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1. 
1.1. Introduction. Computational complexity is a new principle in Mathemat

ics, rooted in the algorithmic and constructive tradition of our science. Beyond 
its prominent role in theoretical Computer Science this aspect has meanwhile 
entered many different areas of Mathematics. Complexity considerations are in
timately related to Logic and Foundations and to Numerical Methods with their 
innumerable applications, but they are also of growing interest in other fields 
like Geometry, Number Theory, and Algebra. 

In order not to get stuck in pure generality, we confine our very broad subject 
to the computational treatment of algebraic equations. Even in this restricted 
sense, though, "equation solving" has been investigated for centuries and is now 
a central topic of Numerical Mathematics and in Computer Algebra. The spe
cific interest of this survey is in the computational complexity of such problems. 
Beginning with a period of a few early papers, corresponding research has been 
carried on continuously for about twenty years now. Thus it seems to be timely 
to report on some of the results on this occasion. 

In view of limited space and time we will discuss sequential algorithms only. 
A survey of important complexity results for models of parallel computation has 
recently been given by Cook [9]. According to personal taste and preference, we 
will furthermore restrict our considerations to deterministic computations, not 
ignoring the fact that, from a practical point of view, probabilistic algorithms may 
prove to be superior for certain difficult problems. Moreover, there is always a 
natural interplay between equation solving and the nondeterministic mode of 
solution guessing. Accordingly, it will sometimes be illuminating to compare the 
complexity of equation solving with that of verification, which means checking 
whether given data are really forming a solution. 

Solving algebraic equations can be understood in different ways. For the prime 
fields GF(p) and Q together with their finite extensions the discrete methods of 
symbolic computation apply. In this framework the major task may be defined as 
the construction of suitable splitting fields. We mention two papers, [23] and [6], 
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dealing with the complexity of the general problem. With regard to applications, 
however, the upper bounds obtained by these authors are discouragingly high. 
It is possibly premature to expect complete answers while we are still unable to 
master the complexity bounds for solving systems of linear equations (see §4). 
Considerable progress has been made in factoring polynomials and on related 
topics. In their pioneering paper [26], A. K. Lenstra, H. W. Lenstra, and L. 
Lovâsz have shown how to factor univariate polynomials over Q in polynomial 
time. Meanwhile many variations, extensions, refinements of this result, or of 
the underlying basis reduction algorithm, have been published (see [5, 13, 21, 
24, 25, 39] and the extensive bibliography in [15]). In particular, testing for 
solvability in the very classical sense of Galois theory is possible in polynomial 
time, cf. [22]. 

When dealing with equations over R or C, we should adopt a different point 
of view. Our complexity results about the fundamental theorem of algebra pre
sented in §3 will refer to computations with dynamic precision in the sense of 
recursive dependence, quite in the spirit of H. Weyl's farseeing paper [53] of 
1924. More specific explanations about the corresponding model of computation 
are given below in §1.2. 

Within the last years, the complexity of root finding and related problems have 
independently been investigated by S. Smale and others, but along completely 
different lines so that their results are incomparable to ours. In view of the 
program of this Congress it should perhaps suffice just to mention [43] and the 
overview [44] with its further references. 

The subsequent presentation deals with rather basic problems of equation 
solving. §2 on the complexity of multiplication and division of integers and 
polynomials can be regarded as a complexity discussion of the primitive equation 
ax = b over corresponding domains. In §3 we present the fundamental theorem 
of algebra in terms of computational complexity, including a neat solution for 
this long standing numerical problem. The final section will concern systems 
of linear equations and the complexity of matrix computations, characteristic 
equations, and the computation of eigenvalues. 

1.2. Models of computation. There are many equivalent ways to define com-
putability. Among these, the classical Turing machine concept is especially suited 
to provide intuitively appealing measures for the quantitative analysis of algo
rithms. As long as we are only interested in complexity classes invariant under 
polynomial reducibilities, further details about the underlying model do not mat
ter. In lower order complexity, however, finer distinctions should be made. Many 
of the concrete algorithms given in the literature can be made to work for mul
titape Turing machines. For higher flexibility, random access machines with a 
variety of instruction sets can be used, conveniently modeling the addressable 
storage features of present-day computers. In some sense, the "true," canoni
cal basis for measuring time-complexity is furnished by the theoretical model of 
pointer machines (previously also called "linking automata," or "storage modifi
cation machines," cf. [35]). They are real-time equivalent to very simple random 
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access machines under unit cost, only capable of indirect addressing, testing for 
equality, and computing the successor function. 

With respect to practical implementations, it will be more realistic to consider 
random access machines under the logarithmic cost criterion, where handling any 
integer is weighted by the length of its binary code. Then any upper bound T 
on "pointer time" (the number of steps of some pointer machine under consid
eration) will get amplified by not more than a factor of order log T. One should 
keep in mind, however, that the applicability of this model is limited by the size 
of inner storage. For large scale problems with higher storage requirements, the 
multitape Turing machines may form the more adequate model again. 

When discussing time complexity for such machine models, some convention 
about the encoding of input and output data is required. For simplicity, let us 
assume here that integers shall always be represented in standard binary form, 
though it cannot be excluded that other encodings may lead to different results 
(as an example, testing for powers of ten seems to be much easier for inputs in 
decimal form). Elements oìGF(p) are given as (reduced) residues modp, rational 
numbers as pairs of integers, and elements from finite extensions of these domains 
are then representable as tuples of binary integers in a straightforward manner. 

For approximate computations with real or complex numbers it is especially 
convenient to use binary rationals, i.e., binary integers scaled with some power 
of two. There is, however, a significant difference between the ad hoc notion of 
floating point numbers (called "reals" in everyday programming languages) and 
our understanding of a real number. Any input number a E R shall (potentially) 
be available at any desired precision: when called with a specified parameter 
value N, some oracle will deliver some binary rational a such that \a — a\ < 2~N 

is satisfied, without extra cost. Different oracles may possibly specify the same 
real number in this way. Despite the availability of arbitrary high precision for 
inputs a,ß their equality a = ß is recursively undecidable. Similarly, outputs 
resulting from an approximating computation will be due up to some prescribed 
precision again. 

In the abstract setting of algebraic complexity theory (see [4] and the more 
recent survey [50]) one uses the machine independent notion of straight-line pro
grams. Usually, the inputs are considered as indeterminates x\, X2,... over some 
ground field F, and time is measured (sequentially) by the number of arithmeti
cal operations carried out by such a program in F(xi,...), or in F[xi,...], if 
divisions are not admitted. Nonscalar complexity refers to the mode where only 
essential multiplications and divisions are counted, while additions and scalar 
multiplications are taken for free. In case of problems for which comparison 
based branching (or zero testing) is required the more general model of compu
tation trees applies (cf. [49]). 

2. 
2.1. The complexity of multiplication and division. Let us begin with the very 

simple equation ax = b. When considered over the integers, testing its solvability 



134 ARNOLD SCHONHAGE 

and finding a solution x is possible by integer division with remainder zero. 
For checking a given solution x, integer multiplication will suffice, but it is an 
interesting open problem whether there are faster methods of verification. Over 
the rationals (represented by pairs of integers), solving ax = b amounts to two 
integer multiplications, followed by a gcd computation provided the result shall 
be delivered in reduced form. Similarly, an extended gcd computation will be 
required for solving ax = b mod q (assuming that b is divisible by d = gcd(o, q)), 
i.e., to find the gcd d and cofactors u,v satisfying the conditions 

au-\-qv = d and d\a and d\q. (2.1) 

The key to all these tasks is approximate division over the reals. Its complexity 
can be bounded by that of integer multiplication, since computing an ra-bit ap
proximation for 1/a (for 1 < a < 2, say) is possible by means of a division-free 
Newton iteration with two multiplications per step, whence the time complexity 
of n-bit division is bounded by 

0(p(n) + p(n/2) + /i(n/4) + p(n/8) + •••)< 0(ß(n)), (2.2) 

where /i(iV) denotes any bound for the time complexity of JV-bit integer mul
tiplication (satisfying some regularity condition to justify the estimation of the 
sum in (2.2)). Therefore, solving ax = b over the reals (with a bounded away 
from zero) has essentially no higher complexity than verification of a solution by 
multiplication. Conversely, ab = b/(l/a) shows how to reduce multiplications to 
divisions. 

In [18, §4.3.3], D. Knuth gives a rather complete account of what is presently 
known about the time complexity of integer multiplication. For multitape Turing 
machines, the upper bound from our 1971 paper [41] based on FFT methods 
modulo numbers of the form 2L+1 is still the best we have. A streamlined version 
of this approach is contained in [37]. On the other hand, so far nobody has 
derived any nonlinear lower bound, except for models under certain additional 
restrictions. In fact, any such lower bound proof would necessarily have to 
employ some specific properties of Turing machines, since pointer machines, for 
instance, are capable of integer multiplication in linear time (cf. [35]). The latter 
result is based upon the numerical FFT with suitable precision. Accordingly, our 
present knowledge about the time complexity of solving the equation ax = b over 
Z, R (or over C as well) is captured by the following bounds. 

(2.3) Upper bounds for the time complexity of iV-bit multiplication: 

fi(N) = cN log(N + 1) log log(AT + 2) for multitape Turing machines, 

//(JV) = cN for pointer machines (unit cost), 

fj,(N) = cN log(iV + 1) for pointer machines (logarithmic cost). 

For the other cases mentioned above, where gcd computations come in, the 
complexity seems to be higher. Based on Knuth's idea to combine fast integer 
multiplication with a "half-gcd" technique due to Lehmer, it has been shown [31] 
that computing the gcd of two numbers of at most N bits in length (together 
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with corresponding cofactors) is possible in time 0(fi(N) logiV) (opposed to 
time of order TV2 for Euclid's algorithm). It seems to be a rather safe conjecture 
that the extra factor of order log N over multiplication time is inevitable. Note, 
however, that, for given cofactors u,v, verification of (2.1) is indeed possible 
within the order of multiplication time. 

In the framework of algebraic complexity with unit cost per arithmetical op
eration, the complexity of solving ax = b seems to be a trivial subject, as one di
vision will suffice, but things become highly nontrivial, if we discuss this problem 
of equation solving for finite-dimensional algebras over some field F. Consider, 
for instance, the field of complex numbers as an algebra over R. One can fairly 
easily see that the nonscalar complexity of multiplying two complex numbers 
equals 3 (counting real multiplications and divisions only), but it was only re
cently that the corresponding problem for the division of complex numbers could 
be settled; cf. [27] for the rather intricate proof that the known upper bound of 
6 real multiplications/divisions is indeed optimal. 

Much work has been done concerning the multiplicative complexity of alge
bras. For further details and corresponding references we recommend the survey 
[50]. Less information is available about "division" in this framework. In the 
next section we shall briefly discuss the special case of the division of univariate 
polynomials. The central topic of matrix inversion will be postponed to §4.3. 

2.2. Basic computations with polynomials. Now we consider the equation 
a(t)x(t) = b(t) for polynomials over some field F, at first with regard to the 
algebraic model counting all arithmetical operations in F at unit cost. Input 
and output shall be coefficientwise, with dense encoding. More precisely, F is 
assumed to have the form F = G(ao,ai,..., 6o,...) with all the inputs as inde-
terminates over some ground field G. Again we may distinguish various domains 
like F[t],F(t), or F[t]/(q(t)), in analogy to Z, Q, Z/qZ discussed before. Here 
the role of R is taken by the ring of formal power series over F. Operating with 
variable precision in F[[t]] means to operate in F[t]/(tm) for increasing values of 
m. Thus the complexity of the division of polynomials can be reduced to that of 
polynomial multiplication (again up to a constant factor) via computing approx
imate reciprocals of units in F[[i\] by means of Newton iteration, see [42, 19]. 
Actually, these authors are discussing the simpler case of nonscalar complexity, 
which, for polynomial multiplication modtm, is exactly known (= 2m — 1, pro
vided the ground field G contains at least 2m —2 elements). Kung's upper bound 
of 4m for computing reciprocals mod tm and its conjectured optimality can be 
replaced by the better estimate 3.75m, while the precise constant factor is yet 
unknown. 

The algebraic complexity of polynomial multiplication is essentially that of 
discrete convolutions, thus closely related to discrete Fourier transforms. If the 
ground field G contains suitable roots of unity, e.g. all 2Äth or all 3feth roots of 
1 (for all fc), then FFT can be used immediately; otherwise extra measures are 
required. The best bounds known so far are very similar to those for integer 
multiplication. 
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(2.4) Upper bounds for the number of arithmetical operations for the multi
plication of mth degree polynomials over ground field G: 

M(m) = cm log(m + 1) if G supports FFT, 

M (m) = cm log(m + 1) loglog(m + 2) for any field. 

The general bound with the extra log log factor comes from an FFT method 
recursively applied to the polynomial rings F[t]/(tK + 1) for various values of 
K = 2k, analogous to the corresponding fast integer multiplication technique. 
This approach fails for fields of characteristic 2, but then one can use 

F[t\/(t2K + tK + l) 

with K = 3fc instead (see [34]). Also for these algebraic models, no nonlinear 
lower bounds are known for the discrete Fourier transform or for polynomial 
multiplication. 

The best upper bounds presently available for the complexity of solving the 
equation a(t)x(t) = b(t) mod q(t) for an arbitrary mth degree polynomial q(t) 
are higher by a factor of order log m again. Rather precise upper and lower 
bounds for the nonscalar complexity of extended polynomial gcd computations 
have been obtained by Strassen (see [49], where also further references can be 
found). A numerical version of the gcd problem (over the field C, or R) is treated 
in [40]. 

This last remark leads us to the crucial question to be studied next: What are 
the implications of the algebraic complexity results for the (machine bounded) 
time complexity of the corresponding numerical computations with polynomials? 

By inserting numbers (elements of Z, R, or C) for the coefficients of the 
polynomials, fast algebraic algorithms clearly should get transformed into fast 
numerical procedures (provided one has numerical stability), but there are also 
other kinds of machine algorithms, not obtainable in this way, and we cannot 
exclude the possibility that some of these are significantly faster than anything 
constructed purely algebraically. In fact, the numerical multiplication of poly
nomials seems to furnish an example of this phenomenon. Simply combining 
the unit cost FFT bounds from (2.4) with the estimates (2.3) for integer mul
tiplication will at best yield the time bound 0(m log m /JL(N))—but one can do 
better! 

Replacing the variable t by 2K with some K > 2N + log(m + 1) + 1 reduces 
the multiplication of two mth degree polynomials with coefficients of at most N 
bits in length to one long integer multiplication of size 0(m(N + log(m + 1))), 
and for N > log(m + 1) that leads to the improved time bound 0(p,(mN)). For 
pointer machines we thus have even the linear bound 0(mN). The linearity in 
m also shows that, at least asymptotically, the celebrated FFT is not an optimal 
numerical method for the discrete Fourier transform C m —• C m . The details of 
this approach can be found in [37]. 

When multiplying polynomials with complex coefficients in this way via fast 
integer multiplication modulo 22 L + 1 one can nicely exploit that 2L = sqr t ( - l ) 
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can serve as the imaginary unit in this domain. This feature considerably en
hances the applicability of the method. 

Numerical division of polynomials requires some extra care with respect to 
stability. For the division by some (complex) polynomial F, its leading coefficient 
should be bounded away from zero. A good way to express this quantitatively is 
by an upper bound on the root radius p(F) (defined as the maximal modulus of 
the roots of F in C), together with some normalization of the size of F, measured 
by the Z1-norm \F\ of the coefficient vector. The corresponding result from [37] 
is 

(2.5) Numerical division of G G IIm by F E Un within error 2~N, i.e., com
puting some Q E Um-n and R E IIn_i such that \G - QF — R\ < 2~N, is 
possible in pointer time 0(m(N + m + m log(l + r))), where r is a given bound 
on p(F), and \G\ < 1 < \F\ < 2 is assumed. 

Restricted to divisions with a uniform bound on the root radius of the de
nominators, the given bound on pointer time is of order 0(mN) again, provided 
the precision N is of order m at least. 

3. The fundamental theorem of algebra in terms of computational 
complexity. For many centuries the problem of solving polynomial equations 
was mainly studied in terms of formulae. After the early days when Renaissance 
mathematicians had mastered the third and fourth degree it took more than 
250 years until Gauss gave rigorous proofs for the existence of the roots of any 
real equation and Abel could show that, in general, one cannot obtain them by 
merely applying arithmetical operations and successively solving pure equations. 
This narrow notion of 'solvability' has been carried on up to this day, at least 
verbally, despite the rather clear comments in §9 of Gauss's dissertation that 
'resolutio aequationis' and 'ipsius reductio ad aequationes puras' should properly 
be distinguished. 

It was only after about another one hundred years that solving general equa
tions with complex coefficients was understood adequately, namely in terms of 
algorithms. WeyPs constructive proof [53] for the fundamental theorem of al
gebra essentially shows that the zeros of a complex polynomial depend on its 
coefficients recursively (see also Specker's contribution in [11]). In other words, 
there exists a Turing machine which, when fed with an integer n and with oracles 
for the coefficients of some mth degree polynomial, will output approximations 
for the m zeros of this polynomial within an error bound of 2~n. In terms of 
computational complexity the decisive question is now: how fast can this be done? 

3.1. The computational problem. It is a well-known fact that clustered zeros 
of a polynomial are less stable under small perturbations of the coefficients than 
isolated zeros. Therefore it seems to be more appropriate to understand any pre
scribed accuracy in the sense of backward analysis: a collection of approximate 
zeros should be considered acceptable, if their elementary symmetric functions 
agree well enough with the coefficients of the given polynomial. This applies to 
P E IIm, P(z) = ao + a\Z + • • • + amzm with leading coefficient am = 1, but 
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more generally also am —> 0 should be admitted, i.e., some of the zeros may tend 
to infinity. In this way we are led to the following problem specification. 

(3.1) Computational task of approximate factorization: Given any integer 
N > 0 and a polynomial P E IIm of norm |P| < 1, compute linear factors 
Lj(z) = UjZ + Vj (1 < j < m) such that \P — L1L2 • • • Lm\ < 2~~N is satisfied. 

Here and in the sequel | • | stands for the /1-norm of the coefficient vectors. 
Using other common norms like the /2-norm or max|Ä|=1 \p(z)\ would not make 
much of a difference, as the trade-off factors are less than m + 1 , which means a 
variation of N by not more than log(m + 1). 

In analyzing the efficiency of algorithms for this task we are mainly inter
ested in their worst case behavior (note that the 'worst' case need not be really 
'bad'). For any such algorithm and for fixed values of the parameters m,N, 
there is a well-defined maximal running time T(m, N), maximal with respect to 
all inputs (oracles) (ao,... ,am) of ^-norm < 1. (If this maximum would not 
exist, then König's lemma would imply the existence of certain inputs for which 
the algorithm would never stop.) Now we can restate the main problem of this 
section more precisely: What is the true order of growth of the maximal run
ning time T(m, N) of (nearly) optimal algorithms for approximate factorization, 
what is the asymptotic behavior of T(m, N) for N —> 00, or for increasing de
gree? Most likely the answers will depend on the underlying machine model to 
a certain extent. In the light of our incomplete knowledge about much simpler 
complexity problems like integer multiplication we cannot hope for more than 
partial answers here. Our main result, presented below, is a good upper bound 
for the complexity of approximate factorization, but before going into this, we 
shall briefly review some of the partial answers which, at least implicitly, are 
contained in the vast literature on root finding methods. 

In 1967 a symposium on constructive aspects of the fundamental theorem of 
algebra was held; the proceedings [11] provide a good record of the state of the 
art at that time. Furthermore, Chapter 6 of Henrici's book [14] gives an ex
tensive account of existing techniques. Many of the numerical methods used in 
practice try to compromise between speed and universal applicability. A major 
difficulty arises from the fact that all reliable algorithms for approximate fac
torization must necessarily employ multiprecision techniques which are usually 
slow, and rigorous a priori estimates for the round-off errors are required in order 
to guarantee reliable results. The same applies to all iterative methods usually 
posing the additional difficulty of finding suitable starting values. 

By adapting the ideas found in the numerical literature to the strict conven
tions explained before we arrive at the conclusion that approximate factorization 
is certainly possible in polynomial time. On the base of Weyl's exclusion method 
as worked out by Henrici [14, pp. 517-522] we can, for instance, obtain the es
timate T(m,N) = 0(m7N3). Similar time bounds appear for methods of root 
isolation developed in Computer Algebra (see [8] and the references given there). 
There remains the challenge of finding more precise bounds. Application of the 
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fast multiplication techniques for integers and polynomials (cf. 2.1 and 2.2) re
duces the bound mentioned to something like 0(m5+<57V2+<5) for any 6 > 0, but 
the factor N2 seems to be unavoidable with these methods. 

3.2. An upper bound. The main result to be presented here is a good upper 
bound on the time complexity of approximate factorization found by the author 
in 1981/82. It is based upon a new technique called the splitting circle method 
("Trennkreisverfahren" in German), described in the Preliminary Report [38], 
Some of the material is highly technical, and many details of its implementation 
need to be worked out even more thoroughly. A full account of the new results 
will come out as a monograph. In the sequel we shall give a brief outline of the 
main ideas and results. 

THEOREM. Approximate factorization of complex polynomials as specified in 
(3.1) is possible within maximal running time 

T(m,N) = 0(mp,(m2 log m) + mp,(mN)), (3.2) 

with respect to the machine models and the corresponding time bounds on integer 
multiplication listed in (2.3). 

In order to simplify the presentation we shall restrict further discussion to the 
case of pointer time with the linear bound ß(N) = cN. (In case of the other 
models additional logarithmic factors come in.) Then the upper bound becomes 
T(m,N) = 0(m3 log n + m2N). It will be instructive to compare this with 
obvious time bounds for the corresponding verification problem. In doing so we 
may assume, as a general rule of thumb, that computations with polynomials of 
degree of order m should be carried out with m-bit precision at least, because 
of the following theoretical observations. 

First of all, one should be aware of the fact that small polynomials may 
have big factors. For m = 2fc the simple example P(z) = 2~k(z2 — i)k = 
2~k(z — a)k(z + a)k (with a2 = i) shows a partial factorization P = FG with 
|P | = \F\ — 1, but \G\ = 2 m / 2 , thus the corresponding amplification of errors 
previously made in the computation of F will necessitate an extra precision of 
m/2 bits. The precise upper bound in the case of many factors is contained in 
the following quantitative supplement to the fundamental theorem of algebra— 
usually not found in textbooks! 

L e t / e n m , / = / ! • • • /* ; then l/l < I M - - - I M < 2 m - V I - (3-3) 

The upper bound is attained for such tame polynomials as f(z) = zm — 1 in case 
of its complete factorization, i.e., for k — m. 

Similar error amplification may be caused by Taylor shifts (for fixed a the 
linear mapping defined on IIm by g(z) = f(z + a) has operator norm (1 + |a | )m) , 
or by the numerical division of polynomials, see (2.5). Assuming N > m we thus 
see that any naive method just for checking the accuracy of a given approximate 
factorization will require 0(m*) bit operations at least, and even by means 
of fast multiplication techniques we cannot do better than in pointer time of 
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order Nm log m, which in fact seems to be the precise order of growth for the 
complexity of this verification problem. 

Therefore the bound (3.2) seems to be optimal up to a factor of order m at 
most. For increasing accuracy the second term 0(m2N) becomes dominant, and 
for a wide class of polynomials admitting balanced splittings (explained below) it 
can be replaced by the smaller bound O(iVmlogm). The main advantage with 
all these bounds is their linearity in N. For any fixed degree m the bound (3.2) 
becomes simply 0(p,(N)) (with the implicit constants depending on m), and this 
is indeed optimal. For pointer machines we arrive at a linear time bound, not 
more than a constant multiple of the time needed to output the results. But 
even in the case of machine models, for which the precise complexity of integer 
multiplication is yet unknown, we have the following relative result. 

(3 .4) THEOREM. For N —> oo and fixed fc, m > 2 the complexity bounds for 
the following tasks all have the same order of growth: 

(a) N-bit integer multiplication, 
(b) computing (1 + x)1^ for \x\ < 1/2 within error bound 2~N, 
(c) approximate factorization of mth degree polynomials within error 2~N. 

For bounding (c) by (a) again some regularity condition is assumed, as needed 
for (2.2), and then (3.2) applies. Approximate factorization of zk — (1+x) reduces 
(b) to (c) for k < m, and in general via (a). The transition from (b) to (a) is 
by an idea due to H. Alt, to simulate integer squaring by means of a sufficiently 
precise evaluation of 

(2 - (1 + xY'k - (1 - x)1/k)k2/(k - 1) = x2 + 0(x4) 

for small x. 
In §3.4 we will provide the perturbation argument needed to infer from an 

approximate factorization to approximate solutions (the zeros) of a polynomial 
equation, with leading coefficient one and bounded coefficients, say. In case of 
fixed degree this will amplify the time bounds by not more than another con
stant factor. Therefore the equivalence of (b) and (c) shows that, in contrast to 
Abel's and Galois's findings on "solvability," in terms of computational complex
ity there is no significant difference between solving pure or general equations 
with complex coefficients. Computationally, the approximate solution of gen
eral polynomial equations is reduced to the obviously more fundamental task of 
integer multiplication. 

3.3. The splitting circle method. The general strategy for the approximate 
factorization of a given P E Um is based on a substrategy for approximately 
splitting P into two factors F E II*, G E IIm-fc, to be applied recursively. The 
case k = 1 simply means approximate determination of a single zero and its 
deflation. High accuracy can be achieved fast by means of Newton iteration, 
provided the zero is simple, well isolated, and a suitable starting value is known. 
Similarly the case fc = 2 is covered by Bairstow's method, quadratically con
vergent, if the two zeros are well separated from the m — 2 other zeros. The 
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splitting circle method employs the corresponding general Newton iteration (cf. 
J. Schroder's paper in [11]), where the choice of a suitable ft will depend on the 
distribution of the zeros, such that there are fc zeros of P inside of some suitable 
splitting circle while the m — fc other zeros lie outside of this circle, possibly some 
of them close to infinity. Moreover all the zeros shall stay at some distance of 
the circle. It is a fundamental fact that such a circle can always be determined, 
except for the singular cases P(z) œ (az + b)m which will be found out properly 
to be approximately factored already. 

There are stable transformations (scalings, Taylor shifts), by which any cir
cle can be reduced to the standard case of the unit circle E = {z: \z\ = 1}. 
Due to the prior condition of a zero free annulus around E it is possible to 
obtain a reasonable lower bound on the decisive quantity v = min^ |= 1 |P(^)|, 
both theoretically and computationally with a rather moderate amount of work. 
The details in choosing such splitting circles can be arranged such that always 
log(l/f) < 0(m). Based on this v the analysis of the general Newton method 
then leads to explicit bounds for its quadratic convergence in the following way. 

Given some approximate unit circle splitting \P — FG\ < £ (i.e., the fc roots of 
F and the reciprocals of the m — fc roots of G are bounded by 1 — 6), the Newton 
correction is a pair (/, g) E Ilfc—i ©n m - fc - i to be chosen such that terms up to 
first order will cancel each other. Hence the new approximate factors F + / and 
G + g will satisfy 

P-{F + f)(G + g) = P-FG-fG-gF-fg = -fg 

with the new error being bounded by | /^ | < | / | \g\, where / and g are uniquely 
determined by the (incomplete) partial fraction decomposition (P—FG)/(FG) — 
f/F + g/G. Thus one can use the integral representation 

(P - FG)(t) F(z) - F(t) 

™-hfm 
•dt 

I E (FG)(t) z-t 

for deriving an upper bound for | / | , and similarly for \g\. In this way one shows, 
in particular, that an initial approximate splitting with precision 

\P - F0Go\ < £o = vA2~cm with some constant c 

will suffice. 
Finding such initial Fo and Go is possible by means of contour integration 

(also used in [12], though without error bounds). The power sums s3- of the fc 
zeros of P which lie inside of E are expressible as 

Sy"27rJ£ 
z3 dz. 

E Pi*) 
Here the zero free annulus and the lower bound v enable us to give explicit bounds 
for the precision required for the simultaneous evaluation of these integrals by 
means of a discrete Fourier transform. (This step essentially contributes to the 
first term of the upper bound (3.2).) The approximations for so = fc, s i , . . . , Sfc 
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easily yield an approximate factor Fo, and a suitable Go can then be found by 
polynomial division. 

So far we have tacitly assumed that the zeros of the given polynomial P can 
(in advance) be localized well enough to admit a proper choice of the splitting 
circles, but this is actually the key problem of the whole method. Our algorithms 
for the corresponding diagnostics are based on the classical Graeffe process of 
root squaring. We use a variant especially suited to exploiting fast integer mul
tiplication. Contrary to the common application of Graeffe's method, here the 
primary interest is not in circles on which the zeros are located but in circles 
bounded away from all the zeros, and for the latter purpose moderate preci
sion is quite sufficient. Moreover one should not try to compute all the root 
moduli pi(f) > P2(/)>••• > Pm(f) of some / simultaneously, which indeed 
may require prohibitive (i.e., too expensive) long number computations (cf. the 
discussion in Turân's paper [52]). Instead, one can shift the focus of precision 
by suitable scalings after each root squaring step such that the algorithm is di
rected to the computation of one particular Pk(f)- The following time bound is 
a typical result obtained in this way. 

(3.5) Given any complex polynomial f(z) = ao + a±z + • • • + amzm with 
l/l < 1, given some positive 6 < 1/2 and an index fc < m, computing the 
fcth root modulus Pk(f) with relative error less than 6 is possible in pointer 
time 0(m2( logm + log(l/5))(loglogm + log(l/(5))). (In addition, something like 
|ao|, K i | > (S/m)m should hold.) 

Applied with 6 = m~°^ this leads to the rather favorable time bound 
0(m2 log2 m), while this approach cannot be recommended for much higher pre
cision requirements, where the quadratic growth in log(l/6) becomes dominant. 

For other similar estimates and further details we must refer to [38]. The 
overall time analysis of the splitting circle method reveals that balanced splittings 
(with fc and m — fc of the same size, ideally fc = m/2) are preferable. Even 
in the case of m well isolated simple zeros the deflation of one linear factor 
after the other is inferior compared with the divide and conquer principle of 
computational complexity, but there do exist certain hard polynomials which, 
by their particular zero spacing, will enforce very unbalanced splittings. A whole 
family of such examples (with arbitrary parameters 1 < Uj < 1.01) is furnished 
by 

/(*) = (* + «i/4)(* + u2/16)(* + u3/64) •••(* + umßm). 

Here N = 2m2 specifies a precision well tuned with respect to the coefficient 
size. This property of being strongly nested represents a new phenomenon in the 
numerical treatment of polynomials. At present it is hard to say whether such 
polynomials are really ill-conditioned with regard to the task of approximate 
factorization, or whether this just shows a particular weakness of the splitting 
circle method. In any case this nestedness should properly be distinguished from 
the occurrence of clustered zeros which, in itself, does not cause extra difficulties 
for the approximate factorization of a polynomial, thanks to a blow-up technique 
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by proper scaling (see [38]). The presence of clusters will, however, affect the 
stability of the zeros, to be discussed below. 

3.4. Some applications. Any approximate factorization \P — L\ • • • Lm\ < e 
with 0.5 < |P | < 1 and known linear factors L3-(z) = UjZ + Vj can be used for 
the approximate determination of the zeros of P. The natural candidates for 
this approximation are the numbers Wj = —VJ/UJ; in case of \VJ\ > \UJ\ it may 
be preferable to consider their reciprocals as approximations for the reciprocals 
of the zeros of P, 

The corresponding inequalities |P(wy)| < e (or \P*(1/WJ)\ < e with the re
versed polynomial P*(z) = zmP(l/z)) combined with a well-known homotopy 
argument induce W = {z: \P(z)\ < £max(l, |^|m)} as an inclusion set for the 
zeros, and their perturbations are bounded by the diameters of the components 
of W. Here we want to consider (worst case) a priori bounds only, while in 
practical applications one should, of course, take advantage of possible shortcuts 
based on better a posteriori bounds. Keeping to the previous notations we have 
the following perturbation bound (Theorem 2.7 in [40]). 

(3.6) The zeros Z\,..., zm of P can be numbered such that (for e < 2~7m) 

\ZJ -Wj\< 9e1/m for \wj\ < 1, \1/ZJ - l/wj\ < 9e 1 / m for \wj\ > 1. 

This is optimal up to the constant factor, and is better by a factor of order 
m than corresponding bounds given by Ostrowski (cf. [29, Appendices A, B]). 
Aiming at an error bound of 2 _ n for the roots of some mth degree polynomial 
we see that approximate factorization with e — 2~N, N = (n + 4)m will always 
suffice, whence the time bound (3.2) yields 

(3.7) Computing the zeros (or their reciprocals) of any mth degree polynomial 
P (of norm 0.5 < |P | < 1, say) with error less than 2~n is possible in pointer 
time 0 ( m 3 log m + m3n). 

There are applications, where the determination of just one zero will suffice. 
For that purpose the splitting circle method can be modified such that the second 
term in the time bound of (3.7) may be replaced by the smaller bound 0(m2n), 
since after a first approximate splitting of P into two factors F and G, only one of 
these (of degree < m/2) needs further treatment, etc., recursively. Accordingly, 
in this case unbalanced splittings are most welcome. 

As an example of this kind we like to mention a rather fast method for the fac
torization of univariate integer polynomials based on high precision computation 
of one zero and on diophantine approximation to find its minimal polynomial as 
a factor (see [26] and [39]). Along these lines extensive numerical calculations 
with algebraic numbers seem to become feasible. 

Another important consequence of the above time bounds is that all algebraic 
functions can be computed fast. In their paper [20] with exactly this title, Kung 
and Traub investigate the complexity of the somewhat different task to com
pute an initial segment of one of the (fractional) power series expansions of an 
algebraic function, counting arithmetical operations at unit cost, where finding 
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a zero of a numerical polynomial (to any prescribed precision) is regarded as a 
primitive operation. 

In our model this task cannot be solvable in general, since testing for equality 
is impossible. Let us consider a more direct approach, instead. Given any poly
nomial F(z,v) = ao(v)-r-ai(v)z-\ \-am(v)zm and some point v = (v±,... ,Vk) 
i.e., the coefficients of the polynomials a3- E C[vi,...,Vk] and the point v are 
available from oracles again, the m branches of the algebraic function z(v) de
fined by F(z, v) = 0 can be evaluated at v within time bounds of the same 
order as in (3.7), provided some normalizing assumptions about v and the a's 
are made. The major strength of this assertion lies in its uniformity with respect 
to v; the hidden constants can be chosen, for instance, to be valid for all \v\ < 1. 

4. Linear equations and the complexity of matrix computations. 
One of the pioneering results in early complexity theory was Strassen's discovery 
[46] that "Gaussian elimination is not optimal." He showed how to replace the 
classical 0(n3) methods of matrix multiplication and inversion by algorithms 
which require less than 0(n2,81) arithmetical operations. The basic idea is quite 
elementary and widely known nowadays, though most numerical analysts have 
remained sceptical about the practical applicability of such methods. 

Meanwhile the exponent 2.81 has been improved substantially by the efforts of 
several authors (cf. [3, 36, 10] and Pan's survey [30]). The best bound presently 
known to the author is a bit smaller than 2.4785, presented by V. Strassen at 
an informal meeting in 1985 (see also [51]). Actually these bounds concern 
the complexity of matrix multiplication. In §§4.1 and 4.2 we will briefly review 
some of the main ideas and results related to this fascinating unsolved mathe
matical problem; possibly this outline could stimulate other mathematicians to 
contribute to its complete solution. 

In §4.3 we will discuss the complexity of solving linear systems and of other 
matrix computations like matrix inversion, evaluating determinants, etc., mainly 
in the framework of algebraic complexity, where the elements of matrices and 
vectors are considered as indeterminates over some ground field F. When deal
ing with real or complex numbers, we have to include numerical aspects again, 
especially for the complexity bounds on the approximate determination of eigen
values. 

With regard to other domains we should mention here that linear systems of 
diophantine equations can be solved in polynomial time as shown by J. von zur 
Gathen and M. Sieveking (in [45, pp. 57-65]). Related algorithms and further 
references are found in [7] and [16]. 

4.1. The exponent of matrix multiplication. The algebraic complexity of ma
trix multiplication can be measured in different ways. We consider nxn matrices 
A = (a...), B = (b...) with indeterminate entries over some scalar field F (to be 
held fixed for the moment). Let L(n) denote the minimal length of straight-line 
programs in F(a ...,b...) computing the entries of AB, where all arithmetical 
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operations are counted, and let L*l (n) be the corresponding nonscalar complex
ity, or L*(n) in case of F[a ...,&...], if divisions shall not be used. For infinite 
F we have L*/(n) = L*(n) (cf. [47]). 

Last but not least, the bilinear complexity L®(n) refers to the model where 
only multiplications f (a...) * r}(b...) of F-linear forms in the o's by .F-linear 
forms in the 6's are admitted. 

The exponent of matrix multiplication (over F) is defined as the infimum 

u)(F) = M{ß: L(n) = 0(nß)}, (4.1) 

obviously satisfying 2 < u)(F) < 3. Strassen's first nontrivial bound w(F) < 
log 7/log 2 < 2.81 was derived from L®(2) < 7. In the same way any bilinear 
algorithm for some other small n can be applied to multiply n x n block matri
ces recursively; 'thus L®(n) < r implies L(N) = 0(Nß) with ß = log r/ log n. 
Combined with the elementary inequalities 

L*/(n) < L*(n) < L®(n) < 2L*(n), 

this shows that we may replace L(n) in (4.1) by any of these other measures 
without altering the definition of w(F). The further discussion will concentrate 
on L®(n) and its generalization to the multiplication of rectangular matrices. 
For technical details and proofs see [36]. 

Let (A;, m, n) denote the tensor for the bilinear mapping of multiplying fc x m-
with m X rc-matrices. Its rank rk(k, m, n) is equal to the minimal length of rep
resentations of the associated trilinear form tmce(ABC) as a sum of rank one 
products of linear forms, where C has format n x fc. Spelled out in coordinates 
this means, with A = (a...), B = (b...), C — (c...), that rk(fc,m,n) < r is 
equivalent to the existence of linear forms £j in the a's, r\j in the &'s, Çj in the 
c's such that 

r 

^tj(a...)riJ{b...)çj(c...)=tr{ABC) = 53 a^b^cu^ (4.2) 
3 = 1 K,V,v 

is satisfied, which in turn is equivalent to the solvability of a huge system of 
k2m2n2 nonlinear equations over F for the kmr+mnr+nkr unknown coefficients 
of the linear forms. The formidable size of such systems may give an impression 
of the difficulties to determine any of the values of rk(fc,m,n), even in the case 
of low dimensions (despite the fact that, for fields like R or C with decidable 
first order theory, rk(fc, m,n) is a computable function). One of the rare values 
explicitly known is rk(2,2,2) = 7 for any field F, as always rk(n, n, n) = L®(n) > 
L*(n) > 2n2 — 1; the latter inequality is an instance of a more general lower 
bound on the complexity of associative algebras (see [1, 50]). The next higher 
case of 3 X 3 matrices would already amount to a system of 729 equations with 
567 unknowns (for r = 21); so far nothing better than rk(3,3,3) < 23 is known. 
More generally, one could also hope to derive better estimates for w(F) from good 
upper rank bounds for rectangular formats, by means of the following lemma. 

rk(fc, m,n) is symmetric in k,m,n, and submultiplicative, i.e., 
rk((k',m',ri) 9 (k",m",n")) < rk(fc'>'>')rk(fc">">"). 
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Starting from some bound rk(fc,m,ra) < r we apply symmetrization and obtain 
L®(kmn) = rk(fcmn, mnk,nkm) < r3; therefore, 

rk(fc, m, n) <r = (kmn)T implies w(F) < 3r. (4.4) 

So far, however, none of the rank bounds available for small formats has proved 
to be good enough to yield better estimates than 2.81. In 1978, this barrier was 
broken by V. Pan. By means of his technique of trilinear aggregating he could 
show L*(n) < n 3 /3 + 0(n 2 ) with such constants that n = 48 led to the improved 
estimate u(F) < 2.781. 

A similar bound was obtained by Bini, Capovani, Lotti, Romani [3], but they 
used a completely new approach based on the notion of border rank. Let e be 
a further indeterminate over F. The border rank brk(fc, m, n) can be defined as 
the minimal length of sum representations (4.2) up to errors 0(e), where now 
meromorphic formal power series in e are admitted as coefficients of the linear 
forms. (For a definition in the language of algebraic geometry see §§13, 14 of 
[50].) 

The properties (4.3) and (4.4) are also true for border rank, whence 

brk(fc,m,n) <r = (kmn)T implies w(F) < 3r. (4.4b) 

In [3] this was applied to brk(2,2,3) < 10; another example is brk(3,3,3) < 21, 
which yields w(F) < 2.772. For the paradigmatic case of 2 x 2 matrices one 
knows the bounds 6 < brk(2,2,2) < 7. 

The proof of (4.4b) exploits the fact that the tensorial powers of any tensor 
t with brkt < r satisfy a rank estimate rk(t®3) < 0(s2) • r3; the extra factor of 
polynomial growth does not matter when (4.4) is applied for s —• oo. Similar 
arguments are used to show w(F) = UJ(FO), where Fo denotes the prime field of 
F (see [36, Theorem 2.8]), thus the exponent of matrix multiplication over F 
can only depend on the characteristic of F. In the sequel we will simply write 
(j, since all further discussions are uniform with respect to F. 

4.2. Subadditivity. There exist computational problems which admit sub
stantial savings under mass production. An important example is furnished by 
the evaluation of a general mth degree polynomial at m different points (cf. 
[4]). Similar effects occur in the realm of matrix computations. Multiplying one 
column vector 6 by an n x n matrix A takes exactly n2 multiplications, while 
multiplying n different vectors b±,..., bn by the same A is possible by one matrix 
multiplication—in less than 0(n2S) steps. One could argue that these examples 
are relying on a certain amount of joint information (the coefficients of the poly
nomial, the matrix A). So let us impose very strict rules now. We consider two 
completely disjoint problems of matrix multiplication and ask whether forming 
AB and UV in one compound computation may be cheaper than by performing 
(optimal) algorithms for the two matrix multiplications separately. 

Under the bilinear cost measure this is equivalent to the question whether the 
subadditivity of rk, i.e. (with respect to direct sums), 

rk((fc',m',n') e (fc",m",n")) < rk(fc',m',n') + rk(fc",m",n"), (4.5) 
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can become a strict inequality. For 2-stage tensors (matrices) equality always 
holds, while the corresponding additivity conjecture (cf. [47]) for 3-stage tensors 
is still an open problem. 

Subadditivity is true for border rank as well, but in that case we definitely 
know that additivity does not hold in general. Already for the special class of 
tensors (fc, m, n), the left-hand and the right-hand side of (4.5) (with brk instead 
of rk) can differ unboundedly. We present an example from [36] which has played 
an important role in estimating the exponent of matrix multiplication. Based 
on a dimension argument, one has brk(3,1,3) = 9 and brk(l,4,1) = 4, but also 

brk((3,l,3)© (1,4,1)) = 10. (4.6) 

We show that the trilinear form tr(ABC) + tr(UVW) associated with the direct 
sum of these disjoint problems indeed has an approximate decomposition (4.2) 
of length 10, with coefficients from F((e)) and up to an error term 0(e), namely 

J2Yl&+£u^')(b3+£vij)(c3,i+£~2w)- ( Z ) a i ) \YlbA£~ ~-2w 
i=l3=1 

3 3 

= 2 ^ Z^(aibjCj,i + Ui,3Vi,3W) + °(£)> 
t = l j = l 

where the u's and v's with subscripts (i,j) = (1,1), (1,2), (2,1), (2,2) are the 
indeterminate components of two vectors of length 4, while the remaining w's 
and v's are chosen to yield proper canceling, namely 

Ut,3 = V3tj = 0, U3ij = -U!j - U2J, Vii3 = -Vi}1 - Vii2. 

Similar to Strassen's rk(2,2,2) < 7 versus the trivial number of 8 multi
plications, which gave the estimate u < 3 log 7/log 8, we can regard (4.6) as 
a bound of 10 on the border rank of a problem of partial matrix multipli
cation with the trivial number of 13 multiplications, and this indeed implies 
GJ < 3 log 10/log 13 < 2.7, by a corresponding extension of (4.4b) [36, Theorem 
4.1]. There is, however, an even more productive way of estimating CJ on the 
base of such examples, which in addition exploits the disjointness of the pieces. 
This stronger generalization of (4.4b) is the following 

r- THEOREM (de Groote's naming for a special case of Theorem 7.1 from 
[36]). 

P 

brk((fci, mi, ni) © • • • © (kp, mp,np)) < r = ^(fc^min^)1" implies u < 3r. 
i=l 

With regard to (4.6), for instance, we solve the equation 9r + 4 r = 10 and 
obtain the better bound u < 2.6. 

The presentation of this theorem at an Oberwolfach conference in 1979 ini
tiated a hot competition among specialists to find better and better estimates 
from more and more sophisticated designs, similar to (4.6), and the bounds for u 
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came closer and closer to 2.5. Corresponding lower bound speculations, however, 
were soon abandoned by Coppersmith and Winograd (see [10]). They found a 
general method for the iterated construction of such examples, and by starting 
from (4.6) they succeeded in showing UJ < 2.5. Moreover, it is an important the
oretical consequence of their work that any particular instance of the r-theorem 
admits some further improvement yielding a slightly better bound for UJ, i.e., we 
always have the strict inequality OJ < 3r. 

Strassen's new method [51] stems from a thorough investigation of rank and 
border rank in a more general algebraic setting. His constructions have led 
to an application of the r-theorem combined with a limit process which yields 
w < log((A + l ) 3 / 4 ) / log h (for h = 2,3, . . .) . The best estimate is obtained for 
h = 5, namely u < log 54/log 5 < 2.4785. 

4.3. Linear systems and matrix inversion. Solving a general system Ax = b 
of n linear equations in n unknowns x\,...,xn can be considered as the task of 
computing the #'s as rational functions in the indeterminate entries of A and 6. 
Optimal algorithms for this task are straight-line programs of minimal length in 
F(a..., b...), and it was with respect to this model that Gaussian elimination 
was originally shown not to be optimal. (For n = 2, by the way, and under the 
measure of nonscalar complexity, Gaussian elimination is in fact optimal, see 
[28].) The solution of the system can simply be expressed as x = A"16. Thus 
solving such a general system is possible within the upper bound I(n) + 2n2 — n, 
where I(n) denotes the minimal number of arithmetical operations sufficient for 
the computation of the inverse of a general n x n matrix. In [46], 2 x 2 block 
inversion was applied recursively to reduce matrix inversion to (fast) matrix 
multiplication. The corresponding estimate is 

I(2n) < 2I(n) + 6L(n) + n2 + n. 

Similar reasoning shows that the complexity D(n) of computing nxn determi
nants satisfies the recursive inequality 

D(2n) < I(n) + 2L(n) + 2D(n) + n2 + 1. 

Therefore L(n) — 0(nP) (for any ß > u) implies that I(n) and D(n) are of the 
same order of growth at most. Conversely we can also show that the complexity 
of matrix inversion is not much smaller than that of matrix multiplication. With 
such proofs, however, one should keep in mind that straight-line programs valid 
for the model with indeterminates will usually not work for all specializations 
by nonsingular matrices, since substitution of algebraically dependent elements 
may cause divisions by zero. Below we will discuss other models without this 
deficiency. 

The identity X2 = ( X - 1 - (I + X)'1)'1 - X shows that the complexity 
Q(n) of squaring a general nxn matrix satisfies Q(n) < 31 (n) + 2n2 + n. The 
multiplication of general 2n x 2ra matrices, 
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with nxn blocks Ai,Bj is reduced to squarings in the following way. With 
S = B\ + B2, the first n columns of the result are obtained from 

(A3-S B1V_(A^-S -B2\
2
=( A3B1+A4B2\ 

{A, S J [ A2 S J \ A1B1+A2B2)
i 

and equally for the second half. That shows L(2n) < 4Q(2n) + 12n2, whence 
L(2n) < 12J(2n) + 0(n2). For infinite fields F a similar estimate (with other 
constants) can be found in [47]. 

There is also a reduction from general matrix inversion to the computation of 
the determinant, obtained by Baur and Strassen as a corollary to their following 
general theorem (cf. [2]): 

(4.7) If / E F(x\,x2,... ,Xk) is computable by a straight-line program of 
length s, then the complexity of computing / together with all its partial first 
derivatives df/dx3- is bounded by 4s. 

Another illustrating example of these reduction techniques is the following 
quick proof for K. Kalorkoti's (unpublished) result that computing the trace 
of the inverse is as difficult as matrix multiplication, up to a constant factor 
(over infinite fields), hence essentially of the same complexity as computing the 
inverse itself. If there is a straight-line program for t r ( J f - 1 ) of length s, then 4s 
steps suffice for X~2 (built up from the partial derivatives); applying this once 
more we get 8 s as an upper bound for the complexity of computing XA. After 
elimination of the divisions from such a program- (at the cost of another constant 
factor, see [47]) we can finally specialize X as a suitable Sn x Sn matrix such 
that computing X4 will simulate a general matrix multiplication of size nxn. 

It is still an open question, whether the original problem of solving nxn 
systems, i.e., computing A~xb for general A,b, is powerful enough to simulate 
matrix multiplication or any of the other equivalent problems. Quite recently, 
however, T. Lickteig could show that the more general task of computing all 
solutions of rectangular systems Ax = b, which means, for instance, to compute 
a basis for the kernel of a general n x2n matrix, has indeed the same order of 
complexity as matrix multiplication. 

So far we have considered problems with algebraically independent inputs 
only, but with respect to applications other models seem to be preferable. In case 
of the prime fields with their finite extensions, computation trees with branchings 
based on zero testing furnish an adequate framework for the discussion of solving 
linear systems, computing the rank of matrices, or the inverse (if it exists), 
etc. Most of the reductions mentioned before similarly apply to this model. 
For further applications we refer to [17], including the proof that the algebraic 
complexity of computing the coefficients of the characteristic polynomial is of 
the same order as that of matrix multiplication, up to logarithmic factors. 

With the possibility of zero testing, the open problem whether solving Ax = b 
may have significantly lower complexity than matrix multiplication appears in 
a new light. The corresponding verification problem for a given solution x can 
obviously be solved within 0(n2) steps. It is also an interesting question whether 
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verification of matrix multiplication, i.e., checking whether AB = G for given C, 
could possibly be done faster. 

The preceding model with zero testing does not apply to the fields R or C 
with oracle inputs (cf. §2) where equality is undecidable. It is, for instance, 
impossible to compute the rank of arbitrary matrices, or to decide whether a 
given nxn matrix A has determinant zero, but if we assume the regularity of A, 
then the fast algebraic methods of matrix multiplications can be utilized for the 
approximate computation of the inverse. By means of the hermitean transpose 
we have A-1 = (AHA)~1AH, and for the inversion of positive definite matrices 
Strassen's block elimination (cf. [46]) is stable (provided the underlying method 
for matrix multiplication does not use divisions). The running time of such 
machine algorithms will, of course, also depend on the desired accuracy and on 
the condition of A. 

When discussing methods for approximately solving Ax = b one should prop
erly distinguish whether some a priori bound on the condition of A is known 
or not. In the latter case it is rather likely that the major amount of work 
will be required to obtain sufficient information about the condition in order to 
guarantee a certain accuracy of the solution. 

4.4. Characteristic equations. Finally we want to give a brief outline how 
to combine the time bounds on root finding from §3 with the preceding results 
on the algebraic complexity of matrix computations in order to obtain a good 
upper bound on the complexity of approximately computing the eigenvalues of 
arbitrary complex mxm matrices. This is just the very beginning of more ex
tensive complexity studies of related problems like the determination of invariant 
subspaces, or improved time bounds for special classes of matrices, etc., still to 
be undertaken. 

Let A be any mxm matrix of I1 operator norm \A\ < 1, or < l /2m after 
suitable scaling, and assume that the subsequent computations are done with 
TV-bit precision. We describe a method for the computation of the coefficients of 
the characteristic polynomial of A which will mimic the algebraic approach from 
[17] numerically. Let u denote the exponent of matrix multiplication over fields 
of characteristic zero, and let ß be any number ß > u. Then multiplication of 
complex mxm matrices in N-bit precision is possible in pointer time 0(m@N). 
The first step in computing the characteristic polynomial is the approximate 
unitary transformation of A into upper Hessenberg form B (bj+dj = 0 for 
d > 2). By the methods from [32, 33], that is possible in pointer time 0(m@N). 
Similar to the estimate (3.6), the perturbations of the eigenvalues caused by 
errors \B — UHAU\ < e are bounded by 0(e1^m) in the worst case. 

The next step is scaling by a similarity transformation with a diagonal matrix 
D such that M = D~XBD has only ones in its subdiagonal (without restriction 
we may assume that all the subdiagonal elements of B are nonzero; otherwise 
the problem would split into several smaller eigenvalue problems). Thus we get 
M = S -h R, where R denotes the upper triangle of M, while the subdiagonal S 
represents a shift operator which maps the jth unit vector ej upon e^+i, with 
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Sem = 0. The new entries 

fjb.M-d = fo,k+d ^2 6*H-i+i,fc+.? ( l < f c < f c + d < m ) 
0<i<d 

can be computed in a stable way by means of 0(m2) multiplications of complex 
numbers bounded by one. Moreover we have \R\ < \B\ < l /2m. The char
acteristic polynomial f(z) = vo+viz + -- + vm-\zvri~x + zm of M satisfies 
f(M) = 0. Applied to the first unit vector e\ this equation yields v§x\ -\-v\x2-\-
• • • + vm-\xm = — £m-j-i, where Xj = M3~1e±. Because of the dominance of 
S over \R\ < l /2m one easily finds the estimate \x3 — e3\ < e0,5 — 1 < 0.65. 
Therefore the matrix X built up from the column vectors x±,... ,xm satisfies 
\X — I\ < 0.65, its inverse is bounded by \X~X\ < 3, whence the coefficient 
vector v can be obtained as v = X~x(—xm+i), numerically in pointer time 
0(m^N). The main idea from [17] concerns an efficient computation of the 
iterates x3 for j < m + 1 by means of O(logm) matrix multiplications, first 
forming M2,M4,..., then Mq(x\,. ..,xq) = ( ^ + i , . . . >x2q) for q = 1,2,4,8,. . . 
recursively. 

On the whole we see that pointer time 0(m@N) is sufficient for the approxi
mate computation of the characteristic polynomial of A such that the eigenvalue 
perturbations will be bounded by 0(2~N/m). Therefore, final application of 
(3.7) yields the following result (cf. [38]). 

THEOREM. Approximate determination of the eigenvalues of any complex 
mxm matrix (of norm < 1) within error 2~n is possible in pointer time 

0(m@mn) + 0(m3 log m + m2mn) (for any ß > u). (4.8) 

By comparing the two terms in this time bound we see (even with ß close to 
two) that finding the eigenvalues from the characteristic polynomial is always 
faster than computing its coefficients, although the latter part does not cost 
much more than matrix multiplication, as far as the exponents are concerned. 

The factor mn stands for the order of the precision N required under worst 
case assumptions. In practice, however, one will clearly try to get along with 
lower precision first, hoping for better a posteriori estimates which then may 
suffice to justify the low precision. 
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