SMT-Based Bounded Model Checking of C++
Programs

Mikhail Ramalhd, Mauro Freitas, Felipe Soush
Hendrio Marques Lucas Cordeirb, and Bernd Fischés
1 Electronic and Information Research Center, Federal Wsityeof Amazonas, Brazil
2 Electronics and Computer Science, University of Southampt/K
3 Department of Computer Science, Stellenbosch UniverSityth Africa
esbmc@ecs.soton.ac.uk

Abstract—Bounded model checking of C++ programs presents approaches to handle exceptions in C++ programs (e.g., ex-
greater challenges than that of C programs due to the more ception specification for functions and methods) that pnevi
complex features that the language offers, such as template approaches could not handle [12], [24], [27]. In particulee
containers, and exception handling. We present ESBMC++, a jmplement the inheritance mechanism during the constmcti
bounded model checker for C++ programs. It is based on an o the intermediate representation of the program, whichicsy
operational model, an abstract representation of the stanard converting the C++ program to a C program and consequently

C++ libraries that conservatively approximates their sematics. e -
ESBMC++ uses this to encode the verification conditions usi produces smaller models to be verified. Experimental result

different background theories supported by an SMT solver. show that our approach consistently outperforms LLBMC_:{24]
Our experimental results show that our approach can handle @ bounded model checker for C/C++ programs that is also
a wider range of the C++ constructs than existing approaches based on SMT solvers.

and substantially reduces the verification time.
y The remainder of the paper is organized as follows: We first

Keywords—Software engineering, formal methods, verification, give a brief introduction to the CBMC and ESBMC model
model checking. checkers and describe the background theories of the SMT
solvers that we will refer throughout the paper. In Sectibn |
we describe a simplified representation of the C++ libraries
l. INTRODUCTION which conservatively represents the classes, methods, and

Bounded model checking (BMC) based on Boolean satisother features similar to the actual structure. In Sectién |

e . ~we present our implementation of the inheritance mechanism
fiability (SAT) solvers has already been successfull li : .

to ding\(/er sthIe errors in real S))/lstems [11]. In an z;/ttémqupt while S_ec'uon V.'S concerned with the_lmplementatlon of the
cope with growing system complexity, SAT solvers are insrea ?ggj’lg'%? ohuarngilggri?npepnrgs aggi'n:;nsz\?ecﬁgncyk gve icpr:risaerrlg t;r? d
ingly replaced by satisfiability modulo theories (SMT) saiy i oo i N

to prove the generated verification conditions (VCs) [9F][1 a reall world C+-|_- application }Jsed in the telecommunication
[20]. There have also been attempts to apply BMC to thedomam. In Section VII, we discuss the related work and we
verification of C++ programs [24], [30] but with limited conclude and describe future work in Section VIII.
success. The main challenge here is to handle large programs

and to support the complex features that the languagesspffer Il. BACKGROUND

such as templates, containers, inheritance, and in pkaticu ESBMC++ builds on the front-end of CBMC to generate
exception handling, which is an important approach to donta the VCs for a given C++ program, and on the %ack-end

and hendieeror Sl compulerbased sysem$aL L f ESBIC to encode the VCs using iferent background
' eories and SMT solvers.

development, C++ model checkers have to maintain high spee

and accuracy. CBMC (C Bounded Model Checker). CBMC implements
Here, we propose to apply SMT-based BMC to C++BMC for ANSI-C/C++ programs using SAT/SMT solvers [16].
programs using an operational model, which is an abstradf ¢an process the code using the goto-cc tool [29], which
representation of the standard C++ libraries that contieelyp ~ cOmMpiles the C/C++ code into equivalent GOTO-programs
approximates their semantics. We integrate this operattion (-6, _control-flow graphs) using a gcc-compliant style.eTh
model into our ESBMC model checker [17] that in turn builds SOTO-programs can then be processed by the symbolic execu-

on top of CBMC's front-end [16] to support the main C++ ion engine. Alternatively, CBMC uses its own, internalger
features. based on Flex/Bison, to process the C/C++ files and to build

an abstract syntax tree (AST). The typechecker of CBMC's
We present the implementation of our operational model ofront-end annotates this AST with types and generates a
the sequential STL containers, its preconditions and sittai ~ symbol table. The intermediate representation (IRep)sclas
features (e.g., how the elements values of the containex@ CBMC then converts the annotated AST into an internal,
are stored), and how these are used in order to verify C+ianguage-independent format used by the remaining phase of
applications. Additionally, we develop and describe novelthe front-end. ESBMC++ modifies this front-end to handle

' f v
C B ' 5 C H Goto Symbolic Enconding SMT
Source H B ' 1 Typecheck Programs Execution Cand P i Solver
1 . 1} '

C++ C++
C++ Parser
Source Typecheck

Fig. 1. ESBMC/ESBMC++ Architecture (ESBMC-specific compots shown dashed).

the definitions of the standard C++ libraries while the otherexpressionstore(t, f,v) denotes a tuple that at field f has
features (e.g., inheritance, template, and exception limg)d the valuev and all other fields remain the same.
are treated internally.
o)) Tool Architecture. The tool architecture is shown in Figure 1.

CBMC and the original ESBMC (which builds on CBMC) The first step is the source code parser; ESBMC++ takes C++
use two recursive functions and P that compute theeon- source code as input and creates most of the intermediate
straints(i.e., assumptions and variable assignments)mop- representation of the program, which will be the base for
erties (i.e., safety conditions and user-defined assertions), rehe remaining steps of the program verification. The parser
spectively. Both tools automatically generate safety @@ is heavily based on the GNU C++ compiler since this allows

that check for example for arithmetic overflow and underflow,esSBMC++ to finds most of the syntax errors already reported
array bounds violations, anbULL-pointer dereferences, in py Gcc.

the spirit of Site’'s clean termination [28]. Both functions] N
accumulate the control flow predicates to each program point The next step is the C++ type-check; here, additional
and use these predicates to guard both the constraints affiecks are performed in the IRep tree, which include assign-
the properties, so that they properly reflect the program'énent checks, type-cast checks, pointer initializationckbe

semantics. A VC generator (VCG) then derives the VCs fronfunction call checks as well as template creation and instan
these. tiation (which will be explained later). In the next stepeth

IRep tree is converted into goto expressions; this convarsi

Satisfiability Modulo Theories. SMT decides the satisfiability Simplifies the representation of the C++ program (e.g, re-
of first-order formulae using a combination of different bac placement ofswitch and while by if and goto statements),
ground theories and thus generalizes propositional saify ~ and handles the unrolling of loops and the elimination of
by supporting uninterpreted functions, linear and noedin recursive func'uo_ns. .I_n the symbolic execution of the goto
arithmetic, bit-vectors, tuples, arrays, and other dealielfirst- ~ programs, the simplified goto program is then converted to
order theories. Given a theoffy and a quantifier-free formula SSA expressions and assertions are inserted n the repultin
¥, we say thaty is T-satisfiable if and only if there exists a SSA expressions to check for safety properties related to
structure that satisfies both the formula and the senterfces array out-of-bounds, arithmetic under- and over-flow, mgmo
T, or equivalently, if7 U {¢} is satisfiable [13]. Given a set leaks, double frees, and division by zero. Additionally, in
r'u{v} of formulae overT, we say thai) is a7-consequence this step most of the exception h:_:mdllng is carng:(_j out, such
of I', and writeI’ =7 1, if and only if every model off UT' as the insertion of GOTO-instructions for the origiriatow

is also a model of). Checkingl' =7 ¢ can be reduced in statements and exception specification for function calls.

the usual way to checking trg-satisfiability ofI" U {4} Finally, two set of quantifier-free formulae are created

based on the SSA expressiorsfor the constraints an®

for the properties as previously described above. Those two
ets of formulae will be used as input for an SMT solver that

will produce a counterexample if there is a violation of aegiv
property, or an “unsatisfiable” answer if the property holds

Arrays and Tuples. The most important theories for
ESBMC++ are the array and tuple theories, which are use
to model the sequential container data structures and tsbjec
respectively. The array theories of SMT solvers are typical
based on the McCarthy axioms [23]. The functgelect(a, i)
denotes the value of an arrayat index positioni andstore(a,

i, v) denotes an array that is exactly the same as arexcept . C++ OPERATIONAL MODEL
that the value at index positianis v. Formally, the functions C++ relies on a collection of powerful standard libraries
selectandstorecan then be characterized by the following two 1o provide much of the functionality programmers require. |
axioms [10], [14], [18]: principle, we could use the (available) sources during #ré v

i = j = selectstorda,i,v),j) = v fication, but their optimized implementations would corqpt'e_ _

i # j = selectstorga,i,v),j) = selecta, j) the VCs unnecessarily. Instead we developed a simplified

representation of the libraries called the C++ Operational

Array bounds checks need to be encoded separately, as thiPdel (COM), which represents the classes, methods, and

array theories employ the notion of unbounded arrays siz&ther features similar to the actual structure [2]. ESBMC++
but arrays in software are typically of bounded size. then relies on the COM, ar)d in par‘ucula.r on the o_perat|onal
model of the standard C++ libraries, to verify propertidated

Tuples provide store and select operations similar to thost the definitions in the supported data types. In the vetifina
in arrays, but work on the tuple elements. Each field ofprocess, the COM libraries thus replace the corresponding
the tuple is represented by an integer constant. Hence, tteetual C++ libraries. The COM consists of four groups of
expressionselect(t, f) denotes the field of tuplet while the libraries, as shown in Figure 2.

=

o T = t|«It|«P
Standard Library It == i| C.begin | C.end
| C.insert(It, T, N) | C.insert(It, It, It)
| C.erase(It) | C.erase(lt, It) | C.search(It)
< > > P :=p|PH+|—-)P| C.array

Standard Template
Libraries

General Libraries

Int == n|Int(+| *|...)Int | It.pos | C.size | C.capacity
C = c| It.source

| Language Support | .-i Containers
| ; I

| Diagnostics | « Iterators
I H I

| Strings |(-' | Algorithms

Fig. 3. Core container syntax.

the notation«/t to denote the value stored in the underlying

container at the position pointed to by the iterafer this is
an abbreviation fof It. source.array)[It.pos]. = P is the value
stored in theP position of the memory.
Fig. 2. Overview of the operational model. C.begin and C.end are methods that return iterators

which point to the beginning and the ending of a container,

: . . respectively. Most container operations also return anatioe
Note that the COM also includes the ANSI-C libraries al- o,inting 1o the new focus element after the operation rather

ready supported by ESBMC. Since ESBMC++ uses a diﬁeren&an simply returning an updated container. For example,

front-end (as shown in Figure 1), we have to build a repres, \ectors (. crase returns an iterator pointing to the right

sentation of theIdANSI-C Iibrarieshintlpbthe CONrI]; gther"é’isfe:lneighbor of the erased element. Note that the only way in the
ESBMC++ would not recognize the library methods and fail e |anguage to access the resulting container is thudeia t
to parse the C++ programs. However, the biggest part of the | .. field of the returned iterator.

COM models the Standard Template Libraries (STL). This part

is split into four categoriesalgorithms numerig containers Finally, C.array is a memory address that stores the
anditerators In this paper, we focus on the operational modelbeginning of the container arrag, pos is the index (within this

of the sequential containers and iterators in the STL, awd ho array) of the element that an iterator points to, &dize and
they are used to verify real-world C++ programs. C'.capacity return the actual and maximum size, respectively,

Apart from the STL handling, the verification of C++ of the containtec”

rograms with templates is essentially split into two steps . .
tpem%late creation agd template instant)i/atign. To creata tp B. Operational Container Model

plate, ESBMC++ finds the respective template declaratiah an As the container structures differ slightly from each other
creates an internal representation of the class or functiosome of their methods will vary too, changing the internal
by flagging the types as generic; no other representation i;iodels as well (e.g., ist container does not have a reference
created here since at this step ESBMC++ does not knowperator and its elements are only reached by iterators).
which types will be instantiated. To instantiate a template , , i

ESBMC++ finds a template usage with a specified type and To simulate the containers appropriately, our model makes
creates a new internal representation of the class or mcti US€ Of three variables: a variable of typecalled array that
with the instantiated type; this new representation is not £0ints to the first element of the array, a natural number
template anymore. At this point, ESBMC++ keeps track of the>2€ that stores the quantity of elements in the container,
generic template definition and the respective instatialess ~ @nd @ natural valueapacitythat stores the total capacity of

or function. Note that when a new template is instantiated® container (which is valid only for vectors). Note that, as
ESBMC++ first checks whether it was already instantiate he elements are added to a vector container and the size

to avoid creating a duplicate representation of a prevjous| 9"oWs, the capacity is doubled every time the size reaches
instantiated template. the existing capacity value. Similarly, iterators are mede

using two variables: a variable of typet called pos which
contains the index value pointed by the iterator in the doeta
and a variable of typeP called source which points to
To formalize the verification of the STL containers, we the underlying container. Figure 4 gives an overview of our
define a core container language, and extend the translatimperational model for the STL sequantial containers.
functionsC andP of constraints and properties to this. We then

- : ; The core container language only supports the meth-
;Jhs:ég:fta(l:i(r)];erslanguage to implement the operational model 0gds listed in Fig. 3. Other methods such pssh back()

pop_back() front(), back() push front(), and pop_front() are
The container language comprises several syntactic danly a simplified variation of those main methods, which are
mains, starting with the base elemefitsiterators/lt, pointers optimized for some containers (e.g., popping the last efeme
P, and integer indice&ut, and of course the (proper) container of a stack. As part of the single static assignment (SSA)
expressiong’'. Figure 3 summarizes the core container syntaxtransformation, side-effects on the iterators and costaiare
Here t, i, p, and ¢ are variables of typd’, It, P, and C, made explicit, so that operations return new iterators and
respectivelyn is a variable or constant of typlut. We abuse containers as result. As an example, consider a container

A. Core Container Language

with the method calt.insertthat returns an iterator result and Note that this also implicitly induces the two properties
makes use of an iteratérthat points to the desired (insertion) that [ig i) is non-empty (i.e., thak > 0 holds) and that,
position; a template valuewith the element to be inserted and and i, are iterators over the same underlying container (i.e.,
an integern that denotes the number of times the element ighat ig.source.array = iy.source.array holds), although this

to be inserted. The statementnsert(i, ¢, n); (which discards container can be different from the one we are inserting. into
the returned iterator) thus becom@s, i’) = c.insert(i,t, n);

(where the side effects are explicit). The erase method works similarly to the insert method.

It also uses iterator positions, integer values, and pginte

container but it does not use values since the exclusion is made by a
given position, regardless the value. It also returns aatibe

size =N eo(el(ez(GS("'(EN'lo position, pointing to the position next to the previouslpsed

A part of the container. The following model shows these

iterator method that deletes a single element:

@ pos C((c,i") = c.erase(7)) :=

A .size = c.size — 1

A c.array = store(. .. (storg(c.array,
Fig. 4. Operational model of the STL sequential containers.

capacity<2*size

i.pos selectc.array, i.pos+ 1)),

ce
c.Size— 2, selecfc.array, c.size— 1))
A i’.source= ¢/

The translation functiod describes the constraints relating g _
A i'.pOS= i.pos

the “before” and “after” versions of the respective model
variables. In particular, we get:

C((d,i") = c.insert(i, t,n)) =
A .size = c.size +n
A ¢ .array = store. . . (storg
storg. . . (storg(c.array, i.pos t),

Note that this implicitly induces the property thais an
iterator overc (i.e., thati.source = ¢ holds).

It is also possible to delete a number of elements from
the container by marking the bounds with iterators. It works
similarly to the equivalentinsert method; the details are
omitted here. Searches are made in a container by using
reference operators and a pointing type (pointer or iteyato
and return the reference value (the element stored itself).

i.pos+n — 1,t),
i.pos+ n, selecfc.array, i.pos),

c.size+ n — 1, selectc.array, c.size— 1))
A’ .source= ¢/ IV. INHERITANCE AND POLYMORPHISM
A 4'.poS= i.pos+ n o . _
C++ features like inheritance and polymorphism makes
The main effect of thénsert method is thus captured by static analysis difficult to implement. In contrast to Javhich
the second equality that describes the contents of theioenta ©nly allows single inheritance, where derived classes bale

arrayc’.array after the insertion in terms of update operationsone base class, C++ also allows multiple inheritance, where
to the container array.array before the insertion. class may inherit from one or more unrelated base classés. Th

))) _particular feature makes C++ programs harder to model check
. There is another version of the insert method. Here ithan programs in other object-oriented programming laggsa
is possible to insert a sequence of elements in the deswe@_g” Java) since it disallows the direct transfer of témphes

to select the sequence from another container.ihete an [2g].

iterator that marks the first element to be inserigdie another

iterator that points to the first element after the end of the To deal with inheritance in ESBMC++, we simply replicate

sequence to be inserted in the required position and le¢ the methods and attributes of the base classes to the idherit

the length of the arrayiqix). Thus, we have: class to have direct access to them. If a class inherits from a
base class that does not contain virtual methods, then we cal

C((¢,i") = c.insert(i, io, ik)) := this replicated inheritancelf there is a path from clas¥ to

ANk = ig.pos —ig.pos + 1
A a = ig.source.array
A .size = c.size + k
A ¢ .array = store. . . (storg
storg. . . (storg(c.array,
i.pos selecta, i9.po9g),

2.'bt’ns+ k — 1, selecta, ix.pos— 1)),
1.pos+ k, selecfc.array, i.pos),

c.size+ k — 1, selecfc.array, c.size— 1))
N i .source= ¢
A i'.pos= i.pos+ k

class Y whose first edge is virtual, then we call ttskared
inheritance

A formal description to represent the relationship between
classes can be described by the class hierarchy graph (CHG).
This graph is represented by a tripl€', <, <), where C
is the set of classesg,C C x C refers toshared inher-
itance edges, and<,.C C x C are replicated inheritance
edges. We also define, =<, U <, and <,,= (<s)*.
(C,<s-) is then a partially ordered set [22] and, is
anti-symmetric (i.e., if one element A of the set precedes
B, the opposite relation cannot exist). As an example, Fig-
ure 5 shows an UML diagram that represents $irapeclass

hierarchy that contains multiple inheritance. The repéda area(), which have the same signature. If we assume that the
inheritance in the Rectangle class relation can be formaliz example calls this method on a base class pointer, then the
by (C, 0, {(Rectangle, Shape), (Rectangle, Display)}). actually executed function cannot be determined at compile
Our tool creates an intermediate model for single and mulyme' To overcome this problgm, we thus creatgtable to
tiple inheritance, handling replicated and shared inhace contain t_he addres_s of the obje_ct's bound methods so that the
' ; call to this method is fetched with the address fromtable
where all classes are converted into structures and alladsth .\ o 6 2o v e
and attributes of its parent classes are joined. On the ame, ha '
this approach has the advantage of having direct accesg to th In addition, we also support indirect inheritance, where
attributes and methods of the derived class and thus allows class inherits features from a derived class with one or
an easier validation, as the tool does not search for atitsou more classes not directly connected. In Figure 5, we have
or methods from base classes on each access. On the ott&uare <,, Rectangle and Rectangle <, Shape. Thus, the
hand, we replicate information to any new class, thus wastin Squareclass can access features from 8te@peclass, but they

memory resources. are not directly connected. We tackle this problem by logkin
for the features using a depth search from the derived to base
po:i':i:,':im __Displey classes and adding them to our intermediate represenition
move() plot2D() necessary.
resize()
ik In OO programming, the use dfhared inheritanceis
L)
— L — very common. In contrast to other approaches (e.g., [12]),
It radios: float i Lt ESBMC++ is able to verify this kind of inheritance. If a class
:f;g’(‘)“ int areag area0 has pure virtual methods only, then this class does not tonta
. any implementation for these methods and they will thus be
TR implemented in the derived classes. Otherwise, if a class ha
areag only virtual methods, it must contain an implementation for
them or the verification will fail with a “conversion error”.
Fig. 5. Shapeclass hierarchy UML diagram ESBMC++ also handles virtual destructors successfully and

supports the default constructor creation. Currently, AEB+

Another important feature from object-oriented program-supports dynamic cast between primitive types, same dasse
ming that we support is the concept of polymorphism, whichand from a derived class to a base. ESBMC++ also handles
allows the creation of reusable code by changing only specifiwith cast to a reference type, verifying the correct use of
features from the base class. Polymorphism allows variablbad castthrown by dynamic cast.
instances to be bound to references of different types doapr
to th_e structure of the inher_itance hierarchy [8]. We thus V. EXCEPTIONHANDLING
consider that two or more derived classes from the same base
class can invoke methods with the same signature but with One of the main features that C++ provides is exception
distinct behaviors, specialized for each derived clasgjgus handling. The exception handling is split into three eleteea
for this one reference to each object of this base class typéry block, where an exception may occurcatchblock (also
The decision of which method must be used cannot be madgalled handlep, where an exception can be handled; and a
at compile-time. One solution is the usage of virtual tableghrow expression to connect both blocks. Figure 6 shows a
(described below) that contains the object’s method addresC++ code example with exception handling.
In this case, the method call will fetch the correct method
address from the object’s dispatch table at verificatioreti 1/ int main() {

The intermediate representation of C++ programs inz {:y”{y block

ESBMC+.+ prpvides a mod(_el to handle ponmprphism so that, throw 20; // throw expression
we can simplify the class hierarchy, thus easing the aceess {
methods with the same name without ambiguity between basg 7/ catch block
and derived classes. As an example, our tool can easily @and}| catch (int i) {
the polymorphic area method using this representation, ag /+error handling for int exceptions/

shown in Formulas (1) and (2), using the background theories| }
| catch (float f) {

J1 = store(jo, vtable, Rectangle) u| I/xerror handling for float exceptions/
A ja2 = store(j1, width, 10) 12
A j3 = store(ja, height, 10) 13| return O;
C := | Ajs = store(js, vtable, Square) ;o Q) w4}
A js = store(ja, width, 10)
A return_value; = Fig. 6. Try-catch example: Throwing an integer exception.

select(js, width) x select(js, width)

P :=[return_value; = 100] (2 In ESBMC++, the exception handling happens in two steps,

during the type-checking and the symbolic execution phases

The classeRectanglgwhich is the base class) astjuare In the type-checking phase, an AST is built based on the code
(which is the derived class) each have a virtual method @alleinside the try block, but with a few modifications: before the

block, a CATCH instruction with an empty map (which will be to be thrown: (a) the operatmrewcan throw abad alloc ex-

filled later during type-checking) is inserted, followed the

ception; (b) the operatatynamic castcan throw abad catch

respective code inside the try block. Here, another CATCHexception; and (c) the functiotypeid can throw abad typeid
instruction (to represent the end of the try block and theexception. In the C++ standard [1], several rules are defined
beginning of the catch block) is inserted together with a @OT of how any exception thrown is connected to a catch block.
instruction, which points to the code after the catch blockIln summary, every time when an exception is thrown and one
This GOTO instruction will only be modified if an exception is of the following rules is true, the code jumps from the throw

thrown; otherwise it will remain the same. After type-chieck
the try block, ESBMC++ type-checks the handler, which might
contain one or more catch blocks. Again, the AST will be 1)
created based on the code inside the catch blocks, but with
one modification: a GOTO instruction is inserted at the end

of each catch block, which points to the code after the catch
blocks. Each catch block will thus be assigned a label so that 2)
ESBMC++ can decide which catch should be called during

the symbolic execution phase if an exception is thrown. At

the end of the catch block, the map of the first CATCH
instruction is inserted before the try block code is filledhwi

the label created for each catch mapped on the type of the
exception. Figure 7 shows the internal flow of ESBMC++ for

the exception handling of the code shown in Figure 6. 3)

CATCH signed_int —>1, float —>2

THROW 20

$TARGET = 3;

if (THROW_TYPE == signed_int)
$TARGET = 1

else if(THROW_TYPE == float)
$TARGET = 2

CATCH

GOTO $TARGET 4)

1: int i;

/*error

GOTO 3

float f;

/«error handling for

. return O;

© © N o g A W N P

PR
[T}

handling for int exceptions/

B
W N

H
IS
N

float exceptions/

-
o

H
>
w

5)

Fig. 7. Try-catch conversion to goto functions.

During the symbolic execution phase, when the first
CATCH instruction is found, the catch map is stacked forrlate
usage. The idea behind the use of a stack is that we may have
try-catch blocks inside other try-catch blocks and ESBMC++
should always handle the most internal first. Following the
symbolic execution for the code that is inside the try block, 6)
ESBMC++ will continue to execute the code until it finds a
THROW expression. When it happens, ESBMC++ looks at the
map for a valid catch for the exception thrown; if it finds a
valid catch, then the label will now be saved, but it will oiblg
handled later; if it is unable to find an exception, then anrerr
will be thrown. ESBMC++ will also ignore any other THROW
or GOTO instruction after the first THROW is found, but it 7)
will continue to verify all the try block code. When the sedon
CATCH is found, which means that the try block ended, the
catch map is unstacked for memory efficiency and the GOTO
instruction is thus updated (if needed).

A. Throwing and Catching an Exception 8)

In addition to explicitly throwing an exception, several
situations in C++ code can also implicitly cause an exceptio

expression to the catch block as follows:

The handler that catches the exception is the first
catch with a matching type; we thus maintain a list
with the order of catches and get the catch with the
lowest value.

A handler will catch an exception thrown if the type
thrown and the type of the handler are the same
(ignoring const-volatile qualifiers): Here, we simply
look for the type of the exception in the catch map
and then update the GOTO instruction accordingly
if we find a match, or we simply return an error
otherwise.

Throwing exceptions of types “arrays of type T” and
“functions returning type T” will be caught by han-
dlers with “pointer to type T” and “pointer to function
returning type T” types: Here, the conversion is made
on the type-checking and the throw expression throws
two exceptions: “array of type T” and “pointer of type
T, and “function returning type T” and “pointer to
function returning type T”, respectively. The handler
that catches the exception thrown is determined by
the first rule in cases of multiple matches.

The handler will catch an exception of type T if the
handler type is an unambiguous public base class
of T: The conversion is similar to the previous rule,
but here several exceptions may be thrown: the type
of the object and the type of its bases. Again, the
handler will be determined by the first rule in cases
of multiple matches.

The handler will catch an exception of type pointer T
if T's type can be converted to the type of the handler,
either by qualification conversion or standard pointer
conversion: Similar to the previous rules, on the type-
checking phase the possible conversions based on the
catches types will be thrown with the original pointer
type, with the handler being determined by the first
rule in cases of multiple matches.

If the exception thrown is a pointer, then a handler
with type void* or nullptr_t can catch it: during the
symbolic execution, if no match is found in the map
and the exception thrown is a pointer, we simply look
for a void* or nullptr_t catch and then update the
GOTO instruction. If the exception had a match, then
this rules is ignored.

A handler of type ellipsis (...) will catch any thrown
exception, and shall be the last handler on the catch
block: This is similar to the previous rule, but here
it works for every type; if no match is found,
ESBMC++ looks for a handler of type ellipsis and
updates the GOTO instruction accordingly if one
exists.

If the throw has no arguments, then it should rethrow
the last thrown exception: we always keep a reference
of the last thrown exception and then update a rethrow

if this reference is noNULL. Ubuntu 64-bits. For all test suites the individual time kmi
and memory limit for each test has been set to 900 seconds

B. Exception Specification and 24 GB (22 GB of RAM and 2 GB of virtual memory),
. s . _ _ respectively. The times given were measured usingtithe
The exception specifications define which exceptions &5mmand.

function or method (including constructors and destrugtor
can throw. For each method or function declaration the ex; ;
ception specification lists the exceptions that can “estcHye B. Comparison to LLBMC

respective function or method, i.e., are not guaranteedeto b This subsection describes the evaluation of ESBMC++
handled within. Note that an exception can still be handledcagainst LLBMC, another C++ BMC tool developed by Merz
inside a try-catch block inside the function or method evfen i et al. [24]. Table | summarizes the results. Hekk,is the

it is not listed in the exception specification. number of C++ programg, is the total lines of code of each

: e suite, Timeis the total verification time of each suite,is the
The exception specification is handled by ESBMC++ bynumber of correct positive results (i.e., the tool repodd-5

inserting & THROWDECL instruction after the declaration of correctly),N is the number of correct negative results (i.e., the

each function or method. In the symbolic execution phase :
, oo . ool reports UNSAFE correctly)FP is the number of false
the exception specification is stacked and removed in th ositive results (i.e., the tool reports SAFE incorrectig\

END_FUNCTION instruction at the end of every function Of i<"the number of false negative results (i.e., the tool rspor

method. The idea for stacking the exception specification I3 INSAFE incorrectly),Fail is the number of internal errors

the same as for cqtch maps, ESBMC++ may find fl.mCt'orquring the verification of each suit&€Q represents the number
calls to other function and they may also have their own

exception specifications. Finally, when an exception iswhm, of time-outs (i.e., the tool was aborted aiter 900 secoratg),
ESBMC++ checks whether there is an exception specificatior'\l/IO represents the number of memory-outs.

currently in force and, if so, whether the exception thrown i We invoked both tools using two scripts: one for
allowed to be thrown outside the function. If it is allowedet ESBMC++, that reads the parameters from a file and calls
exception handling follows and tries to look for an match onthe tool! and another for LLBMC that first compiles the

the catch map; otherwise it will return an error. code to bytecode using CLANG [3]reads the parameters
from a file and calls the todl.The bound set for both tools
VI. EXPERIMENTAL EVALUATION (value ofB) depends of each test case. LLBMC currently does

not support exception handling and all the bytecodes were

This section is split into three parts. The setup is desdribe ; ; :
: . ! .) . “=generated without exception support (flag -fno-excepjions
in Section VI-A while Section VI-B describes a comparison,, pije verifying with LLBMC. Enabling exceptions resulted
between ESBMC++ [3] and LLBMC (Low-Level Bounded ;. || gmcC aborting in most of the cases.

Model Checker) [4] using a set of standard C++ benchmarks.
Some details about LLBMC are also given in Section VI-B. As we can see in Table I, LLBMC times out in 24
In our experiments, we also tried to use the CBMC modeprograms in thealgorithm suite and runs out of memory in
checker [16], but since it has failed in most of our benchrmarktwo programs. If we carefully analyze those test cases, most
(as reported previously by Merz et al. [24]), we do not reportof them use iterators, which might be causing the slow down in
any results. In Section VI-C, we describe the results of-verithe verification process; this is a situation that also happe
fying a commercial application from the telecommunicasion other suites. In thdequevector, andlist suites, the slowdowns

domain using ESBMC++. still happen but with small values. The suite that had thetmos
unsuccessful verification results was thst suite, and most of
A. Experimental Setup the errors were related to the container size (e.g., asserti

i i . if the container is empty or if it has a particular size). In
The benchmarks that are used in our comparison consist gfsgMc++, most of the errors on those suites are due to a

1113 C++ programs. Around 290 programs are extracted frofissing operational model of the libraries, which are cutlye
Deitel's textbook [19], 16 programs are taken from the NEC nder development.

benchmark suite [6], 16 programs are taken from the LLBMC _ o

benchmark suite [27], and the others were developed by us In the queuesuite, LLBMC fails in a program that uses
to test all the features that the C++ language provides. Ththe size of a list as constructor parameter while in steeck
benchmarks are split into eleven suites, as folloalgorithm suite all programs are correctly verified. In ESBMC++, ai th
contains test cases for methods that involve the algorithm | Programs in both suites are successfully verified.

brary;cppcontains general test cases of the C++ language that |, the streamsuite, most of the errors are related to asser-
involve the general libraries, multi-threading, and tea@s. {ions on the size of the stream (using the methodunt ())
Additionally, it also contains the LLBMC benchmarks and 5, to internal flags (such ass::hexand iostream::hey. In
most of the Deitel benchmarks. The categorEjue list, EgpMC++, most of the error are related to a bad operational
queue stack stream string, andvector contain test cases for mqqg of the internal flags. In thetring suite, the errors are

the respective STL container structures. Finalfjperitance re|ated to assertions in the string itself, usually if thenst
contains test cases related to inheritance and polymarphis

while try_catch contains test cases related to exception han- lesbmc --unwind --no-unwinding-assertions -I /libraries/ —timeout 15m

dling; the NEC test cases are located in this suite. 2Jusr/bin/clang++ -c -g -emit-llvm *.cpp -fno-exceptions
. . .. lusr/bin/llvm-link *.0 -0 main.bc
All the experiments were conducted on an otherwise idle 3jpmc --ignore-missing-function-bodies

Intel Core i7-2600, 3.40 GHz with 24 GB of RAM running --no-max-loop-iterations-checks --max-loop-iteratioB

ESBMC++ LLBMC

Testsuite N L| Time| P| N|FP|FN|Fall|TO|[MO| Time| P| N|FP| FN|Fail| TO|MO

1 |algorithm | 130| 3376 996| 63| 38| 16| 13 ol O 0]22964| 53| 45| 1 5 0| 24 2

2 | deque 43| 1239 238| 19| 20| 0| 4 0| O 0| 8585| 16| 17| O 0 1 9 0

3 | vector 146| 6853| 2714| 95| 37| 3| 11 0| O 0| 7234| 91| 38| 1 3 4| 6 3

4 | list 70| 2292| 3928| 25| 25| 3| 17 ol O 0| 2562| 5| 26| 5| 30 of O 4

5 | queue 14 328 177\ 7 71 0| O 0| O 0 45 6 71 0 1 0| O 0

6 | stack 12 286 82 6 6 0| O 0| O 0 45 6 6| O 0 0| O 0

7 | inheritancel 51| 3460 311 28| 17| 1| 2 3| O 0 122 32| 12| 1 3 3| O 0

8 | try_catch 67| 4743 45| 17| 41| 7| 2 0| O 0 4 0 11 0 0| 66| O 0

9 | stream 66| 1831) 1892 51| 13| 0| 2 ol O 0 11| 17| 13| 0| 35 1] O 0

10| string 233| 4921\ 46186|100|112| 5| 16 ol O 0 37| 6]121| 4(102| O O 0

11| cpp 343| 26624 1817|269| 38| 7| 25 41 0 0| 3260|235| 24| 10| 56| 15| 2 1

[] | 1175] 55953 58386] 680[354| 42| 92| 7| 0] 0]44869]467]310] 22|235] 90| 41] 10|

TABLE T. RESULTS OF THE COMPARISON BETWEERESBMC++V1.2Z0AND LLBMC VZ01Z. A.
is equal to another string. In thiaheritancesuite, LLBMC The following properties were verified using the customer

reports incorrect errors about memory writing and institth ~ version of the sniffer code: array bounds violations, dons

of virtual methods (that do not contain implementation). Itby zero, and arithmetic under- and over-flow. Due to con-
also does not support some expressions in the SMT back-effidientiality issues, we were able to model check 50 out of
(e.g., “Op % (nondef) found”). ESBMC++ fails to verify test 85 methods (since we did not have access to some external
cases related to the use of thgnamic cast(as described in classes that the sniffer code requires). In the remainirtg co
Section V). base, ESBMC++ was able to identify five bugs that are mostly
related to arithmetic under- and over-flow while LLBMC was
ﬁable to identify only three of them. Note that all bugs were
reported to the developers and confirmed by them.

In the try_catchsuite, LLBMC failed in most of the tests
due to the fact that the tool is missing support to exceptio
handling. ESBMC++ was able to verify most of the cases.
The errors that occur are related to a missing implememtatio As an example of the bugs that were found, Figure 8
of exception specifications when using classes constsictorshows a code fragment of the methgetPayloadSizérom the
And lastly, in thecpp suite, which has test cases involving classPacketM3UA Here, an arithmetic over-flow might occur
all the other suites (but are not redundant), most of thergrro on the typecast operation since the metmbdhsreturns an
presented were already seen during the verification of othainsigned integer, but the methg@tPayloadSizés expected
suites. to return an integer data-type. One possible way to fix thgs bu

ESBMC++ verified all suites in 58386 seconds (approxi-'S 10 change the return type of the methgetPayloadSizéo
mately 16 hours) and gave the right results for 1034 out ofNSigned integer to avoid the typecast over-flow.

1175 programs (88%) while LLBMC verified all suites in — .
44869 seconds (approximately 12 hours) and gave the righf int PacketM3UA:: getPayloadSize (X _
results for 777 out of 1175 programs (66%). We can see thay '€turn ntohs (m3uaParamHeaderparamsize)
LLBMC is slower than ESBMC++ on most of the containers ° R &ggﬁ%igg&g?&;aéL%ElEéPZEE?SIZE
and algorithm suites, while it is faster omstreamand string : } - = = ’
suites but looses on successfully verified test cases. In the
inheritancesuite, the results of both tools are essentially the))))
same. In thery_catchsuite, ESBMC++ is able to verify almost Fig. 8. Arithmetic over-flow on the typecast operation of getPayloadSize
all programs, something that LLBMC cannot due to its lack of

support of exception handling. In ttepp suite, ESBMC++ is VIl. RELATED WORK

able to successfully verify more programs than LLBMC. Note

that ESBMC++ does runs out of memory or time in any suite. ~ The application of SMT-based BMC to software is gaining
popularity in the software engineering community mainhedu

C. Verifying the Sniffer Code to the advent of sophisticated SMT solvers built over effitie
SAT solvers [10], [14], [18]. Previous work related to SMT-
based BMC for software addresses the problem of verifying C

eprograms that use bit operations, floating-point arithmetind
pointers [16], [9], [20], [17]. However, there is only lithwork

that addresses the problem of model checking C++ programs

at make use of templates, containers, and exceptionihgndl|

This section describes the results of the verification pssce
using the ESBMC++ and LLBMC model checkers against th
sniffer code provided by Nokia Institute of Technology (INd
The sniffer code is responsible for capturing and loggiaffitr
passing over a network that supports the Message Transter P
Level 3 User Adaptation Layer (M3UA); it enables the trans-
port of Signaling System 7 (SS7) protocol’s user parts and it Prabhu et al. [27] present an interprocedural exception
uses the services provided by the Stream Control Trangmissi analysis and transformation framework for C++ that records
Protocol (SCTP). The sniffer code contains approximat@ly 2 the control-flow created by the exceptions and creates an
classes, 85 methods, and 2800 lines of C++ code. exception-free program. The exception-free program meat

starts by generating a modular interprocedural exceptionf an operational model of the sequential STL containers as
control-flow graph (IECFG). The IECFG is refined using anwell as novel approaches to handle inheritance, polymenphi
algorithm based on a compact representation for a set o§typend exception handling (in particular, exception spedifice
called the Signed-TypeSet domain and the result is used t@hich is a feature that is not supported by other BMC tools).
generate the exception-free program. Finally, the exompti Our experiments contain C++ programs with most of the
free program is verified using F-SOFT [21]. The verificationfeatures that the C++ language has to offer. Additionally,
is focused on two properties: “no throw”, the percentage ofwe have verified a commercial application of medium-size
the code that does not raise an exception and “no leak”, thesed in the telecommunications domain. The results show

number of memory leaks on try-catch blocks [27].

Jing Yang et al. present a translation tool called Class Hi-
erarchy Representation Object Model Extension (CHROMEW
that is targeted towards making static program analyzears fod
C++ easier to write and provide more precise results [30]a
CHROME makes a source-to-source transformation from
C++ program with inheritance into a semantically equivtalenfu
program without inheritance by treating the inheritancéhwi
separate memory regions that are linked to each other vig,
additional base class and derived class pointer fields. This
transformation comprises a clarifier, which makes imp{@:it+
features explicit. This approach was also implemented fith
SOFT [21]. CHROME has a different memory behavior from

that ESBMC++ outperforms LLBMC for the verification of
C++ programs. In particular, ESBMC++ is able to verify
ost of the C++ programs; we are able to verify programs
ith exceptions enabled (a missing feature of LLBMC that
ecreases the verification accuracy of C++ programs). In
ddition, ESBMC++ was able to find undiscovered bugs in
e sniffer code that were later confirmed by developers. For
ture work, we intend to extend the operational model of STL
.containers to support not only sequential containers, lagt a
apped ones (e.g., map and multimap).

ACKNOWLEDGMENT

The development of ESBMC++ is funded by the Royal

the original program and therefore does not allow the us&gciety and by Nokia Institute of Technology (INdT).

of low-level primitives (e.gmemsét The CHROME-lowered
C program is three to five times bigger than the size of the
original C++ program.

. e 1
Blanc et al. describe the verification of C++ programs[]

that use the STL containers via predicate abstraction [12].
They make use of abstract data types for the STL usage]
verification rather than the actual STL implementation and
behavior. Blanc et al. show that it suffices to verify cornests [3]
using an operational model by proving that the pre-condtio

on operations in the model imply the pre-conditions guaadt [4]
by the language definition for those operations; similatyg (5]
post-conditions given by the standard imply the strongest-p [6]
conditions for the operational model. This approach isieffic [7]
in finding trivial errors in C++ programs, but it lacks on a [g]
deeper search for bugs and misleading operations (i.e, when
involves internal modeling of the methods). [9]

Merz et al. describe the LLBMC tool, which also applies

REFERENCES
Working draft, Standard for Program-
ming Language C++, http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2012/n3376. @2 .2
Reference of the C++ Language Library,
http://www.cplusplus.com/reference/, 2012.
Efficient SMT-Based Context-Bounded Model Checker,

http://esbmc.org/, 2012.

The Low-Level Bounded Model Checker, http://llbmc.4rg012.
LLVM Tools, http://livm.org/releases/, 2012.

NEC, http://www.nec-labs.com/research/system/, 201
SMT-LIB, http://combination.cs.uiowa.edu/smtlibp@9.

R. T. Alexander, J. Offutt, and J. M. Bieman. Fault DemctCapabilities
of Coupling-based OO Testing ISSREpp. 207-2002, 2002.

A. Armando, J. Mantovani, and L. Platania. Bounded moctetcking

of software using SMT solvers instead of SAT solversSIATT vol. 11
(1), pp. 69-83, 2009.

BMC to the verification of C++ programs [24]. However, [10] C. Barrett and C. Tinell, CVC3. IICAV, LNCS 4590, pp. 298-302,

they use the LLVM compiler to convert C++ programs into

2007.

LLVM's intermediate representation, which thus looseshhig [11] A. Biere. Bounded model checking. Mandbook of Satisfiabilitypp.

level information about the structure of the C++ prograrmes (i

457-481. 2009.

the relationship between the classes). Similarly to ESBMC+ [12] N. Blanc, A. Groce, and D. Kroening, Verifying C++ withT§

Merz et al. also apply SMT solvers to check the verification
conditions that are generated from the C++ programs. In con-
trast to our approach, however, they do not handle exceqtion
which thus make it difficult to verify realistic C++ programs
(e.g., programs that depend on the STL library).

Java PathFinder is an explicit-state model checker for Java

programs, but Pasareanu and Visser [25] also developed [}

symbolic execution framework for it. However, due to the

considerable differences between Java and C++ it is d'rfficul[l7]

to compare this to ESBMC++,

(18]

VIIIl. CONCLUSIONS

19
In this work, we have investigated SMT-based verification[]

[14]

[15] A. Cimatti et al.

containers via predicate abstraction. ASE pp. 521-524. 2007.

I{13] A. R. Bradley and Z. Manna. The Calculus of ComputatiBecision

Procedures with Applications to Verification. Springer020

R. Brummayer and A. Biere, Boolector: An efficient SMTha&y for
bit-vectors and arrays. IMACAS LNCS 5505, pp. 174-177, 2009.
Verifying SystemC: a software modelecking
approach. IFFMCAD, pp. 121-128, 2010.

E. Clarke, D. Kroening, and F. Lerda. A tool for checkiddNSI-C
programs. INTACAS LNCS2988, pp. 168-176, 2004.

L. Cordeiro, B. Fischer, and J. Marques-Silva. SMTdzhdounded
model checking for embedded ANSI-C software. [IBEE Trans.
Software Eng.v. 38, n. 4, pp. 957-974, 2012.

L. M. de Moura and N. Bjgrner, Z3: An efficient SMT solvén. TACAS
LNCS 4963, pp. 337-340, 2008.

P. Deitel and H. Deitel. C++ How to Program. Prentice IH&th
Edition, 2006.

of C++ programs by focusing on the major features thafog] m. k. Ganai and A. Gupta. Accelerating high-level boeddmodel

the language offers. We have described an implementation

checking. INICCAD, pp. 794-801, 2006.

[21] F. Ivancic et al. Model Checking C programs using F-Sdit ICCD.
pp. 297-308, 2005.

[22] N. Joseph and K. Hee. Basic Posets. World Scientific PulnC, First
Edition, 1999.

[23] J. McCarthy. Towards a mathematical science of contjputaln IFIP
Congress North-Holland, pp. 21-28, 1962.

[24] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded Model Gkirg
of C and C++ Programs Using a Compiler IR. WSTTE pp. 146-161,
2012.

[25] C. Pasareanu and W. Visser, Verification of Java Progrdssing
Symbolic Execution and Invariant Generation. $®IN LNCS 2989,
pp. 164-181, 2004.

[26] W. Visser and P. Mehlitz Model Checking Programs withvala
PathFinder. INSPIN LNCS 3639, pp. 27, 2005.

[27] P. Prabhu et al. Interprocedural Exception Analysisde+. INnECOOPR,
pp. 583-608. 2011.

[28] R. L. Sites. Some thoughts on proving clean terminatibmprograms.
Stanford, CA, USA, Tech. Rep., 1974.

[29] C. Wintersteiger. Compiling GOTO-Programs,
http://www.cprover.org/goto-cc/, 2009.

[30] J. Yang et al. Object Model Construction for Inheritana C++ and

its Applications to Program Analysis. I8C, LNCS 7210, pp. 144-164,
2012.

