
Management Science/
Operations Research

R.L. Weil
Editor

Computational
Algorithms for Closed
Queueing
Networks with
Exponential Servers
Jeffrey P. Buzen
Harvard University and
Honeywell Information Systems

Methods are presented for computing the equilibrium
distribution of customers in closed queueing networks
with exponential servers. Expressions for various
marginal distributions are also derived. The
computational algorithms are based on two-dimensional
iterative techniques which are highly efficient and quite
simple to implement. Implementation considerations such
as storage allocation strategies and order of evaluation
are examined in some detail.

Key Words and Phrases: queueing theory, queueing
networks, equilibrium distributions, steady state
distributions

CR Categories: 5.12, 5.5, 8.1, 8.3

Introduction

A queueing network is a collection of service facili-
ties organized in such a way that customers must pro-
ceed from one facility to another in order to satisfy
their service requirements. Expressions for the equi-
librium distribution of customers in such networks have
been obtained by Jackson [5] and by Gordon and Newell
[4]. This paper examines some computational aspects of

Copyright O 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work is sponsored in part by the Electronic Systems Divi-
sion, U.S. Air Force, Hanscom Field, Bedford, Massachusetts,
under Contract F19628-70-C-0217. Author's address: Center for
Research in Computing Technology, Harvard University, Cam-
bridge, MA 02138.

the basic equilibrium distributions as well as certain
marginal distributions which can be derived from them.

The queueing networks being considered in this dis-
cussion are closed in the sense that neither arrivals nor
departures are permitted; instead a fixed number of
customers circulate through the network at all times.
Following the notation of Gordon and Newell, con-
sider a closed queueing network containing M service
facilities and N circulating customers. Note that the
state of such a network can be described by a vector
n = (n~, n ~ , . . . , nu) where n~ is the number of cus-
tomers present at the ith facility ()-']ff=l m = N).

Assume that the service time for a customer at the
ith facility fs given by an exponentially distributed ran-
dom variable with mean 1/ui, and also assume that
the probability a customer will proceed to the j th facil-
ity after completing a service request at the ith facility is
equal top l i for i , j = 1, 2 , . . . , M . It then follows from
Gordon and Newell [4, p. 258] that the equilibrium dis-
tribution of customers in the network is given by

M

l H (x,)",, (1) P(nx , n2 , . . . , riM) -- G (N) i=1

where (1t"1, X . 2 , . . . , XM) is a real positive solution to
the eigenvector-like equations

M

uyX~= ~_~u ,X ,p , i , 1 < j < M , (2)
i = 1

and G (N) is a normalizing constant defined so that all
the P (nl, n 2 , . . . , n~) sum to one. That is,

M

G (N) = ~ I I (X,) n,, (3)
n_ E S (N , M) i = 1

where
M

S (N , M) = {(nl, n ~ , . . . , n ~)] ~-~n~
i = 1

= N and n~ > 0 Vi}. (4)

Note that the summation in eq. (3) is taken over all

(M~-~) possible system states (nl, m , . . . , n~).
The solution presented in eq. (1) is actually a special

case of the results obtained by Jackson and by Gordon
and Newell since it is assumed in (1) that a facility's
mean service time is independent of the number of
customers present. Networks containing facilities with
load dependent service times have somewhat different
computational aspects and will be treated in a separate
section of this paper.

Derived Distributions

A thorough analysis of a queueing network model
often requires the evaluation of expressions that are de-
pendent upon the basic distribution given in eq. (1).
For example, it is sometimes necessary to obtain the
probability that there are exactly k customers present
at the ith facility. This probability can be expressed as

527 Communications September 1973
of Volume 16
the ACM Number 9

P(ni = k) = ~ P (n x , n 2 , . . . , n ~) . (5)
n_ E S (N , M)

& n i =lc

Rather than evaluating eq. (5) directly it is useful
to first consider

P(nl >_ k) = ~ P(nl , n2, . . . , riM)
n ~ S (N , M)
- & n i>_k

1 M

= ~" G(N) H (x¢) w
n C S (N , M) j = l
- &.i_>k (6)

= (Xi)k 1
G(N) ~]-I (X~) "u

n_ ~ S (N - - k , M) 3 ~ 1

= (x~)k G(N -- k)
G(N)

It then follows immediately that

P(m = k)
(X4) ~

- G (N) [G (N - - k) - - x , . a (w - - k - - 1)1 (7)

where it is assumed that G(n) is defined as zero for
n < 0 .

Note that eq. (6) is of interest in its own right since,
for k =- 1, it yields the probability that the ith service
facility is active (i.e. not idle). It also follows directly
from eq. (6) that E[n~], the expected number of cus-
tomers present at the ith facility, is given by

N

E[n,] = ~ (X,) ~ G(N -- k)
k=~ G(N) (8)

Hence, once the values of G(1), G(2), . . . , G(N) have
been calculated it is possible to use eqs. (1), (6), (7),
and (8) to efficiently compute a number of potentially
useful network characteristics.

C o m p u t a t i o n o f G(N)
It has already been noted that the expression for

G(N) presented in eq. (3) involves the summation of
(M+N~--I) terms, each of which is a product of M factors
which are themselves powers of the basic quantities
(i.e. the X4's). Despite the apparently large number of
arithmetic operations involved, there exists a simple
iterative algorithm which computes the entire set of
values G(1), G (2) , . . . , G(N) using a total of N . M
multiplications and N. M additions.

To derive this algorithm it is necessary to first define
one auxiliary function. Assuming that X 1 , 2 " 2 , . . . , Xu
are given, let

g(n, m) = ~ f i (2"/) "i . (9)
n E S (n , m) i ~ 1

Note that G (N) as defined in eq. (3) is equal to g (N, M)
and, in fact, g(n, M) = G(n) for n = 0, l , . . . , N.

Next observe that for m > 1 and n > 0

m)= X fi (x,)"+ X fl (x,)'i
n E , S (n , m) 4 = 1 _n E S (n , m) 4=1

~ . n m ~ O &nm~>O

= g(n, m -- 1) -t- X,~.g(n -- 1, m). (10)

528

Also,

g(n, 1) = (X1)" fo rn = 0, 1 , . . - , N ,

and

g(0, m) = 1 f o r m = 1 , 2 , . . . , M . (11)

The iterative relationship specified in eq. (10), to-
gether with the initial conditions given in eq. (11), com-
pletely defines the algorithm for g (n, m). The algorithm
is represented schematically in Table I, which illustrates
that each interior value of g(n, m) is obtained by
adding together the value immediately to its left and
the value immediately above multiplied by the corre-
sponding column variable (i.e. Xm). Observe that the
leftmost column will be properly initialized if it is as-
sumed that there is a column of zeros immediately to
the left of that column at the start of the algorithm.

Note that the ultimate objective of the algorithm is
to determine the value in the lower right-hand corner
of the table since this corresponds to g (N, M) = G (N).
However the entire rightmost column is of interest since
g(n, M) = G(n) for n = 0, 1, • .. , N. Thus the values
of G(n) for n < N are natural by-products of the com-
putation of G (N).

Table I is slightly misleading since it creates the
impression that it is necessary to store the entire N-by-M
matrix of values of g (n, m) in order to obtain the values
of interest in the rightmost column. In fact it is never
necessary to store more than N values at any given time
provided the iteration begins with'the cell in the upper
left-hand corner of the table and proceeds by moving
down one column at a time as indicated in Table II.
Note that when the algorithm terminates, the final
values of C1, C 2 , . . . , Cn. will correspond precisely to
the values in the rightmost column of Table I.

When implementing the algorithm as a subroutine
it may be assumed that the X,,'s are computed else-
where and passed as parameters. The subroutine itself
can then be extremely simple. All it need do is initialize
the C,'s so that C[0] = 1 and C[n] = 0, for n = 1, 2 , . . . ,
N, and then carry out the following computation:

for m := 1 step 1 until M d o
for n := 1 step 1 until N do

C[n] := C[n] -1-X[m] X C[n - 1];

Note that each evaluation of C[n] requires one addi-
tion and one multiplication. Since C[n] is evaluated a
total of N. M times during the course of the algorithm,
N - M additions and N. M multiplications are required
for the computation of G(1), G (2) , . . . , G(N).

N e t w o r k s wi th L o a d D e p e n d e n t S e r v e r s

It has already been mentioned that the networks
considered thus far are actually a subset of the more
general class of networks treated in [4] and [5]. In the
more general case it is assumed that the service time for
a customer being processed by the ith service facility at a
time when there are a total of n¢ customers present at

Communications September 1973
of Volume 16
the ACM Number 9

that facility is given by an exponentially distributed
random variable with mean [a~ (n~). m] -~. The networks
considered in the preceding sections of this paper thus
correspond to the case where a~(k) = 1 for all i and k;
in the discussion that follows it will instead be assumed
that each a~ is a completely arbitrary function subject
only to the constraint that a~(k) > O, for k > O.

Before presenting an expression for the equilibrium
distribution of customers in such networks it is neces-
sary to define one set of auxiliary functions.
Let

i l l i f k = 0
A~(k) = a~(j) i f k > 0

for i = 1, 2 , . . . , M. (12)

It then follows from a minor extension to Gordon and
Newell [4, p. 258] that the equilibrium distribution of
customers in networks with load dependent servers is
given by

1 M
P(nt , m , . . . , riM) -- G(N) I~=1 [(Xi)"'/Ai(ni)], (13)

where the X/s are defined by eq. (2) and the normal-
izing constant is defined in a manner analogous to eq.
(3) as

M

G(N) = ~ ~ i [(X,)"'/A~(m)]. (14)
n_ ~S(N,M) ¢ = 1

The computation of G(N) is slightly more complex
in this case. Again, it is useful to begin by defining an
auxiliary function g (n, m).

Table I. Algorithm Operation

X, X2 -.. X,,,
0 I I ..- 1
1 X~
2 (XO 2
3 (Xj) ~

n (XO"

N (XO N

got- I , m)
~.X,,

g(n,m- 1) --> g(n,m)

XM
I

g(N.M)

Table II. Storage Allocation

X~ X2 ...
0 I I .,.
I
2
3

n - - I

n C,,

n + l C,,+~

N Cu

2
Xm ".. XM

Ca

C~
C:j n -- 2

C,_~ ,--- most recently computed
value n - 1

r-q , -next value to be com-
puted n
(C~ will be set equal to
C, + X.,. C,-0

N

Let

g(n, m) = ~ f l [(XO"~/Ai(ni)]. (15)
n__ ES(n,m) i = 1

As before, g(n, M) = G(n) for n = 0, I, . . . , N.
Next observe that for m > 1

g(n, m) = ~-~I ~ ffI [(Xi)"~/Ai(ni)]],
k = 0 n E• (n ,m) i = l

[-&nm=k

(Xm)k ~ IX [(X~) /Ai(n~)] _~. ni

k~O ~ n_ ES(n--k,m--1) i = 1

= ~ (X~)k
k = 0 A ~ g(n -- k , m -- 1). (16)

It is also immediate from eq. (15) that

g(n, 1) - (X l) n for n = 0, 1 , . . . , N,
Al(n)

and (17)

g(O,m) = 1 f o r m = 1 , 2 , . . . , M .

Equations (16) and (17) play the same role in defining
the algorithm for the evaluation of eq. (15) that eqs.
(10) and (11) do in the case of eq. (9). That is, eq.
(17) defines the initial values of g (n, m) and eq. (16)
defines the basic iterative step.

Table III provides a schematic representation of the
algorithm for the load dependent case. A simple visual
comparison with Table I illustrates the greater com-
plexity of the load dependent algorithm. To compare
the complexity of the two algorithms on a more quan-
titative basis, note that the computation of a particular
value of g (n, m) in Table III will require n additions, n
divisions and 2n multiplications if the computation is

Table III. Algorithm Operation in the Load Dependent Case

X r " X,,,_, X,n . " XM

(X,,),
0 I . . , I X - - + - - 1 . . . 1

A~(n)

X (x~).-~
I g(l,m- 1) Am(n-- 1)

(X,,)" -~
g(2,m-- 1) X - -

A.~(n--2)

(X~)2
g(n-- 2,m-- 1) X - -

A.~(2)

(Xm) ~
g(n- l,m-1) X - -

AA1)

(xm) °
g(n,m- 1) X - -

A,,(0)

. q - - -

+--

+--

+ - -

'1- -- ~ g(n,m)

g(N,M)

5 2 9 Communications
of
the ACM

September 1973
Volume 16
Number 9

carried out as follows:

Y : = l ;
gin,m] := gin,m-l];
for k := 1 step 1 until n do
begin Y := Y X X[m];

g[n,m] := g[n,ml + g[n-k,m-l] X Y/A[m,k]
end;

Each complete column of N values of g(n, m) thus
requires N (N + 1)/2 additions, N (N + 1)/2 divisions
and N (N + I) multiplications. It then follows that the
evaluation of all M columns of Table III requires
M N (N q- 1) /2 additions and divisions and M N (N -I- I)
multiplications, which is a total of 2 M N (N q- I)
arithmetic operations.

In contrast the evaluation of all M columns in Table
1 requires only M. N additions and M. N multiplica-
tions as has already been demonstrated. Thus, when
eq. (16) is used in place ofeq. (10) to evaluate G(N) =
g (N, M), the total number of required arithmetic oper-
ations increases by a factor of N + 1.

The initialization procedure for the leftmost column
in Table III is almost identical to the procedure used in
Table I. That is, the leftmost column in Table III will be
properly initialized if it is assumed there is a column
containing a one followed by N zeros immediately to
the left of that column at the start of the algorithm. Thus
the only difference is the requirement in Table III
that the top entry in the initializing column be a one.

The storage allocation policy depicted in Table 111
is clearly not adequate in the case of Table III since it
is necessary to save the entire set of values in column
m - 1 until the final value in column m has been cal-
culated. However, if the algorithm computes all N
values in column m before attempting to compute any
values in column m + 1, it will never be necessary to
store more than two columns of information at any
time (i.e. the current working column and the col-
umn to its left). The implementation of the Table III
algorithm with such a two-column storage allocation
policy is entirely straightforward and is presented in [2].

Derived Distributions in the Load Dependent Case
Expressions for the marginal distribution of cus-

tomers at each service facility are more difficult to
obtain in the load dependent case. It is useful to begin
by considering the marginal distribution of customers
at the Mth facility.

P(nM = k) = ~ P(nl, n2, . . . ,nM)
n E S (N , M)

& n M ~ k

1 ~ ,,~
= [(Xj) /Ai(ns)] (18)

~S(N,M) G(N) j=l
& n M ~ k

(XM) ~ g(N -- k, M -- 1)
AM(k) G(N)

where g (N -- k, M -- l) is defined by eq. (15). Note
that the values of g (N -- k, M - 1) for k = 0, 1 , N
will all be available at the completion of the algorithm

depicted in Table 1II if the previously discussed two-
column storage allocation policy is employed. Hence it
is possible to compute the marginal distribution of cus-
tomers at the Mth facility with little additional effort.

The marginal distribution of customers at any other
service facility can be obtained by permuting the order
in which the service facilities are numbered so that the
facility of interest is designated as the Mth facility and
by then applying the algorithm to the permuted se-
quence. In such cases it is possible to stop at column
M -- 1 since G(N) is already known and the other
values in the Mth column do not appear in eq. (18).

If the ith service facility is load independent (i.e.
i r a , (k) = 1 for k = 1, 2 , . . . , N) then eqs. (6) and (7)
are directly applicable and there is no need to resort to a
permutation of eq. (18) to compute P(n~ = k) . More-
over, if the service facilities are indexed so that facilities
1, 2 , S are all load independent, then the values of
g(n, m) for rn _< S can be computed using the simpler
algorithm of Tables I and II. Thus the more complex
algorithm of Table III need only be applied to columns
S + 1, S + 2 , . . . , M. Since many networks of interest
contain at least a few load independent servers, these
final two observations are often quite helpful in practice.

Additional Considerations

The algorithms and formulas that have been pre-
sented thus far are fairly general in nature and are ap-
plicable to a large class of queueing networks. There
are, however, many other more specialized expres-
sions which sometimes have to be evaluated during the
analysis of particular network models.

For example, it may be necessary to determine the
probability that two service facilities are active at the
same time. If service facilities i and j are load independ-
ent, the reasoning used to derive eq. (6) can clearly be
extended to show that

P(n, >_ 1 & nj > 1) = X~Xj G(N -- 2) (19)
6(U)

In addition to the mathematical insight that they
may provide, equations such as (19)are often essential
for computational purposes since the large number of
floating point additions involved in the direct evalua-
tion of expressions such as

l f i
n@S(N ,M) k = l
- &n i~_ l

&nj~I

may introduce unacceptable levels of error in the final
result. The same comment is clearly applicable to many
of the other equations that appear in this paper. Thus
the techniques which have been presented can not only
increase the speed of computation but also eliminate
the need for a detailed error analysis in cases where
the feasibility of the computation is in doubt.

530 Communications September 1973
of Volume 16
the ACM Number 9

Fig. 1. Central server model of multiprogramming.

N Circulating Markers (Programs)

I NEW PROGRAM

CPU

r I

P-

l/O
Devices

Since any value of X1 used in (22) will also satisfy (20),
)(1 may be assigned the value 1. Applying eq. (1).

1 u
e(n~ , m , . . . , nM) - G(N) ~Ii=2 (plPl/Pi)"i ' (23)

where
M

G (N) = ~ I I (tzap,/m) ~'. (24)
n f i S (N , M) i = 2

Consider the problem of determining the cpu utiliza-
tion of such a system when M = 3; m = 1/~s msec -~,
#2 = 1/~0 msec -1, #3 = 1/i80 msec-1; pl .1, p2 = .7,
p3 = .2. In this case)(1 = 1, X2 = 1, and X3 = 2.
Using the format of Table I and letting N = 4, the
values of g(n, m) will be as given in Table IV.

Example. Queueing networks are well suited for rep-
resenting the overall behavior of multiprogrammed com-
puter systems. For example, the central server model
illustrated in Figure 1 can be used to study the behavior
of fixed partition systems operating under a constant
backlog. The interpretation of Figure 1 is straightfor-
ward: circles represent system processing elements such
as I/O devices and the cpu, rectangles indicate the loca-
tion of queues, and the N markers moving about the
network correspond to the programs running on the
system.

In this model each program's behavior is character-
ized by an alternating sequence of cpu processing inter-
vals and t /0 processing intervals with each interval pos-
sibly preceded by a queueing delay. When a program
terminates, its marker enters the NEW PROGRAM path
and then immediately returns to the cpu queue to rep-
resent the first processing request of the next program
executing in that partition. The rate of flow of markers
in the NEW PROGRAM path thus corresponds to the
throughput of the system being modeled.

The amount of processing time per request for the
ith system processor is assumed to be an exponentially
distributed random variable with mean l / m , and the
probability that a program will request service from
the ith system processor after completing a cpu proc-
essing interval is p~ where)--~ff=l p~ = 1.

Central server networks can thus be analyzed using
the techniques of Jackson [5] and Gordon and Newell
[4]. In terms of the Gordon and Newell notation used
in the first section:

plj = pj 1 < j < M,

pa ---- 1 2__< i__< M,

p i ~ . = 0 2 < i < M and 2 < j <_ M.

The equations in (2) then become
M

tqXx --- #lXlpl -~- E # ix l , (20)
i = 2

mX~ = ulX1pi 2 <_ i <_ M. (21)

By (21),

X~ = mX~p~/m 2 < i < M. (22)

Table IV. Values ofg(n,m)

XI X2)(3

0 1 1 1

1 1 2 4

2 I 3 II

3 1 4 26

4 1 5 57

Applying eq. (6) and the fact that 2"1 = 1, the cpu
utilization of the system is P (nl _ 1) = G (N - - 1) /

G (N). Thus the cpu utilization for 1, 2, 3, and 4 levels
of multiprogramming is a/~, 4/fl, 11/~ 6 and 9"6/~7, re-
spectively.

Through suitable variation of network parameters,
the central server model and its extensions can be used
to study such issues as optimal load balancing for
peripheral processors [1], the trade-off between fault
rate and level of multiprogramming in virtual memory
systems [3], and the trade-off between buffer size and
level of multiprogramming for certain types of I/O
devices [2]. The model has also proven useful in predict-
ing specific performance levels in actual systems [6].

Received August 1972; revised November 1972

References
1. Buzen, J.P. Analysis of system bottlenecks using a queueing
network model. ACM-SIGOPS Workshop on System Performance
Evaluation, ACM, New York, Apr. 1971, 82-103.
2. Buzen, J.P. Queueing Network Models of Multiprogrammblg.
Ph.D. Thesis, Div. of Engineering and Applied Physics. (NTIS
AD 731 575 August 1971) Harvard U., Cambridge, Mass., May 1971.
3. Buzen, J.P. Optimizing the degree of multiprogramming in
demand paging systems. Proc. IEEE-CS Conf. 1971 (71 C41-C),
IEEE, New York, Sept. 1971, 139-140.
4. Gordon, W.J., and Newell, G.F. Closed queuing systems with
exponential servers. Oper. Res. 15, 2 (Apr. 1967), 254-265.
5. Jackson, J.R. Jobshop-like queueing systems. Management
Sci. 10, 1 (Oct. 1963), 131-142.
6. Moore, C.G., I11. Network ModelsJbr1_zlrge-Scale Time-
Sharing Systems. Ph.D. Thesis, Dept. of Industrial Engineering,
(TR-71-1) U. of Michigan, Ann Arbor, Mich., Apr. 1971.

531 Communications September 1973
of Volume 16
the ACM Number 9

