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Abstract

Convergence trades exploit temporary mispricing by simultaneously buying relatively un-

derpriced assets and selling short relatively overpriced assets. This paper studies optimal con-

vergence trades under both recurring and non-recurring arbitrage opportunities represented by

continuing and ‘stopped’ cointegrated price processes and considers both fixed and stochastic

(Poisson) horizons. We demonstrate that conventional long-short delta neutral strategies are

generally suboptimal and show that it can be optimal to simultaneously go long (or short) in two

mispriced assets. We also find that the optimal portfolio holdings critically depend on whether

the risky asset position is liquidated when prices converge. Our theoretical results are illustrated

using parameters estimated on pairs of Chinese bank shares that are traded on both the Hong

Kong and China stock exchanges. We find that the optimal convergence trade strategy can yield

economically large gains compared to a delta neutral strategy.
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1 Introduction

Convergence trades are arguably one of the most important strategies used to exploit mispric-

ing in financial markets. In a classic convergence trade, twoassets trade at different prices but

have the same (or similar) payoff with certainty at a future date. Familiar examples of con-

vergence trades include merger arbitrage (risk arbitrage), pairs trading (relative value trades),

on-the-run/off-the-run bond trades, relative pricing of tranched structured securities, and arbi-

trage between the same stocks trading in different markets;see Bondarenko (2003), Hasbrouck

(2003), and Hogan et al. (2004).

Industry practice as well as academic studies conventionally assume that convergence trades

are based on delta neutral long-short positions, so that market exposure gets eliminated; see

Shleifer and Vishny (1997), Mitchell and Pulvino (2001), Lehmann (2002), Liu and Longstaff

(2004), Liu, Peleg and Subrahmanyam (2010), and Jurek and Yang (2007). However, our anal-

ysis demonstrates that the delta neutral arbitrage strategy is not the most efficient way to exploit

temporary mispricing. Specifically, we show that the optimal convergence trading strategy that

maximizes expected utility generally does not involve holding a delta neutral position. If the

investor really prefers a market neutral portfolio, this can be better obtained by combining the

optimal individual asset portfolio with the market index. Such a “market layover” strategy can

potentially improve the performance of the combined portfolio.

The basic message of our analysis is that there is a trade-offbetween diversification and arbi-

trage. Delta neutral convergence trades are designed to explore long-term arbitrage opportunities

but, in so doing, also create exposure to idiosyncratic riskwhich opens up diversification oppor-

tunities. By focusing on long-term arbitrage, delta neutral strategies do not take full advantage

of the short-term risk-return trade-off and diversification benefits. By placing arbitrage oppor-

tunities in the context of a portfolio maximization problem, our optimal convergence strategy

accounts for both arbitrage opportunities and diversification benefits.

We obtain several surprising new results. First, we show that it can be optimal to take

the same ‘side’ of both risky assets (i.e., be long in both assets or short in both assets at the

same time) even when prices eventually converge. This type of result, in which the sign of

the optimal asset position can differ at short and long investment horizons, only occurs in a

multiperiod model and will not happen in the static setting.A second surprising finding is

how much of a difference it can make whether the arbitrage opportunities are recurring or non-

recurring, particularly for small levels of mispricing. A third surprising finding is that the optimal

convergence trade in some special cases involves holding only one asset and disregarding the

second asset.
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To model convergence trades, we follow earlier studies in the literature, e.g., Alexander

(1999), Gatev, Goetzmann and Rouwenhorst (2006) and Jurek and Yang (2007), in assuming that

individual asset prices contain a random walk component, but that pairs of asset prices can be

cointegrated. This setup offers a tractable, yet flexible model that provides closed-form solutions

in the case with recurring arbitrage opportunities. Cointegration between pairs of asset prices

gives rise to a mean reverting error correction term which represents an expected excess return

over and above the risk premium implied by the CAPM. This expected excess return is similar

to a conventional ‘alpha’ component except that it is time-varying and has an expected value of

zero in the long run. Such time variation in alpha reflects both absolute mispricing−abnormal

expected returns over and above the CAPM benchmark values−and relative mispricing reflect-

ing the relative prices of the two assets. At short horizons,time is too scarce for the arbitrage

mechanism to be effective, and absolute mispricing dominates. At longer horizons, relative mis-

pricing plays a key role as price differentials can be expected to revert to zero and the optimal

portfolio is long in the (relatively) underpriced asset andshort in the (relatively) overpriced asset.

Under recurring arbitrage opportunities, the optimal portfolio may switch from being long

in one asset to shorting this asset if it changes from being (relatively) underpriced to being

overpriced. Arguably, this misses the important point thatinvestors close out their positions

when prices converge and profit opportunities diminish. To deal with this issue, we modify the

setup to allow for a ‘stopped’ cointegration process in which investors close out their position

in the pair of risky assets when prices have converged and mispricing has disappeared. This

case with non-recurring arbitrage opportunities gives rise to a set of very different boundary

conditions when solving for the optimal portfolio weights.1

Comparing the cases with recurring and non-recurring arbitrage opportunities, we show that

the optimal holdings in the risky assets can be very different, particularly when the price differ-

ential is small. Specifically, while risky stock holdings goto zero as the mispricing goes to zero

under recurring arbitrage opportunities, under non-recurring arbitrage opportunities, risky asset

positions are bounded away from zero when mispricing is non-zero and only get eliminated at

zero. In practice, this can lead to quite different optimal portfolio holdings for the two cases.

We next compare the optimal unconstrained and delta neutraltrading strategies. To illus-

trate the economic loss from adopting the delta neutral strategy, we consider a model whose

parameters are calibrated to a new data set on Chinese banking shares. Stocks of some Chinese

1 Our analysis does not account for funding risk. Even with a textbook arbitrage and a logarithmic utility maximizer,

explicit modeling of funding risk is very involved, see, e.g., Liu and Longstaff (2004). Qualitatively, investors should

hold smaller positions when funding risk is a concern while quantitatively it is difficult to combine both risky arbitrage

and funding risk.
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companies are traded simultaneously on the Hong Kong stock exchange as H shares and on the

Chinese stock exchanges as A shares. A and H shares carry the same dividends and control

rights, but can trade at very different prices. Due to trading restrictions on Chinese investors,

H shares are more likely to be fairly priced while A shares aremore likely to be mispriced. In

this case the delta neutral long-short strategy is suboptimal and we find that the optimal conver-

gence trade can generate economically significant gains over the arbitrage strategy for some of

the banks.

In summary, the key contributions of our paper are as follows. First, we derive in closed form

the optimal convergence trading strategy under the assumption that asset prices are cointegrated

and arbitrage opportunities are recurring. We show that thedelta neutral strategy is, in general,

suboptimal and the optimal arbitrage strategy is determined by both relative mispricing (risky

arbitrage) and absolute mispricing. Second, we extend the setup to allow for a stopped cointe-

grated price process in which the investor’s position in pairs of risky assets is liquidated once

prices converge. This can lead to optimal trading strategies that are quite different from those

assuming recurring arbitrage opportunities. Third, we provide analytical solutions for optimal

portfolio holdings when the holding period is stochastic asgoverned by a Poisson termination

process. Fourth, we use a calibration exercise to pairs of Chinese banking shares to demonstrate

that the loss incurred from following the delta neutral strategy can be economically significant.

The paper is organized as follows. Section 2 specifies our model for how asset prices evolve.

Section 3 introduces the investor’s portfolio choice problem. Sections 4 and 5 provide solutions

for the optimal unconstrained and delta neutral strategies, respectively, separately considering

the cases with recurring and non-recurring arbitrage opportunities. Section 6 analyses the case

with a Poisson termination process. Section 7 conducts an empirical analysis of pairs of Chinese

bank stocks simultaneously traded on the stock exchanges inChina and Hong Kong. Section 8

concludes. Proofs are contained in the Appendix.

2 Convergence Trade and Cointegration

We assume that there is a riskless asset which pays a constantrate of return,r. A risky asset

trading at the pricePmt represents the market index. This follows a geometric random walk

process,
dPmt

Pmt
= (r + µm) dt+ σmdBt, (1)

where the market risk premium,µm, and market volatility,σm, are both constant andBt is a

standard Brownian motion. The market index is fairly priced. Papers such as Dumas, Kurshev

and Uppal (2009) and Brennan and Wang (2006) assume that the market index is subject to
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pricing errors. We make no such assumptions here and insteadconcentrate on mispricing in

(pairs of) individual asset prices.

In addition to the risk-free asset and the market index, we assume the presence of two risky

assets whose pricesPit, i = 1, 2, evolve according to the equations

dP1t

P1t
= (r + βµm) dt+ βσmdBt + σdZt + bdZ1t − λ1xtdt, (2)

dP2t

P2t
= (r + βµm) dt+ βσmdBt + σdZt + bdZ2t + λ2xtdt, (3)

whereλ1, λ2, β, b, andσ are constant parameters.Zt andZit are standard Brownian motions,

andBt, Zt, andZit are all mutually independent fori = 1, 2.2 xt represents pricing errors in

our model and is the difference between the logarithms of thetwo asset prices,pit = lnPit,

xt = p1t − p2t = ln

(

P1t

P2t

)

. (4)

We make the key assumption thatλ1 + λ2 > 0. This implies thatxt is stationary and the

logarithms of the prices are cointegrated with cointegrating vector(1,−1). Following Engle

and Granger (1987), we refer toxt as the error-correction term. For simplicity, we use the

CAPM as the benchmark, but our results will continue to hold for other asset pricing models.

Other statistical processes could be used to capture temporary deviations from equilibrium

prices, including non-linear relations or fractional cointegration, to name a few. Our styl-

ized model is meant to capture essential features of pricingerrors while maintaining analytical

tractability and allowing us to characterize the optimal trading strategy in closed form.

To make our analysis tractable we assume, unlike Xiong (2001), that the processes gener-

ating asset prices are exogenous with respect to the investor’s decisions, and thus consider the

optimal trades of a “small” investor with no market impact. Xiong considers investors with log-

arithmic utility and shows that while convergence traders normally reduce price volatility, they

can actually amplify unfavorable shocks in situations where they are forced to liquidate their

positions.3

Our setup captures the idea that two assets with identical payoffs can trade at different prices.

Examples include pairs of stocks that have the same claim to dividends and identical voting

rights but are traded in different markets and two stocks with the same payoffs such as the target

and acquirer stocks in a merger. Specifically, the shares of Shell and Royal-Dutch traded at

different prices despite being claims on the same underlying assets. If the time of convergence

of the two prices was known with certainty, there would be a riskless arbitrage opportunity and

2 The presence of a common nonstationary factor is consistentwith the equilibrium asset pricing model analyzed by

Bossaerts and Green (1989).
3 See also Kondor (2009) for an approach that endogenizes the price process.

4



investors would have shorted the overpriced stock in the same amount as they would have been

long in the underpriced stock. In reality, however, while the two stock prices can be expected

to converge over time, the date where this would occur is not known ex ante, and so this is an

example of risky arbitrage, i.e. a self-financing trading strategy with a strictly positive payoff

today but a zeroexpectedfuture cumulative payoff.

In equations (2)-(3),βσmdBt represents exposure to the market risk whileσdZt + bdZit

represents idiosyncratic risks. It is standard to assume that idiosyncratic risks are independent

across different stocks with the market risk representing the only source of correlation among

different assets. In our case, both assets are claims on similar fundamentals and so the pres-

ence of common idiosyncratic risk,dZt, is to be expected. The two asset prices are correlated

both because of their exposure to the same market-wide risk factor (dBt) and common idiosyn-

cratic risk (dZt) but also due to the mean reverting error correction term (xt) which will induce

correlation between the two asset prices even in the absenceof the two former components.

2.1 Alpha and Absolute Mispricing

The expected stock return in equations (2)-(3) is(r+βµm)dt−λ1xtdt and(r+βµm)dt+λ2xtdt

respectively. Ifλ1 = λ2 = 0, expected returns satisfy the CAPM relation,(r + βµm)dt; in this

sense (i.e., that the CAPM correctly specifies the expected return), there is no mispricing in either

asset and only the market index and the riskless asset will beheld. Neither of the individual risky

assets are held because of their additional idiosyncratic risk which goes without any associated

extra expected return.

If either or bothλ’s are non-zero, expected returns have an extra term which represents

deviations from the CAPM relation. When−λ1xt > 0, asset one has a higher expected return

than is justified by its risk, i.e., a positive alpha, and so asset one is underpriced. Conversely,

when−λ1xt < 0, asset one has a lower expected return than justified by its risk, i.e., a negative

alpha, and is overpriced. Similarly, whenλ2xt > 0, asset two has a positive alpha and thus is

underpriced; whenλ2xt < 0, asset two has a negative alpha and is overpriced. Therefore, −λ1xt

andλ2xt represent mispricing “alphas” and they capture each asset’s absolute mispricing which

we know must exist; after all, convergence trades involve two assets with the same payoff trading

at different prices.

Different combinations of theλ1 andλ2 price adjustment parameters are likely to reflect the

(relative) liquidity of the two assets. For example, if two high-volume stocks are both traded

in liquid markets, it is likely that their prices adjust equally rapidly and soλ1 = λ2 holds as

a good approximation. A good point in case is the Royal Dutch and Shell shares traded on

the Amsterdam and London stock exchanges, respectively, asconsidered by Jurek and Yang
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(2007). Conversely, in the case of the Chinese stocks tradedas both H-shares in Hong Kong

and as A-shares in China, we might expect that stock prices adjust more rapidly in the Hong

Kong market where there are fewer market frictions than in China, and so theλ-value in Hong

Kong is expected to be greater than theλ−value in China, a conjecture that we corroborate

empirically in Section 7. Idiosyncratic liquidity shocks to pairs of shares that lead one price to

be relatively high while the other becomes relatively low can then be represented byλ1 andλ2

values that have the same sign but are of different magnitudes. As a third case, suppose two

Chinese banking shares are hit by a common (industry-wide) liquidity shock that leads both

assets to become underpriced, but that one asset is more underpriced than the other. This case

can be captured by lettingλ1 andλ2 be of different signs. For example, ifxt > 0 andλ1 < 0,

λ2 > 0, then both assets are underpriced relative to the market. From the stability condition

λ1 + λ2 > 0, the second asset must be more underpriced than the first asset and so is expected

to revert back to its equilibrium price more rapidly.

2.2 Cointegration and Relative Mispricing

The variablext = ln(P1t/P2t) is the difference in the logarithm of the prices of two assetsthat

should be identical and so represents relative mispricing.If λ1 + λ2 > 0, equations (2)-(4)

constitute a continuous-time cointegrated system with−λ1xt andλ2xt as the error correction

terms.

Even though both asset prices are almost geometric Brownianmotions, the difference be-

tween the two is stationary because of the error correction term which captures relative mispric-

ing between the two assets. The dynamics of this term satisfies

dxt = −λxxtdt+ bxdZxt, (5)

where

λx = λ1 + λ2,

bxdZxt = bdZ1t − bdZ2t, (6)

andbx =
√
2b. The assumption that the mean reversion coefficient,λx, is positive ensures that

xt is stationary. Mean reversion inxt captures the temporary nature of any mispricing.

The error correction term produces mean reversion that keeps mispricing stationary and pric-

ing errors “small” compared to either of the individual integrated price processesp1t, p2t. This

ensures that, in the words of Chen and Knez (1995), “closely integrated markets should assign

to similar payoffs prices that are close”.
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We consider two cases. In the first case (“recurring arbitrage opportunities”), the price dif-

ferential,xt, only spends an infinitesimally small time at zero, is characterized at all times by

the dynamics in Eq. (5) and so follows a stationary process. In this case, stock prices are al-

ways described by Eqs. (2)-(3). In the second case (“non-recurring arbitrage opportunities”),

any price difference is temporary and gets permanently eliminated the first time the two prices

converge andxt = 0. In this case, the price dynamics is subject to the additional restriction that

xτ+∆ = 0 for all ∆ ≥ 0, whereτ = min(t : xt = 0) is a stopping time. In this case, prices

remain identical after they converge. As we show later, optimal portfolio weights are different

for these cases.4

To summarize, absolute mispricing is determined in the short run by the conditional alphas

while relative mispricing is determined in the long run by cointegration between asset prices.

3 Portfolio Choice Problem

Denote the investor’s allocation to the market portfolio byφmt while the weights on the indi-

vidual risky assets are given byφit, i = 1, 2. In the absence of intermediate consumption, the

investor’s wealth,Wt, evolves according to the process

dWt = Wt

(

rdt+ φmt

(

dPmt

Pmt
− rdt

)

+ φ1t

(

dP1t

P1t
− rdt

)

+ φ2t

(

dP2t

P2t
− rdt

))

= Wt

(

rdt+ (φmt + β(φ1t + φ2t))(µmdt+ σmdBt) + φ1t(σdZt + bdZ1t − λ1xtdt)

+φ2t(σdZt + bdZ2t + λ2xtdt)
)

.

We assume that the investor maximizes the expected value of apower utility function defined

over terminal wealth,WT

max
{φmt}Tt=0,{φ1t}Tt=0,{φ2t}Tt=0

1

1− γ
E0

[

W 1−γ
T

]

. (7)

If the investor is a hedge fund,T can be viewed as the fund’s lifetime.

The investor’s value function is given by

J(t, x,W ) =
1

1− γ
Et[W

∗(1−γ)
T ], (8)

4 Under the first scenario, any mispricing is stationary over time. Conversely, mispricing in Liu and Longstaff (2004)

and Liu, Peleg, and Subrahmanyam (2010) is expressed in terms of a Brownian bridge and a generalized Brownian

bridge. These specifications are not stationary and are useful to describe cases where mispricing will be zero for sure at

some future date. For example, on the settlement date of a futures contract, the difference between the spot and futures

price has to be zero even though the individual spot and futures prices follow non-stationary processes (Brenner and

Kroner, 1995).
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whereW ∗
T is the wealth at timeT obtained by the optimal trading strategy withWt = W and

xt = x at timet.

Using standard results, it follows that when prices are described by diffusion processes such

as those in equations (1)-(3),J satisfies the HJB equation

max
φ̃m,φ1,φ2

Jt + (−λxx)Jx +
1

2
b2xJxx + (r + φ̃mµm + (−λ1φ1 + λ2φ2)x)WJW

+b2(φ1 − φ2)WJxW +
1

2
(φ̃

2
mσ2

m + (φ1 + φ2)
2σ2 + (φ2

1 + φ2
2)b

2)W 2JWW = 0. (9)

Hereφ̃m = φm + β(φ1 + φ2), noting that maximizing over(φm, φ1, φ2) is equivalent to maxi-

mizing over(φ̃m, φ1, φ2). Exploiting homogeneity, the value function should take the following

form

J(t, x,W ) =
W 1−γ

1− γ
eu(t,x). (10)

Expressed in terms ofu(t, x), the first-order conditions for̃φm, φ1 andφ2 are

φ̃mσ2
m(−γ) + µm = 0,

−λ1x+ b2ux + ((φ1 + φ2)σ
2 + φ1b

2)(−γ) = 0,

λ2x− b2ux + ((φ1 + φ2)σ
2 + φ2b

2)(−γ) = 0.

Solving these equations, the optimal portfolio weights take the form

φ∗
mt =

µm

γσ2
m

− β(φ∗
1t + φ∗

2t),





φ∗
1t

φ∗
2t



 =
1

γ(2σ2 + b2)b2





σ2 + b2 −σ2

−σ2 σ2 + b2









−λ1x+ b2ux

λ2x− b2ux



 . (11)

The first term in the expression for the market portfolio weight, φ∗
mt, is the standard mean-

variance portfolio weight and thus depends on the market’s Sharpe ratio divided by the investor’s

coefficient of risk aversion and market volatility. The second term offsets the market exposure

of the individual assets which is linear in the portfolio weights,φ∗
1t andφ∗

2t, and proportional to

their beta.

Turning to the expression forφ∗
1t andφ∗

2t, the first term in the bracket in Eq. (11), which de-

pends explicitly onλ1 andλ2, is the mean-variance term; the second term, which is proportional

to ux, is the intertemporal hedging term. Note that parameters associated with the market index

such asβ, µm, andσm, do not affectφ∗
1t, φ

∗
2t. This is because the individual assets’ market

exposure is hedged using the market index. In contrast, asset-specific parameters such as the

volatility of the common and independent idiosyncratic risk components (σ, b), their sensitivity
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to the mispricing component (λ1 andλ2), the size of the mispricing (x = ln(P1/P2) ) in addi-

tion to the investor’s attitude to risk (γ) and investment horizon (throughux), determine optimal

asset holdings.

Substituting the optimal portfolio weights back into the HJB equation, the following PDE is

obtained foru(t, x)

0 = ut −
λx

γ
xux + b2uxx +

1

γ
b2u2x

+

(

r +
1

2γ

(

µ2
m/σ2

m +
λ2
1(σ

2 + b2) + 2λ1λ2σ
2 + λ2

2(b
2 + σ2)

b2(b2 + 2σ2)
x2
))

(1− γ). (12)

The terminal condition is

u(T, x) = 1. (13)

Note that the PDE foru in (12) and the boundary condition in (13) are quite general in the sense

that they hold under both recurring and non-recurring arbitrage opportunities. In contrast, the

boundary condition foru(t, x) depends on what happens whenx reaches zero and the two prices

converge.

4 Optimal Investment Strategies

This section separately considers cases with a continuing cointegrated price process (recurring

arbitrage opportunities), which gives closed-form solutions for the optimal portfolio weights,

versus a stopped cointegrated price process (non-recurring arbitrage opportunities) for which

the optimal portfolio weights have to be solved numerically.

4.1 Continuing Cointegrated Price Process

We first consider the case where stock prices continue to be described by the cointegrated process

even after the price difference reaches zero. In this case, with probability 1, the prices will

diverge again. This case is relevant for Royal Dutch and Shell’s stock prices as well as for A-

and H-share prices of Chinese stocks. In this case, the PDE for u(t, x) is satisfied for allx and

can be solved in closed form.

Lemma 1 Suppose asset prices evolve according to equations (1)-(3)and the investor has con-

stant relative risk aversion preferences. Then the value function in equation (10) is characterized

by

u(t, x) = A(t) +
1

2
C(t)x2,

where theA(t) andC(t) functions only depend on time,t, and are given in the Appendix.
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Substituting the specific form ofu(.) in Lemma 1 into equation (11), the optimal portfolio

weights can be obtained.

Proposition 1 Under the assumptions of Lemma 1, the optimal weights on the market portfolio,

φ∗
mt, and the individual assets, (φ∗

1t, φ
∗
2t), are given by

φ∗
mt =

µm

γσ2
m

− (φ∗
1t + φ∗

2t)β,





φ∗
1t

φ∗
2t



 =
1

γ(2σ2 + b2)b2





σ2 + b2 −σ2

−σ2 σ2 + b2









−λ1 + b2C(t)

λ2 − b2C(t)



 ln

(

P1t

P2t

)

.

This result follows from equation (11) and Lemma 1 which implies thatux = C(t)x. We

shall use Proposition 1 to compute optimal portfolio weights given a set of estimates for the

parameters{λ1, λ2, b
2, σ2}.

4.2 Stopped Cointegrated Process

Next consider the case where the price difference,xt, stays at zero when it reaches zero so that

it follows a “stopped” cointegrated process. This case is relevant for “one-shot” arbitrages such

as risk arbitrage in mergers and acquisitions. Alternatively, if the investor decides to close out

the position once prices converge, we can also view the priceprocess as a stopped cointegrated

process.

Formally, letτ be defined by

τ = min{t : xt = 0}.

The log-price differential now follows a stopped AR(1) processXτ = xt∧τ .

Whent < τ , the value functionu(t, x) satisfies the same partial differential equation in (12)

as the continuing cointegrated process. Whent ≥ τ , prices have converged, the investment

opportunity in the individual stocks is gone, and the investor will hold only the market index.

This is a standard Merton problem and so produces utility atτ of

W 1−γ
τ

1− γ
e
(1−γ)(r+

µ2
m

2γσ2
m

)(T−τ )
. (14)

Equation (14) implies that

u(τ , 0) = (1− γ)(r +
µ2
m

2γσ2
m

)(T − τ). (15)

Whenx → ∞, x is unlikely to reach zero before timeT , so the boundary condition becomes

u(t, x) → A(t) +
1

2
C(t)x2. (16)
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whereA(t)+ 1
2C(t)x2 is theu(t, x) function for the continuing cointegrated process introduced

in Lemma 1. In this case, there is no closed-form solution forthe value functionu(t, x), but we

can solve foru(t, x) numerically and obtain the optimal portfolio weights usingequation (11).

The most surprising feature of the portfolio weights under astopped cointegrated price pro-

cess is that they approach a non-zero limit asx → 0. Under recurring arbitrage opportunities,

the individual portfolio weights are proportional to the log-price difference,x, and so approach

zero asx → 0. The position in these two assets unwinds gradually asx → 0. In contrast, if

x is stopped atx = 0, the individual portfolio weights approach a non-zero limit whenx → 0.

In this case, the investor has finite positions in both assetsasx ↓ 0; to unwind the position as

required for this case, a large portfolio adjustment has to be made atx = 0.

To establish intuition for this finding, note that in the caseof recurring arbitrage opportuni-

ties, the risk premium, which is proportional tox, can become negative. In fact, whenx = 0,

the probability thatx becomes negative in the next instant equals the probabilitythatx becomes

positive. As a consequence, whenx equals zero, it is optimal to hold zero in the two risky stocks:

holding individual stocks would only add idiosyncratic risk without any additional increase in

expected returns since there is no mispricing.

Conversely, in the case with non-recurring arbitrage opportunities, the investment opportu-

nity disappears the first timex equals zero. Because thex process cannot fall below zero, there

is not the same downside risk as in the case with recurring arbitrage opportunities. Suppose

now thatx is very small but just a little above zero. Then the distribution of future returns is

similarly truncated since the worst that can happen to the risk premium is that it becomes zero

(whenx = 0). Since the future risk premium is finite but positive and there is limited downside

risk, the agent chooses optimally to hold a finitely positiveamount in the risky assets.

To illustrate our results, we use parameter values obtainedfrom an empirical analysis of pairs

of Chinese banking stocks traded simultaneously as A-shares on the Chinese stock exchange and

as H-shares on the Hong Kong stock exchange. Details of the analysis are provided in Section

7. We focus on two pairs of error-correction parameter values, namely(λ1, λ2) = (0.29, 0.31)

and(λ1, λ2) = (0.52,−0.35), corresponding to the estimated parameters for Agricultural Bank

of China and China Citic Bank, respectively. We letx vary from zero to 0.2, corresponding to

asset one being relatively overpriced.5 For the first set of parameters,(λ1, λ2) = (0.29, 0.31),

the positive error correction term leads to a decrease in theprice of asset one and an increase in

the price of asset two. For the second set of parameters,(λ1, λ2) = (0.52,−0.35), the price of

asset two tends to decrease when this asset is undervalued, but the price of asset one decreases

5 This and the subsequent figures use the following (annualized) parameter values calibrated to the Chinese bank

share data:σ = 0.15, b = 0.30, µ
m

= 0.05, σm = 0.35, r = 0.02.
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by even more, thus ensuring convergence.

The left window of Figure 1 plots the optimal weights under both recurring and non-recurring

arbitrage opportunities when the degree of mispricing is varied from zero to 20%, while the

investment horizon is kept fixed atT = 1 year andγ = 4. Under these parameter values,

and assuming recurring arbitrage opportunities, the optimal weights are of opposite signs and

almost identical in magnitude. Moreover, asx gets large, the weights under recurring and non-

recurring arbitrage opportunities converge as we would expect, since it becomes unlikely that

x will cross zero prior to timeT . Whenx is small, however, the two sets of weights are very

different. Whereas the weights under recurring arbitrage opportunities converge to zero, the

weights under non-recurring arbitrage opportunities remain bounded away from zero even for

small values ofx.

The right window of Figure 1 shows that the two sets of weightscan differ by even more

whenλ1 andλ2 are of opposite signs. For this case the optimal holdings under recurring ar-

bitrage opportunities are short in both stocks, although the holding in the second stock is quite

close to zero. In contrast, the holdings under non-recurring arbitrage opportunities start with a

short position in the first stock and a long position in the second stock, although the latter de-

clines towards zero asx gets larger. Once again, as the magnitude of the mispricing grows, the

two pairs of weights converge.

4.3 Short-Term Risk-Return Trade-off and Long-Term Arbitrage

Our cointegrated price processes allow for mispricing in the short term but impose that prices

revert to their equilibrium (no arbitrage) relation in the long term. These properties are reflected

in the portfolio weights. At short horizons, the portfolio weights are dominated by the mean-

variance component, which is determined by the instantaneous risk-return trade-off. At long

horizons, the portfolio weights reflect equilibrium forces. Conventional long-short arbitrage

strategies impose that the two stock portfolio weights should have opposite signs. This is not

true for the optimal portfolio strategy. We show below that at short horizons, it is possible

that both stock portfolio weights can have the same sign, while at long horizons they can have

opposite signs. To illustrate these points, we take advantage of the closed-form solution for

the case with continuing cointegrated processes, but the intuition and conclusion applies to the

stopped cointegrated processes as well.

From Proposition 1, the optimal stock portfolio weights forthe continuing cointegrated pro-
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cess can be written as




φ∗
1t

φ∗
2t



 =









−(λ1 + λ2)
σ2

b2
− λ1

(λ1 + λ2)
σ2

b2
+ λ2





1

2σ2 + b2
+





1

−1



C(t)





1

γ
ln

(

P1t

P2t

)

. (17)

At short horizons the term proportional toC(t) is small. Without loss of generality, we can

assume thatλ1 > 0. If P1t > P2t, then (17) shows that it is optimal to short the first stock,

i.e.,φ∗
1t < 0, which is unsurprising since this stock is (relatively) overvalued and has a negative

alpha. More surprisingly, however, it is possible that it isoptimal to simultaneously short the

second stock, i.e.,φ∗
2t < 0. This follows when(λ1+λ2)

σ2

b2
+λ2 < 0 and suggests the following

corollary:

Corollary 1 Suppose that(λ1 + λ2)
σ2

b2 + λ2 < 0. Then at short horizons the optimal portfolio

takes a short position in both stocks.

The intuition for this result is as follows. At short horizons, intertemporal hedging ceases

to be important and so both assets are shorted if they have negative alphas and are overpriced.

In this situation, investors can optimally exploit the absolute mispricing by shorting the two

assets and are willing to be exposed to idiosyncratic risk. At short horizons, the investor acts

myopically and portfolio holdings are dictated by the conventional mean-variance trade-off.

This result is in stark contrast with the delta neutral strategy which consists of symmetric

long-short positions in the two stocks.

Turning to the opposite case with a long horizon, using results in the appendix we have,

C(t) →
λ1 + λ2 −

√

(λ1 + λ2)2 − 2
(λ2

1+λ2
2)(σ

2+b2)+2λ1λ2σ2

(b2+2σ2)
(1− γ)

2b2
=

λ1 + λ2 − ξ

2b2
, (18)

where

ξ =

√

(λ1 + λ2)2 − 2
(λ2

1 + λ2
2)(σ

2 + b2) + 2λ1λ2σ2

(b2 + 2σ2)
(1− γ).

Hence, at long horizons, the optimal stock holdings are given by




φ∗
1t

φ∗
2t



 =





−(λ1 + λ2)σ
2 − λ1b

2 + (λ1 + λ2 − ξ)(2σ2 + b2)

(λ1 + λ2)σ
2 + λ2b

2 − (λ1 + λ2 − ξ)(2σ2 + b2)





ln
(

P1t
P2t

)

γb2(2σ2 + b2)

=





(λ1 + λ2)(σ
2 + b2)− ξ(2σ2 + b2)− λ1b

2

−(λ1 + λ2)(σ
2 + b2) + ξ(2σ2 + b2) + λ2b

2





ln
(

P1t
P2t

)

γb2(2σ2 + b2)
. (19)

Using this result, we get the following corollary:

Corollary 2 Suppose that−(λ1+λ2)(σ
2+b2)+ξ(2σ2+b2)+λ2b

2 > 0. Then at long horizons

the optimal portfolio takes a short position in one stock anda long position in the other stock.
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At long horizons, the intertemporal hedging component dominates. In our analysis the in-

tertemporal hedging component reflects how prices convergeto the equilibrium implied by no

arbitrage and so the optimal portfolio holdings of an investor with a long horizon will reflect

the no-arbitrage conditions. The condition in Corollary 2 requires that the arbitrage effect dom-

inates the mean-variance risk-return trade-off. Whenγ is close to 1,ξ is close toλ1 + λ2, and

the long-run inequality in Corollary 2 reduces to the short-run inequality in Corollary 1, so the

two stock positions will be of opposite signs at long horizons if and only if this holds at the short

horizon. However, whenγ >> 1, ξ can be arbitrarily large and the positions in the two stocks

will always have opposite signs at long horizons.6

Figure 2 shows that these results are not only of theoreticalinterest and apply to the empirical

analysis of some of the Chinese banks traded in China and HongKong. The left window shows

the case whereλ1 ≈ λ2 > 0. For this case the optimal stock weights under recurring andnon-

recurring arbitrage opportunities are of opposite signs and of nearly identical magnitude at both

long and short horizons. In contrast, in the right window we show a case whereλ1 andλ2 are

of opposite signs. For this case it is optimal to hold both shares short, i.e.,φ∗
1t < 0, φ∗

2t < 0,

at short horizons. As the horizon grows, the sign of the holdings in asset two changes from

negative to positive, so at long horizons we haveφ∗
1t < 0, φ∗

2t > 0.

Jurek and Yang (2007) derive the optimal investment strategy under power utility, assuming

recurring arbitrage opportunities andλ1 = λ2. Like us, they find that the intertemporal hedging

demand component can be an important part of the investor’s overall position.

4.4 Optimal Convergence Trades with a Single Stock

Another surprising result is that it may be optimal to hold only one stock in a convergence trade.

It is often automatically assumed that the optimal convergence trade strategy will hold the two

assets simultaneously, i.e., buy the underpriced asset andshort the overpriced asset. However,

as we shall see, this need not hold, at least not if asset prices are modeled by cointegrated price

processes. In fact, it is possible that the optimal positionholds only one of the assets.

Specifically, suppose thatγ = 1 so thatC(t) = 0 and there is no dynamic hedging. Fur-

thermore, assume that one of the assets is mispriced (λ1 > 0) while the other is correctly priced

6 Alternatively, the optimal stock portfolio weights can be written as

(

φ∗

1t

φ∗

2t

)

=

((

−1

1

)

(λ1 + λ2)σ
2

b2(2σ2 + b2)
+

(

−λ1

λ2

)

1

2σ2 + b2
+

(

1

−1

)

C

)

1

γ
ln

(

P1t

P2t

)

.

While the first and third terms in the large bracket have opposite signs and identical magnitude, this need not hold for

the second term as long asλ1 6= λ2. Thus the two optimal stock positions need not have equal size with opposite signs.
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(λ2 = 0) and unaffected by the error correction term. Finally, assume thatσ = 0 so there is no

correlation between idiosyncratic shocks:

dP1t

P1t
= (r + βµm) dt+ βσmdBt + bdZ1t − λ1xtdt,

dP2t

P2t
= (r + βµm) dt+ βσmdBt + bdZ2t. (20)

The optimal portfolio puts a zero weight on asset two in this case. Thus, the optimal convergence

trade strategy holds only one stock, and not the pair. This issurprising, since convergence trades

seem to imply that both assets are held.

This result can be understood as follows. Although the two asset prices remain cointegrated,

all price adjustment occurs through the first asset. When only asset one is mispriced, asset two

will be held to reduce the variance of the optimal strategy due to their common idiosyncratic

risks. Whenσ = 0, the idiosyncratic risk of asset two is independent of the idiosyncratic risk of

asset one, so asset two cannot be used to reduce the variance of asset one and therefore will not

be held.

There is a catch to this result, however. Even though the instantaneous correlation between

idiosyncratic risks of asset one and asset two is zero, thereis a long-term correlation due to their

cointegration. In fact,dZ2t is one of the shocks todxt, so there is an intertemporal hedging

benefit from holding asset two. Therefore, for investors with γ 6= 1, even though the myopic

component of the optimal portfolio weight on asset two is still zero, the intertemporal hedging

component will not be zero. The ratio|φ∗
2t|/|φ∗

1t| will then increase from zero as the horizon

expands.

5 Optimal Delta Neutral Strategy

Many popular investment strategies assume that the portfolio is delta neutral. For example, Liu

and Longstaff (2004) and Liu, Peleg, and Subrahmanyam (2010) directly specify the dynamics

of the difference in asset prices and so one can view the strategies studied in these papers as

assuming thatφ1t = −φ2t. As pointed out by Gatev et al. (2006), and confirmed empirically

by these authors, pairs of stocks are often selected to be market neutral. In our model where the

two stocks are assumed to have identical market betas, deltaneutrality directly translates into

the constraintφ1t = −φ2t.

This section shows that although the market-neutral strategy is very popular, it can clearly be

suboptimal. If the investor really prefers a market-neutral portfolio, this can be better obtained

by combining the optimal individual asset holdings with themarket index. A utility maximizer

could rationally accept some exposure to the market portfolio to earn the market risk premium.
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When there is mispricing, the optimal portfolio should havesome exposure to the market (and

thus not be delta neutral) and some position in the mispricedassets. Our results suggest that the

best way to achieve a delta neutral position is to use the market index to hedge away the market

exposure in the mispriced assets. Using mispriced assets alone to achieve delta neutrality will

necessarily under-exploit opportunities offered by mispricing in the individual stocks.

With the constraint,φ1t = −φ2t, we haveφ̃mt = φmt + β(φ1t + φ2t) = φmt. The HJB

equation is then given by

max
φ̃m,φ1

Jt + (−λxx)Jx +
1

2
b2xJxx + (r + φ̃mµm − φ1(λ1 + λ2)x)WJW

+b22φ1WJxW +
1

2
(φ2

mσ2
m + 2φ2

1b
2)W 2JWW = 0. (21)

Assume again that the investor has power utility so the valuefunction takes the form

J =
W 1−γ

1− γ
ev(t,x), (22)

wherev(t, x) is the delta neutral counterpart tou(t, x) in (10). The HJB equation reduces to

max
φ̃m,φ1

vt − λxxvx +
1

2
b2x(v

2
x + vxx) + (r + φmµm − φ1(λ1 + λ2)x)(1 − γ)

+2b2φ1(1− γ)vx +
1

2
(φ2

mσ2
m + 2φ2

1b
2)(1− γ)(−γ) = 0.

The first-order condition forφm is

µm + σ2
mφm(−γ) = 0,

which leads to

φ∗
m =

1

γ

µm

σ2
m

. (23)

Similarly, the first-order condition forφ1 is

−(λ1 + λ2)x+ 2b2vx + 2b2φ∗
1 = 0,

and so

φ∗
1t =

−(λ1 + λ2)x+ 2b2vx
2γb2

. (24)

Substituting the optimal weights back into the HJB equation, we get the following PDE

vt − λxxvx +
1

2
b2x(vxx + v2x) + (r +

1

2γ
µ2
m/σ2

m)(1− γ)

+
1

2γ

(−(λ1 + λ2)x+ 2b2vx)
2

2b2
(1− γ) = 0. (25)

The terminal condition is

v(T, x) = 0.

Once again we separately characterize the optimal portfolio holdings for the cases with recurring

and non-recurring arbitrage opportunities.
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5.1 Continuing Cointegrated Process

In this case, the PDE specified by equation (25) has a closed-form solution.

Lemma 2 Suppose asset prices evolve according to equations (1)-(3)and the investor has con-

stant relative risk aversion preferences. Then the function v(t, x) is characterized by

v(t, x) = B(t) +
1

2
D(t)x2,

where theB(t) andD(t) functions only depend on time,t, and are given in the Appendix.

From equations (23) and (24) and Lemma 2, the optimal portfolio weights under the con-

straint thatφ1t = −φ2t can be characterized in closed form as follows:

Proposition 2 The optimal portfolio weights under the delta neutrality constraintφ1t+φ2t = 0

are given by

φ̌
∗
mt =

µm

γσ2
m

,

φ̌
∗
1t =

−(λ1 + λ2) ln
(

P1t
P2t

)

+ 2b2D(t) ln
(

P1t
P2t

)

2γb2
.

To illustrate this result, Figure 3 compares the optimal unconstrained and delta neutral stock

weights using the parameter estimates from our empirical analysis. For the first set of parameter

values whereλ1 ≈ λ2, the delta neutral and unconstrained optimal weights are essentially

identical as we would expect from propositions 1 and 2 since in this caseφ∗
1t ≈ φ∗

2t. Conversely,

the delta neutral weights are very different from the unconstrained optimal weights in the right

window whereλ1 andλ2 are of opposite signs. For this case, the delta neutral strategy takes a

short position in stock one, which is (relatively) overvalued, and a long position in stock two,

which is undervalued. In contrast, the optimal unconstrained strategy takes a large short position

in the first stock and a small short position in the second stock.

5.2 Stopped Cointegrated Process

Using similar arguments as for the unconstrained case, the boundary conditions forv(t, x) are

v(t, 0) = (1− γ)(r +
µ2
m

2γσ2
m

)(T − τ). (26)

Whenx → ∞, we have

v(t, x) → B(t) +
1

2
D(t)x2. (27)
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Here,B(t) + 1
2D(t)x2 is thev(t, x) function for the case with recurring arbitrage opportunities

given in Lemma 2. Again, we can solve the PDE numerically for the case with non-recurring

arbitrage opportunities.

Figure 4 illustrates the delta neutral positions for the case with non-recurring arbitrage oppor-

tunities. Once again the delta neutral position is virtually identical to the unconstrained position

for the first set of parameter estimates for whichλ1 ≈ λ2 (left window). Large differences

occur, however, whenλ1 andλ2 are dissimilar, as they are in the right window. For example,

the unconstrained optimal holding of the second stock decreases as a function ofx, while con-

versely the delta neutral holding in the second stock increases asx grows so as to balance out the

increasingly short position in the first stock. As a result, the magnitude of the delta neutral and

the unconstrained optimal positions can be very different across a wide spectrum ofx−values.

To better understand the differences between the unconstrained optimal weights and the delta

neutral weights, consider again the case with mispricing only in asset one (λ1 = 1, λ2 = 0). For

this case we expect the magnitude of the myopic demand for asset one in the unconstrained

optimal portfolio to exceed that in the delta neutral portfolio. To see why, notice that shocks to

asset one have two components: one that is perfectly correlated with shocks to asset two (Zt)

and one that is independent of shocks to this asset (Z1t). The unconstrained allocation ensures

that the perfectly correlated shock is completely hedged bytaking an appropriate position in

asset two. Hence the unconstrained optimal holding is determined by the risk premium and the

variance of the independent shock.

The delta neutral portfolio constrained to have suboptimalrelative weights (1,-1), earns the

same risk premium as asset one because the risk premium of asset two is zero (λ2 = 0). Further-

more, the size of the independent shock to asset two is the same as that for asset one, but is not

completely hedged. Thus the suboptimal portfolio earns thesame risk premium but at a higher

risk and so the investor will hold less of asset one under the constrained strategy.

By the same token, because the unconstrained portfolio has the same risk premium as the

delta neutral portfolio but also has lower risk, the investor would take a larger position in the

unconstrained portfolio for the intertemporal hedging demand.

5.3 Wealth Gains from the Optimal Strategy

Differences between the optimal and delta neutral trading strategies, while interesting in their

own right, are not of economic significance unless we can demonstrate that they sometimes lead

to sizeable economic losses for sensible choices of parameter values. This subsection therefore

explores cases where the expected wealth gain from imposingdelta neutrality will be minimal
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as well as cases where the opposite holds. First, we provide asufficient condition for the optimal

unconstrained strategy to be delta neutral:

Proposition 3 The optimal strategy is delta neutral ifλ1 = λ2.

This follows from equation (11) sinceφ∗
1t = −φ∗

2t and the optimal strategy is delta neutral

whenλ1 = λ2. When this condition holds, clearly there will be no loss from applying a delta

neutral strategy.

We next address more broadly the size of the economic loss associated with adopting the

conventional delta neutral strategy. We base our comparison on a simple result that allows us

to compute the wealth gain of the optimal investment strategy relative to the suboptimal delta

neutral strategy.

The following proposition allows us to compare the wealth under the two investment strate-

gies for the scenario with recurring arbitrage opportunities:

Proposition 4 The wealth gain of the optimal strategy relative to the deltaneutral strategy

assuming a mispricing ofx is

R = e
1

1−γ
(u(t,x)−v(t,x))

,

whereu(t, x) andv(t, x) are defined in equations (10) and (22), respectively.

To see this, note that, given a wealth levelW , we needW×R under the delta neutral strategy

to achieve the same level of utility as under the optimal strategy, where

(W ×R)1−γ

1− γ
ev(t,x) =

W 1−γ

1− γ
eu(t,x),

from which the result follows. A similar result allows us to compute wealth gains under the

stopped cointegrated price process.

Using Proposition 4, it is easy to evaluate the investor’s wealth gain. Figure 5 shows the

expected wealth gain from adopting the unconstrained optimal trading strategy versus the delta

neutral strategy as a function of the initial price difference,x. The graph considers the second

set of error correction parameters,(λ1 = 0.52, λ2 = −0.35) since expected gains are close

to zero for the first set of parameters because the two sets of weights are nearly identical; see

Proposition 3. Assuming recurring arbitrage opportunities, the expected gain rises from close

to 3% of initial wealth to 4.5% of initial wealth asx goes from zero to 20%. In the case with

non-recurring arbitrage opportunities, the expected gainstarts at zero, but increases to a level

close to 3.5% whenx = 0.20.
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6 Stochastic Investment Horizon with Poisson Termina-

tion Process

So far, we have assumed either that the investor’s horizon isdeterministic (that is, the horizon is

a constantT ) or stochastic in a way that is related to thex-process crossing some boundary. An-

other possibility is that the fund is forced to liquidate itsposition at a random time for reasons

extraneous to the risky arbitrage such as withdrawal of funds or liquidity shocks. For exam-

ple, Krishnamurthy (2010) argues that small shocks to credit or liquidity conditions can have

large balance sheet and/or information amplifiers on financial intermediaries, and these could

ultimately force a fund to wind up its positions if it can no longer obtain funding.

To capture this case, suppose that the investor’s horizon isgiven by an exogenous Poisson

arrival time,τ . Thus the investor’s objective is

E0
[

1

1− γ
W 1−γ

τ̄

]

, (28)

whereτ is a Poisson arrival time, and̄τ = min(τ , T ), andT is constant. For example,T could

be the lifetime of a limited partnership hedge fund. The expectation operatorE0 denotes the

expectation taken with respect to the Poisson processτ , in addition to Brownian motions.

The problem with Poisson exit time when stock prices follow ageometric Brownian motion

is studied for the case without transaction costs by Merton (1970) and with transaction costs by

Liu and Loewenstein (2002). In our paper, asset prices are not geometric Brownian motions. We

obtain the analytical solution for the portfolio weights bycombining the dynamic programming

approach and the martingale approach.

Following Merton (1970), the objective can be written as

E0

[
∫ T

0
ρe−ρt 1

1− γ
W 1−γ

t dt+
e−ρT

1− γ
W 1−γ

T

]

, (29)

whereρ is the intensity of the Poisson processτ andE0 denotes the expectation assuming

a deterministic horizon, and thus applies to the Brownian motions. This leads to a standard

dynamic programming problem.

To obtain an analytical expression for the value function wenext consider the martingale

approach. Note that the (unique) pricing kernel can be expressed as

πt = e−rte
− 1

2

µ2
m

σ2
m

−µm
σm

dBmt
e−

1
2
(η21t+η22t)−(η1tdZ1t+η2tdZ2t), (30)

whereηt is the market price of risk which is given by

ηt =





η1t

η2t



 =





√
2σ2+b2+b

2

√
2σ2+b2−b

2√
2σ2+b2−b

2

√
2σ2+b2+b

2





−1



−λ1xt

λ2xt



 .
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To solve the investor’s problem in this case, note that thereare infinitely many constraints, each

indexed byt, for all t > 0 :

E0[πtWt] = w0,

whereπt is the pricing kernel. We show in the Appendix that the value function under a stochas-

tic horizon specified by a Poisson arrival process is the weighted average of the value function

under deterministic horizons with weights given by the Poisson distribution. Moreover, in this

case the optimal portfolio weights are given in the following proposition:

Proposition 5 Suppose the assumptions of Lemma 1 hold and that the investor’s horizon is

governed by a Poisson termination process with intensity parameterρ. Then the optimal weights

on the individual assets, (φ∗
1t, φ

∗
2t), are given by

φ∗
1 =

−λ1b
2 − (λ1 + λ2)σ

2

γb2(b2 + 2σ2)
x+

2
∫ T
0 C(t)e−ρteA(t)+C(t)x2

dt+ 2C(t)e−ρ(T−t)eA(t)+C(t)x2

γ
(

∫ T
0 e−ρteA(t)+C(t)x2dt+ e−ρ(T−t)eA(t)+C(t)x2

) x,

and

φ∗
2 =

λ2b
2 + (λ1 + λ2)σ

2

γb2(b2 + 2σ2)
x− 2

∫ T
0 C(t)e−ρteA(t)+C(t)x2

dt+ 2C(t)e−ρ(T−t)eA(t)+C(t)x2

γ
(

∫ T
0 e−ρteA(t)+C(t)x2dt+ e−ρ(T−t)eA(t)+C(t)x2

) x.

whereA(t) andC(t) are the same as in Lemma 1.

Figure 6 compares the deterministic horizon (of lengthT ) versus stochastic (Poisson) hori-

zon solutions under recurring arbitrage opportunities, assuming a Poisson intensity parameter

of ρ = 2 and settingT = 1. The solution under the stochastic horizon is quite close tothat

under the deterministic horizon. The possibility of an early termination of the arbitrage opportu-

nities leads the investor to reduce the positions in the risky assets. This is understandable since

the value function under the stochastic horizon is a weighted average of the value function under

deterministic horizons with horizon lengths between zero andT . This dampens the sensitivity of

the optimal weights in the Poisson case with respect to movements inx, because the sensitivity

to x increases with the horizon in the deterministic case.

7 Empirical Example: Chinese Bank Shares

To illustrate the empirical relevance of our theoretical results, we next provide an analysis of

pairs of Chinese bank stocks. Some Chinese bank shares are traded simultaneously as A shares

on the Shanghai stock exchange and as H Shares in Hong Kong. They represent claims on the

same assets and so should not, once converted into the same currency, be priced differently.
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Hence this case matches our theoretical setup and we use thisas an empirical example to cali-

brate the parameters of our cointegrated model.

Specifically, we consider seven pairs of Chinese A and Hong Kong H bank shares, namely

Agricultural Bank of China (sample period: 7/16/2010 - 2/15/2012) China Merchants Bank

(9/22/2006 - 2/15/2012); Bank of China (7/15/2006 - 2/15/2012); China Citic Bank (4/27/2007

- 2/15/2012); China Minsheng Banking (11/26/2009 - 2/15/2012); China Con. Bank (9/25/2007

- 2/15/2012); and Bank of Commerce (5/15/2007 - 2/15/2012).The shortest sample spans 394

days, while the longest sample spans 1,411 days. Chinese A shares are quoted in yuan, while H

shares are quoted in Hong Kong Dollars, so we convert both series into US dollar terms to make

them comparable.

Figure 7 shows that log-prices of the pairs of A- and H-sharestend to move broadly in

synchrony. The price differentials plotted in Figure 8 showthat differences at times can be

quite substantial, although the figure also suggests that price differences tend to decrease when

they get unusually large, consistent with mean reversion towards zero, although the speed of

mean reversion can be quite slow. Bearing in mind that cointegration tests can have low power

in relatively short samples such as ours, pair-wise tests ofcointegration, reported in the first

column in Table 1, reject the null of no cointegration for four of the seven series.7

To help calibrate the parameters of our model, we estimate pairwise error correction models

for the seven sets of A-shares and H-shares. Table 1 reports the estimated values ofλ1 and

λ2 along with theirt-statistics. The first set of estimates only includelog(P1t) and log(P2t)

in the error correction model and so may be subject to omittedvariable bias since the effect

of the market price is left out.8 To deal with this issue, we also show results for a two-stage

procedure that first orthogonalizes the bank share prices with respect to the market index and

then estimates an error correction model for the resulting log-prices.9 In all but one case, the

sum of the estimated values ofλ1 andλ2 is positive. This is consistent with our modeling

assumption of mean reversion in price differentials. The lack of statistical significance of some

of theλ1 andλ2 estimates can again be attributed to the relatively short data samples and the

fairly slow speed of mean reversion.

7 The test results are based on an ADF unit root test for the log-price difference,log(P1t)−log(P2t). This has slightly

better power than the conventional cointegration test since it does not require estimating the cointegration parameter

which is instead assumed to be unity.
8 The findings are robust to the number of lags included in the analysis and also hold when a Bayesian vector error

correction model is used.
9 Although the two pairs ofλ estimates differ, their correlation, at 0.73 (λ1) and 0.67 (λ2), is quite high.
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7.1 Trading Results

To further illustrate the difference between the delta neutral versus the unconstrained strategies,

we undertake a simple trading experiment.10 For each pair of banking shares we compute the

optimal weights using the end-of-day value ofxt = log(P1t)−log(P2t), the estimates of(λ1, λ2)

from Table 1 and moment-based estimates of(b2, σ2, β). We assumeµm = 5%, σm = 35%, r =

2%. We set the terminal date,T , to February 15, 2010 corresponding to the end of our data and

focus on the case with recurring arbitrage opportunities which yields more observations than the

case with non-recurring arbitrage opportunities and so offers the more informative comparisons

for this particular application.11 Rebalancing is assumed to take place daily and we setγ = 4.

While daily rebalancing does not match the assumption of continuous time price dynamics, it is

likely to provide a reasonable approximation, see Bertsimas, Kogan, and Lo (2000).

Table 2 reports the results. In all cases the mean portfolio return associated with the uncon-

strained strategy is at least as large as that associated with the delta neutral strategy and in some

cases it is substantially larger, i.e., 16.7% versus 6.9% per annum for China Merchants Bank

and 16.1% versus 8.3% for China Minsheng Banking. Since the volatility of returns on the un-

constrained strategy is also higher, we consider the Sharperatio and cumulated wealth, starting

from $100. In four of seven cases this is highest for the unconstrained strategy. Similarly, the

cumulated wealth of the optimal strategy, reported in the last panel of Table 2, exceeds that of

the delta neutral strategy for all but China Con. Bank.

These results ignore transaction costs which are unfortunately unavailable and difficult to

assess. Interestingly, however, for four of the seven pairsof banking shares, the turnover of

the unconstrained and delta neutral strategies, measured through(|∆φ∗
1t|+ |∆φ∗

2t|)/2, are very

close, i.e., within 10% of each other, and so transaction costs would not appear to explain the

differences in performance of the two strategies, at least for a number of the pairings.

8 Conclusion

Convergence trades form an important part of many relative value investment strategies. It is

generally assumed that a delta neutral long-short positionshould be taken in pairs of under- and

over-valued assets so as to ensure market neutrality. This paper argues that such a strategy does

not optimally take advantage of the associated risk-returntrade-off. Instead, we derive optimal

portfolio strategies when pairs of risky asset prices are cointegrated so that their conditional

10 We thank the editor, Pietro Veronesi, for suggesting to use atrading strategy to illustrate our theoretical results.
11 For the majority of banking shares,x crosses zero after relatively few observations.
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excess return can be characterized through a mean revertingerror correction process. When ar-

bitrage opportunities are recurring, the optimal portfolio holdings can be characterized in closed

form. We also consider the interesting case where the investor’s position is closed out as soon as

prices converge. This second case can give rise to very different solutions for the optimal port-

folio holdings and expected utility. We compare our optimalsolutions to those achieved under

conventional trading strategies restricted to be delta neutral, i.e., insensitive to market condi-

tions, and show that considerable gains in expected utilitycan be achieved by deviating from

conventional convergence trades.

Our analysis considers the actions of an unconstrained fund. In reality funds’ trades are

constrained in important ways, reflecting limits on borrowing, regulatory constraints and other

market imperfections. Perhaps the single most important constraint arises from funding risk

which arises when a trade has to be closed down early due to lack of funding. Moreover, such

funding risk is likely to be greatest in bad states of the world and so could well be correlated

with the arbitrage opportunities analyzed here. We view this as a topic of great interest for future

research.

Appendix

This appendix derives the results needed for the optimal portfolio weights presented in the paper.

Proof of Lemma 1

Without the boundary condition atx = 0, we conjecture

u(t, x) = A(t) +
1

2
C(t)x2.

Substituting this conjecture into equation (12) yields an equation that is affine inx. Setting the

terms in the equation that are independent ofx and the coefficient ofx to zero, we have the

following ordinary differential equations (ODE)

0 = At +
1

2
b2xC + (r +

1

2γ
µ2
m/σ2

m)(1 − γ),

0 = Ct −
2λx

γ
C +

2

γ
b2C2 +

λ2
1(σ

2 + b2) + 2λ1λ2σ
2 + λ2

2(b
2 + σ2)

γb2(b2 + 2σ2)
(1− γ).

We first solve forC. The ODE forC can be written as

0 = Ct +
2

γ
b2(C − C+)(C − C−),
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whereC± are the roots of the following quadratic equation inC

0 = C2 − λx

b2
C +

(λ2
1 + λ2

2)(σ
2 + b2) + 2λ1λ2σ

2

2b4(b2 + 2σ2)
(1− γ).

These roots are given by

C± =
λx ±

√

(λx)2 − 2
(λ2

1+λ2
2)(σ

2+b2)+2λ1λ2σ2

(b2+2σ2) (1− γ)

2b2
.

The ODE forC can be solved in the following steps. First,

Ct = −2b2

γ
(C − C+)(C − C−),

which can be written as
dC

(C − C+)(C −C−)
= −2b2

γ
dt,

or, equivalently,

(
1

C − C+
− 1

C −C−
)dC = −2b2

γ
(C+ − C−)dt.

Integrating on both sides, we have

d ln

∣

∣

∣

∣

C − C+

C − C−

∣

∣

∣

∣

= −2b2

γ
(C+ − C−)dt.

Using the terminal conditionC(T ) = 0, we get

ln

∣

∣

∣

∣

C − C+

C − C−

∣

∣

∣

∣

− ln

∣

∣

∣

∣

C+

C−

∣

∣

∣

∣

=
2b2

γ
(C+ − C−)(T − t),

which is the same as
∣

∣

∣

∣

C/C+ − 1

C/C− − 1

∣

∣

∣

∣

= e
2b2

γ
(C+−C−)(T−t)

.

• Whenγ > 1, C+ > 0 andC− < 0, and0 > C > C−.

• Whenγ < 1, if C± are real, thenC ≥ 0, andC(t) decreases fromC < C− at t = 0 to 0

at t = T . Thus,C < C− < C+.

In both cases,
∣

∣

∣

∣

1−C/C+

1−C/C−

∣

∣

∣

∣

=
1− C/C+

1− C/C−
.

Thus, we get
1− C/C+

1− C/C−
= e

2b2

γ
(C+−C−)(T−t),

which can be solved as

C(t) = − e
2b2

γ
(C+−C−)(T−t) − 1

1
C+

− e
2b2
γ (C+−C−)(T−t)

C−

= C−
e

2b2

γ
(C+−C−)(T−t) − 1

e
2b2

γ
(C+−C−)(T−t) − C−

C+

.
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Turning to the solution forA(t), integrating over the ODE forA(t), we get

0 = A(t)− 1

2
b2x

∫ T

t
C(s)ds+ (r +

1

2γ
µ2
m/σ2

m)(1− γ)(t− T ),

where we have used the terminal conditionA(T ) = 0. Note that

−
∫ T

t
C(s)ds = C−






t− T − (

C−
C+

− 1)
1

C−
C+

2b2

γ (C+ − C−)
ln

∣

∣

∣

∣

∣

∣

∣

1− C−
C+

e
− 2b2

γ
(C+−C−)(T−t)

1− C−
C+

∣

∣

∣

∣

∣

∣

∣







= C−






t− T +

γ

2C−b2
ln







1− C−
C+

e
− 2b2

γ
(C+−C−)(T−t)

1− C−
C+












.

Hence, we get

A(t) =
(

(r +
1

2γ
µ2
m/σ2

m)(1− γ) + b2C−
)

(T − t)− γ

2
ln







1− C−
C+

e−
2b2

γ
(C+−C−)(T−t)

1− C−
C+






.

Note that

−b2C−(T − t) +
γ

2
ln





C+ − C−e
− 2b2

γ
(C+−C−)(T−t)

C+ − C−





= −C+ + C−
2

b2(T − t)

+
γ

2
ln





C+e
b2

γ
(C+−C−)(T−t) − C−e

− b2

γ
(C+−C−)(T−t)

C+ − C−





= −C+ + C−
2

b2(T − t)

+
γ

2
ln





C++C−+(C+−C−)
2 e

b2

γ
(C+−C−)(T−t) − C++C−−(C+−C−)

2 e−
b2

γ
(C+−C−)(T−t)

C+ − C−





= −C+ + C−
2

b2(T − t) +
γ

2
×

ln





C+ + C−
2

e
b2

γ
(C+−C−)(T−t) − e

− b2

γ
(C+−C−)(T−t)

C+ −C−
+

1

2
(e

b2

γ
(C+−C−)(T−t) + e

−b2

γ
(C+−C−)(T−t))





= −λ1 + λ2

2
(T − t)

+
γ

2
ln

(

λ1 + λ2

2

e
ξ
γ
(T−t) − e

− ξ
γ
(T−t)

ξ
+

1

2
(e

ξ
γ
(T−t) + e

−ξ
γ

(T−t))

)

,

with

ξ =

√

(λ1 + λ2)2 − 2
(λ2

1 + λ2
2)(σ

2 + b2) + 2λ1λ2σ2

(b2 + 2σ2)
(1− γ).
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Hence, we can writeA(t) as

A(t) = (r +
1

2γ

µ2
m

σ2
m

)(1− γ)(T − t) +
λ1 + λ2

2
(T − t)

−γ

2
ln

(

λ1 + λ2

2

(

e
ξ
γ
(T−t) − e−

ξ
γ
(T−t)

ξ

)

+
1

2
(e

ξ
γ
(T−t)

+ e
−ξ
γ

(T−t)
)

)

.

This yields the result forA(t) andC(t) and so proves Lemma 1.

Proof of Lemma 2

Next consider the case with delta neutral portfolio weightswhereφ1t = −φ2t. We conjecture

that

v(t, x) = B(t) +
1

2
D(t)x2.

Substituting this equation into (25) yields an affine equation inx. Setting the term that is inde-

pendent ofx and the coefficient ofx to zero leads to the following ODEs

Bt + b2D + (r +
1

2γ
µ2
m/σ2

m)(1 − γ) = 0,

Dt − 2(λ1 + λ2)D + 2b2D2 +
1

γ

(λ1 + λ2)
2 − 4(λ1 + λ2)b

2D + 4b4D2

2b2
(1− γ) = 0.

These two ODEs can be simplified to

Bt + b2D + (r +
1

2γ
(µ2

m/σ2
m))(1− γ) = 0,

Dt −
2

γ
(λ1 + λ2)D +

2

γ
b2D2 +

1

γ

(λ1 + λ2)
2

2b2
(1− γ) = 0.

Let

D± =
λ1 + λ2

2b2
(1±√

γ).

The solution to the ODE is then

D(t) =
1− e

2(λ1+λ2)√
γ

(T−t)

1/D+ − e
2(λ1+λ2)√

γ
(T−t)

/D−

,

and

B(t) = (r +
1

2γ
µ2
m/σ2

m)(1− γ)(T − t) +
λ1 + λ2

2
(T − t)

−γ

2
ln

(

(λ1 + λ2)
e

η
γ
(T−t) − e−

η
γ
(T−t)

2η
+

1

2
(e

η
γ
(T−t)

+ e
− η

γ
(T−t)

)

)

,

where

η = (λ1 + λ2)
√
γ.
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Proof of Proposition 5

The wealth dynamics of a self-financing trading strategy satisfies

dWt = Wt

(

rdt+ (φmt + β(φ1t + φ2t))(µmdt+ σmdBt) + φ1t(σdZt + bdZ1t − λ1xtdt)

+φ2t(σdZt + bdZ2t + λ2xtdt)
)

.

Let φ̃mt = φmt + β(β1t + β2t). Note that maximizing over(φm, φ1, φ2) is equivalent to maxi-

mizing over(φ̃m, φ1, φ2).

The HJB equation is

0 = max Jt + (µx − λxx)
′Jx +

1

2
Tr
(

(βxσmσ′
mβ′

x + σxσ
′
x + bxb

′
x)Jxx′

)

+
(

r + φ̃
′
mµm − φ′λx

)

WJW

+
(

βxσmσ′
mφ̃m + σxσ

′φ+ αbb′φ
)′
WJxW

+
1

2

(

φ̃
′
mσmσ′

mφ̃m + φ′σσ′φ+ φ′bb′φ
)

W 2JWW + ρ

(

W 1−γ

1− γ
− J

)

.

We conjecture that the value function takes the form

J(x,W ) =
W 1−γ

1− γ
f(x).

In terms off , the HJB equation is

max
φ̃m,φ1,φ2

0 = ft − λxxfx +
1

2
b2xfxx + (r + φ̃mµm + (−λ1φ1 + λ2φ2)x)(1 − γ)f

+b2(φ1 − φ2)(1− γ)fx +
1

2
(φ̃

2
mσ2

m + (φ1 + φ2)
2σ2 + (φ2

1 + φ2
2)b

2)(1 − γ)(−γ)f + ρ(1− f).

The first order condition for̃φm is

µm + σ2
mφ̃m(−γ) = 0,

which leads to

φ̃
∗
m =

1

γ

µm

σ2
m

.

The first-order conditions forφ1 andφ2 are

−λ1x+ b2fx/f + ((φ1 + φ2)σ
2 + φ1b

2)(−γ) = 0,

λ2x− b2fx/f + ((φ1 + φ2)σ
2 + φ2b

2)(−γ) = 0.

These equations lead to

φ∗
1 =

−λ1b
2 − (λ1 + λ2)σ

2

γb2(b2 + 2σ2)
x+

1

γ
fx/f,

φ∗
2 =

λ2b
2 + (λ1 + λ2)σ

2

γb2(b2 + 2σ2)
x− 1

γ
fx/f.
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Substituting the optimal weights back into the HJB equation, we get

0 = ft + (−λxx)fx +
1

2
b2xfxx + (r +

1

2γ
µ2
m/σ2

m)(1 − γ)f

+
1

2γ

(

2(fx/f)
2b2 − 2(λ1 + λ2)xfx/f +

λ2
1(σ

2 + b2) + 2λ1λ
2
2σ

2 + λ2
2(b

2 + σ2)

b2(b2 + 2σ2)
x2
)

(1− γ)f

+ρ(1− f).

This equation be can simplified to

0 = ft −
λx

γ
xfx +

1

2
b2xfxx +

1

γ
b2(1− γ)f2

x/f

+

(

r +
1

2γ

(

µ2
m/σ2

m +
λ2
1(σ

2 + b2) + 2λ1λ2σ
2 + λ2

2(b
2 + σ2)

b2(b2 + 2σ2)
x2
))

(1− γ)f

+ρ(1 − f)

which is the same as the equation for a deterministic horizonwith ft replaced byρ(1− f). The

boundary condition isf(x) → 0 asx → ±∞ for γ > 1.

Note that whenγ = 1, the PDE forf becomes

0 = ft −
λx

γ
xfx +

1

2
b2xfxx + ρ(1− f),

and the solution isf = 1. Next, we use the martingale approach to obtain a closed form

expression forf(t, x). It is straightforward to show that the (unique) pricing kernel,πt, is

πt = e−rte
− 1

2

µ2
m

σ2
m

−µm
σm

dBmt
e−

1
2
(η21t+η22t)−(η1tdZ1t+η2tdZ2t).

Note that

η21t + η22t =
(σ2 + b2)(λ2

1 + λ2
2) + 2λ1λ2σ

2

b2(2σ2 + b2)
x2t = Hx2t ,

where

H =
(σ2 + b2)(λ2

1 + λ2
2) + 2λ1λ2σ

2

b2(2σ2 + b2)
.

The agent’s objective is to solve the optimization problem

E0

[∫ ∞

0
ρe−ρt 1

1− γ
W 1−γ

t dt+ e−ρT 1

1− γ
W 1−γ

T

]

,

subject to infinitely many constraints, each indexed byt, for t > 0:

E0[πtWt] = w0.

The Lagrangian is

E0

[
∫ ∞

0
ρe−ρt 1

1− γ
W 1−γ

t dt− κt(E0[πtWt]−w0)dt

]
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whereκt is the Lagrangian multiplier corresponding to the ‘t’ constraint. The first order condi-

tion is

ρe−ρtW−γ
t − κtπt = 0.

Thus, solving forW ∗
t ,

W ∗
t = (eρtκtπt/ρ)

−1/γ .

From the constraint, we can derive the Lagrangian multiplier κt

κ
−1/γ
t = (eρt/ρ)1/γ(E0[π

1−1/γ
t ])−1w0.

Inserting this in the wealth expression, we have

W ∗
t = π

−1/γ
t (E0[π

1−1/γ
t ])−1w0.

The value function is

J(w0, x) =

∫ ∞

0
ρe−ρtE0

[

W ∗1−γ
t

1− γ

]

dt =

∫ ∞

0
ρe−ρtE0







(

π
−1/γ
t (E0[π

1−1/γ
t ])−1w0

)1−γ

1− γ






dt

=
w1−γ
0

1− γ

∫ ∞

0
ρe−ρtE0

[

π
1−1/γ
t

(

E0[π
1−1/γ
t ]

)γ−1
]

dt =
w1−γ
0

1− γ

∫ ∞

0
ρe−ρt

(

E0[π
1−1/γ
t ]

)γ
dt.

Using the equation for the pricing kernel, we have

E0[π
1−1/γ
t ] = e

−(1−1/γ)rt− 1
2γ

(1−1/γ)µ2m
σ2m

t
E0[e

− 1
2
(1−1/γ)

∫ t
0
(η21u+η22u)du−(1−1/γ)(η1udZ1u+η2tdZ2u)].

Note that

E0

[

e−
1
2
(1−1/γ)

∫ t
0 (η

2
1u+η22u)du−(1−1/γ)(η1udZ1u+η2tdZ2u)

]

= EQ
0

[

e−
1
2γ

(1−1/γ)
∫ t
0 (η

2
1u+η22u)du

]

= EQ
0

[

e−
H
2γ

(1−1/γ)
∫ T
0 x2

udu
]

,

whereEQ
0 denotes the expectation under the equivalent measureQ defined by the following

Radon-Nikodym derivative

dQ

dP
= e−

1
2
(1−1/γ)2

∫ (
0
tη21u+η22u)du−(1−1/γ)(η1udZ1u+η2tdZ2u).

UnderQ, the dynamics ofxt is

dx = −λx

γ
xtdt+ bdZQ

1t − bdZQ
2t.

From Feynman-Kac, we know that

l(x, t) = EQ
t

[

e
− H

2γ
(1−1/γ)

∫ T
t

x2
udu
]
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satisfies the following PDE

lt −
λx

γ
xlx +

1

2
b2xlxx −

H

2γ
(1− 1/γ)x2l = 0,

with the terminal condition

l(x, T ) = 1.

We conjecture that

l(x, t) = eh0(t)+
1
2
h1(t)x2

.

The equation forl(t, x) then becomes

dh0
dt

+
1

2

dh1
dt

x2 − λxh1(t)x
2 +

1

2
b2x(h1 + h21x

2)− H

2γ
(1− 1/γ)x2 = 0.

Hence,

dh0
dt

+
1

2
b2xh1 = 0,

dh1
dt

− 2
λx

γ
h1(t) + b2xh

2
1 −

H

γ
(1− 1/γ) = 0,

subject to the terminal conditions

h0(T ) = 0,

h1(T ) = 0.

The solution toh0(t) andh1(t) is given byh0(t) = A(t)
γ andh2(t) = C(t)

γ , whereA(t) and

C(t) are given in Lemma 1. Therefore, we have

f(x, t) =

∫ T

t
ρe−ρ(T−u)eA(u)+ 1

2
C(u)x2

du+ e−ρ(T−t)eA(t)+ 1
2
C(t)x2

whereA(t) andC(t) are given in Lemma 1. The value function under a stochastic horizon

specified by a Poisson arrival process is the weighted average of the value function under deter-

ministic horizons with weights given by the Poisson distribution. The optimal portfolio weights

are given by

φ∗
1 =

−λ1b
2 − (λ1 + λ2)σ

2

γb2(b2 + 2σ2)
x+

1

γ
fx/f

=
−λ1b

2 − (λ1 + λ2)σ
2

γb2(b2 + 2σ2)
x

+

∫ T
t C(u)e−ρ(T−u)eA(u)+ 1

2
C(u)x2

du+ C(T − t)e−ρ(T−t)eA(t)+ 1
2
C(t)x2

γ
∫ T
t e−ρ(T−u)eA(u)+ 1

2
C(u)x2

du+ e−ρ(T−t)eA(t)+ 1
2
C(t)x2

x
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and

φ∗
2 =

λ2b
2 + (λ1 + λ2)σ

2

γb2(b2 + 2σ2)
x− 1

γ
fx/f

=
λ2b

2 + (λ1 + λ2)σ
2

γb2(b2 + 2σ2)
x

−
∫ T
t C(u)e−ρ(T−u)eA(u)+ 1

2
C(u)x2

du+ C(T − t)e−ρ(T−t)eA(t)+ 1
2
C(t)x2

γ
∫ T
t e−ρ(T−u)eA(u)+ 1

2
C(u)x2

du+ e−ρ(T−t)eA(t)+ 1
2
C(t)x2

x.

Whenγ = 1, A(t) = 0 andC(t) = 0, and so

f(x) =

∫ T

0
ρe−ρtdt+ e−ρT = 1,

which is consistent with the solution using the dynamic programming approach.
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Stock Regular Prices Orthogonalized Prices
Coint. test λ1 t-stat (λ1) λ2 t-stat (λ2) λ1 t-stat (λ1) λ2 t-stat (λ2)

Agricultural Bank of China -2.261 0.288 2.100 0.309 1.009 0.192 1.564 0.473 1.613
China Merchants Bank -4.281*** -0.370 -1.981 0.653 3.053 0.023 0.163 0.622 3.177

Bank of China -2.879 0.086 0.660 0.291 1.773 0.308 2.968 -0.481 -3.100
China Citic Bank -4.623*** 0.314 1.733 0.269 1.285 0.526 3.962 -0.346 -1.754

China Minsheng Banking -2.333 -0.284 -1.727 0.606 2.890 -0.235 -1.715 0.540 2.679
China Con. Bank -3.189* 0.135 0.868 0.377 1.745 -0.029 -0.247 0.679 3.435
Bank of Commerce -3.603** -0.137 -0.780 0.612 2.843 -0.141 -1.061 0.593 2.976

Table 1: Cointegration estimates for pairs of Chinese Bank A and H-shares. This table
reports parameter estimates from a cointegration model fitted to the log-prices of pairs of Chinese
banks traded as A-shares in China and as H-shares in Hong Kong. All prices have been converted
into a common currency (US dollars). The first column reports a test for cointegration between the
two log-prices. The second and fourth column reports estimates of the loadings on the error-correction
terms for the price process in China (λ1) and Hong Kong (λ2). We consider both the regular stock
prices (columns 2-5) as well as prices that have been orthogonalized with respect to a common China
market index (columns 6-9). For the cointegration test, * indicates significance at the 10% level, **
indicates significance at the 5% level, *** indicates significance at the 1% level.



Regular Prices

Mean Std Sharpe Wealth
Stock unc con unc con unc con unc con

Agricultural Bank of China 8.185 8.048 9.862 9.755 0.828 0.823 112.757 112.534
China Merchants Bank 16.677 6.902 14.300 6.539 1.165 1.052 231.925 143.235

Bank of China 9.878 8.437 19.475 16.103 0.506 0.523 156.519 149.204
China Citic Bank 18.568 18.299 26.538 26.769 0.699 0.683 205.692 202.500

China Minsheng Banking 16.110 8.340 15.388 6.907 1.046 1.205 138.702 119.419
China Con. Bank 6.305 6.304 15.398 13.529 0.408 0.464 125.077 126.549
Bank of Commerce 21.690 11.469 23.239 14.708 0.932 0.778 246.202 163.590

Orthogonalized Prices

Mean Std Sharpe Wealth
Stock unc con unc con unc con unc con

Agricultural Bank of China 11.082 9.160 13.136 11.290 0.842 0.810 117.280 114.217
China Merchants Bank 19.284 16.195 14.846 12.091 1.298 1.338 265.633 229.510

Bank of China 10.460 3.292 19.227 11.306 0.543 0.289 161.831 115.979
China Citic Bank 23.323 6.293 24.825 13.981 0.939 0.449 263.167 128.917

China Minsheng Banking 14.078 7.595 13.567 6.384 1.036 1.187 133.422 117.575
China Con. Bank 10.647 9.823 27.611 21.235 0.385 0.462 134.949 139.276
Bank of Commerce 20.804 10.728 22.386 13.952 0.928 0.768 238.218 158.755

Table 2: Results from daily trading of pairs of Chinese banking shares. This table reports
the performance of unconstrained and constrained delta-neutral trading strategies based on daily re-
balancing of the holdings in the Chinese A share, Hong-Kong H share and the market portfolio. All
results assume that trading ceases on February 15, 2012. The results assume µm = 0.05, σm = 0.35,
r = 0.02, γ = 4, and use empirical estimates of the remaining stock-specific parameters. All numbers
are reported in percentage terms and ignore transaction costs.



Figure 1: Comparison of optimal portfolio holdings under recurring versus
non-recurring arbitrage opportunities. This figure plots the optimal holdings un-
der recurring (φrec

1 and φrec
2 ) and the optimal holdings under non-recurring arbitrage

opportunities (φnon−rec
1 and φnon−rec

2 ) as a function of the log-price differential, x. The
results are illustrated for two different combinations of the loadings on the error cor-
rection term, λ1 and λ2, with values based on the estimates fitted to pairs of Chinese
banks traded in China and Hong Kong.
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Figure 2: Optimal positions in assets 1 and 2 as a function of the horizon,
T-t. This figure plots the optimal holdings under both recurring and non-recurring
arbitrage opportunities, holding the price difference between the two assets fixed at
20%. The results are illustrated for two different combinations of the loadings on the
error correction term, λ1 and λ2, with values based on the estimates fitted to pairs of
Chinese banks traded in China and Hong Kong.
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Figure 3: Optimal holdings under recurring arbitrage opportunities: con-
strained versus unconstrained solutions. This figure plots the optimal uncon-
strained holdings (φ∗

1 and φ∗

2) and the optimal constrained holdings (φ1 and φ2) as a
function of the log-price differential, x. The results are illustrated for two different com-
binations of the loadings on the error correction term, λ1 and λ2, with values based on
the estimates fitted to pairs of Chinese banks traded in China and Hong Kong. The
figure assumes recurring arbitrage opportunities.

0 0.05 0.1 0.15 0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

T
=

1

λ
1
=0.29 | λ

2
=0.31

 

 

φ
1
* φ

2
* φ

1
φ

2

0 0.05 0.1 0.15 0.2
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

x

T
=

1

λ
1
=0.526 | λ

2
=−0.346



Figure 4: Optimal holdings under non-recurring arbitrage opportunities. This
figure plots the optimal unconstrained holdings (φ∗

1 and φ∗

2) and the optimal constrained
holdings (φ1 and φ2) as a function of the log-price differential, x. The results are
illustrated for two different combinations of the loadings on the error correction term,
λ1 and λ2, with values based on the estimates fitted to pairs of Chinese banks traded
in China and Hong Kong. The figure assumes non-recurring arbitrage opportunities, as
positions are closed down when the price differential crosses zero.
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Figure 5: Wealth gain under recurring and non-recurring arbitrage oppor-
tunities. The plot shows the percentage wealth gain (in percentage of initial wealth)
from not imposing the constraint that the position be delta neutral, as a function of
the log-price differential, x. The results are illustrated for λ1 = 0.526 and λ2 = −0.346,
with values based on the estimates fitted to pairs of Chinese banks traded in China and
Hong Kong.
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Figure 6: Optimal portfolio holdings under recurring arbitrage opportuni-
ties with stochastic (Poisson) horizon versus fixed horizon. This figure plots
the optimal unconstrained holdings under a stochastic (Poisson) horizon (φPoisson

1 and
φPoisson
2 ) versus the optimal unconstrained holdings under a fixed horizon (φrec

1 and φrec
2 )

as a function of the log-price differential, x. The results are illustrated for two different
combinations of the loadings on the error correction term, λ1 and λ2, with values based
on the estimates fitted to pairs of Chinese banks traded in China and Hong Kong.
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Figure 7: Time series plots of pairs of Chinese banking shares. This figure plots
stock prices for pairs of Chinese banks traded as A shares in China and as H shares in
Hong Kong.
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Figure 8: Time series plots of price difference between pairs of Chinese
banking shares. This figure plots the price difference between pairs of Chinese banks
traded as A shares in China and as H shares in Hong Kong.
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