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Abstract

We study efficiency and budget balance in mechanism design in the quasi-linear domain.
Green and Laffont (1979) proved that one cannot generically achieve both. We consider strate-
gyproof budget-balanced mechanisms that are approximately efficient. For deterministic mech-
anisms, we show that a strategyproof and budget-balanced mechanism must have a sink agent
whose valuation function is ignored in selecting an alternative, and she is given the payments
made by the other agents. We assume the valuations of the agents are drawn from a bounded
open interval. This result strengthens Green and Laffont’s impossibility result by showing that
even in a restricted domain of valuations, there does not exist a mechanism that is strategyproof,
budget balanced, and takes every agent’s valuation into consideration—a corollary of which is
that it cannot be efficient. Using this result, we find a tight lower bound on the inefficiencies
of strategyproof, budget-balanced mechanisms in this domain. The bound shows that the inef-
ficiency asymptotically disappears when the number of agents is large—a result close in spirit
to Green and Laffont (1979, Theorem 9.4). However, our results provide worst-case bounds and
the best possible rate of convergence.

Next, we consider minimizing any convex combination of inefficiency and budget imbalance.
We show that no deterministic mechanism can do asymptotically better than minimizing inef-
ficiency alone.

Finally, we investigate randomized mechanisms and provide improved lower bounds on ex-
pected inefficiency. We give a tight lower bound for an interesting class of strategyproof, budget-
balanced, randomized mechanisms. We also use an optimization-based approach—in the spirit of
automated mechanism design—to provide a lower bound on the minimum achievable inefficiency
of any randomized mechanism.

1 Introduction

Mechanism design with monetary transfers forms a cornerstone of multi-agent decision making.
It has extremely broad applications ranging from resource allocation in the physical world and
computer systems, to building public projects, to trading in electronic markets. We study the
problem in the standard framework of quasi-linear utilities: each agent’s utility is her valuation
for the selected alternative (e.g., an allocation of resources) minus the amount she has to pay. For
example, in an auction, an agent’s utility is her valuation for the items that she receives minus what

∗We are grateful to Ioannis Caragiannis, Vincent Conitzer, Debasis Mishra, Hervé Moulin, Ariel Procaccia, and
Arunava Sen for useful discussions. Nath is funded by the Fulbright-Nehru postdoctoral fellowship. Sandholm is
funded by the National Science Foundation under grants 1320620 and 1546752.
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she has to pay. The framework also captures the setting where an agent’s valuation may depend
on how items that she does not receive get allocated. The classic goal is to select an alternative
that maximizes efficiency, that is, the sum of the agents’ valuations.

In the setting where valuations are private information, a mechanism needs to be designed that
incentivizes the agents to reveal their valuations truthfully (by the revelation principle, there is no
loss in objective from restricting attention to such direct-revelation mechanisms). We will study
the problem of designing strategyproof mechanisms, that is, mechanisms where each agent is best
off revealing the truth regardless of what other agents reveal.

Achieving strategyproofness is not always possible, but with quasilinear utilities one can al-
ways achieve strategyproofness using the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961;
Clarke, 1971; Groves, 1973), which selects an efficient alternative. However, the efficiency measured
only by agents’ valuations ignores the overall sum of utilities, which involves the sum of payments
too. If the sum of payments is not zero—we call a mechanism budget balanced when this sum is
zero—then it induces a solution that may not be ‘efficient’ from the perspective of maximizing
the sum of the agents’ utilities. In particular, (the Clarke tax version of) the VCG mechanism
has a positive outflow of money from the agents in aggregate, and this excess money needs to be
burned in order to ensure strategyproofness. This has attracted significant criticism of the VCG
mechanism (Rothkopf, 2007). Similarly, some mechanisms may require an external benefactor to
subsidize the mechanism because there is an inflow of money to the agents in the mechanism.
There too, that inflow should be subtracted from the valuations-based efficiency to evaluate the
true utility-based efficiency.

Ideally, one would design strategyproof mechanisms that are efficient and budget balanced—
that is, they do not require money burning or an external benefactor. Green and Laffont (1979)
proved that in the general quasi-linear domain strategyproof efficient mechanisms cannot be bud-
get balanced. This motivated the research direction of designing efficient mechanisms that are
minimally budget imbalanced. The approach is to redistribute the surplus money in a way that
satisfies truthfulness of the mechanism (Bailey, 1997; Cavallo, 2006). The performance of this class
of redistribution mechanisms has been evaluated in interesting special domains such as allocating
single or multiple (identical or heterogeneous) objects (Gujar and Narahari, 2011). The worst case
optimal and optimal in expectation guarantees are given for this class of mechanisms by Moulin
(2009); Guo and Conitzer (2008, 2009) in restricted settings. On the other hand, mechanisms have
been developed and analyzed that are budget balanced (or no deficit) and minimize the inefficiency
in special settings (Massó et al., 2015; Guo and Conitzer, 2014; Mishra and Sharma, 2016). Char-
acterization of strategyproof budget-balanced mechanisms in a cost-sharing setting is explored by
Moulin and Shenker (2001).

If the distribution of the valuations of the agents is known and we assume common knowl-
edge among the agents over those priors, the strategyproofness requirement can be weakened to
Bayesian incentive compatibility. In that weaker framework, mechanisms can extract full expected
efficiency and achieve budget balance d’Aspremont and Gérard-Varet (1979); Arrow (1979). How-
ever, those mechanisms use knowledge of the priors. Therefore, in the general quasi-linear setting,
for mechanisms without priors, it is an important open question to characterize the class of strat-
egyproof budget-balanced mechanisms, to find such mechanisms that minimize inefficiency, and
to find strategyproof mechanisms that minimize a convex combination of inefficiency and budget
imbalance.
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1.1 Contributions of this paper

In this paper, we consider the problem of minimizing inefficiency subject to budget balance, and
minimizing inefficiency and budget imbalance jointly in the general setting of quasi-linear utilities
where agents’ valuations are drawn from a bounded open interval. In Section 3, we characterize
the structure of truthful, budget balanced, deterministic mechanisms in this restricted domain, and
show that it must have a sink agent1 whose valuations do not impact the choice of alternative
and she gets the payments made by the other agents (Theorem 1). This result strengthens the
Green and Laffont impossibility by showing that even in a restricted domain of valuations, there
does not exist a mechanism that is strategyproof, budget balanced, and takes every agent’s valu-
ation into consideration—a corollary of which is that it cannot be efficient. With the help of this
characterization, we find the optimal deterministic mechanism that minimizes the inefficiency. This
provides a tight lower bound on the inefficiency of the deterministic, strategyproof, budget-balanced
mechanisms. By inefficiency of a mechanism in this paper, we mean the largest inefficiency of the
mechanism over all valuation profiles. We provide a precise rate of decay ( 1

n
) of the inefficiency

with the increase in the number of agents (Theorem 2).
To contrast this mechanism with the class of mechanisms that minimize budget imbalance

subject to efficiency, in Section 4 we consider the joint objective of efficiency-budget spillover, which
is a convex combination of inefficiency and budget imbalance. We prove that no deterministic,
strategyproof mechanism can reduce this spillover at a rate faster than 1

n
(Theorem 3). In other

words, minimizing the joint objective does not give any asymptotic advantage over the solution of
minimizing inefficiency with the constraint that the mechanism is budget balanced!

We investigate the advantages of randomization in Section 5. We first consider the class of
generalized sink mechanisms. These mechanisms draw a probability distribution over the agents for
every valuation profile which determines their chance of becoming a sink. This class of mechanisms
is budget balanced by design. We show examples where mechanisms from this class are not strate-
gyproof (Algorithm 2), and then isolate an interesting subclass that is strategyproof (Algorithm 3).
We show that no mechanism from this class can perform better than the deterministic mechanisms
if the number of alternatives is more than the number of agents (Theorem 4). Since, for a fixed
number of agents, increase in the number of alternatives does not decrease the inefficiency (Theo-
rem 5), we consider the extreme case of two alternatives and compare the performances of different
mechanisms. We show that a näıve uniform random sink mechanism and the modified irrelevant
sink mechanism (Algorithm 3) both perform equally well (Theorems 6 and 7) and reduces the inef-
ficiency by a constant factor of 2 from that of the deterministic mechanisms. However, the optimal,
strategyproof, budget-balanced, randomized mechanism performs better than these mechanisms.
Since the structure of strategyproof randomized mechanisms for general quasi-linear utilities is un-
known2, we take an optimization-based approach to find the best mechanism for the special case

1Mechanisms using this idea have been presented with different names in the literature. The original paper by
Green and Laffont (1979) refers to this kind of agents as a sample of the population. Later Gary-Bobo and Jaaidane
(2000) formalized the randomized version of this mechanism which is known as polling mechanism. Faltings (2004)
refers to this as an excluded coalition (when there are multiple such agents) and Moulin (2009) mentions this as
residual claimants. However, we use the term ‘sink’ for brevity and convenience, and our paper considers a different
setup and optimization objective.

2For randomized mechanisms, results involving special domains are known, e.g., facility location (Thang,
2010; Procaccia and Tennenholtz, 2009; Feldman and Wilf, 2011), auctions (Dobzinski et al., 2006), kidney ex-
change (Ashlagi et al., 2013), and most of these mechanisms aim for specific objectives.
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of two agents3. We prove that for a discrete valuation space with 3 levels, the optimal inefficiency
is reduced by a factor of 7 (Theorem 9). However, when the number of levels increases—thereby
making the lower bound tighter to the actual problem of valuations being drawn from an open
interval—the improvement factor reduces to less than 5 (Figure 1). This is a significant improve-
ment over the class of randomized sink mechanisms, which only improve over the best deterministic
mechanism by a factor of 2. In Section 6 we present conclusions and future research directions.

2 Model and definitions

The set of agents is denoted byN = {1, 2, . . . , n} and the set of alternatives byA = {a1, a2, . . . , am}.
We assume that each agent’s valuation is drawn from an open interval (−M

2 ,
M
2 ) ⊂ R, that is, the

valuation of agent i is a mapping vi : A → (−M
2 ,

M
2 ),∀i ∈ N and is a private information. Denote

the set of all such valuations of agent i as Vi and the set of valuation profiles by V =
∏

i∈N Vi.
A mechanism is a tuple of two functions 〈f,p〉, where f is called the social choice function

(SCF) that selects the allocation and p = (p1, p2, . . . , pn) is the vector of payments, pi : V →
R,∀i ∈ N . The utility of agent i for an alternative a and valuation profile v ≡ (vi, v−i) is given
by the quasi-linear function: vi(a) − pi(vi, v−i). For deterministic mechanisms, f : V → A is a
deterministic mapping, while for randomized mechanisms, the allocation function f is a lottery over
the alternatives, that is, f : V → ∆A. With a slight abuse of notation, we denote vi(f(vi, v−i)) ≡
Ea∼f(vi,v−i)vi(a) = f(vi, v−i)·vi to be the expected valuation of agent i for a randomized mechanism.
The following definitions are standard in the mechanism design literature.

Definition 1 (Strategyproofness) A mechanism 〈f,p〉 is strategyproof if for all v ≡ (vi, v−i) ∈
V ,

vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v
′
i, v−i))− pi(v

′
i, v−i), ∀ v′i ∈ Vi, i ∈ N.

Definition 2 (Efficiency) An allocation f is efficient if it maximizes social welfare, that is,
f(v) ∈ argmaxa∈A

∑

i∈N vi(a), ∀v ∈ V .

Definition 3 (Budget Balance) A payment function pi : V → R, i ∈ N is budget balanced if
∑

i∈N pi(v) = 0, ∀v ∈ V .

In addition, in parts of this paper we will consider mechanisms that are oblivious to the
alternatives—a property known as neutrality. To define this, we consider a permutation π : A → A
of the alternatives. Therefore, π over a randomized mechanism and over a valuation profile will im-
ply that the probability masses and the valuations of the agents are permuted over the alternatives
according to π, respectively.

Definition 4 (Neutrality) A mechanism 〈f,p〉 is neutral if for every permutation of the alter-
natives π (where π(v) 6= v) we have

π(f(v)) = f(π(v)) and pi(π(v)) = pi(v), ∀v ∈ V,∀i ∈ N.

Later in the paper, we will also use another form of agent symmetry called anonymity, which
ensures that the SCF is insensitive to the agent identities.

3This approach is known in the literature as automated mechanism design (Conitzer and Sandholm, 2002). For
an overview, see Sandholm (2003).
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Definition 5 (Anonymity) A mechanism 〈f,p〉 is anonymous if for every permutation of the
agents λ we have

f(λ(v)) = f(v) and pλ(i)(λ(v)) = pi(v), ∀v ∈ V,∀i ∈ N.

The most important class of allocation functions in the context of deterministic mechanisms are
affine maximizers, defined as follows.

Definition 6 (Affine Maximizers) An allocation function f is an affine maximizer if there
exist real numbers wi ≥ 0, i ∈ N , not all zeros, and a function κ : A → R such that
f(v) ∈ argmaxa∈A

(
∑

i∈N wivi(a) + κ(a)
)

.

As we will explain in the body of this paper, in parts of the paper we will focus on neutral affine
maximizers Mishra and Sen (2012), where the function κ is zero.

f(v) ∈ argmax
a∈A

∑

i∈N

wivi(a) neutral affine maximizer

The following property of the mechanism ensures that two different payment functions of an
agent, say i, that implement the same social choice function differ from each other by a function
that does not depend on the valuation of agent i.

Definition 7 (Revenue Equivalence) An allocation f satisfies revenue equivalence if for any
two payment rules p and p′ that make f strategyproof, there exist functions hi : V−i → R, such that

pi(vi, v−i) = p′i(vi, v−i) + hi(v−i), ∀vi ∈ Vi,∀v−i ∈ V−i,∀i ∈ N.

The metrics of inefficiency we consider in this paper are defined as follows.

Definition 8 (Sample Inefficiency) The sample inefficiency for a deterministic mechanism
〈f,p〉 is:

rMn (f) :=
1

nM
sup
v∈V

[

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v))

]

. (1)

The metric is adapted to expected sample inefficiency for randomized mechanisms:

rMn (f) :=
1

nM
sup
v∈V

{

Ef(v)

[

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v))

]}

. (2)

The majority of this paper is devoted to finding strategyproof and budget balanced mechanisms
〈f,p〉 that minimize the sample inefficiency.

A different, but commonly used, metric of inefficiency in the literature is the worst-case ratio

of the social welfare of the mechanism and the maximum social welfare: infv∈V

∑
i∈N vi(f(v))

maxa∈A

∑
i∈N vi(a)

.

Our conclusions hold in that metric as well, but unlike our metric, that metric would require
an additional assumption that the valuations are non-negative, which is not always the case in a
quasi-linear domain.

We are now ready to start presenting our results. We start with deterministic mechanisms that
are strategyproof and budget balanced.
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3 Deterministic, strategyproof, budget-balanced mechanisms

In this section we study deterministic budget-balanced mechanisms. We provide characterization
results and a tight lower bound on the sample inefficiency.

Before presenting the main result of this section, we formally define a class of mechanisms we
call sink mechanisms. A sink mechanism has one or more sink agents, given by the set S ⊂ N ,
picked a priori, whose valuations are not used when computing the allocation (i.e., f(v) = f(v−S))
and the sink agents do not pay anything and together they receive the payments made by the other
agents (it does not matter how those payments are divided among the sink agents). The advantage
of a sink mechanism is that it is strategyproof if it is strategyproof for the agents other than the
sink agents, and sink mechanisms are obviously budget balanced by design.

An example of a sink mechanism is where S = {is} (only one sink agent) and f(v−is)
chooses an alternative that would be efficient if agent is did not exist, that is, f(v−is) =
argmaxa∈A

∑

i∈N\{is}
vi(a). The Clarke tax payment rule Clarke (1971) can be applied here to

make the mechanism strategyproof for the rest of the agents—that is, for agents other than is,
pi(v−is) = maxa∈A

∑

j∈N\{is,i}
vj(a) −

∑

j∈N\{is,i}
vj(f(v−is)), ∀i ∈ N \ {is}. Paying agent is the

‘leftover’ money (that is, pis(v−is) = −
∑

j∈N\{is}
pj(v−is)) makes the mechanism budget balanced.

Our first result establishes that the existence of a sink agent is not only sufficient but also necessary
for deterministic mechanisms.

Theorem 1 Any deterministic, strategyproof, budget-balanced, and neutral mechanism 〈f,p〉 in
the domain V has at least one sink agent.

Proof : Consider the class of deterministic, strategyproof, and neutral mechanisms.
Mishra and Sen (2012) have shown that in the domain V , an allocation that satisfies the prop-
erties above must be a neutral affine maximizer (Definition 6), that is, there exists wi ≥ 0,∀i ∈ N ,
not all zero, such that,

f(v) ∈ argmax
a∈A

∑

i∈N

wivi(a). (3)

Additionally, the result by Rockafellar (1997) and Krishna and Maenner (2001) states that for any
convex type space, if the valuations are linear in type, then a strategyproof allocation satisfies
revenue equivalence (Definition 7). In our setting, the types of the agents are their valuations,
which implies, trivially, that the valuations are linear in type. Also, they are drawn from the
interval (−M

2 ,
M
2 ), which is convex. So, revenue equivalence holds for the allocations in our setting.

The following payment implements the affine maximizer allocation f given by Equation (3):

pi(vi, v−i) =















1

wi





∑

j 6=i

wjvj(f(v))



 , wi > 0

0, wi = 0

(4)

for all i ∈ N . Since revenue equivalence holds in this setting, we conclude that any payment
p̂i, i ∈ N that makes 〈f, p̂〉 strategyproof, will be different from the above mentioned payments p
by an additive factor hi(v−i) for each agent i in every valuation profile.

Now, we turn to proving the result of the theorem. We have the functional form of deterministic,
strategyproof, neutral mechanisms given by Equation (3). If, on this class of mechanisms, we show
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that one cannot have weights wi > 0 for all i ∈ N while imposing budget balance, then we are done.
This is because, if there exists one agent i ∈ N , for which wi = 0, that agent is a sink agent as her
valuations are never used by the social choice function and she is charged no payment. By revenue
equivalence, any other payment that can implement the same allocation f is hi(v−i). Putting this in
the budget balance equation, we get hi(v−i) = −

∑

j∈N\{i} pj(v), that is, she receives the payments
made by the other agents. Thus agent i is a sink agent. Hence, the proof is completed by proving
the following claim.

Lemma 1 (Existence of wi = 0 Agent) A budget balanced mechanism 〈f,p〉, where f is a neu-
tral affine maximizer on the domain V , must have at least one agent i that has wi = 0.

Proof : Suppose for contradiction that wi > 0,∀i ∈ N . Since f is a neutral affine maximizer
(Equation (3)) and revenue equivalence holds in V (Equation (4)), we know that the payments are

of the form pi(vi, v−i) = hi(v−i) +
1
wi

(

∑

j 6=iwjvj(f(v))
)

,∀v ∈ V,∀i ∈ N .

Additionally, since the mechanism 〈f,p〉 is also budget balanced, we have

n
∑

i=1



hi(v−i) +
1

wi





∑

j 6=i

wjvj(f(v))







 = 0, ∀v ∈ V

⇒

n
∑

i=1

hi(v−i) +

n
∑

i=1





∑

j 6=i

1

wj



wivi(f(v)) = 0, ∀v ∈ V. (5)

For an easier exposition, we first explain the proof technique for n = 2. Later the same proof is
generalized to any number of agents.

By assumption, w1, w2 > 0. Pick two valuation profiles (v+1 , v2) and (v−1 , v2) such that the affine
maximizer alternative in the first is a1 while that in the second is a2, that is,

w1v
+
1 (a1) + w2v2(a1) > w1v

+
1 (a2) + w2v2(a2) (6)

w1v
−
1 (a1) + w2v2(a1) < w1v

−
1 (a2) + w2v2(a2) (7)

This can be done by choosing v+1 (a2) = v−1 (a2) = v1(a2) (say) small and v2 to be small enough for
both alternatives, so that the valuation of agent 1 for a1 determines the resulting alternative of f .
Therefore, the RHS of the inequalities above are the same. Since the inequality of Equation (7)
is strict, let the difference of the RHS and LHS be δ > 0. The allocations at these two profiles
are: f(v+1 , v2) = a1 and f(v−1 , v2) = a2. Since the payments satisfy revenue equivalence and budget
balance, Equation (5) holds, which gives

1

w1
w2v2(a1) + h1(v2) +

1

w2
w1v

+
1 (a1) + h2(v

+
1 ) = 0

1

w1
w2v2(a2) + h1(v2) +

1

w2
w1v

−
1 (a2) + h2(v

−
1 ) = 0.

Subtracting the first equation from the second and rearranging, we get

1

w1
w2(v2(a1)− v2(a2)) =

1

w2
w1(v

−
1 (a2)− v+1 (a1)) + h2(v

−
1 )− h2(v

+
1 ). (8)
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Note that the RHS is independent of v2. Therefore, if v2(a1) is increased by a small amount
(< δ/w2), both the inequalities given by Equations (6) and (7) still hold, but Equation (8) fails to
hold, which is a contradiction.

The general proof of this lemma extends this idea to any number of agents n ≥ 2. We prove this
for a set of alternatives A = {0, 1}. Consider this setting as that of a public project. In alternative
0, the project is not undertaken, yielding every agent a value of zero, and when 1 is chosen—i.e.,
the project is undertaken—the valuation of each agent is denoted by a single real number. This
assumption helps us reduce the notational complexity. The proof, however, is completely general
for any number of alternatives.

Let the agents be numbered in decreasing order of their weights WLOG, that is, wi ≥ wi+1, i =
1, 2, . . . , n − 1. We consider the following valuation profile: (v1 + δ, v2 + δ, . . . , vn−1 + δ, vn), δ > 0
such that

−δ

n−1
∑

i=1

wi <

n
∑

i=1

wivi < −δ

n−2
∑

i=1

wi (9)

The above inequalities imply that the affine maximizer alternative given by Equation (3) for the
profile mentioned above is 1. However, if any agent i’s, i = 1, 2, . . . , n − 1, valuation changes from
vi+ δ to vi, the alternative changes to 0. We use a generic notation vk to denote this profile, where
k denotes the agent(s) whose valuation(s) is(are) vk while all other agents j 6= k have valuations
vj + δ. Hence, vn is the profile mentioned before: (v1 + δ, v2 + δ, . . . , vn−1 + δ, vn) and vn−1,n is the
profile: (v1 + δ, v2 + δ, . . . , vn−1, vn), for example.

Since, f(vn) = 1, from Equation (5) we have,
(

n−1
∑

i=1

hi(v
n
−i) + hn(v

n
−n)

)

+





n
∑

i=1





∑

j 6=i

1

wj



wivi +

n−1
∑

i=1





∑

j 6=i

1

wj



wiδ



 = 0. (10)

The idea of the proof is to make a series of substitutions in the first parentheses of the expression
above, leaving the terms in the other parentheses unchanged. Note that, the expression in the second
parentheses depends on vn, while the expression hn(v

n
−n) does not. The substitutions sequentially

eliminate the dependency on vn from all the terms in the first parentheses, similar to what we did in
the two agent case before. This leads to a contradiction, since vn can be perturbed to be arbitrarily
small so that it continues to satisfy the inequalities of Equation (9), our only assumed condition,
but violates the equality in Equation (10).

The substitutions will involve the term
∑n−1

i=1 hi(v
n
−i) in the first parentheses of Equation (10).

Consider the profiles vj,n, j = 1, . . . , n − 1. In each of these profiles, f(vj,n) = 0 (due to the choice
of vn in Equation (9)). Hence,

n−1
∑

i=1

hi(v
j,n
−i ) + hn(v

j,n
−n) = 0, ∀j ∈ {1, . . . , n − 1}. (11)

Note that vi,n−i = vn−i. Hence, we can substitute terms from Equation (11) to the terms in the first
parentheses of Equation (10) to get,


−

n−1
∑

i=1

∑

j 6={i,n}

hj(v
i,n
−j)−

∑

j 6=n

hn(v
j,n
−n) + hn(v

n
−n)



+





n
∑

i=1





∑

j 6=i

1

wj



wivi +

n−1
∑

i=1





∑

j 6=i

1

wj



wiδ



 = 0.

(12)
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We continue replacing the terms hj(v
i,n
−j) in the first summation of the first parentheses above. All

other terms in that parentheses are hn functions and, therefore, are independent of vn. For every
i 6= n, consider the valuation profiles vj,i,n, j 6= i, n. By Equation (9), f(vj,i,n) = 0, so we get an
equality similar to Equation (11):

∑n−1
k=1 hk(v

j,i,n
−k ) + hn(v

j,i,n
−n ) = 0, ∀j 6= i, n. Also, vj,i,n−j = vi,n−j .

So, we follow the same procedure to replace the terms hj(v
i,n
−j ) in Equation (12) to yield a similar

equality where more terms that were dependent on vn are now replaced with hn functions, which
are independent of vn. Since the number of agents is finite, this process will stop after a finite
number of iterations, reducing the terms in the first parentheses to only consisting of hn functions.
This construction shows that a small perturbation of vn, which keeps Equation (9) unaffected, will
violate the equality obtained through the iterative procedure described above. This completes the
proof of the lemma. �

Lemma 1 shows that there exists an agent with weight zero, which is a sink agent, and hence the
proof of Theorem 1 is complete. �

Theorem 1 states that a deterministic, strategyproof, budget-balanced, neutral mechanism must
necessarily be a neutral affine maximizer (Equation (3)) that has at least one sink agent. Our next
goal is to find the mechanism in this class that gives the lowest sample inefficiency (Equation (1)).
We show that it is achieved when there is exactly one sink and weights are equal for all agents
other than the sink.

Theorem 2 For every deterministic, strategyproof, budget-balanced, neutral mechanism 〈f,p〉 over
V , rMn (f) ≥ 1

n
. This bound is tight.

Proof : From Theorem 1, we know that any f that satisfies the properties mentioned in the
statement of the current theorem must be a neutral affine maximizer with at least one agent i∗

that has wi∗ = 0. We now show that the minimum sample inefficiency rMn (f) is achieved when
there is exactly one such agent i∗ and the weights of the other agents i ∈ N \ {i∗} are equal.
This immediately proves the theorem since the ensuing mechanism will have sample inefficiency 1

n
.

This mechanism picks the welfare maximizing allocation not considering the sink agent i∗, that is,
f(v) ∈ argmaxa∈A

∑

j∈N\{i∗} vj(a). Denoting a∗(v) to be the efficient allocation, we can write the
expression:

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v)) =
∑

i∈N

vi(a
∗(v)) −

∑

i∈N

vi(f(v))

= vi∗(a
∗(v)) − vi∗(f(v)) +





∑

j∈N\{i∗}

vj(a
∗(v))−

∑

j∈N\{i∗}

vj(f(v))



 <

(

M

2
−

(

−
M

2

))

+ 0 = M

(13)

The first part of the above inequality comes from the fact that the valuations are drawn from
(−M

2 ,
M
2 ) so the difference in valuation can at most be M . The second part of the inequality is due

to f(v) being the welfare maximizing allocation when excluding agent i∗.
It is easy to verify that this inequality is tight at the following valuation profile: vi∗(a) =

M
2 − δ, vi∗(z) = −M

2 + γ, ∀z 6= a, and vj(b) = −M
2 + ǫ, vj(z) = −M

2 + ǫ
2 , ∀z 6= b,∀j 6= i∗, where

δ, γ, ǫ > 0 are arbitrarily small. The alternatives are: a∗(v) = a, f(v) = b. Clearly, this satisfies

9



the above inequality and by taking δ, γ, ǫ → 0, we get that the supremum of the difference term
approaches M , and hence the sample inefficiency becomes 1

n
.

This example also shows that having more than one sink agent will make the sample inefficiency
worse—that is, larger. This is because we can replicate the valuation of i∗ for every other sink
and the inequality above will be tightly upper bounded at 2M for 2 sinks, 3M for 3 sinks, etc.
Consequently, the sample inefficiency increases to 2

n
, 3
n
etc.

We, therefore, need to prove the following lemma to complete the proof of the theorem.

Lemma 2 (Lower Bound) In the class of neutral affine maximizers given by Equation (3) having
a sink agent i∗ (i.e., wi∗ = 0), the lowest sample inefficiency is achieved when wi = w for all
i ∈ N \ {i∗}.

Proof : Suppose not, that is, ∃j, j′ ∈ N \ {i∗} such that, WLOG, wj > wj′ . Consider the following
valuation profile:

vi∗(a) = −M
2 + γ,

vj(a) = M
2 − δ,

vj′(a) = −M
2 + γ,

vi∗(b) = M
2 − δ,

vj(b) = M
2 −

wj′

wj
M − ǫ,

vj′(b) = M
2 − δ,

vi(a) = vi(b), ∀i ∈ N \ {i∗, j, j′},

vi(z) = −M
2 + γ

2 , ∀z ∈ A \ {a, b},∀i ∈ N.

The constants δ, γ, ǫ > 0 are arbitrarily small. It is easy to verify that on this profile, by choosing
the constants δ, γ, ǫ appropriately small, the affine maximizer will return a. But the efficient
alternative is a∗(v) = b. Consider the term

∑

i∈N vi(a
∗(v)) −

∑

i∈N vi(f(v)). To this term,

agent i∗ contributes inefficiency M , agent j′ contribute M , and agent j contributes
(

−
wj′

wj
M
)

,

taking the limiting values of δ, γ, ǫ → 0. Therefore, the inefficiency term on this profile equals

M +
(

1−
wj′

wj

)

M > M , the maximum inefficiency when the weights are equal except i∗ (by

the arguments just before Lemma 2). Hence, this mechanism cannot achieve the lowest sample
inefficiency, which is a contradiction. �

Lemma 2 and the arguments before it complete the proof of the theorem. �

4 Jointly minimizing budget imbalance and inefficiency

In the previous section, we considered strategyproof, budget-balanced mechanisms that are min-
imally inefficient. We achieved a sample inefficiency lower bound of 1

n
. Could one do better by,

instead of requiring budget balance and minimizing inefficiency, relaxing budget balance by allowing
money burning, and then minimizing the inefficiency from the allocation plus the inefficiency caused
by money burning (or required subsidy from outside the mechanism)?

In this section, we consider the joint problem of minimizing inefficiency and budget imbalance.
We consider a convex combination of these two quantities since in the quasi-linear domain both
of them contribute additively in the agents’ utilities and social welfare. Therefore, the metric to
minimize in this context is the efficiency-budget spillover defined as follows.

ρn(f,p) := lim
M→∞

1

nM
sup
v∈V

[λ · T n
1 (f, v) + (1− λ) · T n

2 (p, v)] , (14)

Where T n
1 (f, v) =

(

maxa∈A
∑

i∈N vi(a)−
∑

i∈N vi(f(v))
)

and T n
2 (p, v) =

∣

∣

∑

i∈N pi(v)
∣

∣ . For λ =
1, that is, when budget imbalance is not a concern, one can use the VCG mechanism to get

10



ρn(f,p) = 0. Similarly, for λ = 0, a sink mechanism will give ρn(f,p) = 0. So, the interesting
cases are when λ ∈ (0, 1), and for this we have a solution that decays as 1/n. In this section,
we will assume that λ, 0 < λ < 1 is exogenous. Our goal is to find a strategyproof and neutral
mechanism 〈f,p〉 that minimizes the objective ρn. We have shown in Section 3 that T n

1 (f, v)
can at most be a constant when T n

2 (p, v) is zero for every v. Hence, for any improvement in
the efficiency-budget spillover metric, that is, for ρn(f,p) = o(rn(f)), it is necessary that the
term supv∈V [λ · T n

1 (f, v) + (1− λ) · T n
2 (p, v)] be o(1). Since both T n

1 (f, v) and T n
2 (p, v) are non-

negative, it is necessary that the factor T n
2 (p, v) = o(1) for every v ∈ V . Our next result shows

that it is impossible to have T n
2 (p, v) = o(1), ∀v ∈ V ⇔ limn→∞ supv∈V T n

2 (p, v) = 0. Hence,
for deterministic mechanisms, the bound on inefficiency with no budget imbalance (presented in
Section 3) is asymptotically optimal for this joint optimization problem as well!

Theorem 3 (Unimprovability) For every deterministic, strategyproof, and neutral mechanism
〈f,p〉 over V and for every λ ∈ (0, 1), ρn(f,p) = Ω

(

1
n

)

. This bound is tight. For λ = 0, a sink
mechanism, and for λ = 1, the VCG mechanism, achieves zero spillover.

We defer the proof of this theorem to the Appendix. This result shows that as the number of
agents grows, an inefficiency-minimizing budget-balanced mechanism is optimal in the class of
deterministic mechanisms. It does not, however, claim optimality for every n. This leaves open the
question of finding a solution to this joint problem that yields a lower spillover ρn(f,p) for a given
finite n than the degenerate problem of minimizing inefficiency subject to budget-balance.

5 Randomized, strategyproof, budget-balanced mechanisms

We saw that the best sample inefficiency achieved by a deterministic mechanism is 1
n
. In this

section, we discuss how the inefficiency can be reduced by considering randomized mechanisms.
A näıve approach is to consider a randomized sink mechanism, where each agent is picked as a

sink with probability 1
n
. This mechanism is strategyproof, budget balanced, and neutral by design.

One can anticipate that this may not yield the best achievable inefficiency bound. Unlike
deterministic mechanisms, very little is known about the structure of randomized strategyproof
mechanisms in the general quasi-linear setting. Furthermore, we require budget balance. Hence,
even though we can obtain an upper bound on the expected sample inefficiency (rMn (f)) by consid-
ering specific mechanisms like the näıve randomized sink mechanism described above, the problem
of providing a lower bound (i.e., no randomized mechanism can achieve a lower rMn (f) than a given
number), seems elusive in the general quasi-linear setting.

Therefore, in the following two subsections, we consider two approaches, respectively. First, we
show lower bounds in a special class of strategyproof, budget-balanced, randomized mechanisms.
Second, we analytically find the lower bound of the optimal, strategyproof, budget-balanced, ran-
domized mechanism for two agents and two alternatives. We also use automated mechanism de-
sign Conitzer and Sandholm (2002); Sandholm (2003) to supplement the analysis. (The problems
of finding a mechanism matching this lower bound and extending the lower bound to any number
of agents and alternatives are left as future work.)

5.1 Generalized sink mechanisms

In the first approach, we consider a broad class of randomized, budget-balanced mechanisms, which
we coin generalized sink mechanisms. In this class, the probability of an agent i to become a sink
is dependent on the valuation profile v ∈ V , and we consider mechanisms with only one sink, i.e.,
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if the probability vector returned by a generalized sink mechanism is g(v), then w.p. gi(v), agent
i is treated as the only sink agent 4. This makes these mechanisms different from the näıve sink
mechanism. Once agent i is picked as a sink, the alternative chosen is the efficient one without agent
i. All agents j 6= i are charged a Clarke tax payment in the world without i, and the surplus amount
of money is transferred to the sink agent i. Algorithm 1 shows the generic steps of mechanisms in
this class.

Algorithm 1 Generalized Sink Mechanisms, G

1: Input: a valuation profile v ∈ V
2: Output: a probability distribution g over the agents N
3: for agent i in N picked with probability gi(v) do
4: consider the valuations v−i and agents j ∈ N \ {i}
5: resulting alternative: a∗(v−i) = argmaxa∈A

∑

j∈N\{i} vj(a)
6: agent j ∈ N \{i} pays pj(v) = maxa∈A

∑

k 6=j,i vj(a)−
∑

k 6=j,i vj(a
∗(v−i)): Clarke tax without

i
7: agent i (the sink) receives

∑

j∈N\{i} pj(v)
8: end for

It is clear that not every mechanism in this class is strategyproof. The crucial thing is how the
probabilities of choosing the sinks are decided. If the probability gi(v) depends on the valuation
of agent i, that is, vi, then there is a chance for agent i to misreport vi to have higher (or lower)
probability of being a sink. For example, the irrelevant sink mechanism given in Algorithm 2 is not
strategyproof.

Algorithm 2 Irrelevant Sink Mechanism (not strategyproof)

1: Input: a valuation profile v ∈ V
2: for agent i in N do
3: define: a∗(v−i) = argmaxa∈A

∑

j 6=i vj(a)
4: if

∑

j 6=i vj(a
∗(v−i))−

∑

j 6=i vj(a) > M for all a ∈ A \ {a∗(v−i)} then
5: call i an irrelevant agent
6: end if
7: end for
8: if irrelevant agent is found then
9: treat that agent as sink with probability 1

10: else
11: pick an agent i with probability 1

n
and treat as sink

12: end if

The operation of this intuitive mechanism lies in the fact that if an agent i’s maximum val-
uation sweep (−M/2 to M/2) cannot change the alternative, this irrelevant agent can be se-
lected as a sink, which yields the efficient alternative. However, when there is no such irrele-
vant agent, the decision of choosing every agent equi-probably leads to a chance of manipula-
tion. An agent whose true valuation report does not lead her to become a sink can misreport

4One can think of a more general class of sink mechanisms where multiple agents are treated as sink agents
simultaneously. But it is easy to see (by a similar argument to that in the context of deterministic mechanisms, just
before Lemma 2) that multiple sinks will only increase the inefficiency.

12



a valuation so that there is no irrelevant agent, thereby increasing her own probability of being
selected as a sink. In particular, consider two valuation profiles with three agents (numbered
1, 2, 3) and three alternatives (a, b, c), and M = 1. The agents’ valuations in the first profile
are v1 = (0.5, 0,−0.5), v2 = (−0.5, 0, 0.5), v3 = (0,−0.5, 0.5), and in the second profile they are
v′1 = (0.5, 0,−0.5), v′2 = (−0.5, 0, 0.5), v′3 = (−0.5, 0, 0.5). The mechanism returns agent 1 as the
irrelevant agent in the first profile and therefore picks alternative c with probability 1. There is
no irrelevant agent in the second profile and hence each agent is picked as a sink with uniform
probability, leading to the probability vector (2/3, 0, 1/3) for the alternatives a, b, c. But agent 3
strictly gains by moving from the first profile to the second. 5

However, a small modification of the previous mechanism leads to a strategyproof generalized
sink mechanism. This shows that the class of generalized sink mechanisms is indeed richer than the
constant probability sink mechanisms. In the modified version, we pick a default sink with uniform
probability, which will be the sink if there exists no irrelevant agent among the rest of the agents.
The change here is that when an agent is picked as a default sink, her valuation has no effect in
deciding the sink. See Algorithm 3.

Algorithm 3 Modified Irrelevant Sink Mechanism (strategyproof)

1: Input: a valuation profile v ∈ V
2: for agent i in N picked with probability pi do
3: for agent j in N \ {i} do
4: if agent j is an irrelevant agent within N \ {i} then
5: treat agent j as sink
6: irrelevant agent is found
7: end if
8: end for
9: if irrelevant agent is not found within N \ {i} then

10: treat agent i as sink
11: end if
12: end for

It is easy to verify that this mechanism is strategyproof.
Interestingly, no generalized sink mechanism can improve the expected sample inefficiency over

deterministic mechanisms if there are more alternatives than agents (m > n)!

Theorem 4 (Generalized Sink for m > n) If m > n, every generalized sink mechanism has
expected sample inefficiency ≥ 1

n
.

Proof : Assume m = n + 1. The proof generalizes to any m > n. Consider the valuation
profile vi = (vi(a1), . . . , vi(an), vi(an+1)) where vi(ai) = −M/2 + ǫ/2, vi(an+1) = M/2 − ǫ and
vi(aj) = M/2 − ǫ/2,∀j 6= i, n + 1, and ǫ > 0 is arbitrarily small, i ∈ N . This profile is possible to
construct since m > n. Clearly, the efficient alternative is an+1, but if any agent i is picked as a
sink, the alternative changes to ai, which has inefficiency of M − ǫ. Therefore the expected sample
inefficiency for any generalized sink mechanism is 1

nM
(M−ǫ). Taking ǫ → 0 proves the theorem. �

5One can also verify that the weak monotonicity condition, which is a necessary condition for strategyproofness,
is violated for agent 3 between these two profiles.
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This profile hinges on m > n, and is not possible to reproduce if m ≤ n. We can hope for
a smaller inefficiency if the number of alternatives is small. We state this intuition formally as
follows.

Theorem 5 (Increasing Inefficiency with m) For every mechanism f and for a fixed num-
ber of agents n, the expected sample inefficiency is non-decreasing in m, i.e., rMn,m1

(f) ≥

rMn,m2
(f),∀m1 > m2.

6

Proof : Suppose, for m2 alternatives the valuation profile v∗ yields the worst inefficiency rMn,m2
(f).

Clearly, we can append the other alternatives when we increase the number of alternatives to m1

with values arbitrarily close to −M/2 so that they never change the optimal alternative. Hence
the inefficiency cannot decrease. �

Theorems 4 and 5 suggest that in order to minimize inefficiency, one must have a small number
of alternatives. So from now on, we consider the extreme case with m = 2, where we investigate
the advantages of randomization.

For two alternatives, the following theorem shows that the näıve randomization scheme reduces
the inefficiency by a factor of two.

Theorem 6 (Näıve Randomized Sink) For m = 2, the expected sample inefficiency of the
näıve randomized sink mechanism (NRS, every agent is selected as a sink with probability 1

n
) is

rMn (fNRS) =
1
n2

⌈

n
2

⌉

∼ 1
2n .

Proof : Consider an arbitrary agent i. If agent i is chosen as a sink, the maximum absolute
inefficiency that it can produce is M (by the same argument as in Equation (13), and we refer
to the unnormalized difference term

∑

i∈N vi(a
∗(v)) −

∑

i∈N vi(f(v)) as the absolute inefficiency).
Say the efficient alternative is a. This inefficiency is achieved when the sum of valuations of the
agents other than i at the other alternative b is just higher than that of those agents at a, i.e.,
∑

j 6=i vj(b) =
∑

j 6=i vj(a) + ǫ, where ǫ > 0 and small, and also the difference in valuations of agent
i at these two alternatives is maximum, i.e., vi(a) − vi(b) = M − δ, where δ > 0 and small. This
implies that, without i, the population is almost equally divided among the alternatives a and b with
a marginal bias to b and agent i is ‘maximally’ in favor of a. The difference vi(a)− vi(b) = M − δ is
achieved only when the values are close to vi(a) =

M
2 − δ

2 and vi(b) = −M
2 + δ

2 , since all valuations
must lie within

(

M
2 ,−

M
2

)

. Agent i, therefore, is pivotal for making the decision in favor of a.
Now, we claim that there cannot be more than

⌈

n
2

⌉

such pivotal agents i. Suppose for contra-
diction that there are >

⌈

n
2

⌉

such pivotal agents. We present the argument for
⌈

n
2

⌉

+1 for brevity,
but it generalizes to the case with more number of pivotal agents. For each of these agents k,
vk(a) is arbitrarily close to M

2 and vk(b) is arbitrarily close to −M
2 . Therefore, if any of them, say

agent k∗, is chosen as a sink, there are
⌈

n
2

⌉

other similar agents who still make the decision of the
mechanism in favor of a (since the sum valuation for a will be larger than b by an unsurmountable
value ≈

⌈

n
2

⌉

M) irrespective of the valuation profiles of the other agents. This implies that k∗ is
not a pivotal agent, which is a contradiction.

The mechanism chooses each sink agent with probability 1
n
. Therefore, the expected inefficiency

can at most be 1
n
·
⌈

n
2

⌉

·M . Divide this by nM to get the expected sample inefficiency. It is easy to

6We overload the notation for the expected sample inefficiency rn with rn,m to make the number of alternatives
explicit.
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see that this bound is tight. The valuation profile that achieves this bound has
⌈

n
2

⌉

agents having
valuations v(a) ≈ M/2, v(b) ≈ −M/2 and the rest of the agents have the reverse valuations. �

Even though the modified irrelevant sink mechanism (Algorithm 3) is sophisticated in its use
of the valuation profile, it is easy to check that even that mechanism yields the same inefficiency
on the profile illustrated in the proof above. Thus we have the following theorem.

Theorem 7 (Modified Irrelevant Sink) For m = 2, the expected sample inefficiency of the
modified irrelevant sink mechanism (MIS, Algorithm 3), rMn (fMIS) ≥

1
n2

⌈

n
2

⌉

∼ 1
2n .

The above result does not say much about the lowest achievable expected sample inefficiency
(even in this special class of generalized sink mechanisms). Therefore to understand the limit of
lowest achievable inefficiency for randomized mechanisms in general, we focus on the case of two
agents and two alternatives. The following theorem gives a lower bound on the inefficiency for the
class of generalized sink mechanisms in that setting. Since we now fix the number of agents in the
analysis, minimizing the expected sample inefficiency is equivalent to minimizing the expected abso-
lute inefficiency given by nrMn (f) which is 1

M
supv∈V

{

Ef(v)

[

maxa∈A
∑

i∈N vi(a)−
∑

i∈N vi(f(v))
]}

.
We will also WLOG assume M = 1. From now on, we let ‘inefficiency’ mean the expected absolute
inefficiency.

Theorem 8 (Lower Bound of Generalized Sink) For n = m = 2, the expected absolute inef-
ficiency of every strategyproof generalized sink mechanism is lower bounded by 1

2 .

Proof : For n = m = 2, either the two agents prefer the same candidate or opposing candidates.
(Ties are broken in favor of a1, say.) If they agree, any probability of the generalized sink mech-
anism yields zero absolute inefficiency, since the efficient alternative will be chosen irrespective of
which agent is the sink. Note that the payments are always zero for two-agent generalized sink
mechanisms. When the agents oppose, we claim that in every opposing profile, a strategyproof
generalized sink mechanism must have the same probability of picking the sinks. Suppose not, that
is, for a specific generalized sink mechanism g : V → ∆N , the probabilities of picking the sinks
are different in profiles v = (v1, v2) and v′ = (v′1, v

′
2), i.e., g(v) 6= g(v′). Consider the transition:

v = (v1, v2) → (v′1, v2) → (v′1, v
′
2) = v′. The sink-picking probabilities g must have changed in

at least one of these two transitions, that is, either g(v1, v2) 6= g(v′1, v2) or g(v′1, v2) 6= g(v′1, v
′
2).

But this is a contradiction to strategyproofness since at least one agent will misreport in that
profile pair. She will prefer to increase the probability of the other agent becoming sink so that
her favorite candidate has higher probability of being selected, which increases her utility since
payment is zero. For example, suppose in the first transition, the probability of agent 1 being
sink is higher in the profile (v1, v2), and consequently, probability of agent 2 being sink is lower.
Then agent 1 will misreport her valuation to v′1. Now, among all fixed probability distributions,
(0.5, 0.5) gives the minimum absolute inefficiency which is 1

2 . �

5.2 Unrestricted randomized mechanisms

We now move on to study optimal randomized mechanisms without restring attention necessarily to
generalized sink mechanisms. Finding a mechanism that achieves the minimum absolute inefficiency
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can be posed as the following optimization problem.

min
f,p

sup
v∈V

[

max
a∈A

∑

i∈N

vi(a)−
∑

i∈N

vi(f(v))

]

s.t. vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v
′
i, v−i))− pi(v

′
i, v−i), ∀vi, v

′
i, v−i,∀i ∈ N

∑

a∈A

fa(v) = 1, ∀v ∈ V,

∑

i∈N

pi(v) = 0, ∀v ∈ V,

fa(v) ≥ 0, ∀v ∈ V, a ∈ A.

(15)

The objective function denotes the absolute inefficiency. The first set of inequalities in the con-
straints denote the strategyproofness requirement, where the term vi(f(v)) = vi · f(v) denotes the
expected valuation of agent i due to the randomized mechanism f . The second and last set of in-
equalities ensure that the fa(v)’s are valid probability distributions, and the third set of inequalities
ensure that the budget is balanced. The optimization is over the social choice functions f and the
payments p, where the f variables are non-negative but the p variables are unrestricted. With two
agents 1 and 2, and two alternatives a and b, we can write the optimization problem 15 as a linear
program (LP) as follows.

min
f,p

ℓ

s.t.

[v1(a) · fa(v1, v2) + v1(b) · fb(v1, v2)− p1(v1, v2)]− [v1(a) · fa(v
′
1, v2)

+ v1(b) · fb(v
′
1, v2)− p1(v

′
1, v2)] ≥ 0, ∀v1, v

′
1, v2, Agent 1, SP

[v2(a) · fa(v1, v2) + v2(b) · fb(v1, v2)− p2(v1, v2)]− [v2(a) · fa(v1, v
′
2)

+ v2(b) · fb(v1, v
′
2)− p2(v1, v

′
2)] ≥ 0, ∀v1, v2, v

′
2, Agent 2, SP

fa(v) + fb(v) = 1, ∀v ∈ V, SCF

p1(v) + p2(v) = 0, ∀v ∈ V, Budget Balance

ℓ+ (v1(a) + v2(a)) · fa(v) + (v1(b) + v2(b)) · fb(v)

≥ max
x∈{a,b}

(v1(x) + v2(x)), ∀v ∈ V, Max Inefficiency

fa(v), fb(v) ≥ 0, ∀v ∈ V, a ∈ A

(16)

The objective function is the maximum inefficiency that we want to minimize, and the con-
straints are the requirements that our mechanism needs to satisfy. The formulation considers all
possible valuations, which makes the number of constraints uncountable. Therefore, to solve this
optimization problem with finite constrained optimization techniques, we need to discretize the
valuation levels. We assume that each agent’s valuations are uniformly discretized with k levels in
(−M/2,M/2) (with the lowest and highest values arbitrarily close to the boundary), which makes
the set of valuation profiles V a discrete finite set. However, note that the optimal value of such a
discretized relaxation of the constraints provides a lower bound on the optimal value of the original
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Figure 1: Lower bound for the discrete relaxation of the inefficiency minimization LP.

problem. This is because the discretized relaxation of the valuations only increases the feasible
set as the number of equalities and inequalities is reduced, that is, more f ’s and p’s satisfy the
constraints. When the valuations are richer, there will be fewer feasible solutions to this LP and
therefore the optimal value will increase. Hence, by solving the above LP, we are providing a lower
bound on the actual inefficiency. We now prove a lower bound when the number of discretized
levels is three.

Theorem 9 (Lower Bound of Inefficiency for Randomized Mechanisms) For n = m =
2, and for k = 3 discrete levels of valuations, the absolute inefficiency is lower bounded by 1

7 =
0.142857.

The proof is deferred to the Appendix.
In the appendix we also provide structural insights on the problem, such as showing that

anonymity and neutrality can be imposed on the mechanism without loss. In fact, our proof of this
fact applies to any number of agents and alternatives.

The proof technique can be extended to a larger number of discrete levels to obtain a tighter
lower bound on the actual inefficiency. We conducted a form of automated mechanism de-
sign (Conitzer and Sandholm, 2002; Sandholm, 2003) by solving this LP using Gurobi (2015) for
increasing values of k. We apply the same optimization-based approach for generalized sink and
the deterministic cases as well, even though for these cases we have theoretical bounds. The solid
lines in Figure 1 show the optimization-based results (denoted as AMD) and the dotted lines show
the theoretical bounds. Note that for deterministic case, the theoretical and optimization-based
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approaches overlap since the inefficiency is unity even with two valuation levels. The convergence of
the optimization-based approach for generalized sink mechanism shows the efficacy of the approach
and helps to predict the convergence point for the optimal randomized mechanism. One can see
that the lower bound is greater than 0.2 for the optimal mechanism, but it seems to converge to a
value much lower than 0.5.

In summary, for two agents and two alternatives, we found that the best expected absolute
inefficiency achievable by a deterministic mechanism is 1.0, while for the generalized randomized
sink mechanisms the absolute inefficiency improves to 0.5. We showed a lower bound over 0.2
on strategyproof, budget-balanced randomized mechanisms. So, randomization reduces expected
inefficiency. The structure of the optimal randomized mechanism is an open problem.

6 Conclusions and future research

We provided several new results on the classic question of the interplay between efficiency and
budget balance in the quasi-linear setting. We studied strategyproof mechanisms both in the
deterministic and randomized framework.

We proved characterization results, and a tight lower bound for inefficiency, for deterministic
budget-balanced mechanisms. We also proved that minimizing inefficiency and budget imbalance
together does not provide any asymptotic advantage in the deterministic paradigm over requiring
budget balance and minimizing inefficiency!

We provided results that show that randomization helps—particularly when the number of al-
ternatives is small compared to the number of agents. In the case of two agents and two alternatives,
generalized sink mechanisms reduce inefficiency by a factor 1

2 , and optimal randomized mechanisms
offer further reductions as we showed analytically and using automated mechanism design.

Future research includes studying the structure of the optimal randomized mechanism that
achieves this improved efficiency. Future work also includes investigating the rate of improvement
of the optimal bound for a general number of agents.
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APPENDIX

Proof of Theorem 3

Proof : Suppose, there exists a deterministic, strategyproof, and neutral mechanism 〈f,p〉 that also
satisfies limn→∞ supv∈V T n

2 (p, v) = 0. It implies that, at the limit, the mechanism has no budget
imbalance, i.e., limn→∞ supv∈V |

∑n
i=1 pi(v)| = 0. From the arguments in Theorem 1 (Equations (3)

and (4)), we know that f is a neutral affine maximizer and payments are of the form pi(vi, v−i) =

hi(v−i) +
1
wi

(

∑

j 6=iwjvj(f(v))
)

,∀wi > 0. We already have the sink mechanism where at least one

wi = 0 and the above sum can be made smallest (exactly zero) for every profile v ∈ V . However,
that yields a constant upper bound for the term λ ·T n

1 (f, v)+ (1− λ) ·T n
2 (p, v). Hence, we need to

consider the case wi > 0,∀i, which implies that

lim
n→∞

sup
v∈V

∣

∣

∣

∣

∣

∣

n
∑

i=1



hi(v−i) +
1

wi





∑

j 6=i

wjvj(f(v))









∣

∣

∣

∣

∣

∣

= 0.

This implies that for every ǫ > 0, there exists Nǫ ∈ Z≥0 such that for all n ≥ Nǫ,

∣

∣

∣

∣

∣

∣

n
∑

i=1



hi(v−i) +
1

wi





∑

j 6=i

wjvj(f(v))









∣

∣

∣

∣

∣

∣

< ǫ, ∀v ∈ V. (17)

We show that this identity leads to a contradiction for an appropriately chosen v. Note that this
immediately proves the theorem, because if there does not exist any mechanism 〈f,p〉 that satisfies
the properties mentioned in the theorem statement and makes limn→∞ supv∈V T n

2 (p, v) = 0, then
the best possible lower bound is a constant, i.e., supv∈V T n

2 (p, v) = Ω(1). Therefore, the best lower
bound for the spillover factor ρn(f,p) is Ω

(

1
n

)

and this is achievable by the sink mechanism.

20



We prove this for a set of alternatives A = {0, 1} for similar reasons mentioned in Lemma 1.
As an illustration of the general proof, let us consider the same argument when Nǫ = 2. Let the
valuations are (v1 + δ, v2) for alternative 1 and zero otherwise (δ > 0). Also assume that the
numbers are such that

w1(v1 + δ) + w2v2 > 0, and w1v1 + w2v2 < 0.

That means, the affine maximizer results in 1 at profile (v1 + δ, v2) and 0 at (v1, v2). The above
inequalities can be written concisely as

−w1δ < w1v1 + w2v2 < 0. (18)

Now by the convergence relation of Equation (17), we have
∣

∣

∣

∣

h1(v2) + h2(v1 + δ) +
w2

w1
v2 +

w1

w2
(v1 + δ)

∣

∣

∣

∣

< ǫ

|h1(v2) + h2(v1)| < ǫ

These inequalities imply7

∣

∣

∣

∣

h2(v1 + δ) +
w2

w1
v2 +

w1

w2
(v1 + δ) − h2(v1)

∣

∣

∣

∣

< 2ǫ

⇒

∣

∣

∣

∣

w2

w1
v2 −

(

h2(v1)− h2(v1 + δ)−
w1

w2
(v1 + δ)

)∣

∣

∣

∣

< 2ǫ (19)

But this inequality is violated by choosing a large enough δ and large negative v2 in Equation (18).
This is possible to pick since the valuations are picked from (−M/2,M/2) and M is large by
definition of ρn (Equation (14)). Also note that, the term within parentheses in Equation (19)
is independent of v2, hence changes in the v2 will not affect them. Our only assumed relation is
Equation (18), and a suitable choice satisfying it violates Equation (19).

The general proof of this theorem extends this idea for any Nǫ = n ≥ 2. Let the agents are
numbered in the decreasing order of their weights WLOG, i.e., wi ≥ wi+1, i = 1, 2, . . . , n − 1. We
consider the valuation profile (v1 + δ, v2 + δ, . . . , vn−1 + δ, vn), δ > 0 such that

−δ

n−1
∑

i=1

wi <

n
∑

i=1

wivi < −δ

n−2
∑

i=1

wi (20)

The above inequalities imply that the affine maximizer alternative for the profile mentioned above
is 1. However, if any agent i’s, i = 1, 2, . . . , n−1, valuation changes to vi from vi+δ, the alternative
changes to 0. We use a generic notation vk to denote this profile, where k denotes the agent(s) whose
valuation(s) is(are) vk while all other agents j 6= k have valuations vj + δ. Hence, vn is the profile
mentioned before: (v1+δ, v2+δ, . . . , vn−1+δ, vn) and vn−1,n is the profile: (v1+δ, v2+δ, . . . , vn−1, vn),
for example. Note that, the following term in Equation (17) can be reorganized as

n
∑

i=1

1

wi





∑

j 6=i

wjvj(f(v))



 =
n
∑

i=1





∑

j 6=i

1

wj



wivi(f(v)).

7If |x+ z| < ǫ and |y + z| < ǫ, then |x− y| = |x+ z − (y + z)| ≤ |x+ z|+ |y + z| < 2ǫ.
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Since, f(vn) = 1, from Equation (17) we have

∣

∣

∣

∣

∣

∣

(

n−1
∑

i=1

hi(v
n
−i) + hn(v

n
−n)

)

+





n
∑

i=1





∑

j 6=i

1

wj



wivi +

n−1
∑

i=1





∑

j 6=i

1

wj



wiδ





∣

∣

∣

∣

∣

∣

< ǫ. (21)

The idea of the proof is to make a series of substitutions in the first parentheses of the expression
above, leaving the terms in the other parentheses unchanged. Note that, the expression in the second
parentheses depends on vn, while the expression hn(v

n
−n) does not. The substitutions sequentially

eliminate the dependency on vn from all the terms in the first parentheses, similar to what we did
in the two agent case before. This will also increase the RHS of the inequality in Equation (21),
but it will be a finite constant factor of ǫ. This leads to a contradiction, since vn can be chosen
arbitrarily large negative by choosing a large positive δ, and still continues to satisfy Equation (20)
but violates Equation (21).

The substitutions will involve the term
∑n−1

i=1 hi(v
n
−i) in the first parentheses of Equation (21).

Consider the profiles vj,n, j = 1, . . . , n − 1. In each of these profiles, f(vj,n) = 0 (due to the choice
of vn in Equation (20)). Hence,

∣

∣

∣

∣

∣

n−1
∑

i=1

hi(v
j,n
−i ) + hn(v

j,n
−n)

∣

∣

∣

∣

∣

< ǫ, ∀j ∈ {1, . . . , n − 1}. (22)

Note that vi,n−i = vn−i. Hence, we can substitute terms from Equation (22) to the terms in the first
parentheses of Equation (21) to get

∣

∣

∣

∣

∣

∣



−
n−1
∑

i=1

∑

j 6={i,n}

hj(v
i,n
−j)−

∑

j 6=n

hn(v
j,n
−n) + hn(v

n
−n)



+





n
∑

i=1





∑

j 6=i

1

wj



wivi +

n−1
∑

i=1





∑

j 6=i

1

wj



wiδ





∣

∣

∣

∣

∣

∣

< nǫ. (23)

We now replace the terms hj(v
i,n
−j) in the first summation of the first parentheses above. All other

terms in that parentheses are hn functions and, therefore, are independent of vn. For every i 6= n,
consider the valuation profiles vj,i,n, j 6= i, n. By Equation (20), f(vj,i,n) = 0, hence, we get an
inequality similar to Equation (22):

∣

∣

∣

∣

∣

n−1
∑

k=1

hk(v
j,i,n
−k ) + hn(v

j,i,n
−n )

∣

∣

∣

∣

∣

< ǫ, ∀j 6= i, n. (24)

Also, note that, vj,i,n−j = vi,n−j . So, we follow the same procedure to replace the terms hj(v
i,n
−j ) in

Equation (23) to yield a similar inequality where the RHS is replaced by a larger term. Since the
number of agents is finite, this process will stop after a finite number of iterations, reducing the
terms in the first parentheses only consisting of hn functions, which are independent of vn, and the
RHS of the inequality being a finite factor K(n)ǫ (say). This construction shows that the choice of
a suitably large δ and negative vn, which keeps Equation (20) unaffected, can violate the inequality
obtained through the iterative procedure described above. Hence the claim is established. �
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Proof of Theorem 9

Proof : For k = 3, each agent has 32 = 9 valuations, since the number of alternatives is 2, and
therefore, the number of valuation profiles is 81. The optimization variables are

x := (fa(v
0), fb(v

0), . . . , fa(v
80), fb(v

80), p1(v
0), p2(v

0), . . . , p1(v
80), p2(v

80), ℓ)⊤.

Here the 81 valuation profiles are indexed from 0 to 80 and are denoted by the superscripts.
Hence there are 81 × 4 + 1 = 325 variables to the discretized relaxation of the primal problem of
Equation (16). However, we can significantly reduce the number of variables using the symmetry of
the LP. The symmetry that we consider are anonymity, i.e., the SCF alternative is invariant to the
permutation of the agents, and the payments are permutated according to the permutation of the
agents (Definition 5), and neutrality, i.e., the relabeling of the alternatives changes the alternative
according to the same relabeling (Definition 4).

Lemma 3 For every strategyproof, budget-balanced, randomized mechanism that achieves the mini-
mum absolute inefficiency, there exists an anonymous, neutral, strategyproof, budget-balanced, ran-
domized mechanism that achieves the same absolute inefficiency.

Proof : We prove this for two agents and two alternatives. The same argument generalizes to
any number of agents and alternatives. Consider an optimal solution of the optimization problem
of Equation (16). This yields a solution x∗ (say). Suppose, we relabel the agents 1 and 2 by
swapping their identities, which changes the valuation profiles accordingly. For example, now
the payment p1(v1, v2) is swapped with p2(v2, v1). We keep the SCF alternatives identical, i.e.,
fa(v1, v2) = fa(v2, v1). Now consider the resulting vector of variables x∗

AGENT-SWAP. Note that, this
permutation of the variables reorders the set of constraints in Equation (16). The SP constraints
of agent 1 now becomes the SP constraints of agent 2 and vice-versa. SCF constraints remain
identical, budget balance constraints are reordered but same, and the max-inefficiency constraints
are also reordered. Hence x∗

AGENT-SWAP is a feasible solution of the LP (Equation (16)) and since
x∗
AGENT-SWAP and x∗ has the same value for ℓ, x∗

AGENT-SWAP is an optimal solution of the LP
(Equation (16)).

Similarly, we swap the alternatives a and b and the valuations accordingly to obtain a different
reordered vector x∗

ALT-SWAP. This relabeling of the alternatives again reorders all the constraints
in a different way than the earlier case, with ℓ remaining same in both these cases. In a similar
way as before, we argue that x∗

ALT-SWAP is an optimal solution of the LP (Equation (16)).
Now, we swap both the alternatives and agents to obtain x∗

AGENT-ALT-SWAP which reorders
the constraints in a two-fold manner, but the last variable of this vector remains ℓ as before, and
therefore it is also an optimal solution of the LP (Equation (16)).

Now, we have 4 optimal solutions given the original optimal solution x∗, which are complemen-
tary to each other in terms of agents and alternatives, but all of them are strategyproof, budget-
balanced, randomized mechanisms (since they are feasible solutions of Equation (16)). Consider
the average of all these solutions:

xA,N =
1

4
(x∗ + x∗

AGENT-SWAP + x∗
ALT-SWAP + x∗

AGENT-ALT-SWAP).

By construction, xA,N is anonymous and neutral, but this is also another optimal solution of the
LP (Equation (16)) (since the set of constraints is convex). Hence, we have proved the lemma
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for two agents and two alternatives. For n agents and m alternatives, we consider all n! and m!
possible permutations of the agents and alternatives respectively and take the mean of them to
obtain our resulting optimal solution that is both anonymous and neutral. �

Hence, it is WLOG to consider neutral and anonymous mechanisms to solve the optimization
problem of Equation (16). This reduces the number of variables in the primal problem, since for
valuations that are either agent permutated or alternative permutated or both permutated version
of a valuation profile we have already considered, we can replace their constraints with the already
considered variables. We write the coefficient matrix of the constraint set of the LP in Equation (16)
denoted by A as follows.

fa(v
0) fb(v

0) . . . . . . fa(v
80) fb(v

80) p1(v
0) p2(v

0) . . . . . . p1(v
80) p2(v

80) ℓ


















































v01(a) v01(b) −v81(a) −v81(b) 0 0 −1 0 1 0 0 0 0

















































v02(a) v02(b) −v12(a) −v12(b) 0 0 0 −1 0 1 0 0 0

0 0 . . . . . . 0 0 0 0 . . . . . . 0 0 0

0 0 −v792 (a) −v792 (b) v802 (a) v802 (b) 0 0 0 1 0 −1 0

0 0 . . . . . . 0 0 0 0 . . . . . . 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 . . . . . . 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 . . . . . . 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0

w0(a) w0(b) 0 0 0 0 0 0 0 0 0 0 1

0 0 . . . . . . 0 0 0 0 0 0 0 0 1

0 0 0 0 w80(a) w80(b) 0 0 0 0 0 0 1

(25)

Where wp(x) = vp1(x) + vp2(x), x ∈ {a, b}, and p denotes the profile index. The header of
the matrix shows the primal variables. The sections showed in dotted lines corresponds to the
strategyproofness, valid SCF, budget balance, and maximum inefficiency constraints respectively.
The RHS of the constrained inequalities of the LP is a vector b that looks as follows:

b := (0, . . . , 0,1|V |,0|V |,max
x

w0(x), . . . ,max
x

w80(x))⊤.

Denoting the cost vector of the LP as, c := (04|V |, 1)
⊤, we can represent the LP of Equation (16)

in the standard form:

primal
min
x

c⊤x

s.t. Ax ≥ b
dual

max
y

b⊤y

s.t. y⊤A ≤ c⊤
(26)

Our goal is to provide a lower bound of the optimal value of the primal. Hence, we consider its
dual, and provide a feasible solution. By weak duality lemma, the value of the dual objective at
that feasible point will be a lower bound of the primal. The dual variables represented by y consists
of (λ, γ, µ, δ). The λ variables refer to the dual variables corresponding to the strategyproofness
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constraints, and we denote the dual variable that represent the strategyproofness of agent i between
the profiles vk and vl by λi,vk ,vl . By this representation, we consider only such pairs of profiles vk

and vl where only agent i’s valuation changes. The γ variables are the dual variables corresponding
to the constraint that the SCF must add to unity, and we denote the dual variable corresponding to
value profile v as γv. Dual variables µ and δ corresponds to the budget balance and the maximum
inefficiency constraints. Since SCF and budget balance constraints are equalities, γ and µ are
unrestricted, while λ and δ are non-negative. Additionally, in the primal problem the payment
variable pi’s were unrestricted, hence in the dual the corresponding constraints are equalities.

We now provide a dual feasible solution, which is represented with respect to the reduced set of
dual variables. Using symmetry according to Lemma 3, we reduce the number of valuation profiles.
We number the profiles from 0 to 80 in the following way: for the valuation (−0.5,−0.5) of agent
1, all possible valuations of agent 2 from (−0.5,−0.5) to (0.5, 0.5) (9 profiles) are listed, and then
the valuation of agent 1 is moved to (−0.5, 0). Due to symmetry, setting a primal variable fa(v) to
a certain value also fixes 3 other variables that are agent-swapped or alternative-swapped or both-
swapped versions of this variable. Denote the reduced set of valuation profiles by VR. This also
reduces the dual variables γ, µ, δ from 81 to 27 independent variables. However, for the λ variables
we need to list all of them since they correspond to constraints that involve two valuation profiles.
Consider the following set of dual variables (numbers of v and v′ correspond to the valuation profile
numbers in the listing discussed above):

i v v′ λ

1 11 2 4/7
1 12 21 4/7
1 30 66 1/14
1 52 16 2/7
1 57 30 1/7
1 60 33 3/14
1 68 32 2/7
1 78 15 4/7
2 12 16 4/7
2 14 10 1/14
2 18 26 4/7
2 20 19 3/14

v γ

2 2/7
6 3/28
7 1/7
8 2/7
10 −1/28
11 2/7
14 −3/14
19 −4/7
24 −1/7

v µ

6 −1/14
7 1/7
8 4/7
11 −4/7
12 −4/7
14 3/14
24 2/7

v δ

2 2/7
6 1/7
11 4/7

All other entries of the variables that are not shown in the list above are zero. Note that for only
the λ variables, the valuation profiles listed go beyond the index 27, but for all other dual variables
they are represented by the 27 independent variables listed in VR.

We claim that this is a feasible solution of the dual. The proof requires an exhaustive verification
for each of the inequalities in the constraint set of the dual. However, we provide a few cases
to give an insight how this example is picked. Consider, the variables λ(1, 52, 16) = 2/7 and
λ(1, 68, 32) = 2/7. Note that, v24 = ((0, 0.5), (0.5, 0)) = v52 and v68 = ((0.5, 0), (0, 0.5)) is an
alternative swapped version of v24. Also, none of the other variables involve any agent or alternative
or both swap of this profile in the example we gave. Therefore, now we need to concentrate on
the column fb(v

24) in the matrix of Equation (25). Note that the matrix of Equation (25) is also
reduced on the column and the rows. On the column, each of the f and p columns are reduced to
|VR|, and on the rows, only the strategyproofness constraints retain the original number, but the
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SCF, budget balance and maximum inefficiency constraints reduce to |VR| in size. Carrying out
the product with the terms we get 0.5 × 2/7 + 0 × 2/7 = 1/7. While inspecting other variables,
we find γ(v24) = −1/7. Hence the sum of the products on the column fb(v

24) gives 1/7 − 1/7 = 0
which satisfies the inequality. This is not an isolated case, in all the columns fx(v) (the numbers of
such variables are reduced because of symmetry), the examples are chosen such that the sum of the
non-zero products in the SP constraints section and one non-zero product in the SCF constraints
section add up to a non-positive number (for example, repeat the same argument for v78 and v19).

Similarly, consider the column p2(v
12): the variable λ(2, 12, 16) = 4/7 gets multiplied with −1

in this column since the constraint for agent 2 in the profile v12 gives a −1 coefficient for p2(v
12).

However, the variable µ(v12) = −4/7 which is multiplied with 1 in this column, and we can inspect
that no other product is non-zero on this column. Hence the sum of the products is −8/7 which is
non-positive, and satisfies the dual constraint.

The easiest thing to verify is the last column, where the sum of the δv for the reduced set of v’s
add to unity (2/7 + 1/7 + 4/7). Therefore, the example provided is a dual feasible solution. We
compute the objective value of the solution:

∑

v∈VR

γv +
∑

v∈VR

δv max
x∈{a,b}

wv(x)

=
2

7
+

3

28
+

1

7
+

2

7
−

1

28
+

2

7
−

3

14
−

4

7
−

1

7
+ 0.5×

4

7

=
1

7

This completes the proof of the theorem. �
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