
Hardware design space exploration using HercuLeS HLS

Nikolaos Kavvadias
∗

Ajax Compilers
Voutieridi 7 Rd

11525 Athens, Greece
nkavvadias@ajaxcompilers.com

Kostas Masselos
†

Department of Computer Science and
Technology

University of Peloponnese
22100 Tripoli, Greece

kmas@uop.gr

ABSTRACT
HercuLeS is an extensible high-level synthesis (HLS) envi-
ronment. It removes significant human effort by automat-
ically mapping algorithms to hardware, providing a valu-
able design assist to software-oriented developers. To en-
able accessibility and easiness of hardware design space ex-
ploration (DSE), HercuLeS overcomes limitations of known
work: non-standard source languages, insufficient represen-
tations, maintenance difficulties, necessity of code templates,
lack of usage paradigms and vendor-dependence. Specific as-
pects that are highlighted in this manuscript are: a) the in-
nerworkings of the HercuLeS hardware compilation engine,
b) manipulation of SSA (Static Single Assignment) form,
c) automatic third-party IP integration, d) backend C code
generation for compiled simulation, and e) an exemplary
case of DSE. HercuLeS enables efficient hardware generation
that can closely match the quality of results of a manually-
developed implementation with much reduced human effort
and time requirements.

Categories and Subject Descriptors
B.5.1 [Hardware]: Register-Transfer-Level Implementation-
Design[Styles]; B.5.2 [Hardware]: Register-Transfer-Level
ImplementationDesign Aids[Automatic Synthesis, Hardware
Description Languages]; B.7.1 [Hardware]: Integrated Cir-
cuitsTypes and Design Styles[Algorithms implemented in
hardware]

General Terms
Design, Languages, Performance

Keywords
high level synthesis, HLS, FPGA, application-specific inte-
grated circuit, ASIC

∗Cofounder and CEO.
†Holding advisory role at Ajax Compilers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to poston servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PCI 2013, September 19 - 21 2013, Thessaloniki, Greece
Copyright 2013 ACM 978-1-4503-1969-0/13/09 ...$15.00.
http://dx.doi.org/10.1145/2491845.2491857

1. INTRODUCTION
Current VLSI technology allows the design of sophisti-

cated digital systems with ever-growing requirements in per-
formance and power/energy consumption. Rapidly chang-
ing user demands, unprecedented applications, evolved ex-
isting or newly-introduced standards, shape the computa-
tional continuum.

It has long been observed that human designers’ produc-
tivity does not escalate sufficiently enough to match the cor-
responding increase in chip complexity. Notably, the an-
nual increase of chip complexity is 58%, while human de-
signers’ productivity increase is limited to 21% [12]. This
technology-productivity gap is a significant obstacle in the
industrial development of innovative products. A dramatic
increase in designer productivity is only possible through
the adoption and practicing of methodologies that raise the
specification abstraction level, ingeniously hiding low-level,
time-consuming, error-prone details. New EDA (Electronic
Design Automation) methodologies aim to generate high-
performance digital designs from high-level descriptions, a
process called High-Level Synthesis (HLS) [29]. HLS [28]
aims at eliminating human errors and shortening time-to-
market. The input to this process is usually an algorithmic-
level description, generating synthesizable register-transfer
level (RTL) designs that can be implemented on FPGAs
(Field-Programmable Gate Arrays) or ASICs (Application-
Specific Integrated Circuits).

HLS approaches have been developed by academic groups,
startups, established FPGA and EDA vendors. Still, there
is need to tackle important shortcomings, inefficiencies and
omissions such as: a) the devise and use of insufficient and
inflexible intermediate representations (IRs), recording only
partial information; b) difficulty in maintaining features and
interfacing optimizations; c) mandating the use of code tem-
plates to obtain decent results; lack of easy to follow para-
digms; d) use of closed formats and e) succumbing to vendor
and technology dependence.

In this work, specific aspects of HercuLeS1 are presented.
HercuLeS enables a seamless user experience from algorithm
to implementation. To achieve this, it confronts the afore-
mentioned problems: a) HercuLeS uses the NAC IR [33]
which is a bit-accurate typed-assembly language for whole
program descriptions and supports the manipulation of a
number of SSA-like (Static Single Assignment) forms; b)
optimizations can be added as self-contained external mod-
ules upon a moderately-sized HLS kernel; c) HercuLeS does
not rely on code templates since it uses a graph-based back-

1http://www.ajaxcompilers.com

end; d) open specifications such as Graphviz [9] and NAC are
used throughout the HLS process, and e) the generated HDL
code is completely vendor- and technology-independent. It
is human-readable and allows for automatic third-party, IP
integration through an open process.
The remainder of this paper is organised as follows. Se-

ction 2 overviews previous research on the subject. In Se-
ction 3, interesting aspects of HercuLeS are introduced. Clas-
sic SSA, pseudo-SSA and φ-preserving forms are discussed
in Section 4. Backend C code generation issues are pre-
sented in Section 5. Section 6 presents efficient DSE with
a well-known number-theoretical algorithm as the test ve-
hicle. Section 7 evaluates HercuLeS in terms of speed and
chip area optimization. Finally, Section 8 summarizes the
paper.

2. RELATED WORK
EDA vendor HLS offerings include Vivado HLS [36], Cat-

apultC [4], ImpulseC [11], Synphony HLS [18] and C-to-
Silicon [1]. Vivado HLS accepts source input in C, C++ or
SystemC and generates RTL hardware in VHDL [24] or Ver-
ilog HDL [23]. However, third-party IPs are not automati-
cally integrated; instead, vendor-dependent cores are used.
Generally, architectures generated by CatapultC and Im-
pulseC have increased communication overhead that cannot
be alleviated in all cases. Synphony HLS and C-to-Silicon
primarily target the ASIC community due to their very high
price tags; evaluation versions for them are not available to
the public. None of these tools expose information using
open specifications; textual IRs are not accessible for pro-
cessing and manipulation by third-party tools.
Some HLS tools restrict users to specific platforms [3,31].

User designs are bound to be utilized as PICO/ARM and
Nios-II coprocessors, respectively. Despite that the conve-
nience of GCC [19] is identified in [31], the actual input to
the HLS engine is the low-level, machine-dependent RTL
IR. C2H is block-oriented accepting a strict C subset, thus
it is unable to process whole programs. LegUp [13] pro-
vides a rich environment for experimentation but produces
low-level, vendor-specific HDL code.
Publicly released tools producing generic HDL include

ROCCC [16], SPARK [17] and GAUT [6]. ROCCC [16] tar-
gets streamable C applications on a feed-forward pipeline.
It is restricted to perfectly nested constant-bound loops.
GAUT [6] accepts a C/C++ subset and user constraints
(total latency, maximum clock period) to extract full paral-
lelism. It is incapable of handling non-static loops. SPARK
only handles loops with fixed constant iteration counts, ren-
dering most designs infeasible.
Tools with web interface access include: C-to-Verilog [2],

TransC [20] and HercuLeS2. C-to-Verilog [2] is an LLVM
Verilog backend [14], a favorable approach due to the op-
timization capabilities of LLVM. However, it presents limi-
tations in accessing local or global arrays within functions.
TransC [20] supports streaming constructs for data exchange
and process synchronization, however through non-standard
C-like code requiring the user to significantly divert from C
programming.

3. HERCULES BASICS

2http://www.nkavvadias.com/cgi-bin/herc.cgi

Figure 1: The HercuLeS flow.

HercuLeS automatically generates customized hardware
as extended FSMDs (Finite-State Machines with Datapath)
[29] in VHDL. Essentially, HercuLeS translates programs in
the NAC IR to a collection of Graphviz CDFGs (Control-
Data Flow Graphs) which are then synthesized to vendor-
independent self-contained RTL VHDL. HercuLeS is also
used for push-button synthesis of ANSI C code to VHDL.

Since aspects of HercuLeS have already been covered [32,
34], this work focuses on its DSE capabilities.

3.1 Overview
The basic steps in the HercuLeS flow are shown in Fig. 1.

C code is passed to GCC for GIMPLE dump generation
[8], following an external source-level optimizer. Textual
GIMPLE is then processed by gimple2nac; alternatively the
user could directly supply a NAC translation unit (TU) [33].

NAC operations specify a mapping from a set of n or-
dered inputs to m ordered outputs as follows: o1, ..., om

<= oper i1, ..., in; where: oper specifies the IR-level
instruction, o1, ..., om are the m outputs, and i1, ...,

in the n inputs of the operation. A declared object is either
a globalvar (a global scalar or array variable), localvar
(a local), in or out (input or output procedure argument).
The memory access model defines dedicated address spaces
per array, so that both loads and stores require an explicit
array identifier. An indexed load in C (b = a[i];) is trans-
lated as: b <= load a, i;, while an indexed store (a[i]
= b;) as: a <= store b, i;. Procedures are non-atomic
operations; (y) <= sqrt(x); computes ⌊√x⌋.

Various optimizations can be applied at the NAC level;
peephole transformations, if-conversion, and function call in-
sertion to enable IP integration. Heuristic basic block parti-
tioning avoids the introduction of excessive critical paths due
to operation chaining. The core of HercuLeS comprises of a
frontend (nac2cdfg) and a graph-based backend (cdfg2hdl).
nac2cdfg is a translator from NAC to flat CDFGs repre-
sented in Graphviz [9]. cdfg2hdl is the actual synthesis ker-
nel for automatic FSMD hardware from Graphviz CDFGs
to VHDL and self-checking testbench generation.

nac2cdfg is used for parsing, analysis and CDFG extrac-
tion from NAC programs. Multiple approaches to SSA and
SSA-like form construction are supported (Section 4). Data

nac2cdfg

design_pkg.vhd

design_cdt_pkg.vhd

design.dot

subdes1.dot

...

subdesn.dot

main.c

main.h

ansic.mk

design_nac.c

subdes1_nac.c

...

subdesn_nac.c

design.nac

design_test_data.txt

cdfg2hdl

design.vhd

subdes1.vhd

...

subdesn.vhd

design_tb.vhd

ram.vhd

design.mk

GHDL makefile

design.do

Modelsim .do

design.sh

./design.shwith block RAMs
design_alg_test_results.txt

output to command prompt

make -f ansic.mk

main.exe ./main output to command prompt

Figure 2: Innerworkings of HercuLeS.

flow analysis uses on-demand graph reachability checking.
cdfg2hdl maps CDFGs to an extended FSMD MoC (Model
of Computation) [29]. For scheduling operations to specific
states, sequential, control-aware ASAP or ALAP schedul-
ing can be used. ASAP and ALAP can be combined with
fast operation chaining for better state workload balancing.
Specifically, ALAP allows the user to set latency preferences
and is a means for setting constraints, previously missing
from HercuLeS.
An ANSI C backend allows for rapid algorithm prototyp-

ing and NAC verification. VHDL code can be simulated
with GHDL [7] and Modelsim [15] and synthesized in Xilinx
XST [22] using automatically generated scripts.

3.2 How it works
Fig. 2 gives a detailed view of HercuLeS operation. The

user of HercuLeS must provide two input files:

• design.nac: A NAC program translation unit provid-
ing the entire application.

• design_test_data.txt: I/O reference values for use
by the automatically-generated testbench.

Then, nac2cdfg generates several files:

• design.dot, subdes1.dot, . . . , subdesn.dot: These
files are Graphviz CDFGs for the root procedure (design)
and all other procedures in the NAC program.

• main.c, main.h, ansic.mk: Files generated for running
an ANSI C simulation. ansic.mk is an automatically-
generated Makefile.

• design_nac.c, subdes1_nac.c, . . . , subdesn_nac.c:
ANSI C backend files providing C implementations
of all procedures in the TU, generated directly from
NAC. They are used in the C simulations.

• design_pkg.vhd: VHDL package for the FSMD com-
ponents for all NAC procedures.

• design_cdt_pkg.vhd: VHDL package incorporating
definitions of compound data types (arrays).

Following this, there exist two possible flows; one for the
generation and simulation of synthesizable RTL VHDL for
the NAC program, and one for C simulation. The C sim-
ulation flow proceeds by invoking the ansic.mk makefile.
This produces a main executable specification. Then, the
executable is run.
The VHDL flow involves processing all CDFG (.dot) files

by cdfg2hdl, the actual backend tool of HercuLeS. cdfg2hdl
generates several files:

Table 1: FSMD I/O interface.
Signal Direction Description
clk I signal from external clocking source
reset I asynchronous (or synchronous) reset
start I enable computation
din I data inputs (generally, multiple)
dout O data outputs (generally, multiple)
ready O the block is ready to accept new input
valid O asserted when a certain data output port is

streamed-out from the block (generally it is a
vector)

done O end of computation for the block

• design.vhd, subdes1.vhd, . . . , subdesn.vhd: Synthe-
sizable RTL VHDL for the root procedure and all other
procedures in the NAC program.

• ram.vhd: VHDL model of a dual-port synchronous
read RAM for block RAM inference. It is only used if
block RAM mapping is enabled.

• design_tb.vhd: The self-checking testbench.
• design.mk: Makefile for running a GHDL simulation.
• design.do: .do macro file for a Modelsim simulation.
• design.sh: Bash shell script initiating either a GHDL

or Modelsim simulation.

Finally, the design.sh script is run from the command
line and this produces a text file (design_alg_test_re-
sults.txt) providing diagnostic output from a simulation
run. print NAC operations can be used for tracing since
they map to VHDL assert constructs or a C standard li-
brary printf. Also, a VCD or GHW [7] waveform file can
be generated for viewing with GTKwave [10].

3.3 Extended FSMDs
The FSMDs of our approach use fully-synchronous con-

ventions and register all their outputs [27]. The gener-
ated FSMDs are generalized FSMs introducing embedded
actions, with: a) support of array input, output and stream-
ing I/O ports, b) communication with embedded block and
distributed LUT memories, c) latency-insensitive local inter-
face between caller and callee FSMDs, and d) interfacing to
external IP blocks. I/O port usage is summarized in Table 1.

The FSMDs use n + 2 states, where n is the number of
required computational states. The two overhead states rep-
resent CDFG source/sink nodes. One possible optimization
is merging the sink state with its immediate predecessors.

3.3.1 Hierarchical FSMDs

(a) Interface. (b) State transitions.

Figure 3: Caller-callee communication.

A two-state protocol describes proper communication be-
tween caller and callee FSMDs. The first state prepares
the communication, while the latter is an “evaluation” su-
perstate where the entire computation applied by the callee
FSMD is effectively hidden.
The caller FSMD performs computations where new val-

ues are assigned to ⋆_next signals and registered values are
read from ⋆_reg signals. To avoid the problem of multi-
ple signal drivers, callee procedure instances produce ⋆_eval
data outputs that can then be connected to register inputs
by hardwiring to the ⋆_next signal. Fig. 3 illustrates the
established interface and state transitions that control a call
((m) <= isqrt(x);) to integer square root evaluation.
STATE_1 sets up the callee instance. Callee operation takes

place in SUPERSTATE_2. When the callee terminates, ready
is raised. Since callee start is kept low, output data can
be transferred to the m register via its m_next input port.
Control then is handed over to STATE_3. The callee instance
follows the established FSMD interface, reading x_reg and
producing its result in m_eval.

3.4 IP integration
HercuLeS allows for automatic IP integration given that

the user supplies builtin functionalities. To illustrate this ap-
proach, IP blocks for signed/unsigned addition/subtraction,
multiplication, division and remainder have been designed.
The HercuLeS flow user is able to import and use an owned
IP by the following process:

1. Implement IP with expected interface and place in
proper subdirectory

2. Add corresponding entry in a textual database
3. Use TXL transformations [21] for replacing an opera-

tor use by a black-box function call via a script
4. A list of black box functions is generated
5. HercuLeS automatically creates a hierarchical FSMD

with the requested callee(s).

Fig. 4 illustrates the combined TXL/C approach. The
first two steps apply preprocessing for splitting localvar

declarations and removing those that are redundant or un-
used. Then, they are localized and subsequently proce-
dure calls to black-box functions are introduced. These
routines are the actual builtin functions. If the correspon-
ding builtins are listed in the IP database, an interface-
compatible VHDL implementation to HercuLeS caller FS-
MDs is assumed. Then, cdfg2hdl automatically handles in-
terface generation and component instantiation in the HDL
description for the caller FSMD description. In addition,
simulation and synthesis scripts already account for the IP
HDL files.
This approach is also valid for floating-point computation,

currently using IPs generated by FloPoCo [5]. In addition,

Figure 4: Automatic IP integration in HercuLeS.

both pipelined and multi-cycle third-party components are
supported.

4. SSA ALGORITHMS
The general scheme for these methods consists of a series

of passes for variable numbering, φ-insertion, φ-minimization,
and dead code elimination. An out-of-SSA conversion pass
replaces φ statements at a flow-target basic block (BB) by
multiple copies (mov operations) in its flow-predecessor BBs.

4.1 SSA construction
Appel presents a simple approach for variable renaming

and φ-function insertion in two separate phases (algorithm
S) [25]. In the first phase, every variable is split at BB
boundaries, while in the second phase φ-functions are placed
for each variable in each BB. Variable versions are actually
preassigned in constant time and reflect a specific BB or-
dering (e.g. depth-first search). Thus, variable versioning
starts from a positive integer n, equal to the number of BBs
in the given CFG (Control Flow Graph).

For true SSA construction, the algorithm of Aycock and
Horspool (algorithm H) [26] can be used as well, which bares
some similarities to Appel’s approach. However, algorithm
H does not predetermine variable versions at control-flow
joins but accounts φ-functions the same way as actual com-
putations visible in the original CFG. A detailed view of
implementations for both algorithms S and H can be found
in [33]. A faster algorithm for pseudo-SSA construction is
also available in HercuLeS, named algorithm P.

4.2 Pseudo-SSA construction
In this algorithm, def- and use- chains (which are tracked

by certain arrays or bit-vectors) are initialized prior each BB
entry. Pseudo-SSA establishes that only true data depen-
dencies are visible in a given program, however, information
that would be useful in most data flow analyses cannot be
maintained.

A basic difference to algorithm H, is that pseudo-SSA (al-
gorithm P) clears read and write tracking counters for each
variable per BB. With the help of a bit-vector, when a local
variable has not been redefined, it simply copies it to the
versioned operand, otherwise it properly constructs a new
versioned operand. When the write counter must be incre-
mented, the corresponding entry in the bit-vector is set.

In algorithm P, φ insertion is replaced by a process termed
as “copy restoration”. In copy restoration, φ-functions are
not inserted at all. This process performs the restoration of
the original variable names prior to the exit of each BB by
inserting the appropriate mov statements (copies restoring
the unversioned variables), since local versioned names are
only visible within each specific BB. Unique SSA variable

✞ ☎
i = 123;

j = i * j;

do {

PRINT(j);

if (j > 5) {

i = i + 1;

} else {

break;

}

} while (i <= 234);

✝ ✆

(a) Input C code.

i0 =
j0 =
i1 = 123
j1 = i1 * j0

i2 = phi(i7, i1)
PRINT(j1)
t0 = j1 > 5

i7 = i2 + 1

T

F

t1 = i7 <= 234

i6 = phi(i7, i2)

T

F

(b) SSA (alg. S).

i0 =
j0 =
i1 = 123
j1 = i1 * j0

i2 = phi(i1, i4)
PRINT(j1)
t0 = j1 > 5

i4 = i2 + 1

T

F

t1 = i4 <= 234

i7 = phi(i4, i2)

T

F

(c) SSA (alg. H).

Figure 5: Example C source code and SSA form.

names can be established upon choice by concatenating the
procedure identification number and BB enumeration with
variable versions. Unique variable renaming can also be ap-
plied externally via a TXL transformation pass.

4.3 SSA destruction
The SSA destruction phase regards reinstating the initial

non-SSA NAC form without φ-functions at control flow join
points. In this form, the NAC representation can be pro-
cessed by the nac2c backend for C code generation to be
used for profiling via fast compiled simulation.

4.3.1 Classic out-of-SSA conversion
In classic out-of-SSA conversion, each φ-function in a con-

trol-flow target BB is replaced by a mov statement at each
control-flow source BB. This transformation always yields
a proper non-SSA NAC representation, however at the ex-
pense of larger code.

4.3.2 Preserving PHI functions
It is possible to preserve φ-functions if an out-of-SSA con-

version pass is not used. For such statements to be inter-
pretable, additional information is needed to be passed to
NAC φ statements in the form of either additional source
operands or as tags. This information regards the label
or enumeration of the corresponding predecessor BB, where
each φ source operand has been defined. Within the con-
text of the backend C code generation, executable φs appear
as switch-case statements, where the condition variable is
prevbb, a counter that records in run-time the predecessor
BB in the current execution path.

4.4 A simple example
The motivating example of a simple C-like code from [26]

is shown in Fig. 5(a). Valid optimized SSA for algorithms
S and H is shown in Fig. 5(b) and Fig. 5(c), respectively.
There, algorithm H presents only lexicographic and not se-
mantic differences to S. Both algorithms achieve the gener-
ation of minimal SSA involving two φ statements.
Fig. 6 illustrates pseudo-SSA form construction. In algo-

rithm P, variable versions, as can be seen, are not unique
when the entire CFG is accounted.
Fig. 7 illustrates out-of-SSA NAC for the motivating ex-

ample. Only algorithms S and H are shown since out-of-SSA
is not meaningful for P.
In Fig. 8, the corresponding NAC representation is shown

for algorithm H, alongside the actual C code generated by
nac2c.

5. NAC TO C CODE GENERATION

i$1 = 123
j$1 = i$1 * j

PRINT(j)
t0$1 = j > 5

i$1 = i + 1

T

F

t1$1 = i <= 234

T

F

(a) Variable num-
bering.

i$1 = 123
j$1 = i$1 * j
i = i$1
j = j$1

PRINT(j)
t0$1 = j > 5
t0 = t0$1

i$1 = i + 1
i = i$1 + 1

T

F

t1$1 = i <= 234
t1 = t1$1

T

F

(b) Copy restora-
tion.

i$1 = 123
j$1 = i$1 * j
i = i$1
j = j$1

PRINT(j)
t0$1 = j > 5

i$1 = i + 1
i = i$1 + 1

T

F

t1$1 = i <= 234

T

F

(c) Final form.

Figure 6: Step-by-step pseudo-SSA construction.

i0 =
j0 =
i1 = 123
j1 = i1 * j0
i2 = i1

PRINT(j1)
t0 = j1 > 5
i6 = i2

i7 = i2 + 1
i2 = i7
i6 = i7

T

F

t1 = i7 <= 234

T

F

(a) Algorithm S.

i0 =
j0 =
i1 = 123
j1 = i1 * j0
i2 = i1

PRINT(j1)
t0 = j1 > 5
i7 = i2

i4 = i2 + 1
i2 = i4
i7 = i4

T

F

t1 = i4 <= 234

T

F

(b) Algorithm H.

Figure 7: Out-of-SSA representation.

i0 =
j0 =
i1 = 123
j1 = i1 * j0

i2 = phi(i1, 1, i4, 5)
PRINT(j1)
t0 = j1 > 5

i4 = i2 + 1

T

F

t1 = i4 <= 234

i7 = phi(i2, 4, i4, 5)

T

F

(a) CFG.

✞ ☎
BB1:

i$1 = 123;

j$1 = i$1 * j$0;

prevbb = 1; goto BB2;

BB2:

switch (prevbb) {

case 1: i$2 = i$1; break;

case 5: i$2 = i$4; break;

default: break;}

printf("j$1 = %08x\n", j$1);

if (j$1 > 5) t0$3 = 1;

else t0$3 = 0;

prevbb = 2;

if (t0$3 == 1) {goto BB3;}

else {goto BB4;}

BB3:

i$4 = i$2 + 1;

prevbb = 3; goto BB5;

BB4:

prevbb = 4; goto BB6;

BB5:

if (i$4 <= 234) t1$6 = 1;

else t1$6 = 0;

prevbb = 5;

if (t1$6 == 1) {goto BB2;}

else {goto BB6;}

BB6:

switch (prevbb) {

case 4: i$7 = i$2; break;

case 5: i$7 = i$4; break;

default: break;}

✝ ✆

(b) Generated C code.

Figure 8: Out of SSA conversion with PHI function
interpretation using Algorithm H.

The main process involved in NAC to C code generation
regards the mapping of NAC operations to C statements.
Table 2 illustrates the corresponding code generation pat-
terns, simplified where necessary. Data type mappings are
not shown since they are trivial (e.g. u16 corresponds to
unsigned short int and f1.11.52 to double).
relop denotes an ANSI C relational operator, and the

zz suffix is correspondingly eq, ne, ne, lt, gt, le or ge.

Table 2: nac2c code generation patterns.
Operation NAC statement C code template

No-operation nop; /* NOP */;

Move, load con-
stant/address

t <= op u; t = u;

Logical not t <= not u; t = ∼(u);

Logical and t <= and u, v; t = u & v;

Logical or t <= ior u, v; t = u | v;

Logical xor t <= xor u, v; t = u ^ v;

Addition t <= add u, v; t = u + v;

Doubling t <= dbl u; t = u + u;

Subtraction t <= sub u, v; t = u - v;

Negation t <= neg u; float, double: t = -(u);

integer: t = ∼(u) + 1;

Multiply t <= mul u, v; type=datatype(t);

t=(type)u * (type)v;

Squaring t <= sqr u; type=datatype(t);

t=(type)u * (type)u;

Division t <= div u, v; t = u / v;

Remainder t <= rem u, v; t = u % v;

Modulo t <= mod u, v; t = (v<0)?-(u%v):(u%v);

Shift left t <= shl u, v; t = u << v;

Shift right t <= shr u, v; t = u >> v;

Right rotate t <= rotr u, v; w = bitwidth(u);

t = (u>>v)|(u<<(w-v));

Left rotate t <= rotl u, v; w = bitwidth(u);

t = (u<<v)|(u>>(w-v));

Multiplexing t <= muxzz u, v,

w, x;

t = (u relop v) ? w : x;

Set on condition t <= szz u, v; t = (u relop v) ? 1 : 0;

Absolute value t <= abs u; t = (u < 0) ? -(u): u;

Minimum t <= min u, v; t = (u < v) ? u : v;

Maximum t <= max u, v; t = (u > v) ? u : v;

Load t <= load u, v; t = u[v];

Store t <= store u, v; t[v] = u;

Self copy t <= self u; t[u] = u;

Sign-extension t <= sxt u; type=datatype(t); t = (type)(u);

Zero-extension t <= zxt u; type=datatype(t); t = (type)(u);

Truncation t <= trunc u; floating-point:
type=datatype(t); t = (type)(u);

integer:
w=bitwidth(u); bitmask = 2**u-1;

t = u & bitmask;

Integer to float t <= i2s u; t = (float)(u);

Integer to double t <= i2d u; t = (double)(u);

Floating-point to
integer

t <= [s|d]2i u; type = datatype(t); t = (type)(u);

Unconditional tlab <= jmpun; if (keep_ssa) then

jump prevbb = current BB;

endif

goto tlab;

Conditional jump tlabt, tlabf if (keep_ssa) then

<= jmpzz u, v; prevbb = current BB;

endif

if (u relop v) {goto tlabt;}

else {goto tlabf;}

Phi statement t <= phi u1, switch (prevbb) {

<num1>,... iterate the input opnd list [u1,un];

un, <numn>; get input opnd ui;

case defix: t = ui; break;

end iterate

default: break;}

Print variable print u; w=bitwidth(u); n=W/4;

type=datatype(u);

PRINT(u,type,w);

defix is the definition BB for ui. Statements dbl (dou-
bling), sqr (squaring) and self (copying data to a homony-
mous address) are used when an add, mul or store, respec-
tively, has two identical source variables. This is required
since C code generation uses the same data structures that
are used for CDFG generation. It has been chosen that CD-
FGs are simple graphs and not hypergraphs, thus there can
be no multiple edges between a node pair. All possible cases
of identical source operands can be eliminated via appropri-
ate transformations using a peephole transformation pass.

6. DSE CASE STUDY: FIBONACCI SERIES
HLS tools should enable the efficient architectural design

space exploration of possible implementations. As a case
study, we examine the well-known Fibonacci series, defined
as:

F (n) =

{

0 n = 0
1 n = 1
F (n− 1) + F (n− 2) n > 1

using HercuLeS high-level synthesis3.

3http://www.nkavvadias.com/hercules/

✞ ☎
uint32 fibo(uint32 x) {

uint32 f0=0, f1=1;

k = 2;

do {

k = k + 1;

f1 = f1 + f0;

f0 = f1 - f0;

} while (k <= x);

return (f1);

}

✝ ✆

(a) Algorithm A.

✞ ☎
uint32 fibo(uint32 x) {

uint32 f0=0, f1=1, k, f;

k = 2;

do {

k = k + 1;

f = f1 + f0;

f0 = f1;

f1 = f;

} while (k <= x);

return (f);

}

✝ ✆

(b) Algorithm B.

✞ ☎
uint32 fibo(uint32 n) {

uint32 f0=1, f1=1;

k = 2;

while (k <= n) {

k = k + 1;

f0 = f1 + f0;

SWAP(f0 , f1);

}

return (f0);

}

✝ ✆

(c) Algorithm C.

Figure 9: Iterative algorithms for Fibonacci series.

Table 3: Machine cycles for Fibonacci series hard-
ware.
Design Cycles Design Cycles Design Cycles
A0 n B0 n C0 2n − 1
A1 4n + 3 B1 5n + 2 C1 7n + 1
A2 4n + 2 B2 4n + 2 C2 7n
A3-A5 n + 2 B3-B5 n + 2 C3-C5 2(n + 1)

An implementation closely following the recursive defini-
tion would require passing arguments through a stack [35].
A non-recursive approach can result in faster and more effi-
cient hardware. Fig. 9 illustrates three iterative algorithms
for computing F (n). Algorithm A uses addition and sub-
traction in the main loop, B uses only addition but needs
an additional temporary (f), and C again uses a single ad-
dition, does not make use of f , and involves a register swap.
The swap can be implemented either in-situ using repeated
XORing or by register moves requiring temporary storage.
A closed-form solution exists but uses real arithmetic and
may only competitive for a large number of terms.

HercuLeS can be used for exploring different choices of
frontend translation to the NAC IR as well as hardware op-
timization. For this purpose, we exercised five different op-
tion sets for each algorithm variant: sequential scheduling
(O1), ASAP scheduling using SSA (O2), ASAP with opera-
tion chaining (O3), O3 with pseudo-SSA construction (O4)
and O3 with preserving φ functions (O5).

For comparison purposes, carefully hand-coded designs
were also developed for each variant. A highly-optimized cir-
cuit as such computes a new term of the series per clock cy-
cle, thus the required computation time for F (n) expressed
in machine cycles is equal to n. Table 3 depicts analyti-
cal expressions for calculating the number of machine cycles
for each design point. Machine cycles have been deduced
by simulation of the respective HDL designs automatically
generated by HercuLeS. Human expert designs are denoted
as A0, B0, and C0, respectively. Overall, a total of 18 design
points, each one corresponding to different design trade-offs
have been defined.

Interestingly, the benefit of using ASAP (O2) over se-
quential (O1) scheduling is not significant, which is easily
explained by the data dependencies of the algorithm. Fur-
ther, HercuLeS can closely match the result of a human
expert; optimization schemes O3-O5 produce hardware that
only needs n+2 computation cycles, compared to n for the
reference circuits. For high values of n, the difference is neg-
ligible. The two-cycle difference is due to design choices of
the human expert: a) initializing f0, f1 and k in the FSMD
entry state, and b) passing the output data argument with-
out use of an intermediate register. Both techniques can be
supported by HercuLeS with minor additions to cdfg2hdl.

For quantitative assessment of the design points, we ob-

 100

 200

 300

 400

 500

 600

 700

 800

 900

 150 200 250 300 350

E
xe

cu
tio

n
tim

e
(n

s)
 fo

r
n=

47

Number of slice LUTs

Design variants

A0

A1

A2

A3 A4

A5

B0

B1

B2

B3B4

B5

C0

C1

C2

C3C4

C5

(a) Execution time vs. LUTs.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 150 200 250 300

E
xe

cu
tio

n
tim

e
(n

s)
 fo

r
n=

47

Number of slice registers

Design variants

A0

A1

A2

A3 A4

A5

B0

B1

B2

B3 B4

B5

C0

C1

C2

C3 C4

C5

(b) Execution time vs. Regs.

Figure 10: The architectural design space of Fi-
bonacci series hardware.

tained propagation delay (tPD), maximum operating fre-
quency (MOF) and area metrics. All designs were synthe-
sized on the XC6VLX75T Xilinx Virtex-6 device with Xilinx
Webpack ISE 12.3i. Total execution time is computed by
tPD × cycles.
Fig. 10 illustrates time-versus-area scatter plots for num-

ber of slice LUTs and registers. Each design point is repre-
sented by a label. In both cases, better results are placed
near the bottom-left corner of the graph (small execution
time and area). In this sense, B0 and C0 are Pareto-optimal
points in Fig. 10(a). B2, B3, and B4 are potential candi-
dates for the optimal realization produced by HercuLeS. In
Fig. 10(b) A0 is optimal. Designs A1 and B3 are the Pareto-
optimal designs generated by HercuLeS.
Another implied, yet important, trade-off here is the de-

sign concept-to-implementation time. To provide a consis-
tent measure, a human developer with very high expertise
required 2.5h for the design, testing and synthesis of A0, B0
and C0. On the contrary, using HercuLeS, HDL generation,
GHDL simulation [7] and XST logic synthesis (using scripts)
required 629 sec on a low-resource Intel Centrino Duo lap-
top. Automatically generating the 15 different architectures
in VHDL took about 35 sec.
As can be noticed, for the execution time metric, calculat-

ing F (47) was used. This is the largest Fibonacci series term
that can be represented in 32 bits. The HercuLeS backend is
able to generate hardware architectures that use arbitrary-
precision arithmetic. The definition of ANSI/ISO C does
not support multi-precision integers as primitive data types.
Fig. 11 shows reference source code for a multi-precision ver-

✞ ☎
MP_INT fibofast2(uint32 n) {

MP_INT f0, f1 , f;

unsigned int k;

mpz_init_set_ui (&f0 ,0);

mpz_init_set_ui (&f1 ,1);

mpz_init (&f);

k = 2;

do {

k = k + 1;

mpz_add (&f,&f1 ,&f0);

mpz_set (&f0 , &f1);

mpz_set (&f1 , &f);

} while (k <= n);

mpz_clear (&f0);

mpz_clear (&f1);

return (f);

}

✝ ✆

(a) ANSI C code.

✞ ☎
procedure fibo(in u32 n,

out u1024 outp)

{

localvar u32 k;

localvar u1024 f0, f1, f;

LL0:

f0 <= ldc 0;

f1 <= ldc 1;

k <= ldc 2;

LL1:

k <= add k, 1;

f <= add f1, f0;

f0 <= mov f1;

f1 <= mov f;

LL1 , LL2 <= jmple k, n;

LL2:

outp <= mov f;

}

✝ ✆

(b) NAC IR (1024-bit).

Figure 11: Multi-precision versions of variant B.

sion of variant B using the fgmp library [30] compared to
the equivalent NAC IR. In this case, the multi-precision C
version can only be used a guideline; the HercuLeS fron-
tend does not yet support translation to NAC. However,
arbitrary-sized integer data types are supported by the Her-
cuLeS backend. For instance, a 1024-bit circuit can compute
up to the 1476-th term of the series.

7. EVALUATION
Quantitative comparisons and exploration scenarios were

also obtained for selected generic applications. These in-
clude edge detection (edgedet), conversion among 16-bit fl-
oats and integers (float2half, half2float), full-search motion
estimation (fsme), fixed-point, integer and cubic square root
approximations (fixsqrt, isqrt, icbrt), Mandelbrot fractal (man-
del), Sierpinski gasket (sierpinski), matrix multiplication
(matmult), the Smith-Waterman kernel (smwat), 2D Walsh
transform (walsh) and color space conversion (yuv2rgba).
For each case, optimization scenarios O1, O2 and O3 were in-
vestigated, along with O6 defined as O3 with mapping all ar-
rays to embedded, synchronous read, block RAMs. With the
exception of O6, all other scenarios map storage resources
to asynchronous read LUT RAM.

7.1 Speed and area metrics
First, MOF and total execution time are evaluated. Time-

related metrics are shown in Fig. 12(a) while number of
LUTs and registers are shown in Fig. 12(b). Both figures
use relative values. As a reference for 100%, O1 is used.

Average computation time is reduced by 44.3% when com-
paring O1 to O3. BRAMs impose a fixed cycle latency for
synchronous readout as expected, which limits this gain to
about 11.7% for O6. Computer arithmetic problems such
as float2half and half2float achieve up to 4× reduction in
execution time. Memory-intensive benchmarks (matmult,
smwat, walsh) present lesser opportunities due to the mem-
ory accesses activity interfering with chaining. All bench-
marks achieve MOFs in the range of 119-450MHz.

Regarding FPGA area, O1 generates smaller hardware in
terms of LUTs and registers. With O3, LUT and register
demand are increased by 90.1% and 59.1%, compared to O1,
a price paid for much higher speed. However, it is more rea-
sonable to compare O2, O3 and O6 which all prerequisite
SSA form. Then, O3 introduces the highest LUT require-
ments, while O2 the highest register demand. Registers are
reduced by 17.5% among O2 and O6. Also, O6 reduces the
LUT demand in O3 by 14%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

O2/M
OF

O2/Tim
e

O3/M
OF

O3/Tim
e

O6/M
OF

O6/Tim
e

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

M
ax

im
um

 o
pe

ra
tin

g
fr

eq
ue

nc
y

(r
el

at
iv

e)

E
xe

cu
tio

n
tim

e
(r

el
at

iv
e)

edgedet
float2half

fsme
half2float

icbrt
isqrt

mandel
matmult

sierpinski
smwat
walsh

yuv2rgba

(a) MOF and total execution time.

 0

 50

 100

 150

 200

 250

 300

O2/LUTs

O2/Regs

O3/LUTs

O3/Regs

O6/LUTs

O6/Regs

 0

 50

 100

 150

 200

 250

 300

N
um

be
r

of
 L

U
T

s
(r

el
at

iv
e)

N
um

be
r

of
 r

eg
is

te
rs

 (
re

la
tiv

e)

edgedet
float2half

fsme
half2float

icbrt
isqrt

mandel
matmult

sierpinski
smwat
walsh

yuv2rgba

(b) Chip area in number of LUTs and registers.

Figure 12: Speed and area metrics.

8. CONCLUSION
HercuLeS delivers a contemporary HLS environment that

can be comfortably used for algorithm acceleration by pre-
dominantly software-oriented engineers. Even by using a
primarily push-button, black-box approach, efficient explo-
ration of the hardware architecture design space is possible
so that the developer can select an appropriate design point
that effectively complies with user-defined criteria. Apart
from this, the innerworkings of HercuLeS, automatic IP inte-
gration, SSA forms for hardware compilation, and elements
of the backend C code generator were presented in detail.
Future work involves additional optimizations such as loop

pipelining, recursion removal as well as supporting recursive
structures in hardware, resource sharing and on the frontend
side compiling numerical analysis languages to hardware.

9. REFERENCES
[1] C-to-Silicon. http://www.cadence.com/products/sd/-

silicon compiler/pages/default.aspx.
[2] C-to-Verilog. http://www.c-to-verilog.com.
[3] C2H. http://www.altera.com/products/ip/-

processors/nios2/tools/c2h/ni2-c2h.html.
[4] CatapultC.

http://calypto.com/en/products/catapult/overview/.
[5] FloPoCo. http://flopoco.gforge.inria.fr/.
[6] GAUT. http://www-labsticc.univ-ubs.fr/www-gaut/.
[7] GHDL. http://ghdl.free.fr.
[8] GIMPLE. http://gcc.gnu.org/wiki/GIMPLE.
[9] Graphviz. http://www.graphviz.org.

[10] GTKwave. http://sourceforge.net/projects/gtkwave.
[11] ImpulseC. http://www.acceleratedtechnologies.com.
[12] ITRS. http://www.itrs.net/reports.html.
[13] LegUp. http://www.legup.org.
[14] LLVM.
[15] Modelsim. http://www.model.com.
[16] ROCCC. http://www.jacquardcomputing.com/roccc/.
[17] SPARK. http://mesl.ucsd.edu/spark/.
[18] Synphony HLS. http://www.synopsys.com/Tools/-

SLD/HLS/Pages/default.aspx.
[19] The GNU Compiler Collection homepage.

http://gcc.gnu.org.
[20] TransC. http://cgi.tu-harburg.de/∼ti6hm/.
[21] Txl programming language homepage.

http://www.txl.ca.
[22] Xilinx. http://www.xilinx.com.
[23] IEEE 1364-2005 Standard for Verilog Hardware

Description Language, Apr. 2006.
[24] IEEE 1076-2008 Standard VHDL Language Reference

Manual, Jan. 2009.
[25] A. W. Appel. SSA is functional programming. ACM

SIGPLAN Notices, 33(4):17–20, Apr. 1998.
[26] J. Aycock and N. Horspool. Simple generation of

static single assignment form. In Proc. 9th Int. Conf.
in Compiler Construction, pages 110–125, 2000.

[27] P. P. Chu. RTL Hardware Design Using VHDL. Wiley,
2006.

[28] P. Coussy and A. Morawiec, editors. High-Level
Synthesis: From Algorithm to Digital Circuits.
Springer, 2008.

[29] D. D. Gajski and L. Ramachandran. Introduction to
high-level synthesis. IEEE Design & Test of
Computers, 11(1):44–54, Jan.-Mar. 1994.

[30] M. Henderson. fgmp: Free/public-domain MP library.
http://ftp.ee.netbsd.org/pub/pkgsrc/packages/-
NetBSD/sparc/5.1/math/.

[31] G. N. T. Huong and S. W. Kim. GCC2Verilog:
Compiler toolset for complete translation of C
programming language into Verilog HDL. ETRI
Journal, 33(5):731–740, Oct. 2011.

[32] N. Kavvadias, V. Giannakopoulou, and K. Masselos.
FSMD-based hardware accelerators for FPGAs. In
D. K. Tanaka, editor, Embedded Systems - Theory and
Design Methodology, pages 157–160. InTech, Mar.
2012.

[33] N. Kavvadias and K. Masselos. NAC: A lightweight
intermediate representation for ASIP compilers. In
Proc. Int. Conf. on Engin. of Reconf. Sys. and
Applications (ERSA’11), pages 351–354, Las Vegas,
Nevada, USA, Jul. 2011.

[34] N. Kavvadias and K. Masselos. Automated synthesis
of FSMD-based accelerators for hardware compilation.
In Proc. of the 2012 IEEE 23rd Int. Conf. on
Application-Specific Systems, Architectures and
Processors (ASAP), pages 157–160, Delft, The
Netherlands, Jul. 2012.

[35] V. Sklyarov. FPGA-based implementation of recursive
algorithms. Microprocessors and Microsystems,
28(5-6):197–211, 2004.

[36] Xilinx. Vivado ESL Design.
http://www.xilinx.com/products/design-
tools/vivado/integration/esl-design/index.htm.

