Cryptography Made Easy

Stuart Reges

Senior Lecturer

Why Study Cryptography?

- Secrets are intrinsically interesting
- So much real-life drama:
- Mary Queen of Scots executed for treason
- primary evidence was an encoded letter
- they tricked the conspirators with a forgery
- Students enjoy puzzles
- Real world application of mathematics

Start with an Algorithm

- The Spartans used a scytale in the fifth century BC (transposition cipher)
- Card trick
- Caesar cipher (substitution cipher):

ABCDEFGHIJKLMNOPQRSTUVWXYZ

GHIJKLMNOPQRSTUVWXYZABCDEF

Then add a secret key

- Both parties know that the secret word is "victory":

ABCDEFGHIJKLMNOPQRSTUVWXYZ
VICTORYABDEFGHJKLMNPQSUWXZ

- "state of the art" for hundreds of years
- Gave birth to cryptanalysis first in the Muslim world, later in Europe

Cryptographers vs Cryptanalysts

- A battle that continues today
- Cryptographers try to devise more clever algorithms and keys
- Cryptanalysts search for vulnerabilities
- Early cryptanalysts were linguists:
- frequency analysis
- properties of letters

Vigenère Square (polyalphabetic)

BCDEFGHI JKLMNOPQRSTUVWXYZ	
CDEFGHI JKLMNOPQRSTUVWXYZ	
DEFGHISKKLNOPQRSTUVWXYZABC	
	EFGHISJKMNOPQRSTUVWXYZABCD
	FGHI JKLMNOPQRSTUVWXYZABCDE
	H I J KLMNOPQRSTUVWXYZABCDEFG
	I JKLMNOPQRSTUVWXYZABCDEFGH
	JKLMNOPQRSTUVWXYZABCDEFGHI
	KLMNOPQRSTUVWXYZABCDEFGHIS
	LMNOPQRSTUVWXYZABCDEFGHIJK MNOPQRSTUVWXYZABCDEFGHI JKL
	NOPQRSTUVWXYZABCDEFGHISKLM
	OPQRSTUVWXYZABCDEFGHI J K L M N
	PQRSTUVWXYZABCDEFGHI J K L M No
	QRSTUVWXYZABCDEFGHIJKLMNOP
	RSTUVWXYZABCDEFGHIJKLMNOPQ
	STUVWXYZABCDEFGHI JKLMNOPQR
	TUVWXYZABCDEFGHISKLMNOPQRS
	UVWXYZABCDEFGHIJKLMNOPQRST
	VWXYZABCDEFGHI J K L M N OPQR.TU
	WXYZABCDEFGHI JKLMNOPQRSTUV
	XYZABCDEFGHI JKLMNOPQRSTUVW
	Y ZABCDEFGHI JKLMNOPQRSTUVWX

Vigenère Cipher

- More secure than simple substitution
- Confederate cipher disk shown (replica)
- Based on a secret keyword or phrase
- Broken by Charles Babbage

Cipher Machines: Enigma

- Germans thought it was unbreakable
- Highly complex
- plugboard to swap arbitrary letters
- multiple scrambler disks
- reflector for symmetry
- Broken by the British in WW II (Alan Turing)

Public Key Encryption

- Proposed by Diffie, Hellman, Merkle
- First big idea: use a function that cannot be reversed (humpty dumpty)
- Second big idea: use asymmetric keys (sender and receiver use different keys)
- Key benefit: doesn't require the sharing of a secret key

RSA Encryption

- Named for Ron Rivest, Adi Shamir, and Leonard Adleman
- Invented in 1977, still the premier approach
- Based on Fermat's Little Theorem:

$$
a^{p-1} \equiv 1(\bmod p) \text { for prime } p, \operatorname{gcd}(a, p)=1
$$

- Slight variation:

$$
\begin{aligned}
& \mathrm{a}^{(p-1)(q-1)} \equiv 1(\bmod p q) \text { for distinct primes } p \\
& \text { and } q, \operatorname{gcd}(a, p q)=1
\end{aligned}
$$

- Requires large primes (100+ digit primes)

Example of RSA

- Pick two primes p and q, compute $n=p \times q$
- Pick two numbers e and d, such that:

$$
e \times d=k(p-1)(q-1)+1 \text { (for some } k)
$$

- Publish n and e (public key), encode with: (original message) ${ }^{e} \bmod n$
- Keep d, p and q secret (private key), decode with:
(encoded message) ${ }^{\text {d }}$ mod n

Why does it work?

- Original message is carried to the e power, then to the d power:

$$
\left(m s g^{e}\right)^{d}=m s g^{e \square d}
$$

- Remember how we picked e and d:

$$
m s g^{e d}=m s g^{k(p-1)(q-1)+1}
$$

- Apply some simple algebra:

$$
\mathrm{msg}^{\text {ed }}=\left(\mathrm{msg}^{(p-1)(q-1)}\right)^{\mathrm{k}} \times \mathrm{msg}^{1}
$$

- Applying Fermat's Little Theorem:

$$
\mathrm{msg}^{\text {ed }}=(1)^{\mathrm{k}} \times \mathrm{msg}^{1}=\mathrm{msg}
$$

Politics of Cryptography

- British actually discovered RSA first but kept it secret
- Phil Zimmerman tried to bring cryptography to the masses with PGP and ended up being investigated as an arms dealer by the FBI and a grand jury
- The NSA hires more mathematicians than any other organization

Exploring further

- Simon Singh, The Code Book
- RSA Factoring Challenge (unfortunately the prizes have been withdrawn)
- Shor's algorithm would break RSA if only we had a quantum computer
- Java's BigInteger class has methods for isProbablePrime, nextProbablePrime, modPow

Card Trick Solution

- Given 5 cards, at least 2 will be of the same suit (pigeon hole principle)
- Pick 2 such cards: one will be hidden, the other will be the first card
- First card tells you the suit
- Hide the card that has a rank that is no more than 6 higher than the other (using modular wrap-around of king to ace)
- Arrange other cards to encode 1 through 6

Encoding 1 through 6

- Figure out the low, middle, and high cards
- rank (ace < $2<3$... < 10 < jack < queen < king)
- if ranks are the same, use the name of the suit (clubs < diamonds < hearts < spades)
- Some rule for the 6 arrangements, as in:

1: low/mid/hi 3: mid/low/hi
5: hi/low/mid
2: low/hi/mid 4: mid/hi/low

6: hi/mid/low

