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ABSTRACT 
The  rate of adaptive  evolution  of a population  ultimately  depends  on  the  rate of incorporation of 

beneficial  mutations.  Even  beneficial  mutations  may,  however,  be  lost  from a population  since mutant 
individuals  may, by chance, fail  to reproduce. In this paper, we calculate  the  probability of fixation of 
beneficial  mutations  that  occur  in  populations of changing  size. We examine a number of demographic 
models,  including a population whose  size  changes once, a population  experiencing  exponential growth 
or  decline,  one  that is experiencing  logistic  growth or  decline,  and a population  that  fluctuates in size. 
The  results  are  based  on a branching  process  model  but  are  shown  to  be  approximate  solutions  to  the 
diffusion  equation  describing  changes  in  the  probability  of  fixation  over  time.  Using the diffusion 
equation, the probability of fixation  of  deleterious  alleles can also  be determined  for  populations that 
are  changing  in  size.  The  results  developed in this paper  can  be  used to estimate  the  fixation flux, 
defined as the  rate  at which  beneficial  alleles fix within a population.  The  fixation flux measures  the 
rate of adaptive  evolution of a population and, as we shall see, depends  strongly  on  changes  that occur 
in population size. 

A DAPTATION ultimately depends  upon  the fixation 
of beneficial mutations. The probability that a 

beneficial allele will eventually fix within a  population 
was first addressed by R. A. FISHER (1922, 1930a), 
J. B. S. HALDANE (1927)  and S. WRIGHT (1931). Using 
a  branching process approach developed by FISHER 
( 1922), HALDANE ( 1927)  demonstrated  that  the proba- 
bility  of fixation of a new beneficial allele in a large 
population is approximately 2s,  where s is the selective 
advantage of the allele. This surprisingly low value dem- 
onstrates  that stochastic forces are  important even in 
large populations, since any new mutation is repre- 
sented by a small number of copies in the first few 
generations of  its existence. 

FISHER (l922,1930a), HALDANE (1927)  and WRIGHT 
( 1931 ) based their analyses on several assumptions, in- 
cluding  that families have a Poisson distribution of re- 
productive success, that  population size is unchanging, 
and  that  the allele starts in  a single copy. These models 
have been  generalized  in  a number of ways, most nota- 
bly  by KIMURA (1957,1962,1964,1970). KIMURA (1957, 
1962) used a diffusion approximation to show that  the 
probability of eventual fixation of an allele starting  at 
frequency p with additive selective effect s is 

1 - exp [ -4N&] 
(1) 1 - exp [ -4N$] ’ 

where Ne is the variance effective  size  of a  diploid  popu- 
lation of census size N. If the  population is large ( N 2  
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P 1 ) , the probability of fixation of a new mutation ( p  
= 1 / 2N) is approximately 2sNJ Nand depends  on  the 
ratio of the effective population size to census size. This 
formulation  predicts  the probability of fixation for arbi- 
trary p and, by adjusting Ne, can describe populations 
with other distributions of reproductive success,  as long 
as the population  continues to have the same average 
size. 

In  nature, however, populations frequently change 
in size (ANDREWARTHA and BIRCH 1954; KREBS 1994), 
under  the influence of a number of factors including 
varying  physical conditions, resource availability, habi- 
tat availability, and  predator density ( BATZLI 1992) . In 
addition, human disturbance is causing dramatic 
changes in  the  distribution and density of many, if not 
most, species ( KERR and CURRIE 1995; SAMWAYS 1996) , 

Such changes in population size affect the persis- 
tence of beneficial mutations and  hence  the rate of 
adaptation of a  population. FISHER (1930b) first  sug- 
gested that  the probability of fixation of beneficial al- 
leles should increase in growing populations and de- 
crease in  shrinking  populations. KOJIMA and KELLEHER 

( 1962)  confirmed this claim in a  numerical analysis  of 
populations  changing  in size. More generally, KIMURA 
and OHTA (1974)  determined  the probability of  fixa- 
tion in  a  population  that follows a logistic model of 
population growth or decline;  their results also confirm 
FISHER’S claim. For populations  that  fluctuate in size, 
EWENS (1967)  found  that  the fixation probability is 
approximately equal to 2 s N / N ,  where fi is the  har- 
monic  mean of the  population sizes in each generation, 
Nt. Subsequently, KIMURA ( 1970)  conjectured  that ( 1 ) 
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may be used for populations that fluctuate over time, 
with N, being replaced by N. 

Building upon this work, the  current  paper examines 
changes in the probability of fixation under several  sce- 
narios for population size change. Approximations are 
presented for the probability of fixation of a beneficial 
allele  in populations that  are  experiencing  exponential 
growth or decline as  well  as logistic  growth or decline. 
For populations that vary  cyclically over time, the condi- 
tions are  determined  under which the  harmonic mean 
approximation for Ne is accurate. These results are  then 
used to determine  the flux of beneficial mutations into 
a  population. We then show that these formulae can 
also be used to determine  the probability of fixation of 
deleterious mutations. Finally we discuss some implica- 
tions of these results to evolutionary processes and con- 
servation methods. 

BACKGROUND 

HALDANE (1927) used a  branching process to deter- 
mine  the probability of fixation, a  method  that we  will 
use in this paper to investigate the effects of changing 
population size. Here we briefly describe the  method. 
HALDANE assumed that  the  number of offspring alleles 
per  parent allele follows a Poisson distribution with a 
mean of one, such that the population remains approxi- 
mately constant in  size. Individuals carrying a new bene- 
ficial mutation have a  higher reproductive success,  with 
1 + s times  as  many offspring on average. In  a haploid 
population, s would measure the relative  fitness  advan- 
tage of a  mutant. In a randomly mating diploid popula- 
tion, s would measure the relative  fitness advantage of 
a heterozygote; the fitness  of the  mutant homozygote 
is irrelevant since the fate of the mutation is decided 
while  homozygotes are still rare as long as selection is 
directional and inbreeding is rare. 

We  wish to estimate the probability that  a  mutant 
allele that appears in generation twill ultimately fix, P,. 
Correspondingly, the probability of eventual loss of the 
allele is 1 - P,. More  specifically, we define P, as the 
probability that  a single copy  of an allele present  at 
time t has descendants in the population after a very 
large amount of time has passed (which we  will refer 
to as the fixation of the  allele) . The probability that 
an allele present in generation t eventually  leaves no 
descendants, ie. ,  that  it is lost, is equal to the probability 
that each of  its offspring fail to leave descendants in the 
long  term, which is equal  to  the probability of having 
j offspring times the probability that all j alleles will 
ultimately leave no descendants, ( 1 - Pt+l) I ,  summed 
over  all  possible  values  of j .  Since the  number of  off- 
spring of an individual carrying a beneficial mutation 
is assumed to follow a Poisson distribution with mean 
1 + s, 

az 

1 - p, = e - ( l + s )  
(1 + s ) j  

(1 - P,+l)i .  ( 2 )  
j = O  j !  

Evaluating the sum gives 

1 - P, = e x p [ - ( l  + S ) P , + ~ ]  ( 3 )  

( HALDANE 1927). Assuming that the population size 
and  the selective advantage, s, remain  constant over 
time, the fixation probability of a single copy of the 
beneficial allele is constant from one generation to the 
next ( P, = P t C l ) .  Throughout this paper, we  will use 
P* to denote  the exact solution to ( 3 )  under these 
conditions. Taking the log of both sides of ( 3 )  and 
solving for s, we have 

-log [l - P*] 
s =  

P* 
- 1  

p" P"2 p*s 

2 3  4 

( HALDANE 1927). This equation  demonstrates  that, if 
s is small, P* will be small. Hence,  ignoring terms of 
O (  s 2 )  , P* = 2 s ;  the fixation probability of an allele is 
approximately twice its selective advantage. 

- " +- + - + o ( P * ~ )  ( 4 )  

PROBABILITY OF FIXATION WITH CHANGING 
POPULATION SIZE 

In  a discrete generation model, let the  population 
size  in generation t be N, and let A N ,  equal the change 
in size from generation t to t + 1 ( A N ,  = N,+l - N,) . 
In this  case, the average number of offspring produced 
by an individual in the population is N,,, / Nt. Making 
the same assumptions as in the case of constant popula- 
tion size above, the average number of adult offspring 
per  mutant  parent is (1 + s) Nf+,/  N,. Equation 3 then 
becomes 

- (1  + s) -P(+, N1+l N 1 
( EWENS 1967). This equation demonstrates that if the 
population is growing ( A N ,  > 0 )  , the probability of 
fixation of the beneficial mutation is always higher  than 
2 s ,  as if the  mutation  had  an even greater selective 
advantage. The increase in fixation probability occurs 
because in a growing population individuals carrying 
the  mutant allele are  more likely to have offspring. The 
allele is therefore less  likely to  be lost  while it is rare 
and more likely to be established. Conversely, if the 
population is decreasing in  size,  individuals carrying the 
beneficial allele are  more likely to fail to have offspring, 
increasing the  chance  that  the allele will be lost from 
the  population. 

In what  follows, we calculate the probability of fixa- 
tion over time for different models of population 
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growth. These calculations will be based on (5 )  and its 
continuous time approximation, 

which can be  obtained from ( 5 ) under  the assumption 
that s, P,, and ( dN,/  dt) ( 1 / N,) are small and ignoring 
terms higher  than  second  order.  Equation 6 may  also 
be derived from a diffusion model as  shown in the 
APPENDIX. In  the following sections, we solve ( 6 )  for 
specific cases  of population size change. 

A single  change in population  size: Consider the case 
where the  population  changes  in size from No in genera- 
tion T to Nl at  generation T + l ,  but  remains  constant 
at all other times. From generation T + 1 onward, the 
probability of fixation is P* as before. In generation T,  
the probability of fixation can be found from ( 5)  by 
setting P.r+l = P*. With s and P* assumed to be small, 
PT = P* ( N, / N o ) .  To  determine  the value  of P, before 
generation T,  we solve the differential Equation ( 6 )  
with dN,/dt = 0 to obtain 

for t 5 T ,  where P* 2s. If a  population grows  by a 
factor r in a single generation,  the fixation probability 
in the previous generation will also increase by r. This 
increase is propagated back in time to mutant alleles 
that  appeared previously, but  the effect decays at  rate 
s (Figure 1 ) . When s is small, this implies that  popula- 
tion size changes can affect the fate of mutations  that 
arose many generations  earlier. 

If the population size  is Nl in every generation  except 
generation T when it is No, we can use PT P* ( Nl / 
No) in ( 5 )  to find  that, to leading order, PTP1 equals 
P*. Therefore, if a  population  changes in size for  a 
single generation and  then  returns to its original size, 
the probability of fixation of a  mutation is largely unaf- 
fected by the  change in population size except  for al- 
leles that first appear in  generation T.  

Exponential growth (or decline): Consider  next  a 
population  that  changes exponentially in size at  a  con- 
stant  rate, r ,  every generation, such that A N J N ,  = r.  
Equation 5 for P, then takes on the same form as a 
population of constant size  with ( 1 + s) being replaced 
by (1 + s)  (1  + r ) ,  or approximately 1 + ( s  + r ) ,  
assuming that r is also small. This indicates that  the 
probability of fixation in  a continuously growing or 
shrinking  population is approximately 2 ( s  + r )  . Exam- 
ples are shown in Table 1. These comparisons demon- 
strate  that  the  approximation is useful as long as s and 
r are  both small and s + r > 0. When s + r < 0, the 
absolute number of mutant alleles is decreasing over 
time and  the  mutant allele will eventually go  extinct. 

Exponential growth directly augments  the apparent 
selective advantage of beneficial mutations. This will 
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FIGURE 1.-Changes in the fixation probability of a benefi- 
cial mutation  in  populations that  experience a single change 
in size in generation 100. (A)  Population size doubles. ( B )  
Population size  halves. In each case, the probability of fixation 
is shown relative to what it would be  in  a population of con- 
stant size, P*. Doubling or halving the  population size has a 
corresponding effect on  the fixation probability in the imme- 
diately preceeding  generation. Mutations that occur long be- 
fore  the  population size change  are affected only if the selec- 
tion favoring them is  weak. 

have a major effect on  the incorporation of  weakly  fa- 
vorable mutations, which are fixed at  a  rate  that is 1 + 
r / s  times higher  than  populations of constant size. In 
contrast, in populations  that  are  declining in size, bene- 
ficial mutations have a  much  higher  chance of being 
lost, especially when they are weakly selected. 

Logistic growth and decline: Exponential growth or 
decline in population size cannot  continue indefinitely. 
The logistic equation  incorporates  density-dependent 
growth such that  the reproductive rate of individuals 
decreases linearly with population size.  We consider 
populations  that follow the logistic equation in continu- 
ous time: 

whose solution is 

N, = K NO 
No + e-'(K- No) ' 

where r is the intrinsic rate of growth of the  population 
and Kis its carrying capacity. Since dN,/ dt changes over 
time whenever N, f K ,  PI necessarily changes over time. 
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TABLE 1 

The  probability of fixation with exponential  change  in  population  size 

Selection  coefficient 

Growth rate s = 0.001 s = 0.005 s = 0.01 s = 0.05 

r = 0.01  0.0217 (0.022) 0.0295 (0.03) 0.0391 (0.04) 0.1118 (0.12) 
r = 0.001 0.0040 (0.004) 0.0119 (0.012) 0.0217 (0.022) 0.0955 (0.102) 
r = -0.001 NAN 0.0079 (0.008) 0.0178 (0.018) 0.0919 (0.098) 
r = -0.01 NAN NAN NAN 0.0750 (0.08) 

~~~ 

The  numerical  solution to (5) is shown,  followed  in parentheses by the  approximation 2(r + s). NAN 
indicates  that  there is no positive  solution to ( 5 )  for Pt and  the allele is very unlikely to fix in large  populations. 

Using the chain  rule, ( 6 )  can be rewritten as a  function 
of current population size (dP, /  dN,) rather  than as a 
function of time. This gives 

dP, ( K s  + ( K  - N , ) r )  - = "P ,  
dN1 N,r( K - N )  

Equation 10 can be solved directly to give the probabil- 
ity  of fixation at any time as a  function of the population 
size at  that time: 

2 s K ( s  + r) 
sK + rN, 

P, = 

As expected, this reduces to 2s when the  population 
size is constant ( N t  = K )  and to 2 (s + r) when the 
population is growing exponentially ( N, < K )  . The 
same estimate for the fixation probability may be ob- 
tained using the diffusion model  studied by KIMURA 
and OHTA (1974)  (see APPENDIX). 

We examined ( 11 ) numerically and  found it to pro- 
vide an excellent  approximation for P, when s and  rare 
small ( <0.1). When s or r is large or  the population 
size  is small, the diffusion approximation,  (A1 ) , can be 
used with (AS) to provide a  more  accurate estimate of 
P,. In Figure 2, ( 11 ) is compared with exact numerical 
solutions for Pt obtained from (5) .  Changes in popula- 
tion size  have a large impact on  the probability of  fixa- 
tion when the  current population size, N,, is far from 
the carrying capacity, K ,  and when selection is weak. 

Population cycles: In many species, population size 
changes cyclically over time, such that  population 
growth is soon followed by population  decline (KREBS 
and MYERS 1974; MYERS 1988). For cyclically  varying 
populations, we can use the fact that P, should  return 
to  the same value  every  cycle to obtain  a solution to 
( 6 ) :  

The integral  in ( 1 2 )  has two components:  the first, 

exp [ - s t ] ,  decays over time for s > 0 and  the second 
varies  as the reciprocal of population size, 1 / N,. For 
cyclic populations, if the time taken for  a  population 
to return to the same size, T ,  is much  shorter  than  the 
time scale of selection ( S T  1 ) , then little decay will 
occur within a cycle and N, may be replaced by its har- 
monic  mean, W: 

1 
N/ 

-exp [ - s t ]  - = -exp [ - s t ]  E 

1 
N 

= -exp[ - s t ]  T . (13)  

In this case, ( 1 2 )  becomes 

2 s n  
" N , '  

p = -  

as obtained by EWENS (1967) using an iterative 
branching process method.  Note  that, since the effec- 
tive population size  of a  fluctuating  population is ap- 
proximately W, (14) reduces to P = 2sN,/ N ,  ( KIMURA 
1970). However,  this method provides insight into  the 
conditions under which the harmonic  mean approxi- 
mation  should break down. When selection is strong 
and/  or populations cycle  slowly ( ST zz 1 ) , the expo- 
nential  function within the integral of ( 1 2 )  will decay 
substantially within a cycle and it will then  matter when 
in the cycle the  mutation  appears and how the  popula- 
tion changes over the  short  term.  In  addition,  popula- 
tions with large fluctuations in size should  be  more 
poorly described by ( 14) ,  since large amplitude fluctu- 
ations will magniq  the decay  within a cycle  of the func- 
tion integrated in ( 12).  In either case, the  harmonic 
mean  approximation (14) should perform poorly. 

We  now examine some special cases  of  cyclically  vary- 
ing  populations,  starting with a  population whose  size 
varies  sinusoidally: 

N/ = N + a sin [ ~ T ~ / T I ,  (15) 

where Nis the  arithmetic average population size, a is 
the  amplitude of fluctuations and T is the  period of the 
sine wave in  generations. The integral  in (12) cannot 
be solved directly using (15) for N,, but  the  harmonic 
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FIGURE 2.-Changes  in the probability of fixation of a bene- 
ficial mutation under the logistic model. The heavy  curves 
show the probability of fixation  scaled  to the expected  fixation 
probability  in a population of constant size, P*. Dashed  lines 
show the approximation  from ( 11) and solid  lines  show the 
numerical  solution to ( 5 ) ,  although  these curves are indistin- 
guishable. The light curves  show the size of a diploid  popula- 
tion  changing  according to the logistic equation with r = 0.01. 
(A)  An initial  population size  of one with a carrying  capacity 
of 10,000. ( B )  An initial  population size of 10,000  with a 
carrying  capacity of 1000. The fixation  probability is  most 
strongly  affected during the early generations when popula- 
tion  growth is nearly exponential. This  effect  decreases  as the 
population  approaches  carrying capacity. 

mean of ( 15) ,  N = d m ,  can be used  in  the a p  
proximation ( 14) .  This  provides  a  remarkably  accurate 
estimate of the  change over time  in  the probability of 
fixation of new beneficial  mutations  when ST 4 1 (Fig- 
ure 3 A ) .  When s~ is small, the probability of fixation 
depends primarily on  the  current  population size rela- 
tive to  the  harmonic  mean  population size and is fairly 
insensitive to  whether  the  population size will increase 
or decrease  in the  immediate  future.  The  harmonic 
mean  approximation breaks  down, though, as ST in- 
creases (Figure 3B) , since  the  fate of a new mutation 
becomes more sensitive to  whether  the  population is 
growing or  shrinking  when  the  mutation  appears. If the 
population size is growing, the probability of fixa- 
tion is higher  than  predicted by the  harmonic  mean 
approximation; if the  population size is shrinking,  the 
probability of fixation is lower than  predicted.  This 
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FIGURE 3.-Change  in the probability of fixation of a bene- 
ficial mutation (s = 0.01 ) in a diploid  population whose  size 
vanes  sinusoidally.  In  each  case, the population size  varies 
with an  amplitude of 1000 around an  arithmetic mean  size 
of 2000, as shown at the bottom of each graph. In the upper 
part of each graph, the probability of fixation is  shown  scaled 
to the expected  fixation  probability  in a population of con- 
stant size, P*. Dots show the  numerical  solution to (5) and 
curves  show the harmonic mean approximation, PI 2sN/ 
N,, from (14). ( A )  Period, 7, of  population size fluctuations 
equals  10  generations (ST = 0.1 ) . ( B )  Period, 7, equals  100 
generations (ST  = 1 ) . The harmonic mean approximation 
estimates the fixation  probability  extremely  accurately  when 
ST is small, but less accurately  when ST is large. 

causes the  phase shift  toward the  right observed in Fig- 
ure 3B. 

Other cyclic functions  show  similar  behavior, with 
the  harmonic  mean  approximation, ( 14) , working  best 
when  the cycle length is shorter  than  the  time scale of 
selection.  For  example, we considered  population size 
fluctuations  described by a  sine  function  on a natural 
log scale. This  function is thought  to  often be a better 
descriptor of natural variation  in  population size (MY- 
ERS 1988).  The  harmonic  mean of the log-sine function 
was determined numerically for  parameters similar  to 
those  used in Figure 3. We again found  that  (14) pro- 
vides an excellent  estimate of P, when s~ is small and 
that  there is a  phase  shift  to the right as ST increases. 
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alleles depends on the ratio of  effective to census popu- 
lation size and is approximately 2sN,/N,. For models 
in  which population size changes monotonically, KI- 
MURA and OHTA (1974)  found that  the probability of 
fixation is approximately 2sZ,/N,, where Z, was inter- 
pretted as the “representative effective population 
size.”  We, therefore, define the jixation effective popula- 
tion size as the solution to the  equation: P, = 2sNJN,.  
For the models studied within this paper, this gives 
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FICUKE 4.-Change in  the probability of fixation of a  bene- 
ficial mutation in snowshoe hare populations. Hare densities 
were measured within a  34 hectare  trapping grid  in  Kluane, 
Yukon Territory, over a period of 20 years (data  from KREBS et 
al. 1995 and C. KREBS, personal communication). Seventeen 
spring measurements of adult  hare density (from 1980 to 
1996)  are used to  define two cycles, which are typically 8-11 
yr in length (KREBS 1996).  The density over time divided by 
the  mean density is shown at  the bottom of the  graph  for 
four repetitions of the two basic cycles. The  top  part of the 
graph shows the probability of fixation of beneficial alleles 
over time, relative to the fixation probability in a population 
of constant size, P*. Dots show the numerical  solution to (5  ) 
and curves show the  harmonic  mean  approximation, P, zz 
2sd/ d,. In this case, s = 0.01 and ST = 0.085, and  the  harmonic 
mean approximation accurately estimates the fixation proba- 
bility. 

Often, however, population size does  not follow a 
simple function.  In cases where populations have been 
measured over long periods of time, this data may be 
used directly in ( 5 ) to calculate the fixation probability 
over time. In many  cases, total population size  may not 
be known, but relative changes in population size or 
density may be available. Either of these types  of data 
may be used in (5)  to  determine  the probability of 
fixation at any point  in  a cycle. For instance, given den- 
sity measurements, d,, and assuming that  the species 
range remains constant, we  may replace Nt+l/N, with 
d,,, / d, in ( 5 )  , which may then be solved numerically. 
An example is shown in Figure 4 using fluctuations in 
density in  snowshoe hares (KREBS et al. 1995; C .  KREBS, 

personal communication) . In this example, we have 
chosen ST to be small ( s-r = 0.085) and  the probability 
of fixation is  very  well approximated by (14) rewritten 
in terms of density, P, G 2 s d /  d,. As selection becomes 
stronger, however, the probability of fixation becomes 
more sensitive to short-term changes in population size 
and  the  harmonic mean approximation again breaks 
down. 

FIXATION RATES AND THE EFFECTIVE 
POPULATION SIZE 

KIMURA (1970) conjectured  that in populations of 
fluctuating size the probability of fixation of favorable 

for a  population  that changes from size No (for t I T )  
to Nl (for t > T )  while t I t ,  

Ne = N,(1 + r / s )  (18) 

for a  population with exponential growth or decline, 

N , K ( s  + r )  
N, = 

SK + rN, 

for a  population with  logistic  growth or  decline,  and 

N, = fi (20)  

for cyclically  varying populations. In  the first three 
cases, the fixation effective population size depends on 
both  the  current  population size and on  the selective 
effect of the allele. That is, there is no single effective 
population size that  can  be used to determine  the prob- 
ability  of fixation for all  new beneficial mutations in a 
population of changing size. The reason for this is that 
the sensitivity  of the probability of fixation to  future 
changes in population size depends on the time scale 
of the fixation event itself,  which will  vary  with s. When 
s is large, only short-term population size changes will 
have an effect on the fate of a  mutation, whereas when 
s is small, long-term changes in population size  also 
become important. 

As shown in the APPENDIX, the above estimates for N, 
can be used in ( 1 ) to obtain  an approximate solution 
for  the fixation probability from the diffusion model. 
The advantage of the diffusion equation ( 1 ) is that it 
can be used to determine  the probability of fixation 
under  more general conditions, providing estimates for 
P, when the  population size  is small and even when the 
allele is deleterious. In  the  next section, we evaluate 
the use of ( 1  ) under such conditions. 

SMALL POPULATION SIZE AND 
DELETERIOUS MUTATIONS 

In small populations, the diffusion equation ( 1 ) with 
( 17) - (20)  may be used to obtain the  expected proba- 
bility  of fixation for beneficial alleles. Equation 1 may 
also be used to determine  the  expected probability of 
fixation for deleterious mutations with one caveat.  Dele- 
terious alleles  have a much lower probability of fixation, 
but conditional  on  jixation the  expected time until fixa- 
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Demographic  Predicted  probability 
model  Parameters S of fixation 

Constant 0.01  0.0229 
-0.01 0.00316 

Single  change NI = 200 0.01 0.0368 
7 = 10 -0.01 0.000990 

NI = 50 0.01 0.0161 
7 = 10 -0.01  0.00568 

Exponential r = 0.001 0.01 0.0245 

r =  -0.001 0.01 0.0214 
-0.01 0.00277 

-0.01 0.00360 

Logistic K =  200  0.01  0.0369 
r = 0.1 -0.01 0.000980 

K =  50 0.01 0.0161 
r = 0.1 -0.01 0.00569 

Sinusoidal CY = 90 0.01 0.0149 
r = 10 -0.01 0.00629 
a = 90 0.01 0.0149 
7 = 100 -0.01 0.00629 

Observed  probability 
of fixation 

0.0227 (0.00015) 
0.00303 (0.000055) 

0.0365 (0.00019) 
0.000867 (0.000029) 
0.0164 (0.00013) 
0.00571 (0.000075) 

0.0241 (0.00015) 
0.00277 (0.000053) 
0.0218 (0.00015) 
0.00355 (0.000059) 

0.0364 (0.00019) 
0.000853 (0.000029) 
0.0164 (0.00013) 
0.00552 (0.000074) 

0.0153 (0.00012) 
0.00624 (0.000079) 
0.0186 (0.00014) 
0.00491 (0.000070) 

Predicted values of the  probability of fixation  were  obtained  from the haploid  version  of (1) with Ne replaced 
by NJ2. Ne is given  by (17) for a single  change in population  size, by (18) for exponential  growth, by (19) 
for  logistic  growth,  and by (20) for  sinusoidal  fluctuations.  Observed  values of the  probability of fixation  were 
obtained from simulations in which a single  allele  with  advantage or disadvantage s was introduced into a 
population of initial  size, No = 100. Values  in parentheses  are  standard  errors. 

tion is the same  for  deleterious and beneficial alleles 
( " A  and KIMURA 1974; EWENS 1979, p. 151 ) . 
Since Ne measures the effective population size over the 
time scale of the fixation event, it is therefore  the same 
for deleterious and beneficial alleles that have  selective 
effects of the same magnitude. Consequently, for any 
allele, the absolute value of s should  be used in ( 17) - 
(20) to  determine Ne. This value  of Ne can then  be 

used in (1 ) to  determine  the  expected probability of 
fixation of deleterious alleles, with s in (1 ) retaining 
its negative sign. 

To verify these predictions, Monte-Carlo simulations 
were performed using the Wright-Fisher model  for  a 
haploid  population whose  size changes over time. In 
the first generation, a single copy of a  mutant allele was 
introduced  into  the  population. Every generation, 
individuals were sampled  from the previous generation 
using a binomial distribution. The probability of  sam- 
pling the  mutant allele was set  equal  to its frequency 
in the previous generation times ( 1 + s) / where 
R-l was the  mean fitness in the previous generation. 
The population was tracked until the  mutant allele was 
either fixed or lost from the population. One million 
replicates were performed  for  each  parameter set. The 
results are shown in Table 2, using s = 0.01 and s = 
-0.01, and assuming an initial population size  of 100. 
Despite the fact that Ng was neither large nor always 

positive in  the simulations (as assumed in  the APPEN- 
D I X ) ,  there is good  agreement between the observed 
and predicted fixation probabilies (Table 2 ) .  In  the 
case of a sinusoidally varying population size, the simu- 
lations were begun  in  the middle of the increase phase; 
we therefore  expect (20) to underestimate  the effective 
population size,  especially when ST is large, which  is 
consistent with the observations. 

Since deleterious alleles are  more likely to fix  with 
smaller values  of Ne, shrinking  populations are  more 
likely to accumulate  deleterious alleles than  are growing 
populations. This result is exactly the opposite of that 
obtained  for beneficial alleles, where the fixation proba- 
bility increases with higher values  of Ne. The fact that 
shrinking  populations  are  more likely to incorporate 
deleterious alleles may partially account  for  the observa- 
tion from simulations that,  once  populations accumu- 
late several deleterious  mutations and start  declining in 
size, deleterious  mutations accumulate more  and  more 
rapidly driving the population to extinction,  a  phenom- 
enon known  as mutational  meltdown (LYNCH and GA- 
BRIEL 1990) . 

THE FLUX OF BENEFICIAL ALLELES 

A more  important measure of the  rate of evolution 
of a  population  than  the probability of fixation of an 
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FIGURE 5.-Decrease in fixation flux in a diploid  popula- 
tion declining in size according  to the logistic equation. Pa- 
rameters are the same as in Figure 2B with s = 0.01. Solid 
curve shows the  fixation flux divided by the mutation rate 
( 2N,P1), using ( 11 ) for P,. Dotted curve shows the  fixation 
flux divided by the  mutation  rate  that  would  be  observed if 
the  probability of fixation  remained  constant at P* ( 2N1P*).  
The two dashed lines show the flux  in  populations of constant 
size: 10,000 (upper  line) or 1000 (lower line). Notice  that 
the  fixation flux ( -) is much  lower  than  would  be  expected if 
the  probability of fixation  remained  constant  at P* ( * * . * * ) . 

allele is the total number  of beneficial alleles that  are 
incorporated  (fixed)  per  generation, which we term 
the fixation flux. Letting  Uequal  the genome-wide mu- 
tation rate  to new beneficial alleles, the  number of  new 
beneficial mutations  entering  a  diploid  population  per 
generation is 2NfU. If  2N,U  is small, then  the fixation 
flux is approximately 2NfUPf, i.e., the  number of  new 
mutants times their  expected probability of fixation. 
Written in  terms of the fixation effective population 
size, this equals 4sUN,.  If 2NfUis large, however, benefi- 
cial alleles may appear simultaneously at different loci 
and interfere with the selective spread of one  another, 
causing a  reduction in Pt (BARTON 1995) . Nevertheless, 
this reduction is modest when recombination rates are 
high,  and  the fixation flux is still approximately 4sUN,. 

With exponential growth, the fixation flux is  4sUNf ( 1 
+ r /  s)  , which is (1 + r /  s) times higher  than if the 
population  remained  constant  at its current census size. 
The fixation flux is proportional to Nf and will necessar- 
ily be  lower in small populations. For a given N,, the 
fixation flux will be higher  for  populations  that  are 
expanding  in size and lower for those that  are shrink- 
ing. The reduction  in fixation flux is especially  severe 
for weakly favorable alleles, whose probability of  fixa- 
tion is effectively zero when s < - r .  Selection in this 
case is rendered ineffective in shrinking  populations, 
which will limit their ability to adapt to environmental 
change. 

Similar results hold  for logistic population growth, 
where now the fixation flux equals 4sUNtK( s + r )  / ( SK 
+ rNt). Interestingly, since the fixation probability is 
sensitive to future changes in  population size, the fixa- 
tion flux approaches its asymptotic value, 4sUK, faster 
than  does  the  population size (Figure 5)  . When s + r ,  
the fixation flux will be nearly equal to the flux of the 
population  at carrying capacity and will be little affected 
by the  current census size. 

In cyclic populations,  the fixation flux is approxi- 
mately 4sUN. This value does not vary over time and 
is  always smaller than  the fixation flux in  a  constant 
population with the same arithmetic  mean size (4sUR , 
since N 5 r\i is  always true. For example,  the fixation 
flux in snowshoe hare  populations is approximately a 
quarter of  what it would be in a  constant  population of 
the same average size. If the  population size fluctuations 
are  extreme,  then  the  harmonic  mean can be orders 
of magnitude smaller than  the  arithmetic  mean, and 
the fixation flux will be substantially reduced. As noted 
earlier and illustrated in Figure 3, the  harmonic mean 
approximation used in (14) is not accurate if selection 
is strong  compared to the frequency of population size 
fluctuations or if population size fluctuations are ex- 
treme. This discrepancy becomes more  apparent when 
looking  at  the fixation flux (Figure 6 )  . When mutations 
occur while the  population is expanding,  a  mutation 
has an increased probability of fixation due to the fu- 
ture  short-term increase in population size,  which is not 
well reflected in  the long-term comparison of Nt to N. 
The converse holds for  mutations  that  occur while pop- 
ulations are decreasing in size. Consequently, the flux 
of mutations is increased during population expansions 
and decreased  during  population  contractions  (Figure 
6 ) .  This has the  interesting implication that  popula- 
tions will be slightly  less able to adapt to  whatever exter- 
nal conditions  are associated with declines in popula- 
tion size (e .g . ,  higher  predator  density)  than to 
conditions associated with increases in population size, 
especially if the  period of the  population cycle  is long 
and selection is strong (ST 9 1) .  

DISCUSSION 

The probability of fixation of both beneficial and 
deleterious  mutations is substantially affected by 
changes in population size. In growing populations, se- 
lection is more effective, increasing the probability that 
beneficial alleles are fixed and that  deleterious alleles 
are lost. Conversely, in shrinking  populations, selection 
is less  effective: beneficial mutations  are less  likely to 
fix while deleterious alleles are  more likely to fix. The 
reason that  the probability of fixation of an allele de- 
pends  on demographic  patterns is straightforward. 
While a beneficial allele is rare, it may be lost in spite 
of  its  selective advantage if, by chance, all carriers fail 
to  reproduce. If the population is growing, however, 
this is  less  likely to  happen since the  expected number 
of offspring per  parent is increased. This will reduce  the 
amount of sampling error  or genetic drift  that occurs. 
Similarly, in declining  populations, all parents have 
fewer offspring on average and  there is a  higher  chance 
that all parents carrying a beneficial allele will simply 
fail to leave offspring. This will increase the  amount  of 
genetic drift in  the  population. Beneficial alleles and 
deleterious alleles exhibit  opposite behavior as a  func- 
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FIGURE 6,“Changes in  the  fixation  flux of a  beneficial 
mutation  in  a  diploid  population  whose  size  vanes  sinusoi- 
dally.  Population  size  fluctuations  are  shown  at  the  bottom 
of each graph for comparison  (parameters  are  the  same as 
in  Figure 3 ) .  The  fixation  flux  divided by the  mutation  rate, 
2NtP,, is determined  numerically  using ( 5 )  ( e  * - a )  and 
compared with  the expectation from (14) that  the  fixation 
flux  divided by the  mutation  rate should be  constant  over 
time, 2N,P, = 4sN. (A)  Period, r ,  of population  size  fluctua- 
tions  equals  10  generations (sr = 0.1 ) . ( B )  Period, r ,  equals 
100  generations (sr = 1 ) . With  increasing s r ,  the  harmonic 
mean  approximation for the  fixation  flux  breaks  down.  The 
fixation  flux  then  becomes  sensitive  to  short-term  changes  in 
population  size, being higher than expected when  the  popula- 
tion is  growing  and  lower  than expected when it is  shrinking. 

tion of changes in population size since increased ge- 
netic drift slows the selective spread of beneficial alleles 
but also slows the selective elimination of deleterious 
alleles. 

The results presented in this paper use branching 
processes to find the probability of fixation, Pt, of a 
new allele. This technique is straightforward and easy 
to apply to models of population size change,  but it is 
limited to  the case where the allele is beneficial and 
the  population size is large. We may,  however, define 
a “fixation effective population size” by setting P, = 
2sNe/N, as  in ( 17)  - ( 2 0 ) .  The fixation effective popu- 
lation size can then  be used in the  more  general for- 
mula, ( 1 ) , based on a diffusion model (see APPENDIX ). 

It is critical to  point  out, however, that  the fixation 
effective population size defined in this way  is generally 
a  function  of  the selection coefficient of the allele. It 
therefore  does not meet  the strict definition of  an  effec- 
tive population size since it is not  independent of the 
characteristics of the allele. We persist in using this term 
for two reasons. The first is that it makes sense that  the 
fixation effective population size of an allele should 
depend  on s in a  population  that is changing in size. s 
determines  the time frame over  which fixation occurs, 
and the probability of fixation should  be sensitive to 
changes in population size  only if they occur within 
this time frame. Second, as shown in the APPENDIX, Ne 
defined in this way can be used directly in the diffusion 
equation ( 1 )  for  the probability of fixation, derived 
originally by K ~ M U R A  (1964) under  the assumption of 
a  constant  population size. The diffusion equation can 
then be used to determine  the probability of fixation 
for deleterious alleles (Table 2 )  and for alleles that  are 
initially present in more  than  a single copy. For exam- 
ple, one can then calculate the fixation probability of 
beneficial alleles that were  previously neutral or delete- 
rious and that  are already present in the  population at 
some frequency. We  now  discuss the implications of 
these results to various  processes  of evolutionary and 
practical interest. 

Models  of speciation that  include periods of  small 
population size  followed by population growth, such as 
CARSON’S founder-flush model (WON 1975) , suggest 
that  the probability of fixation of  favorable genes may 
be increased by a founder-flush process ( SLATKIN 
1996). While it is true  that  the probability of fixation 
of beneficial alleles present  during  the bottleneck is 
increased by the  subsequent flush phase, many  alleles 
will be lost during  the bottleneck and few  new muta- 
tions will occur while the  population is  of small  size. 
Consequently, the  number of beneficial mutations 
fixed per  generation (the fixation flux) is nearly un- 
changed by a bottleneck. Consider the  extreme case  of 
a diploid population of  size NHi that experiences a sin- 
gle generation bottleneck of size N&, In the section on 
single changes in population size, we found  that  the 
probability of fixation of a beneficial allele is approxi- 
mately 2s in every generation  except  the bottlenecked 
generation, in which  case it is 2sNH,/ N,ao. The fixation 
flux, however, is the probability of fixation times the 
current  population size  times the  mutation rate, which 
remains roughly constant  at 4sNHjU, just as in a popula- 
tion without a bottleneck. In  short,  population bottle- 
necks do  not change  the fixation flux of beneficial al- 
leles, at least for additively acting genes. Recessive 
alleles should behave quite differently (see ROBERTSON 
1952; kMUR.4 1962; SLATKIN 1996). 

Thus  far, we have assumed that relative  fitnesses re- 
main constant as populations change in size.  Episodes 
of  dramatic environmental change  can, however, cause 
strong changes in the fitness  of genotypes. For example, 
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think of the  pattern of selection on pest insects  associ- 
ated with the application of a new pesticide. Under 
these circumstances, alleles for pesticide resistance that 
were  previously neutral or deleterious will be strongly 
favored. Furthermore, while the  remainder of the insect 
population will be  reduced dramatically, the  population 
size  of those individuals carrying the resistance genes 
will increase if the population growth rates are  at all 
density dependent.  That is,  while N,,, / N ,  will be < 1  
for  the  population as a whole, i t  will be > I  for those 
individuals that  are resistant because the insecticides 
causing the  population decline do not affect them and 
because there is less intraspecific competition as the 
nonresistant individuals die. Resistance  alleles are 
therefore highly  likely to fix despite the fact that  the 
population as a whole is decreasing in size. This will not 
be true of alleles conferring partial resistance, however, 
since the  population of  partially resistant individuals is 
still  likely to decline in  size, resulting in a decreased 
fixation probability for these alleles. Hence, when ex- 
trinsic factors cause a reduction in population size,  al- 
leles  of large effect are much  more likely to fix both 
because they  have a higher selective effect and because 
they are less affected by the extrinsic causes of popula- 
tion size decline. This pattern of large effects in re- 
sponse to strong selection has been observed repeatedly 
( O m  and COYNE 1992). 

The conservation biology implications of the results 
presented  in this paper  are  rather  unfortunate. Con- 
serving biological  diversity will, in the  long  run,  depend 
on the ability of populations to  adapt  to  the dramatic 
environmental changes caused by mankind ( SOULE 
1983). Species that  are highly commensal with humans 
and increasing in  size will be all the  more likely to 
incorporate new adaptive mutations. Declining popula- 
tions, however, suffer a twofold  blow. Not only is the 
number of new beneficial mutations dropping as a re- 
sult of smaller and smaller population sizes, but the 
probability of fixation of each beneficial allele is declin- 
ing as  well. Consequently, the rate at which beneficial 
mutations are  incorporated  into  the  population will be 
much less than would  be predicted as a result of the 
current population size (Figure 5 ) .  Adaptation to new 
environments in times  of population decline will occur 
at a rate more closely proportional to the lowest popula- 
tion size,  even  if that low population size  is still  to come. 
Species that  are not highly commensal with humans, 
whose population size and distribution are  reduced as 
a consequence of human activity, will be less able to 
adapt to changing environmental circumstances and 
more likely to go extinct as a consequence. 

In this article, we have developed simple formulae to 
describe the probability of fixation and fixation flux of 
beneficial and deleterious alleles under several models 
of population size change: a single change,  exponential 
growth, logistic growth, and fluctuating size. These for- 
mulae can be used to determine  the effect of demo- 

graphic changes on  the rate of adaptive evolution, de- 
fined as the rate of incorporation of beneficial alleles. 
In general, increases in population size  make selection 
more effective and increase the rate of adaptation, 
while decreases in population size  have the opposite 
effect. As we have seen,  the effect of population size 
changes on the fixation probability of an allele can be 
quite dramatic, especially when the  rate of growth or 
decline in the  population is large relative to the selec- 
tive effects of the alleles. 
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APPENDIX 

KIMURA and OHTA ( 1974) analyzed a time inhomoge- 
neous diffusion model to determine  the probability of 
fixation in populations  changing in size  over time. For 
alleles that start at low frequency, p ,  they found  that  an 
approximate solution to  the diffusion equation is  given 
bY 

PI = 1 - exp[-4%pl 
1 - exp [ - 4 2 ~ 1  ’ 

which has the same form as the  solution, ( 1  ) , found 
for  the time homogeneous diffusion model  in which 
the  population size remains constant. Z, was interpreted 
as the “representative effective population size that is 
applicable throughout  the process of gene fixation.” 2, 
was shown to solve 

” dZI ( 1  - exp [ -4261 )Z,s( N, - 2,) 1 
dNI 1 - ( 1  + 42g) exp[-4ZIs] I _  dN, 
” . ( A 2 )  

To proceed further, KIMURA and OHTA ( 1974) assumed 
that 2,s is positive and large such that  exp [ -4Zg] 1 
and  45s  exp [ -4Zg] + 1, in which  case ( A 2 )  becomes 

Under  the assumption that 2,s is large and positive, 
(A1 ) becomes 

assuming that 2sZ,n/ NI 4 1, where n is the initial num- 
ber of copies of the allele in the  population. 

We  now proceed  to show that solving (A3) with (A4) 
for PI is equivalent to solving the differential equation 
( 6 )  obtained from the  branching process. To begin, 
the derivative of (A4) with respect to t is 

@I dN, 1 d2, 1 - = -2sn2, - - 
dt dt  

+ 2sn--. (A5) 
dt N, 

Since 

d2,   d2,   dN,  
dt dN, dt ’ 
“ ”- 

we find that 

” d Z  “ W N  - 2,) 
dt NI 

- 

from ( A 3 )  . This may be used in (A5)  along with the 
fact that 2, = PtN,/2sn from (A4) to obtain 

@I dN, 1 P: - = -SP, - PI-- + -,  
dt  dt NI 2n (A6) 

which equals ( 6 )  when n = 1. Furthermore, in the 
branching process model, if  we had assumed that  there 
were n initial copies of the new allele, where n is not 
large, the probability that  at least one allele would  even- 
tually  fix  would be Q, = 1 - ( 1 - PI) = nP,. By the 
chain  rule, since P, solves ( 6 ) ,  QI will  solve a differential 
equation of the same form as (A6) for n > 1. 

Therefore, estimates of the fixation  probability o b  
tained by the  method of branching processes  provide 
estimates for Z, from (A4) that may be used  in (A1 ) to 
give an approximate solution to the diffusion equation 
for the probability of fixation. Although this proof as- 
sumes that % is large and positive, simulations indicate 
that Z, estimated in this way can be used in ( A l )  to 
provide reasonable estimates of the fixation  probability 
even  when is small and when s is  negative (Table 2 ) .  

For the particular model of  logistic population 
growth, KIMURA and OHTA (1974) solved (A3) for the 
diffusion model, writing the solution as 

2, = NI * (A7) 

The integral in this equation may,  however, be evalu- 
ated  to give 

Using this value  of 2, in (A4) and assuming that n = 
1, we find that  the probability of fixation is given by 
( 11 ) as obtained by the  method of branching processes. 


