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III 

A NEW DETERMINATION OF MOLECULAR 
DIMENSIONS 

(From the Annalen der Physik (4), 19, 1906, 
pp. 289-306. Corrections, ibid., 34, 1911, pp. 
591-5922.] (23) 

T HE kinetic theory of gases made possible 
the earliest determinations of the actual 

dimensions of the molecules, whilst physical 
phenomena observable in liquids have not, up to 
the present, served for the calculation of molecular 
dimensions. The explanation of this doubtless 
lies in the difficulties, hitherto unsurpassable, 
which discourage the development of a molecular 
kinetic theory of liquids that will extend tb  details. 
It will be shown now in this paper that the size 
of the molecules of the solute in an undissociated 
dilute solution can be found from the viscosity of 
the solution and of the pure solvent, and from 
the rate of diffusion of the solute into the solvent, 
if the volume of a molecule of the solute is large 
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compared with the volume of a molecule of the 
solvent. For such a sofute molecule will behave 
approximately, with respect to its mobility in 
the solvent, and in respect to its influence on the 
viscosity of the latter, as a solid body suspended 
in the solvent, and it will be allowable to apply 
to the motion of the solvent in the immediate 
neighbourhood of a molecule the hydrodynamic 
equations, in which the liquid is considered homo- 
geneous, and, accordingly, its molecular structure 
is ignored. We will choose for the shape of the 
solid bodies, which shall represent the solute mole- 
cules, the sphericdi fom-* 

I. ON THE EFFECT ON THE MoTroN OF A 1,IQWID 

OF A VERY SMALL SPHERE SUSPENDED IN IT 

As the subject of our discussion, Iet us take an 
incompressible homogeneous liquid with viscosity 
K, whose velocity-components W ,  V ,  W will be given 
as functions of the Co-ordinates x, y, x, and sf the 
time. Taking an arbitrary point go, yo, x,, we 
wifl imagine that the functions u, V ,  W are de- 
veloped according to Taylor's theorem as func- 
tions of x - x,, y - yo, x - x,, and that a domain 
G is marked out around this point so small that 
within it only the linear terns in this expansion 
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have to be considered. The motion of the liquid 
contained in G can then be looked upon in the 
familiar manner as the result of the superposition 
of three motions, namely, 

I. A parallel displacement of all the particles' 
of the liquid without change of their 
relative position. 

2. A rotation of the liquid without change of 
the relative position of the particles of 
the liquid. 

3. A movement of dilatation in three directions 
at sight angles to one another (the prin- 
cipal axes sf  ation^^ ion^^ 

We wif€ imagine now a. spherical rigid body in 
the domain G, whose centre lies at the point 
yo, x,, and whose ~~~e~~~~~~ are very small com- 
pared with those or" the domain G, We will 
further assume that the motion under c~nsidera- 
tion is so shw that the kinetic energy of the 
sphere is negligible as we11 as that of the liquid. 
It will be further assumed that the velocity com- 
ponents of an element of sudace the sphere 
show agreement with the corresponding velocity 
components of the particles of the liquid in the 
immediate neighbourhood, that is, that the contact- 
layer (thought of as continuous) also exhibits 
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everywhere a viscosity-coefficient that is not 
vanishingly small. 

It is clear without further discussion that the 
sphere simply shares in the partid motions I and 2, 
without modifying the motion of the neigkibouring 
liquid, since the liquid moves as a rigid body in 
these partial motions ; and that we have ignored 
the effects of inertia. 

But the motion 3 will be modified by the pres- 
ence of the sphere, and our next problem will be 
to investigate the influence of the sphere on this 
motion of the liquid. We will further refer the 
motion 3 to a co-ordinate system whose axes are 
parallel to the principal axes of dilatation, and we 

x - x, = Q: 

x - z ,  = 5, 
then the motion can be expressed by the equations 

will put 

Y - YO = T', 

uQ == ' f f  

II) V0  = Bq, 
q.J a ,  

in the case when the sphere is not present. 
A, B, C are constants which, on account of the 
incompressibility of the liquid, must fulfil the 
condition 
(2) A + B + C = 0  * (24) 
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Now, if the rigid sphere with radius P is intro- 
duced at the point x,, yo, q,, the motions of the 
liquid in its neighbourhood are modified. In the 
foliowing discussion we will, for the sake of con- 
venience, speak of €’ as “ finite ” ; whilst the 
values of 6, 9, 5, for which the motions of the 
liquid are no longer appreciably influenced by the 
sphere, we will speak of as “ infinitely great.” 

Firstly, it is clear from the symmetry of the 
motions of the liquid under consideration that 
there can be neither a translation nor a rotation 
of the sphere accompanying the motion in ques- 
tion, and we obtain the limiting conditions 

u = v = = w = o w h e n p = P  
where we have put 

p = JP 3- ?I2 4- P > 0. 
Here u, V ,  w are the velocity-components of the 
motion now under consideration (modified b~7 the 
sphere). If we put 

a4 = 4 3- u,, 

W = cg + wi, (3) = Br] 4- v1, 

’ since the motion defined by equation (3) must be 
transformed into that defined by equations (I) 
in the “ infinite” region, the velocities ul, V,, wl 
will vanish in the latter region. 
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The functions u, V ,  W must satisfy the hydro- 
dynamic equations with due reference to the 
viscosity, and ignoring inertia. Accordingly, the 
following equations will hold :- (*) 

where A stands for the operator 
3 2  3% -+-+- 3e2 392 352 

and 9 for the hydrostatic pressure. 
Since the equations (I) are solutions of the 

equations (4) and the latter are linear, according 
to (3) the quantities u,, V,, w1 must also satisfy the 
equations (4). I have determined u,, V,, q ,  and P, 
according to a method given in the lecture of 
Kirchhoff quoted in $ 4  (t), and find 

(*) G. Kirchhoff, “ Lectures on Mechanics,” Lect. 26. 
(t j  ‘‘ From the equations (4) it follows that ap = o, 

If p is chosen in accordance with this condition, and a 
function V is determined which satisfies the equation 

A V  = ;P, 
then the equations (4) are satisfied if we put 

and chose u’, V’, W‘, so that Au’ = o, Av’ = o, and 
AW’ = o, and 
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Now if we put 

and in agreement with this 

and 

the constants a, b, e can be chosen SO that when p P, 
= W = W = O. By superposition of three similar 

solutions we obtain the solution given in the equations 
( 5 )  and W *  

where 

(5a) 
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It is easy to see that the equations (5) are solu- 
tions of the equations (4). Then, since 

I 2 A t  = o, A -  = o, 
P A p = P  

and 

A($)  = - ${A( ; ) }  = o, 

we get 

But the last expression obtained is, according to 
the first of the equations (S) ,  identical with dpldE. 
In similar manner, we can show that the second 
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and third of the equations (4) are satisfied. We 
obtain further- 

But since, according to equation (sa), 

it' follows that the last of the equations (4) is 
satisfied. As for the boundary conditions, our 
equations for zd, V ,  W are transformed into the 
equations (I) only when p is indefinitely large. 
By inserting the value of D from the equajion 
(sa) in the second of the equations (5) we get 

We know that u vanishes when p = P. On the 
grounds of syrnmetry the same holds for V and W .  

We have now demonstrated that in the equations 
(5) a solution has been obtained to satisfy both 
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the equations (4) and the boundary conditions of 
the problem. 

It can also be shown that the equations (5) are 
the only solutions of the equations (4) consistent 
with the boundary conditions of the problem. 
The proof will only be indicated here. Suppose 
that, in a finite space, the velocity-components of 
a liquid u, V, W satisfy the equations (4). Now, if 
another solution U, V ,  W of the equations (4) can 
exist, in which on the boundaries of the sphere in 
question U = zc, V = V ,  W = W, then (U  - u, 
V - V ,  W - W )  will be a solution of the equa- 
tions (4), in which the velocity-components vanish 
at  the boundaries of the space. Accordingly, no 
mechanical work, can be done on the liquid con- 
tained in the space in question. Since we have 
ignored the kinetic energy of the liquid, it follows 
that the work transformed into heat in the space 
in question is likewise equal to zero. Hence we 
infer that in the whole space we must have zc = u', 
ZI = V', W = W', if the space is bounded, at least 
in part, by stationary walls. By crossing the 
boundaries, this result can also be extended to 
the case when the space in question is infinite, as 
in the case considered above. We can show thus 
that the solution obtained above is the sole 
solution of the problem. 
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We will now place around the point x,, yo, x, a 
sphere of radius R, where R is indefinitely large 
compared with P, and will calculate the energy 
which is transformed into heat (per unit of time) 
in the liquid lying within the sphere. This energy 
W is equal to the mechanical work done on the 
liquid. If we call the components of the pressure 
exerted on the surface of the sphere of radius R, 
Xn, Yn, 2%) then 

where ,the integration is extended over the surface 
of the sphere of radius R. 

Here 

x, = - . (Xr  6 + x? + X<-) ,  6 

2% = - (zt 8 - + 23 + Zr), 

86’. Y,=Z,=-k($+?) 
Y , = $ - z k - ,  3v Z t = X g = - k ( z + g )  am 3% 

P P P 

Yn = - (y{ + y? + Y$), 
. P  P 

6 
P P 

where 
W X t = p - ~ k -  

311 
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The expressions for u, V ,  W are simplified when we 
note that for p -.- R the terms with the factor 
P6/p5 vanish. 

We have to put 

For P we obtain from the first of the equations (5) 
by corresponding onaissi~ms 

p = - 5kP 4- Bq2 + CC2 
P5 

+ const. 

We obtain first 

A‘2 25kP3 t2(At2+Rrlt+CC2) x,= - 2kA+10kP3-- 
Pb P7 

and from this 

With the aid of the expressions for Yn and Zn, 
obtained by cyclic exchange, we get, ignoring all 
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terms which involve the ratio .P /p  raised to any 
power higher than the third, 

- 5kP-8(A2f2 + B2q2 + Cece) + 1 5 k # A f ~ + B q ~ + C S ~ ) 2 . ( ~ 3 )  P3 

If W é  integrate over the sphere and bear in mind 
that 

P* 

5 ds = 4R%, 
5 eds = 5 q2ds '= 5 = SmR4, 
5 [4ds 5 $ds = 5 {*as = h R 6 ,  
5 q2{2ds = S t2E2dS = 5 t2q2dS = fTnRg, 
5 (A[2+3q2+Cc2)2ds = <ZrrR6(A2+B2+C2), (23) 
we obtain 

(7) W = $ ~ R 3 k 6 ~  + &rP8k62 = za2k( V + :), (23) 
where we put 

5 2  = A2 + B2 + C2, 

If the suspended sphere were not present (@ = o), 
then we should get for the energy used up in the 
volume V ,  

On account of the pres,ence of the sphere, the 
energy used up is therefore diminished by S2kG. 

(74 W = 2S2kV. 

(26) 
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Q 2. CALCULATION OF THE VISCOSITY-COEFFICIENT 

OP A LIQUID IN WHICH A LARGE NUMBER 
OF SMALL SPHERES ARE SUSPENDED IN IR- 
REGULAR DISTRIBUTION 

In the preceding discussion we have considered 
the case when there is suspended in a domain G, 
of the order of magnitude defined above, a sphere 
that is very small compared with this domain, 
and have investigated how this influenced the 
motion of the liquid. We will now assume that 
an indefinitely large number of spheres are dis- 
tributed in the domain G, of similar radius and 
actually so small that the volume of all the 
spheres together is very small compared with the 
domain G. Let the number of spheres present in 
unit volume be .TZ, where n is sensibly constant 
everywhere in tbe liquid. 

We will now start once more from the motion 
of a homogeneous liquid, without suspended 
spheres, and consider again the most general 
motion of dilatation. If no spheres are present, 
by suitable choice of the Co-ordinate system we 
can express the velocity components zl,, vo, W,, in 
the arbitrarily-chosen point x ,  y, x in the domain 
G, by the equations 
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U, = A X ,  
V ,  = By, 
W, = C$, 

where A + B + C = o .  

Now a sphere suspended at the point -xv, yv x,, 
will affect this motion in a manner evident from 
the equation (6). Since we have assumed that 
the average distance between neighbouring spheres 
is very great compared with their radius, and . 

consequently the additional velocity-components 
originating from all the suspended spheres to- 
gether are very small compared with @,, V,, w,, 
we get for the velocity-components u, V ,  W in the 
liquid, taking into account the suspended spheres 
and neglecting terms of higher orders- 
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where the summation is extended over ail spheres 
in the domain G, and we put 

f v  = x - x,, 
q v  = y - yv, p u  = &u2, f q v 2  + [V2, 

= x - xy. 
x,, yv, x, are the Co-ordinates of the centre of the 
sphere.. Further, we 'conclude from the equa- 
tions (7) and (7a) that the presence of each of the 
spheres has a result (neglecting indefinitely small 
quantities of a .  higher order) (23) in an increase 
of the heat production per unit volume, and that 
the energy per unit volume transformed into heat 
in the domain G has the value 

W = zs2k + ns2k@, . (23) 
or 

(7b) W = 282k(I'+ f), . (23) 

where + denotes the fraction of the volume occu- 
pied by the spheres. 

From the equation (7b) the viscosity-coefficient 
can be calculated of the heterogeneous mixture of 
liquid and suspended spheres (hereafter termed 
briefly '' mixture ") under discussion ; but we 
must bear in mind that A ,  B, C are not the values 
of the principal dilatations in the motion of the 
liquid defined by the equations (8), (23) ; we will call 
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the principal dilatations of the mixture A*, B*, 
C*. On the grounds of symmetry it follows that 
the principal directions of dilatation of the mix- 
ture are parallel to the directions of the principal 
dilatations A ,  B, C, and therefore to the Co-ordi- 
nate axes. If we write the equations (8) in the 
form 

A X  + Ca,,, 
V = By +- CV,, 
W = C2 + CW,,, 

we get 

A* = (E) %==O = A + X ( $ ' )  X a 0  = A- . C (- )  3% 3% *=o* 

If we exclude from our discussion the immediate 
neighbourhood of the single spheres, we can omit 
the second and third terms of the expressions for 
a, V ,  W ,  and obtain when x = y = z = o :- 

I 5 PS xv(Axv2 + Byv2 $- G V 2 )  

2 Yv2 Y,? 
a, = - -- 

? 

where we put 
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We extend the summation throughout thk volume 
of a sphere K of very large radius R, whose centre 
lies at the origin of the Co-ordinate system. If 
we assume further that the irregularly distributed 
spheres are now evenly distributed and introduce 
an integral in place of the summation, we obtain 

J K  

By analogy 
B* = B(I - +), 
C* = C(r - 4). 

pa "F + B"2 +. p a ,  
We will put. 

then neglecting indefinitely small quantities sf 
higher order, 

8*2 = S2(I - 24). 
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We have found for the development of heat per 
unit of time and volume 

Let us call the viscosity-coefficient of the mixture 
k*, then 

From the last three equations we obtain (neglecting 
indefinitely small quantities of higher order) 

k* = k ( ~  + 25+) . (23) 
We reach, therefore, the result :- 

If very small rigid spheres are suspended in a 
liquid, the coefficient of internal friction is thereby 
increased by a fraction which is equal to 2 3  times 
the total volume of the spheres suspended in a 
unit volume, provided that this total volume is 
very small. 

$3.  ON THE VOLUME OF A DISSOLVED SUBSTANCE 

OF MOLECULAR VOLUME LARGE IN COMPARISON 

WITH THAT OF THE SOLVENT 

W* = 28*2k*. 

Consider a dilute solution of a substance which 
does not dissociate in the solution. Suppose that 
a molecule of the dissolved substance is large corn- 
pared with a molecule of the solvent ; and can be 
thought of as a rigid sphere of radius P. We can 
then apply the result obtained in Paragraph 2. 
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If k* be the viscosity of the solution, 'k 'that of 
the pure solvent, then 

k* - = I + 23+,  . k ' (23) 
where 4 is the total volume of the molecules 
present in the solution per unit volume. 

We will calculate + for a I per cent. aqueous 
sugar solutioni According to the observations 
of Burkhard (Landolt and Börnstein Tables) 
k*/k = 1.0245 (at zoo C.) for a 
sugar solution ; therefore C$ = 
mately) 0-01 grn. of sugar. A gram of sugar dis- 
solved in water has therefore the same effect on 
the viscosity as small suspended rigid spheres of 
total volume 0.98 C.C. (23) 

We must recollect here that I p. of solid sugar 
has the volcme 0.61 C.C. We shall find the same 
value for the specific volume S of the sugar present 

' in solution if the sugar solution is looked upon as 
a mixture of water and sugar in a dissolved form. 
The specific gravity of a I per cent. aqueous sugar 
solution (referred to water at  the same tempera- 
ture) at 17.5" is 1.00388. We have then (neglect- 
ing the difference in the density of water at  4' 
and at  1795')- 

I 
1.00388 - = 0.99 $- O'OIS. 

Therefore S = 0.61. 
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While, therefore, the sugar solution behaves, as 
to its density, like a mixture of water and solid 
sugar, the effect on the viscosity is one and one-half 
times greater than would have resulted from the 
suspension of an equal mass of sugar. It appears 
to me that this result can hardly be explained in 
the light of the molecular theory, in any other 
manner than by assuming that the sugar mole- 
cules present in solution limit the mobility of the 
water immediately adjacent, so that a quantity 
of water, whose volume is approximately one- 
half (23) the volume of the sugar-molecule, is bound 
on to the sugar-molecule. 

We can say, therefore, that a dissolved sugar 
molecule (or the molecule together with the water 
held bound by it respectively) behaves in hydro- 
dynamic relations as a sphere of volume 0.98 .342/N 
C.C. (23), where 342 is the molecular weight of sugar 
and N the number of actual molecules in a gram- 
molecule. 

$4.  ON THE DIFFUSION OF AN UNDISSOCIATED 

SUBSTANCE IN SOLUTION IN A LIQUID 

Consider such a solution as was dealt with in 
Paragraph 3. If a: force K acts on the molecule, 
which we will imagine as a sphere of radius P, 
the molecule will move with a velocity W which 

is determined by P and the viscosity k of the 
solvent. 

That is, the equation holds :-(*) 

We will use this relation for the calculation of the 
diff usion-coefficient of an undissociated solution. 
If P is the osmotic pressure of the dissolved sub- 
stance, which is looked upon as the only force 
producing motion in the dilute solution under con- 
sideration, then the force exerted in the direction 
of the X-axis on the dissolved substance per unit 
volume of the solution = - dP/dx. If there are 
p grams in a unit volume and m is the molecular 
weight of the dissolved substance, N the number 
of actual molecules' in a gram-molecule, then 
(p/m)N is the number of (actual) molecules in a 
unit of volume, and the force acting on a molecule 
as a result of the fall in concentration will be 

If the solution i s  sufficiently dilute, the osmotic 
pressure is given by the equation 

R p = &PT# 

(*) G. Kirchhoff, '' Lectures on Mechanics," Lect. 
26 (22). 
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where T is the absolute temperature and 
R = 8-31 . IO'. From the equations (I), (z), and 
(3) we obtain for the velocity of movement of the 
dissolved substance 

RT I 3p 
6nk N P  3x' 

u=---- 

Finally, the weight of substance passing per unit 
of time across unit area in the direction of the 
X-axis will be 

RT I 3p 
W P = - - * - -  6nk NF ax' 

We, obtain therefore for the diffusion coefficient 
D- 

Accordingly, we can calculate from the diffusion- 
coefficient and the coefficient of viscosity of the 
solvent, the value of the product of the number N 
of actual molecules in a gram-molecule and of the 
hydrodynamicdly-effective radius P of the mole- 
cule. 

In this calculation osmotic pressure is treated 
as a force acting on the individual molecules, 
which evidently does not correspond with the 
conceptions of the kinetic-molecular theory, since, 
according to the latter, the osmotic pressure in 
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the case under discussion must be thought of as 
a virtual force only. However, this difficulty 
vanishes if we reflect that (dynamic) equilibrium 
with the (virtual) osmotic forces, which correspond 
to the differences in concentration of the solution, 
can be established by the aid of a numerically 
equal force acting on the single molecules in the 
opposite direction ; as can easily be established 
following thermodynamic methods. 

Equilibrium can be obtained with the osmotic 

force acting on unit mass, - 5 2 by the force - Px 
p 3x' ., 

(applied to the individual solute molecules) if 

- -- I 3p - P x =  o. 
P 3% 

If we imagine, therefore, two mutually eliminat- 
ing systems of forces Px and - Px applied to the 
dissolved substance (per unit mass), then -Px 
establishes equilibrium with the osmotic pressure 
and only the force Px, numerically equal to the 
osmotic pressure, remains over as cause of motion. 
Thus the difficulty mentioned is overcome.(*) 

(*) A detailed statement of this train of thought will be 
found in Ann. d .  Phys., 17, 1905, p. 5.49. 
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$ 5 .  DETERMINATION OF MOLECULAR DIMENSIONS 

WITH THE HELP OF THE RELATIONS ALREADY 

OBTAINED 

We found in Paragraph 3 

k* = 1 + 2.54 = 1 + zegn . (23) 4 
k 3 

where n is the number of solute molecules per unit 
volume and P the hydrodynamically-eff ective 
radius of the molecule. If we bear in mind that 

-=-T N P  
n m  

where p is the mass of the dissolved substance 
present in unit volume and m is its molecular 
weight, we obtain 

Np3 --(x 3 m k* - I). 
Ion P 

On the other hand, we found in 8 4 
RT I N p = - -  67rk D' 

These two equations put us in the position to 
calculate each of the quantities P and N ,  of which 
N must show itself to be independent of the nature 
of the solvent, of the solute .and of the tempera- 
ture, if our theory is to correspond with the facts. 
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We will carry out the calculation for an aqueous 
. sugar solution. Firstly, it follows from the data 

given above for the viscosity of sugar solution at  
20° c. 

N P a =  80 . . (23) 
According to the researches of Graham (calcu- 

lated out by Stephan), the diffusion-coefficient of 
sugar in water at 9.5" is 0.384, if the day is taken 
as unit of time. The viscosity of water at 9'5" is 
0*0135. We will insert these data in our formula 
for the diffusion-coefficient, although they were 
obtained with IO per cent. solutions, and it is not 
to be expected that our formula will be precisely 
valid at so high a concentration. We get 

N P  = 2-08 .IOY 

It follows from the values found for NP3 and N P ,  
if we ignore the difference in P at 905" and zoo, 
that 

P = 6.2 . 10-8 cm. '. (23) 
N = 3.3 . 1oZ3. 

\ 

The value found for N agrees satisfactorily, in 
order of magnitude, with the values obtained by 
other methods for this quantity. 

Berne, 30 A $ d ,  1905. 
(Received, 19 August, 1905.) 
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In the new edition of Landolt and Börnstein's 
" Physical-Chemical Tables " will be found very 
useful data for the calculation of the size of the 
sugar molecule, and the number N of the actual 
molecules in a gram-molecule. Thovert found 
(Table, p. 372) for the diffusion-coefficient of sugar 
in water at 18-5" C. and the concentration 0-005 
mol./litre the value 0-33 cm.2/day. From a table 
(p. 81), with the results of observations made by 
Hosking, we find by interpolation that in dilute 
sugar solutions an increase in the sugar-content 
of I per cent. at 18.5" C. corresponds to an increase 
of the viscosity of 0~00025. Utilizing these data, 
we find 

P = 0.49 .  IO-^ mm. 
and 

N = 6-56 . 1023. . @3)2 (28) 
Berne, January, 1906. 


