris topology
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or, equivalently, with the Hausdorff metric; the hyperspace of all
closed and connected subsets of X is denoted by C(X) (see [70]
or [46] for more information). The term “hyperspace” denotes any
nonempty subspace of 2X . A (continuous) selection for a hyper-
space H ⊂ 2X means a mapping s : H → X such that s(A) ∈ A
for each A ∈ H. If, additionally, the condition s(A) ∈ A ⊂ B
implies s(A) = s(B) for every A,B ∈ H, then the selection s is
said to be rigid, see [82, p. 1041]. A continuum X is said to
be selectible provided that there exists a selection for C(X). The
reader is referred to [46, Section 75, p. 363] for more information
on selections.

The following results are known for a continuum X:
(5.1) A selection for 2X does exist if and only if X is an arc (see

[69, Theorem 1.9, p. 155 and Proposition 2.7, p. 158] and
[56, Theorem 1, p. 5]; compare [46, Theorem 75.2, p. 363]).

(5.2) If X is selectible, then X is a dendroid (see [73, Lemma 3,
p. 370]); further, each selectible dendroid is an image of the
Cantor fan; thus, it is uniformly arcwise connected (see [12,
Proposition 2, p. 110]).

(5.3) A continuum X admits a rigid selection for C(X) if and
only if X is a smooth dendroid (see [82, Theorem 2, p.
1043]).

(5.4) A locally connected continuum is selectible if and only if it
is a dendrite (see [73, Corollary, p. 371]).

In connection with (5.2) and (5.3) the following problem is very
natural and important. It seems to be the main problem in the
area considered (see [70, Question 5.11, p. 259]).

Problem 5.5. Give an internal (structural) characterization of
selectible continua (equivalently, by (5.2), of selectible dendroids).

Various conditions that imply nonexistence of any selection for
C(X) are discussed in [12], [17], [18], [46, Section 75, pp. 363-371],
[66], and [73]. Some of them are known to imply noncontractibility
and/or nonexistence of a mean. Such is, e.g., the condition of
being of type N (see above, Definition 3.24; compare [46, Definition
75.10, p. 367 and Exercise 75.25, p. 369]). Moreover, if a dendroid
is of generalized type N (see again Definition 3.24) then it is non-
selectible [17, (25), p. 96]. This is a particular case of the following
general theorem [66, Theorem, p. 547].



SELECTED PROBLEMS IN CONTINUUM THEORY 73

Theorem 5.6. Let a dendroid X contain two sequences of subcon-
tinua En and Fn of X, where n ∈ N, such that:
(5.6.1) En ∩ Fn 6= ∅ for each n ∈ N;
(5.6.2) LimEn ⊂ A = LimFn;
(5.6.3) B = Lim(En ∩ Fn).
If X admits a selection s : C(X) → X such that s(En ∪ Fn) ∈ En
for each n ∈ N, then s(A) ∈ B.

The following result is a consequence of Theorem 5.6 (compare
Definition 3.26; see also [66, Corollary, p. 548] ).

(5.7) Each selectible dendroid has the bend intersection property.
The opposite implication to (5.7) is not true [66, Example 1, p.

548] ).
Since the hyperspace F1(X) of singletons of a continuum X is

homeomorphic to X, and since obviously F1(X) ⊂ C(X), the con-
tinuum X can be seen as a subspace of C(X). Therefore, a selec-
tion s : C(X)→ X can be treated as a special kind of a retraction
r : C(X)→ X. So, the next two questions arise in a natural way.

Question 5.8. Can the selection s : C(X) → X in Theorem 5.6
be replaced by an arbitrary retraction r : C(X)→ X?

Question 5.9. Let a dendroidX admit a retraction r : C(X)→ X.
Must then X have the bend intersection property?

The reader is referred to [46, Section 75, questions 75.11-75.17,
pp. 367-368] for other questions pertinent to selectibility, related
mainly to special kinds of dendroids (fans, for example) as well as to
special kinds of mappings between them (such as monotone, open,
or confluent).

We close this set of problems with a short discussion that con-
cerns three conditions (related to dendroids X) that were consid-
ered in the previous sections: existence of a mean, of a contraction,
and of a selection for C(X).

Remarks 5.10. (a) Hereditary contractibility and rigid selectibil-
ity do not imply the existence of a mean. Indeed, there exists
a smooth dendroid X in the 3-space which admits no mean (see
[30, Example 5.52, p. 25] or [46, Example 76.12, p. 376]). Being
smooth, it is hereditarily contractible [34, Proposition 14, p. 235],
and it admits a rigid selection for C(X) [82, Theorem 2, p. 1043].
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No such example exists in the plane because each plane smooth
dendroid admits a mean [31, Theorem 6.6, p. 497].

(b) The existence of a mean and selectibility does not imply
contractibility, even for fans. Indeed, there exists a fan in the plane
which is non-contractible and selectible [12, Proposition 4, p. 111
and Figure 2, p. 112], and which admits a mean [6, Example 4.9,
p. 46]. But if we assume that the selection is rigid, which is equiv-
alent to smoothness [82, Theorem 2, p. 1043], then (hereditary)
contractibility follows by [34, Proposition 14, p. 235].

(c) The existence of a mean and contractibility does not imply
selectibility. Indeed, the Illanes-Maćkowiak dendroid, constructed
in [67, Example, p. 321] and in [43, Section 4, p. 70] (see also [30,
Theorem 5.78, p. 31] and [46, Example 75.9, p. 365]), admits a
mean [6, Example 4.10, p. 47], is contractible (but not hereditarily
contractible), and is not selectible. The example is not planable.

In connection with Remark 5.10 (c), one can ask the following
questions (compare [17, Questions 11, p. 94], [23, Question 8.7, p.
34] and [46, Questions 75.12, p. 367]).

Question 5.11. Does there exist a planar, contractible and non-
selectible dendroid?

Question 5.12. Does there exist a dendroid, as in 5.11, admitting
a mean?

Question 5.13. Does hereditary contractibility imply selectibility
of dendroids?
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