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Abstract. Grassmannians or Grassmann manifolds are very important manifolds
in modern mathematics. They naturally appear in algebraic topology, differential ge-
ometry, analysis, combinatorics, mathematical physics, etc. Grassmannians have very
rich geometrical, combinatorial and topological structure, so understanding them has
been one of the central research themes in mathematics. They occur in many impor-
tant constructions such as universal bundles, flag manifolds and others, hence studying
their properties and finding their topological and geometrical invariants is still a very
attractive question.

In this article we offer a quick introduction into the geometry of Grassmannians
suitable for readers without any previous exposure to these concepts.
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1. Introduction

Before we start with formalization of abstract ideas and objects, we are going to
do several elementary exercises involving matrices, equivalence relations and other
objects familiar to the reader. Understanding ”invisible” mathematical spaces is
nothing but deep understanding of mathematics that we believe to know well. Here
we demonstrate how some of the standard facts about (2 × 4)-matrices facilitate
understanding of Grassmannians G+

2 (R4).

Definition 1.1. Let M2(2×4) be the set of all 2×4 matrices of rank 2. Two
matrices B, C ∈ M2(2× 4) are called equivalent B ∼ C if and only if there exists
a 2× 2 matrix A such that C = A ·B and det A > 0.

Exercise 1. Show that the relation ∼ is indeed an equivalence relation on
the set M2(2× 4) of all (2× 4)-matrices.

For a 2× 4 matrix B let Bij be the associated [ij]-minor, i.e. the determinant
of the 2× 2 matrix whose columns are i-th and j-th column of the matrix B.

Exercise 2. Show that the following relation holds for each matrix B ∈
M2(2× 4),

B12 ·B34 −B13 ·B24 + B14 ·B23 = 0.

Indeed let B =
[

b11 b12 b13 b14

b21 b22 b23 b24

]
be a 2× 4 matrix. Then
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B12 ·B34 −B13 ·B24 + B14 ·B23 = (b11b22 − b12b21)(b13b24 − b14b23)−
(b11b23 − b13b21)(b12b24 − b14b22) + (b11b24 − b14b21)(b12b23 − b13b22) =
b11b13b22b24 − b12b13b21b24 − b11b14b22b23 + b12b14b21b23−
b11b12b23b24 + b12b13b21b24 + b11b14b22b23 − b13b14b21b22+
b11b12b23b24 − b12b14b21b23 − b11b13b22b24 + b13b14b21b22 =
= 0.
The following exercise is also a consequence of elementary linear algebra.
Exercise 3. Let B, C ∈ M2(2 × 4) be two matrices such B ∼ C and let

C = A ·B. Then
Cij = det(A) ·Bij .

Consider now the subset Ω ⊂ R6 \ {0} such that (x, y, z, t, u, v) ∈ Ω iff xy −
zt+uv = 0. Define the relation ≡ as (x1, y1, z1, t1, u1, v1) ≡ (x2, y2, z2, t2, u2, v2) iff
x2 = λx1, y2 = λy1, z2 = λz1, t2 = λt1, u2 = λu1 and v2 = λv1 for some positive
real number λ. Next exercise is obvious.

Exercise 4. Relation ≡ is an equivalence relation on set Ω.
Our aim is to find connections between sets of equivalence classes of ∼ and ≡,

M2(2× 4)/ ∼ and Ω/ ≡.
Now, we define the function f : M2(2× 4) → Ω by

f(B) = (B12, B34, B13, B24, B14, B23).

In fact we are interested in function induced with f which we will also denote with
f , f : M2(2× 4)/ ∼→ Ω/ ≡ defined on classes with

f([B]) = [(B12, B34, B13, B24, B14, B23)].

Using previous exercises we get:
Exercise 5. Function f : M2(2× 4)/ ∼→ Ω/ ≡ is well defined.
We shall prove that f is a bijection.
Exercise 6. Function f : M2(2× 4)/ ∼→ Ω/ ≡ is injective.
If f([B]) = f([C]) then Bij = λCij , for some λ > 0. There exist Bij 6= 0.

Let Bij be the 2 × 2 matrix whose columns are i-th and j-th column of matrix
B. Obviously, because Bij is nonsingular, so is Cij , and there is a matrix A =[

a11 a12

a21 a22

]
such that Bij = A · Cij . We directly get detA = λ. Also b1i =

a11c1i +a12c2i, b1j = a11c1j +a12c2j , b2i = a21c1i +a22c2i and b2j = a21c1j +a22c2j .
Let k 6= i, j. From equations Bik = λCik and Bjk = λCjk we get

(b1ib2j − b1jb2i)b1k = λ((b1jc1i − b1ic1j)c2k + (b1ic2j − b1jc2i)c1k).

After substitutions and cancellations we get more convenient form

detA · (c1ic2j − c1jc2i)b1k = det A · (c1ic2j − c1jc2i)(a11c1k + a12c2k).
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Thus b1k = a11c1k + a12c2k. Continuing in this fashion we prove B = A · C which
proves injectivity of f .

Exercise 7. Function f : M2(2× 4)/ ∼→ Ω/ ≡ is surjective.

Suppose [(x, y, z, t, u, v)], (x, y, z, t, u, v) ∈ Ω is given. Without loss of general-
ity we suppose x 6= 0 and x = 1. Then it is easy to check that (following from the

definition of Ω) f maps
[

1 0 −v −t
0 1 z u

]
to [(1, y, z, t, u, v)] and it is surjective.

So far, we have concluded that we can identify sets M2(2 × 4)/ ∼ and Ω/ ≡.
One could object: “This is interesting, but we cannot visualize neither one of the
objects.” Luckily this is not true. For [(x, y, z, t, u, v)] ∈ Ω/ ≡ we can always take
(x, y, z, t, u, v) ∈ Ω such that x2 + y2 + z2 + t2 + u2 + v2 = 1. There exists real
numbers p, q, r, s, m and n such that

x = p + q, y = p− q, z = r + s, t = r − s, u = m + n and v = m− n.

Set this into x2 + y2 + z2 + t2 + u2 + v2 = 1 and xy − zt + uv = 0, and get
p2 + q2 + r2 + s2 + m2 + n2 = 1

2 and p2 + s2 + m2 = q2 + r2 + n2.

Thus

p2 + s2 + m2 = q2 + r2 + n2 =
1
4
.

Obviously if we take p, q, r, s, m and n such that p2 + s2 + m2 = q2 + r2 + n2 = 1
4

by reverse process we get [(x, y, z, t, u, v)] ∈ Ω/ ≡ and we can identify this two sets.
But, the set {(p, q, r, s, m, n) ∈ R6 | p2 + s2 + m2 = q2 + r2 + n2 = 1

4} is nothing
but S2 × S2.

Besides getting this nice result using elementary methods, we proved that the
set of all 2 × 4 matrices of rank 2 modulo ∼ is in fact S2 × S2. But the set of
all 2 × 4 matrices of rank 2 modulo ∼ is nothing but the set of oriented 2-planes
in R4, that is, rows of a matrix of rank 2 are two linearly independent vectors
in R4 and the multiplication with a 2 × 2 matrix with positive determinant is an
orientation preserving change of base for 2-plane in R4. This set is called the
oriented Grassmannian G+

2 (R4).

Now we proceed with more formal treatment of Grassmannians. We will try
to illuminate them from the viewpoint of various branches of mathematics.

2. Topological manifolds and coordinate charts

Since Grassmannians are examples of manifolds let us provide a brief intro-
duction to manifolds in general.

Suppose M is a topological space. We say that M is a topological manifold of
dimension n or a topological n-manifold if it is locally Euclidean of dimension n.
That means that every point p ∈ M has a neighborhood that is homeomorphic to
an open subset of Rn.

Example 2.1. It follows directly from the definition that every open subset
of Rn is a topological n-manifold.
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Let M be a topological n-manifold. A coordinate chart (or just a chart on M)
is a pair (U,ϕ), where U is open subset of M and ϕ : U → Ũ is homeomorphism
from U to open subset Ũ ⊂ Rn. The definition of topological manifold implies that
each point p ∈ M is contained in the domain of some coordinate chart (U,ϕ).

Fig. 1

Given a chart (U,ϕ), we call the set U a coordinate domain, or a coordinate
neighborhood of each of its points. We say that chart (U,ϕ) contains p. The map ϕ
is called a local coordinate map, and the component coordinate functions of ϕ are
called local coordinates on U .

Example 2.2. (Spheres) Let Sn denote the unit n-sphere, the set of unit-
length vectors in Rn+1:

Sn = {x ∈ Rn+1 | ‖x‖ = 1}.

Let U+
i denote the subset of Sn where the i-th coordinate is positive:

U+
i = {(x1, x2, . . . , xn+1) ∈ Sn | xi > 0}.

Similarly, U−
i is the subset where xi < 0, Fig. 2.

Fig. 2 Fig. 3

For each i define maps ϕ±i : U±
i → Rn by:

ϕ±i (x1, x2, . . . , xn+1) = (x1, x2, . . . , x̂i, . . . , xn+1),
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where the hat over xi indicates that xi is omitted. Each ϕ±i is evidently a continuous
map. It is a homeomorphism onto its image, the unit ball Bn ⊂ Rn, because it has
a continuous inverse given by

(ϕ±i )−1(u1, u2, . . . , un) = (u1, u2, . . . , ui−1,±
√

1− ‖u‖, ui+1, . . . , xn+1).

Thus, every point of Sn is contained at least in one of these 2n + 2 charts, hence
Sn is topological n-manifold.

Example 2.3. (Projective spaces) The n-dimensional real projective space,
denoted by RPn, is defined as the set of 1-dimensional linear subspaces of Rn+1. We
give it the quotient topology determined by the natural projection π : Rn+1\{0} →
RPn sending each point x ∈ Rn+1 \ {0} to the line through x and 0. For any point
x ∈ Rn+1 \ {0} let [x] = π(x) denote the equivalence class of x.

For each i = 1, 2, . . . , n + 1, let Ũi ⊂ Rn+1 \ {0} be the set where xi 6= 0,
and let Ui = π(Ũi) ⊂ RPn. Since natural projection π is a quotient map, it is
continuous and an open map, so Ui is open in RPn and π : Ũi → Ui is quotient
map. Define a map ϕi : Ui → Rn by

ϕi([x]) = ϕi([x1, x2, . . . , xn+1]) =
(

x1

xi
,
x2

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
.

This map is well defined because its value is unchanged when multiplying x by
nonzero constant. Since composition ϕi ◦ π is continuous and π is quotient map
then ϕi is also continuous. We easily see that ϕi is homeomorphism because it has
inverse

(ϕi)−1(u) = (ϕi)−1(u1, u2, . . . , un) = [u1, . . . , ui−1, 1, ui, . . . , un].

Geometrically, if we identify Rn in the obvious way with xi = 1 then ϕi([x]) can
be interpreted as the point where the line [x] intersect this subspace, Fig. 3. Because
every point of RPn lies in some chart Ui (thus has neighborhood homeomorphic to
Rn) we proved that RPn is topological n-manifold.

3. Smooth maps and smooth manifolds

Let U be an open subset of Rn and f : U → Rm with coordinate functions
fi : U → R, i ∈ {1, 2, . . . , m}.

Definition 3.1. Function f : U → Rm is smooth if all of its partial derivatives
∂kfi

∂xi1 ...∂xik
exist and are continuous on U . If f is bijection and f−1 is smooth than

f is diffeomorphism.

Let M be a topological manifold; an atlas for M is a collection of charts (U,ϕ)
whose domain covers M .

Definition 3.2. A topological n-manifold M is a smooth manifold if for every
two charts (U,ϕ) and (V, φ) such that U ∩ V 6= ∅, the composite map

φ ◦ ϕ−1 : ϕ(U ∩ V ) → φ(U ∩ V ),

called transition map, is a diffeomorphism, Fig. 4.
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Fig. 4

Proposition 3.1. A unit sphere Sn with charts from example 2.2 is a smooth
manifold.

Proposition 3.2. Real projective space RPn with charts from example 2.3 is
a smooth manifold.

4. Grassmannians

Let V be an n-dimensional real vector space. For any integer 0 ≤ k ≤ n, we
let Gk(V ) denote the set of all k-dimensional linear subspaces of V . We will show
that Gk(V ) is a smooth manifold of dimension k(n−k). First we need to construct
charts which cover Gk(V ) and then prove that transition maps are diffeomorphisms.

Let P and Q be any complementary subspaces of V of dimensions k and (n−k),
respectively, so that V decomposes as a direct sum: V = P ⊕Q. The graph of any
linear map A : P → Q is a k-dimensional linear subspace Γ(A) ⊂ V , defined by

Γ(A) = {x + Ax | x ∈ P}.
Notice that for all A we have Γ(A) ∩ Q = 0 because x + Ax ∈ Γ(A) ∩ Q implies
x + Ax ∈ Q, and since Ax ∈ Q, we got x ∈ Q. But P ∩Q = 0 so x = 0. Now we
shall prove that any k-dimensional linear subspace T with property T ∩ Q = {0}
is the graph of a unique linear map A : P → Q. We conclude this from a fact that
every t ∈ T has unique decomposition t = p + q, p ∈ P , q ∈ Q. Set Ap = q. At
first A is well defined because t = p + q and t1 = p + q1 implies q− q1 = t− t1 ∈ T ,
and since q − q1 ∈ Q we get q − q1 = 0. Obviously, A is linear, Fig. 5.

Let L(P,Q) denote the vector space of linear maps from P to Q, and let UQ

denote the subset of Gk(V ) consisting of k-dimensional subspaces whose intersection
with Q is trivial. Define a map ψ : L(P, Q) → UQ by

ψ(A) = Γ(A).
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The discussion above shows that ψ is a bijection. Let ϕ = ψ−1 : UQ → L(P, Q). By
choosing bases for P and Q, we can clearly identify L(P, Q) with M((n−k)×k,R)
(space of all (n−k)×k matrices), thus with R(n−k)k, so we can think about (UQ, ϕ)
as a coordinate chart.

Fig. 5 Fig. 6

We need to prove that all transition maps are smooth. Let (P,Q) and (P ′, Q′)
be a pair of subspaces such that V = P ⊕ Q = P ′ ⊕ Q′ and dim P = dimP ′ = k,
dim Q = dim Q′ = n − k. Let (UQ, ϕ) and (UQ′ , ϕ

′) be corresponding charts, and
ψ = ϕ−1, ψ′ = ϕ′−1. The set ϕ(UQ ∩ UQ′) ⊂ L(P,Q) consist of all A ∈ L(P, Q)
whose graphs intersects both Q and Q′ trivially. It is easily seen this set is open.
The transition map is ϕ′ ◦ ϕ−1 = ϕ′ ◦ ψ.

Suppose A ∈ ϕ(UQ ∩ UQ′) ⊂ L(P, Q) is arbitrary, and let S denote the set
ψ(A) = Γ(A) ⊂ V , Fig. 6. If we put A′ = ϕ′ ◦ ψ(A), then A′ is the unique linear
map from P ′ to Q′ whose graph is equal to S. To identify this map, let x′ ∈ P ′ be
arbitrary, and note that A′x′ is the unique element of Q′ such that x′ + A′x′ ∈ S,
which is to say that

x′ + A′x′ = x + Ax for some x ∈ P.

In fact, such x is unique and has the property

x + Ax− x′ ∈ Q′.

If we let IA : P → V denote the map IA(x) = x + Ax and let πP ′ : V → P ′ be the
projection onto P ′ with kernel Q′, then x satisfies

0 = πP ′(x + Ax− x′) = πP ′ ◦ IA(x)− x′,

because x′ ∈ P ′, P ′ ∩ Q′ = 0. As long as A stays in the open subset of maps
whose graphs intersect both Q and Q′ trivially, πP ′ ◦IA : P → P ′ is invertible since
projection of Γ(A) on both P and P ′ is bijection, and thus we can solve this last
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equation for x to obtain x = (πP ′ ◦ IA)−1(x′). Therefore, A′ is given in terms of A
by

(1) A′x′ = IAx− x′ = IA ◦ (πP ′ ◦ IA)−1(x′)− x′.

Let (e′i) be basis for P ′ and (f ′i) basis for Q′. The columns of matrix represen-
tation of A′ are the components of A′vi vector. By (1) this could be written

A′e′i = IA ◦ (πP ′ ◦ IA)−1(e′i)− e′i.

The matrix entries of IA clearly depend smoothly on those of A, and so do
those of πP ′ ◦ IA. By Cramer’s rule, the components of the inverse of a matrix
are rational functions of the matrix entries, so the expression above shows that the
components of A′e′i depend smoothly on the components of A. Since A is linear
map, this proves that ϕ′ ◦ ϕ−1 is a smooth map.

The smooth manifold Gk(V ) is called the Grassmann manifold of k-planes in
V , or simply a Grassmannian. In the special case V = Rn, the Grassmannian
Gk(Rn) is often denoted by some simpler notation such as Gk,n or G(k, n). Note
that G1(Rn+1) is exactly the n-dimensional projective space RPn.

5. Other interpretations of Grassmannians

Let L be a k-dimensional plane through the origin in Rn. There is a unique
operator of orthogonal projection P (equivalently its matrix) onto L with respect to
the scalar product. We identify each such k-dimensional plane with corresponding
operator of orthogonal projection.

Proposition 5.1. The operator of orthogonal projection P onto k-dimensional
plane through the origin in Rn is idempotent, in other words it satisfies P 2 = P .

Let L be a k-dimensional plane in Rn and P corresponding operator of orthog-
onal projection. Then for every u ∈ L we have Pu = u. Since Pv ∈ L for arbitrary
v ∈ Rn, then P 2v = P (Pv) = Pv and proposition is proved.

Proposition 5.2. The operator of orthogonal projection P onto k-dimensional
plane in Rn through the origin is symmetric, in other words, its matrix satisfies
P t = P .

To prove this we shall use the following fact from linear algebra:

Proposition 5.3. The operator P is symmetric if and only if for every u, v
∈ Rn,

〈Pu, v〉 = 〈u, Pv〉,
where 〈 , 〉 is scalar product in Rn.

Decompose Rn = L ⊕ L⊥ and let e1, e2, · · · , ek ∈ L, ek+1, ek+2, · · · , en ∈ L⊥

be orthogonal basis for Rn+1. For every u ∈ L⊥ we have Pu = 0. According
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to Proposition 5.3., since P is linear operator we need to check that 〈Pei, ej〉 =
〈ei, P ej〉 for every ei, ej . If both ei, ej ∈ L then 〈Pei, ej〉 = 〈ei, ej〉 = 〈ei, P ej〉. If
both ei, ej ∈ L⊥ then 〈Pei, ej〉 = 〈0, ej〉 = 0 = 〈ei, 0〉 = 〈ei, P ej〉. If ei ∈ L and
ej ∈ L⊥ then (using fact ei ⊥ ej) 〈Pei, ej〉 = 〈ei, ej〉 = 0 = 〈ei, 0〉 = 〈ei, P ej〉, and
case ei ∈ L⊥ and ej ∈ L is analogous. Thus we proved proposition 5.2 .

Proposition 5.4. The operator P of orthogonal projection onto a k-dimen-
sional plane in Rn through the origin satisfies

tr P = k.

Let L be a k-dimensional plane in Rn and P corresponding operator of or-
thogonal projection. Since Pu = 0 for u ∈ L⊥ and Pv = v for v ∈ L then 0 and 1
are only eigenvalues for P . Since dim L = k multiplicity of eigenvalue 1 is greater
or equal k, and dimL⊥ = n−k multiplicity of eigenvalue 0 is greater or equal n−k.
So equality must hold and multiplicity of 1 is k. Then tr P is equal to the sum of
its eigenvalues, so tr P = k.

Proposition 5.5. Every operator P (matrix n×n) such that P 2 = P , P t = P
and tr P = k is the operator of orthogonal projection onto some k-dimensional plane
in Rn throw origin.

We first prove that P does not have eigenvalues other then 0 and 1. Let λ ∈ R
be an eigenvalue of P and let v ∈ Rn be a corresponding eigenvector. Because P
is symmetric we have

λ2‖v‖ = 〈λv, λv〉 = 〈Pv, Pv〉 = 〈P (Pv), v〉 = 〈Pv, v〉 = 〈λv, v〉 = λ‖v‖.
Now, λ2 − λ = 0, and λ ∈ {0, 1}.

Let L = {z | Pz = z}. For v ∈ L⊥ we have

0 = 〈z, v〉 = 〈Pz, v〉 = 〈z, Pv〉,
so Pv ∈ L⊥. On the other hand P (Pv) = Pv and Pv ∈ L. Thus Pv ∈ L ∩ L⊥ so
Pv = 0. Since tr P = k then dim L ≤ k and dim L⊥ ≤ n−k. But dim L+dim L⊥ =
n and dimL = k so P is orthogonal projection onto L.

Let H(n) be the space of symmetric n × n matrices which itself is Euclidean
space of dimension n(n+1)

2 . Then. from previous discussion we get that identifica-
tion Φ : Gk(Rn) → H(n), L → PL is a homeomorphism onto its image

Φ(Gk(Rn)) =
{
P ∈ H(n) | P 2 = P, tr P = k

}
.

From this interpretation, the compactness of Gk(Rn) follows directly.

6. Group actions

Let G be a group and X a topological space. A left action of G on X is a
continuous map

% : G×X → X
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such that

(i) %(g, %(h, x)) = %(gh, x) for g, h ∈ G, x ∈ X,

(ii) %(e, x) = x for x ∈ X, e ∈ G unit.

A left G-space (also, a transformation group) is a pair (X, %) consisting of a
space X together with a left action % of G on X. It is convenient to denote %(g, x)
by gx. Then rules (i) and (ii) take the familiar form g(hx) = (gh)x and ex = x.

A right action is a map X×G → X, (x, g) → xg satisfying (xh)g = x(hg) and
xe = x. If (x, g) → xg is right action, then (g, x) = xg−1 is a left action.

The left translation Lg : X → X, x → gx by g is a homeomorphism of X
with the inverse Lg−1 . This follows from the rules LgLh = Lgh, Le = id(X), which
are just reformulations of definition of group action. Thus the map g → Lg is
homomorphism of G into the group of homeomorphism of X.

Let X be a G-space. Then R = {(x, gx) | x ∈ X, g ∈ G} is an equivalence
relation on X. The set of equivalence classes X (mod R) is denoted X/G. The
quotient map q : X → X/G is used to provide X/G with the quotient topology.
This space is called the orbit space of the G-space X. The equivalence class of
x ∈ X is called the orbit Gx through x. A more systematic notation would be
G \ X for the orbit space of a left action and X/G for the orbit space of a right
action. An action of G on X is called transitive if X consists of single orbit.

Example 6.1. Let H be a subgroup of topological group G. The group
multiplication H × G → G, (h, g) → hg is a left action. There is similar right
action. A group also acts on itself by conjugation G×G → G, (g, h) → ghg−1.

A subset F ⊂ X of a G-space X is called a fundamental domain of this G-space
if F ⊂ X → X/G is bijective. A fundamental domain contains exactly one point
from each orbit. Usually, there are many different fundamental domains, and the
problem then is to choose one with particularly nice geometric properties. For each
x ∈ X, the set Gx = {g ∈ G | gx = x} is a subgroup of G. This subgroup is called
the isotropy group of the G-space X at x.

Proposition 6.1. Let X be a G-space and x ∈ X. The map G → X, g → gx
is constant on cosets gGx and induces an injective map qx : G/Gx → X whose
image is the orbit through x.

Let g1, g2 ∈ G be such that g1Gx = g2Gx that is g−1
1 g2 ∈ Gx. Then we have

g−1
1 g2x = x and thus g1x = g2x that proves qx is well defined. Now let g, h ∈ G be

such that qx(gGx) = qx(hGx). Then gx = hx and g−1hx = x. Thus g−1h ∈ Gx and
gGx = hGx and qx is injective map. Image of qx is obviously the orbit through x.

Let Gk(Rn) be the set of k-dimensional linear subspaces of Rn. The standard
action of O(n) (group of all orthogonal matrices AAt = I) on Rn maps k-spaces
to k-spaces and thus induces action of O(n) on Gk(Rn). This action is transitive
since any k-space can be transformed into any other k-space by some A ∈ O(n).
Let x ∈ Gk(Rn) be a k-space spanned by e1, e2, . . . , ek, where ei, i = 1, 2, . . . , n is
standard basis for Rn. Then, the corresponding isotropy group Gx is the subgroup
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O(k)×O(n− k) of O(n) consisting of all matrices
(

A 0
0 B

)
, A ∈ O(k), B ∈ O(n− k).

Thus from the proposition 6.1, since the action is transitive we get

Gk(Rn) ∼= O(n)/(O(k)×O(n− k)).
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velle série, 59 (73) (1996), 131–137.

[7] Bredon, G., Topology and Geometry, Springer-Verlag, 1993.

[8] Hatcher, A., Vector Bundles and K-theory, draft book, http://www.mat.cornell.edu/
~hatcher/VBKT/VB.pdf.

[9] Gay, D. and Lewis, A., G̃(4, 2) and 2-plane bundles, http://www.mth.uct.ac.za/~dgay/
g42.pdf.

[10] Hatcher, A. , Algebraic Topology, Cambrige University Press, 2002.

Mathematical Institute SASA, Kneza Mihaila 36, p.p. 367, 11001 Beograd, Serbia

E-mail : djbaralic@mi.sanu.ac.rs


