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Introduction

The Fields Medal is now indisputably
the best known and most influential
award in mathematics. Sometimes
it is compared with the Nobel prize,
since there is no Nobel prize for math-
ematics. Publishers and journalists
especially like this comparison. It
seems to me that such a comparison
is not adequate. The Fields medal
was established on different princi-
ples. Unlike the Nobel prize, which is
mostly awarded to mature scientists to
crown their careers, the Fields medal is
awarded to young scientists, less than
40 years old. The prize is intended not
only to recognize results already ob-
tained, but also to stimulate further re-
search. Besides this it is awarded only
every four years, at the International
Mathematical Congress.

The first Fields Medal was awarded
in 1936 in Oslo and the second one
14 years later, in 1950, in Cambridge,
Massachusetts.  So mathematicians
born during 1900-1910 were automat-
ically excluded from the list of can-
didates, for example brilliant mathe-
maticians like A. Kolmogorov, H. Car-

tan, A. Weil, J. Leray, L. Pontryagin,
S. S. Chern, and H. Whitney. Never-
theless, if we look at the achievements
of Fields laureates from the point of
view of the development of mathemat-
ics in the 20th century, we see an im-
pressive picture.

The founder of the prize, John
Charles Fields, considered two funda-
mental principles for the award:(a) the
solution of a difficult problem and (b)
the creation of a new theory enlarging
the fields of applications of mathemat-
ics. Both these principles are impor-
tant for the development of mathemat-
ics. It is quite clear that they are not
independent. Very often the solution
of a concrete difficult problem is based
on the creation of a new mathematical
theory and, conversely, the creation of
a new theory may lead to the solution
of an old classical problem.

It is absolutely impossible to cover
in a one-hour talk the results of Fields
laureates even in a condensed form. In
this talk I shall take a stroll through
modern mathematics, giving a kaleido-
scopic view of some exciting pictures.
I shall try to explain the characteris-
tic features of the mathematics of the
20th century, what kind of mathemat-
ics is considered important in this or
that period, and how the results of the
Fields medallists look from this point
of view.

The role of prizes, like the role
of international recognition in gen-
eral, is important for individual schol-
ars. Despite Franz Neumann’s beauti-



ful quote, “The discovery of new truth
is the greatest joy; recognition can
add almost nothing to it,” this wise
idea is only partially true. Accord-
ing to Niels Bohr, the opposite conclu-
sion is also valid. Recognition is espe-
cially important to young researchers.
Selecting young mathematicians sup-
ports the continuing development of
mathematics. The Fields Committees
consist of outstanding mathematicians
of the older generation, which makes
their assessment of the creativity of the
young all the more interesting.

As I already mentioned, the first
Fields Medal was awarded in 1936,
and the next one in 1950, so with one
exception the medals are connected
with the second half of the 20th cen-
tury. The second world war greatly af-
fected the development of society and
science in general, mathematics espe-
cially. The development of mathemat-
ics is a good illustration of the more
general thesis about the continuous
but “nondifferentiable” nature of the
development of science. If we consider
the graph of the development of math-
ematics, we evidently see the changes
of interest in the periods of the world
wars. It is natural for science to de-
velop continuously, a fact based both
on internal factors and the succession
of generations. Also, science is char-
acterized by some conservatism, which
I consider in general as a robust phe-
nomenon. Great ideas appear in the
world by noiseless steps, as Nietsche
said. The acceptance of new ideas pro-
ceeds against great obstacles and re-
quires long testing. As Max Planck
joked, “a new scientific truth does not
triumph by convincing its opponents
and making them seeing the light, but
rather because its opponents eventu-
ally die, and a new generation grows up

with it.” That each tragic world war
destroyed a whole generation of scien-
tists accelerated in addition an appar-
ently objective process to accept new
points of view in mathematics.

If we look at the prizes of 1936 and
1950 from this point of view we can
see that new waves such as the explo-
sion of interest in algebraic topology
and geometry in the first years after
the Second World War are not yet re-
flected in the first postwar award. The
1950 prize was awarded to L. Schwartz
(for the theory of distributions) and to
A. Selberg for his remarkable achieve-
ments in number theory, namely, the
distribution of zeros of Riemann (-
function and an“elementary” proof of
the asymptotic distribution of primes.
But in 1954 the prize was awarded to
K. Kodaira and J. P. Serre for postwar
achievements. Hermann Weyl, who
chaired the Fields committtee in 1954,
delivered a speech on the papers of Ko-
daira and Serre. Curiously, Weyl had
difficulty distinguishing the areas of re-
search of the two mathematicians. He
said, “The uninitiated may get the im-
pression that our committee erred in
awarding the Fields Medals to two men
whose research runs on such closely
neighboring lines. It is the task of the
Committee to show that, despite some
overlap in methods, they give the solu-
tions of completely different, extremely
difficult problems.”

In the subsequent awards, we see
a definite balance between the two
leading principles established by the
founder of the prize. For example, in
1958 Klaus Roth was honoured for the
proof of a delicate estimate that re-
fines the Thue-Siegel theorem on the
approximation of algebraic numbers by
rational numbers. Roth’s theorem:
If « is any algebraic number, not it-



self rational, then for any v > 2 the
inequality

1
2 —al<
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has only a finite number of solutions in
rational p/q.

The second medalist was René
Thom, who constructed a powerful
method in topology known as the
cobordism theory.

In 1962 the prize winners were
Lars Hormander and John Milnor.
Hormander developed the general the-
ory of linear partial differential equa-
tions, including hypoelliptic operators.
The work of the other laureate was
absolutely astonishing and has had
great influence on the future develop-
ment of topology. It is very difficult
to find an analogous invention in the
past to his beautiful construction of
the different differential structures on
the seven-dimensional sphere. Later,
the result became the cornerstone of a
new branch of topology — differential
topology. The original proof of Milnor
was not very constructive but later E.
Briscorn showed that these differential
structures can be described in an ex-
tremely explicit and beautiful form.

Four medals were awarded in 1966.
Among those honoured was Paul Co-
hen, who showed that if the Zermelo-
Fraenkel axioms are consistent, then
the negation of the axiom of choice
or even the negation of the contin-
uum hypothesis can be adjoined and
the theory will remain consistent. It
was the first and the last time that
the award was given to a special-
ist in mathematical logic. Alexander
Grothendieck, one of the most orig-
inal and puzzling mathematicians of
our time, revolutionized algebraic ge-
ometry. The concept of schemes that

he introduced raised algebraic geom-
etry to a new level of abstraction,
beyond the reach of mathematicians
with a traditional education. The the-
ory of sheaves, spectral sequences, and
other innovations in the late 1940’s
and earlier 1950’s are subsumed by
this complicated technique. But if
certain mathematicians could console
themselves for a time with the hope
that all these complicated structures
were “abstract nonsense”(in algebra,
the term “abstract nonsense” has a
definite meaning without any pejora-
tive connotation), the later papers of
Grothendieck and others showed that
classical problems of algebraic geome-
try and the theory of numbers, the so-
lutions of which had resisted efforts of
several generations of talanted mathe-
maticians, could be solved in terms of
the Grothendieck K-functor, motives,
l-adic cohomology, and other equally
complicated concepts.

Two remarkable mathematicians
are present at this conference. The tra-
ditions of a scientific community are
rather different from those of writers,
movie stars, and fashion models. It
is not an accepted practice to compli-
ment a renowned scientist in his pres-
ence. So I really will not touch on the
results of the mathematicians present
here, but make some exception and say
some words about the results of Steven
Smale and Michael Atiyah, because
they beautifully characterised the level
of the prize and the realisation of its
principles.

The results of Smale are especially
near to me, since I started my own
career in mathematics as a student
of the well-known Russian mathemati-
cian Dmitry Anosov, and his first ad-
vice was to study the papers of Smale
about dynamical systems.



S. Smale was honoured mostly for
two of his achievements. The first
one is the solution of the Poincaré
conjecture in higher dimensions. The
Poincaré conjecture is among the most
difficult problems in topology. It can
be stated as follows in modern terms:

Poincaré conjecture A closed
smooth simply connected manifold M™
with the homology groups of the sphere
S™ is homeomorphic to S™.

Poincaré stated his conjecture in
three dimensions. He believed that
a stronger assertion was true, namely
that M™ is diffeomorphic to S™. But as
follows from the existence of Milnor’s
exotic spheres, the conjecture is not
true in this form. Smale proved a more
general theorem on hA-cobordism, from
which it follows that Poincaré conjec-
ture holds for dimensions n > 5. In
dimensions 5 and 6, a stronger conjec-
ture is true: M™ is diffeomorphic to
S™.

At first sight it seems paradoxical
that the proof of the Poincaré con-
jecture for higher-dimensional spaces
is more accessible than for three- and
four-dimensional manifolds. The rea-
son is that a map of a surface into a
manifold of fewer than five dimensions
cannot be approximated by an embed-
ding. The situation is similar to the
classification of manifolds. This indis-
putably classical result corresponds to
the first principle of the Fields award.

The second achievement of Smale is
connected with the theory of dynam-
ical systems. This field has its ori-
gin in classical mechanics and the the-
ory of ordinary differential equations.
It was developed at the beginning of
the twentieth century by H. Poincaré,
G. D. Birkhoff, J. Hadamard, and I.
Bendixson. In the middle 30’s, remark-
able results were obtained by E. Hopf,

G. Hedlund, M. Morse, A. Andronov,
L. Pontryagin, and some others. But
almost all of them were of a two-
dimensional nature. Smale substan-
tially developed a multidimensional
case. He showed that so-called struc-
turally stable dynamical systems in
higher dimensions have radically differ-
ent properties. Unlike two-dimensional
systems, studied by Andronov and
Pontryagin, in a multidimensional sit-
uation structurally stable systems may
have infinite number of singular points,
limit cycles, etc . His first construc-
tion was the famous horseshoe, gen-
erated by discrete automorphisms of
the torus. He proposed a very inter-
esting hypothesis about the structural
stability of geodesic flows on compact
manifolds of negative curvature, later
proved by Anosov. These results led
to the creation of the theory of multi-
dimensional dynamical systems, a new
field of mathematics still actively being
developed. These results of Smale are
an excellent illustration of the second
Fields principle.

The other laureate of this year, M.
Atiyah, was recognised for his work
in algebraic topology, especially for
the proof of the index theorem which
is known as the Atiyah-Singer The-
orem. This theorem is remarkable
from several points of view. Firstly,
it generalized the long sequence of fa-
mous theorems begining with the Eu-
ler theorem on polyhedra and includ-
ing the Riemann-Roch Theorem and
the Poincaré-H. Hopf Theorem about
the singularities of vector fields.

The original proof of Atiyah and
I. M. Singer was extremely compli-
cated and used a wide spectrum of
mathematical concepts developed in
algebraic topology, geometry, and par-
tial differential equations in previous



years. Later, essential simplifications
were obtained and, especially remark-
able, in recent years the relation be-
tween this theory and important prob-
lems in quantum field theory, for exam-
ple the problem of quantum anomalies,
became clear.

The work of Atiyah and Singer,
Grothendieck, F. Hirzebruch, and
many other mathematicians estab-
lished a new field of mathematics,
where the ideas of algebraic topology
and geometry and complex analysis are
so interwined that traditional division
is absolutely impossible now. Using a
nice phrase Atiyah said, ”topologists
used to study simple operators on com-
plicated manifolds while analysts stud-
ied complicated operators on simple
spaces.” The time has arrived to study
complicated operators on complicated
spaces.

These results not only raised math-
ematics to a very high level of ab-
straction, but proved the fruithfulness
of these methods in the solution of
long standing unsolved classical prob-
lems. One of the best examples is
the solution by J. Adams of the fa-
mous problem of the existence of divi-
sion algebras. From the time of Cayley,
the following division algebras were
known: real numbers, complex num-
bers, quaternions, and Cayley num-
bers. As the dimension grows we lose
some properties, e.g. quaternions are

non-commutative. A natural ques-
tion is: Are there other division alge-
bras? The negative answer was ob-
tained only in the 1960s and proved
to be closely related to the following
topological problem: find all spheres
on which the number of independent,
continuous vector fields is equal to its
dimension. There are only three such:
S1, 83, 87,

I hope that this gives at least a
hint of how the two principles of Fields
are linked in the work of M. Atiyah.
Mathematics is a single subject, a fact
that is not always obvious when you
study the daily reality of research. It
becomes clear, however, when you be-
come acquainted with results of great
mathematicians. This realization is
one by-product resulting from an anal-
ysis of the works of the Fields medal-
lists. Although honours went to au-
thors of the greatest achievments ob-
tained in the years immediately pre-
ceding each congress and sometimes
in areas of mathematics widely sepa-
rated from one another, truly wonder-
ful connections between them were dis-
covered with the passage of time. For
that reason an e-grid over the works of
the Field medalists covers a significant
portion of the achievements of modern
mathematics.

FEditors’ note: This article will be con-
tinued in the next issue.



Some Trends in Modern Mathematics and the
Fields Medal

by Michael Monastyrsky

This is the second and concluding part
of this article. The first part appeared
in last month’s issue.

If we very quickly review the re-
sults of the Fields medallists, keeping
in mind the fundamental principles of
J. Fields, we can observe several inter-
esting developments:

1. Allocation of stable fields of inter-
est.

2. Succession of mathematics.
3. Zigzags of mathematical fashion.

I will try to illustrate these theses
with excerpts from the Fields medal-
lists’ results.

1. Allocation of Interest

Indisputably, if we divide the mathe-
matics of the second half of the century
into two parts, the first thirty years is
mainly concentrated around problems
of algebraic topology, algebraic geom-
etry, and complex analysis. Here new
concepts and methods appeared, and
this evidently is reflected in the list of
Fields medallists. A definite change
in this tendency, a return to the more
classical topics, but of course on a new
level, can be observed in mathematics
from the end of the 70’s. With some
delay, this has been reflected in the
Fields medals awarded at the last two
congresses.

It is important to note the new
convergence between mathematics and
physics. The traditional contacts be-
tween mathematics and physics are

well known. If we consider the par-
allel development of mathematics and
fundamental physics, we are aston-
ished that the most revolutionary the-
ories in 20th century physics are based
on mathematics, which was especially
developed for this purpose. It is
enough to mention Einstein’s special
and general relativity based on the
classical differential geometry of Rie-
mann spaces, quantum mechanics and
Hilbert spaces and the theory of lin-
ear operators, the Schrodinger equa-
tion and spectral theory, and so on.
This connection was broken, some-
where in the 30’s, at the time of the
solution of several more concrete prob-
lems in physics, when it seemed to
physicists that most of their problems
could be solved without the applica-
tion of sophisticated and abstract mod-
ern mathematics. The development of
pure mathematics in the period be-
tween the two world wars, and espe-
cially in the post-World War II period,
was also characterized by weak connec-
tions with applied science, in particu-
lar with physics. This association was
especially true of the areas of mathe-
matics in which many Fields medalists
worked. It was difficult to imagine that
the concepts of sheaf, étale cohomol-
ogy, J-functor, and the like would ever
be applied in physics. It was still more
difficult to imagine that physics could
assist algebraic topology and geometry.

This point of view was widespread.
The French mathematician Jean
Dieudonné, one of the founders of
Bourbaki, expressed himself unam-



biguously on this subject in 1962. “I
would like to stress how little recent
history has been willing to conform to
the pious platitudes of the prophets
of doom who regularly warn us of the
dire consequences that mathematics
is bound to incur by cutting itself off
from applications to other sciences. I
do not intend to say that close contact
with other fields, such as theoretical
physics, is not beneficial to all parties
concerned; but it is perfectly clear that
of all the striking progress I have been
talking about, not a single one, with
the possible exception of distribution
theory, had anything to do with phys-
ical applications.” (Quoted from an
address delivered at the University of
Wisconsin in 1962, in which Dieudonné
gave a survey of the achievements of
the preceding decade in pure math-
ematics. He emphasized algebraic
topology, algebraic geometry, com-
plex analysis, and algebraic number
theory.) But as often happens with
globally expressed opinions, the situa-
tion underwent a vast change ten years
later.

At the begining of the 70’s, both in
mathematics and physics, results were
obtained that absolutely changed this
point of view. Among the mathemati-
cians who quickly understood the new
opportunities and challenges hidden in
the new physics were some Fields lau-
reates. It is enough to mention S.
Novikov, S. T. Yau, A. Connes, S.
Donaldson, and E. Witten. Witten
was the first physicist to be awarded
a Fields medal. Among the results
of Fields laureates which were inspired
by physical ideas, let us mention first
of all the work of Simon Donaldson.
After the work of Milnor on differ-
ential structures on S7, the paper of
Donaldson appearing in 1983 had a

similar striking impact. Donaldson
proved the existence of different differ-
ential structures on simply-connected
4-dimensional manifolds.  (Unfortu-
nately the case of S* is not covered
by his method and is still open.) Im-
mediately after the work of Donald-
son, in papers of R. Gompf and C.
Taubes, the following remarkable re-
sult was proved: There exist an in-
finite number of different differential
structures on R*. This result, that
the “well-known” space R* hides such
deep structures, is absolutely astonish-
ing. It has very deep consequences
for quantum gravity, where integrat-
ing over all metrics and so over dif-
ferent differential structures is neces-
sary. It is not less important than the
proof, which is based on earlier dis-
coveries in field theory, mostly in the
gauge theory of strong and weak in-
teractions. Such interactions in the
world of elementary particles are de-
scribed by highly nonlinear equations
with deep topological properties—the
so called Yang-Mills equations. These
equations were invented by the physi-
cists C. N. Yang and R. Mills in 1954,
but for many years were considered as
nonphysical and attracted very little
attention from physicists. Only the
newest development of the theory of el-
ementary particles—the creation of the
theory of weak and strong interactions
based on the Yang-Mills equations—
led physicists to a deeper study of the
structure of these equations.

In the early 70’s, the physical-
mathematical union lessened the gap
in the transmission of information,
leading to the final score in this strik-
ing mathematical achievement. These
and other more recent results led to
a new and deeper connection between
mathematics and physics. The value



of this union for modern mathematics
is indispensible and is based on a se-
ries of achievements of the first rank.
It is enough to mention the results of
V. Drinfeld, M. Kontsevich, and many
others.

2. Mathematical Succession

The best confirmation of continuity
and fruitfulness in the development of
mathematics is the solution of deep
classical problems left by the previous
generations of mathematicians. And
here the results of Fields medalists con-
firm this idea nicely.

The first recipient of the Fields
Medal was Jesse Douglas, who solved
the classical two-dimensional Plato
problem. It is necessary to say that
this problem was solved simultane-
ously by Tibor Rado, but Douglas’ so-
lution was considered as deeper and
could be applied to higher dimensions.

Mathematicians of this mind-set in-
clude the famous number theorists like
A. Selberg, K. Roth, and A. Baker. In
the latest period, we see this tradition
in the works of Gregory Margulis and
Pierre Deligne.

The most important result of Mar-
gulis is his proof of Selberg’s conjec-
ture that a certain class of discrete sub-
groups of the group of motions of sym-
metric spaces of higher rank with fi-
nite volume is arithmetic. While the
conjecture can be stated rather easily,
its proof required a virtuoso mastery
of the technique of the theory of alge-
braic groups, use of the multiplicative
ergodic theorem, the theory of quasi-
conformal mappings, and much more.
In recent years Margulis has examined
the properties of discrete groups in dif-
ferent and sometimes unexpected ar-
eas. By combining ideas from the the-

ory of discrete groups and ergodic the-
ory, he recently solved an old problem
of the geometry of numbers: Oppen-
heim’s conjecture on the representa-
tion of numbers by indefinite quadratic
forms.

Pierre Deligne received the prize for
a proof of a conjectures of A. Weil on
zeta functions over finite fields. His re-
sults are included as a special case of
the proof of the classical Ramanujan
conjecture.

Ramanujan Conjecture: Con-

sider the parabolic form
2r 2A(2) = 2%, (1—2™)* = Z Tna"
n=1

where © = exp(27wiz). Then |7,| <
2p'1/2 for all primes p.

The proof of Deligne is one of the
most brilliant and striking examples of
the unity and continuity of mathemat-
ics. It is striking in its beauty and com-
plexity, but required the application of
the wealth of techniques accumulated
in algebraic geometry over preceding
years.

The last example which I give, but
only to mention in passing to sup-
port this thesis, is the proof of the
“Moonshine hypothesis” by Richard
Borcherds. Here the statement re-
garding the relations between the co-
efficients of special modular forms,
dimensions of the representations of
the Monster group and some infinite-
dimensional Kac-Moody algebras led
to the proof by applying methods from
different fields of mathematics. It was
inspired by the recent development of
string theory.



3. Zigzags in Mathematics

What I mean are the zigzags of mathe-
matical fashion. I already talked about
the domination of three mathematical
diciplines in the list of Fields awards.
Some reaction to this bias, even be-
side some objective background, ap-
peared at the two last congresses. The
awardees were mathematicians work-
ing in more classical fields. Let
us mention here Jean Bourgain and
Tim Gowers—Banach spaces, harmonic
analysis, combinatorics; P-L. Lions—
partial differential equations; Jean-
Cristoph Yoccoz, Curtis McMullen—
dynamical systems, holomorphic dy-
namics; and the algebraist Efim Zel-
manov, who solved the classical re-
stricted Burnside problem. This re-
sult capped off an extended period in
group theory. J. Bougain and T. Gow-
ers solved several classical problems in
the theory of Banach spaces, discov-
ered in very deep structures. J. C. Yoc-
coz and C. McMullen got important re-
sults in the so-called holomorphic dy-
namics. Here the study of sequences
of mappings of complex sets led to the
theory of dynamical systems. A typ-
ical problem of holomorphic dynamics
is to describe the limiting sets of points
of the mapping z — R(z), where R(z)
is a rational function and z is in C or C.
Even the the study of sequences of iter-
ations of such a seemingly simple map
as f.(z) = 22 + ¢ conceals highly non-
trivial results. This theory is placed
at the meeting point of many beautiful
mathematical theories, such as dynam-
ical systems, Kleinian groups, Fricke-
Teichmiiller spaces and many others,
including computer graphics.

This theory is very remarkable and

instructive if you look at it from a
historical perspective. Created in the
end of the 19th and the beginning of
the 20th centuries in the works of the
famous mathematicians P. Fatou, P.
Montel, and G. Julia, it was seriously
forgotten for more than forty years and
was restored only in modern times.
Now, besides being a very interesting
theory, it has a wide field of applica-
tions in physics. Let us mention the
famous universality law of Feigenbaum
which has important applications in
turbulance.

The unity of mathematics is shown
best with these seemingly simple yet
extraordinary complicated examples.

To finish this very sketchy review
of some of the achievements of mod-
ern mathematics in the light of Fields
medals, let me say that the results hon-
ored by Fields medals substantially de-
termined the development of mathe-
matics in our time and its laureates
are worthly representives of the math-
ematical community. Whether or not
the Fields medal can be compared with
Nobel prize, Fields’ idea of awarding it
to the young has met with complete
success.
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