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1 Introduction

Statistical resampling methods have become feasible for parametric estimation, hypothesis testing,
and model validation now that the computer is a ubiquitous tool for statisticians. This essay focuses
on the resampling technique for parametric estimation known as the Jackknife procedure. To outline
the usefulness of the method and its place in the general class of statistical resampling techniques,
I will quickly delineate two similar resampling methods: the bootstrap and the permutation test.

1.1 Other Sampling Methods: The Bootstrap

The bootstrap is a broad class of usually non-parametric resampling methods for estimating the
sampling distribution of an estimator. The method was described in 1979 by Bradley Efron, and
was inspired by the previous success of the Jackknife procedure.1

Imagine that a sample of n independent, identically distributed observations from an unknown
distribution have been gathered, and a mean of the sample, Ȳ , has been calculated. To make
inferences about the population mean we need to know the variability of the sample mean, which
we know from basic statistical theory is V[Ȳ ] = V[Y ]/n. Here, since the distribution is unknown,
we do not know the value of V[Y ] = σ2. The central limit theorem (CLT) states that the stan-
dardized sample mean converges in distribution to a standard normal Z as the sample size grows
large—and we can invoke Slutsky’s theorem to demonstrate that the sample standard deviation is
an adequate estimator for standard deviation σ when the distribution is unknown. However, for
other statistics of interest that do not admit the CLT, and for small sample sizes, the bootstrap is
a viable alternative.

Briefly, the bootstrap method specifies that B samples be generated from the data by sampling
with replacement from the original sample, with each sample set being of identical size as the
original sample (here, n). The larger B is, the closer the set of samples will be to the ideal exact
bootstrap sample, which is of the order of an n-dimensional simplex: |Cn| = (2n − 1)C(n). The
computation of this number, never mind the actual sample, is generally unfeasible for all but the
smallest sample sizes (for example a sample size of 12 has about 1.3 million with-replacement
subsamples). Furthermore, the bootstrap follows a multinomial distribution, and the most likely
sample is in fact the original sample, hence it is almost certain that there will be random bootstrap
samples that are replicates of the original sample. This means that the computation of the exact
bootstrap is all but impossible in practice. However, Efron and Tibshirani have argued that in
some instances, as few as 25 bootstrap samples can be large enough to form a reliable estimate.2

The next step in the process is to perform the action that derived the initial statistic—here the
mean: so we sum each bootstrap sample and divide the total by n, and use those quantities to
generate an estimate of the variance of Ȳ as follows:

SE(Ȳ )B =
{ 1

B

B∑
b=1

(Ȳb − Ȳ )2
}1/2

1



The Jackknife Estimation Method Avery I. McIntosh

The empirical distribution function (EDF) used to generate the bootstrap samples can be shown
to be a consistent, unbiased estimator for the actual cumulative distribution function (CDF) from
which the samples were drawn, F. In fact, the bootstrap performs well because it has a faster rate
of convergence than the CLT: O(1/n) vs. O(1/

√
n), as the bootstrap relies on the strong law of

large numbers (SLLN), a more robust condition than the CLT.

1.2 Other Sampling Methods: Permutation

Permutation testing is done in many arenas, and a classical example is that of permuted y’s in
a pair of random vectors (X,Y) to get a correlation coefficient p-value. For an observed sample
z = {(X1, . . . , Xn), (Y1, . . . , Yn)}, the elements of (only) the Y vector are permuted B times. Then
for permutation function π(·), we have that an individual permutation sample zb is:

zb = {(X1, . . . , Xn), (Yπ(1), . . . , Yπ(n))}

The next step is to compute the number of times that the original correlation statistic is in absolute
value greater than the chosen percentile threshold (say, 0.025 and 0.975 for an empirical α level of
0.05), divided by B. This value is the empirical p-value. If B = n! then the test is called exact; if
all of the permutations are not performed, then there is an inflated Type I error rate, as we are less
likely to sample those values in the tails of the null distribution, and hence we are less likely to say
that there are values greater in absolute value than our original statistic. This method is entirely
non-parametric, and is usually approximated by Monte Carlo methods for large sample sizes where
the exact permutation generation is computationally impractical.

2 The Jackknife: Introduction and Basic Properties

The Jackknife was proposed by M.H. Quenouille in 1949 and later refined and given its current
name by John Tukey in 1956. Quenouille originally developed the method as a procedure for
correcting bias. Later, Tukey described its use in constructing confidence limits for a large class
of estimators. It is similar to the bootstrap in that it involves resampling, but instead of sampling
with replacement, the method samples without replacement.

Many situations arise where it is impractical or even impossible to calculate good estimators or
find those estimators’ standard errors. The situation may be one where there is no theoretical basis
to fall back on, or it may be that in estimating the variance of a difficult function of a statistic,
say g(X̄) for some function with no closed-form integral, making use of the usual route of esti-
mation—the delta method theorem—is impossible. In these situations the Jackknife method can
be used to derive an estimate of bias and standard error. Keith Knight has noted, in his book
Mathematical Statistics, that the Jackknife estimate of the standard error is roughly equivalent

2



The Jackknife Estimation Method Avery I. McIntosh

to the delta method for large samples.3

Definition: The delete-1 Jackknife Samples are selected by taking the original data vector and
deleting one observation from the set. Thus, there are n unique Jackknife samples, and the ith
Jackknife sample vector is defined as:

X[i] = {X1, X2, . . . , Xi−1, Xi+1, . . . , Xn−1, Xn}

This procedure is generalizable to k deletions, which is discussed further below.

The ith Jackknife Replicate is defined as the value of the estimator s(·) evaluated at the ith
Jackknife sample.

θ̂(i) := s(X[i])

The Jackknife Standard Error is defined

SE(θ̂)jack =
{n− 1

n

n∑
i=1

(θ̂(i) − θ̂(·))2
}1/2

,

where θ̂(·) is the empirical average of the Jackknife replicates:

θ̂(·) =
1

n

n∑
i=1

θ̂(i)

The (n − 1)/n factor in the formula above looks similar to the formula for the standard error of
the sample mean, except that there is a quantity (n− 1) included in the numerator. As motivation
for this estimator, I consider the case that does not actually need any resampling methods: that of
the sample mean. Here, the Jackknife estimator above is an unbiased estimator of the variance of
the sample mean.

To demonstrate this claim, I need to show that

n− 1

n

n∑
i=1

(θ̂(i) − θ̂(·))2 =
1

n(n− 1)

n∑
i=1

(xi − x̄)2

I note that here the Jackknife replicates in the inner squared term on the left simplify as follows:

(θ̂(i) − θ̂(·)) =
nx̄− xi
n− 1

− 1

n

n∑
i=1

x̄(i) =
1

n− 1

(
nx̄− xi −

1

n

n∑
i=1

nx̄− xi
)

=
1

n− 1
(x̄− xi)

Once the term is squared, the equation is complete, and is identically equal to the right hand term
above. Thus, in the case of the sample mean, the Jackknife estimate of the standard error reduces

3



The Jackknife Estimation Method Avery I. McIntosh

to the regular, unbiased estimator commonly used. The standard error estimate is somewhat
ad hoc, but it is also intuitive. A more formal derivation was provided by Tukey and involves
pseudovalues, which are discussed briefly below. It has been shown, however, that the Jackknife
estimate of variance is slightly biased upward,4 and does not work in all situations, for example, as
an estimator of the median (see Knight, ibid.). In instances such as quantile estimation, it has been
shown that the delete− d Jackknife, where

√
n < d < (n − 1), is a consistent estimator.5 The

delete-d variance estimator has similar form as the delete-1 estimator, with a different normalizing
constant:

SE(θ̂)d−jack =

{
n− d

d

(
n
d

)∑
z

(θ̂(z) − θ̂(·))2
}1/2

The Jackknife Bias is defined as

b̂iasjack = (n− 1)(θ̂(·) − θ̂),

where θ̂ is the estimator taking the entire sample as argument. Jackknife Bias is just the average
of the deviations of the replicates, which are sometimes called Jackknife Influence V alues, mul-
tiplied by a factor (n− 1). The bias of the sample mean is 0, so I cannot take the function s(·) = x̄
to get an idea of what the multiplier should be, as I did previously for the Jackknife SE. Instead, I
consider as an estimator the uncorrected variance of the sample:

1

n

n∑
i=1

(xi − x̄)2

If I take as my estimator θ̂ the (biased) sample variance, I have that its bias, that is, E[θ̂ − θ], is
equal to −σ2/n. If I use the Jackknife bias as an estimate for the bias of my estimator, and I have
that my estimator θ̂ is equal to the uncorrected sample variance, then the Jackknife bias formula
reduces to −S2/n, where S2 is now the regular, corrected, unbiased estimator of sample variance.
Thus, the bias here is constructed from a heuristic notion to emulate the bias of the uncorrected
sample variance.

The above synopsis gave a rationale based on familiar sample-based estimators. Here is another
justification: Assume that for any fixed n the expected value of an estimator is the parameter
estimand plus some bias term, call it b1(θ)/n. Then, as the average of the Jackknife replicates has
(n− 1) terms, the expected value of the average is

E[θ̂(·)] =
1

n

n∑
i=1

E[θ̂(i)] = θ +
b1(θ)

n− 1

From this observation it follows that the bias of the Jackknife replicates estimator is

E[θ̂ − θ̂(·)] = θ +
b1(θ)

n
− θ − b1(θ)

n− 1
=

b1(θ)

n(n− 1)
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Hence if we multiply this difference above by (n − 1), we get an unbiased estimator of the bias of
our original estimator.

With the estimate of bias in hand, an obvious extension is to define a Jackknife estimate of the
parameter of interest as

θ̂jack = θ̂ − b̂iasjack = θ̂ − (n− 1)(θ̂(·) − θ̂) = nθ̂ − (n− 1)θ̂(·)

The estimator is made clear if we remember than the Jackknife bias of the original estimator
is (n − 1)(θ̂(·) − θ̂), and hence the bias of the new estimator θ̂jack is 0. In practice, it is not
always exactly 0, as the above treatment is really just a first-order Taylor series approximation,
but the bias of biased estimators is often reduced by this method. If we imagine that the situation
described in the explanation of the Jackknife bias where the bias is a linear combination of the
estimand and a bias term were expanded so that the bias term is now an infinite series of terms,
b1(θ)/n + b2(θ)/n

2 + b3(θ)/n
3 + . . ., and the expected value of the original estimator was that

summation plus the estimand, then we have that

E[θ̂(·)] =
1

n

n∑
i=1

E[θ̂(i)] = θ +
b1(θ)

n− 1
+

b2(θ)

(n− 1)2
+

b3(θ)

(n− 1)3
+ . . .

and

E[b̂iasjack] = (n− 1)E[θ̂ − θ̂(·)] =
b1(θ)

n
+

(2n− 1)b2(θ)

n2(n− 1)
+

(3n2 − 3n+ 1)b3(θ)

n3(n− 1)
+ . . .

and finally that the expected value of the Jackknife estimator is

E[θ̂jack] = E[nθ̂ − (n− 1)θ̂(·)] = θ − b2(θ)

n(n− 1)
− (2n− 1)b3(θ)

n2(n− 1)2
+ ... ≈ θ − b2(θ)

n2
− 2b3(θ)

n3
− ...

The above formulation shows that, as there is no first-order term n in the denominators of the
infinite sum terms (i.e. the first term in the Taylor expansion has cancelled out), the Jackknife bias
is asymptotically smaller than the bias of any given biased estimator.

Another construction sometimes used in Jackknife estimation is the “pseudovalue,” and can be seen
as a bias-corrected version of the estimator. The scheme is to treat the jackknife pseudovalues as
if they were independent random variables.

Definition: The ith Pseudovalue of estimator ϕn(X) for sample vector X is defined as

psi = nϕn(X)− (n− 1)ϕn−1(X[i])

The pseudovalues can also be written as

psi = ϕn(X) + (n− 1)(ϕn(X)− ϕn−1(X[i])
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These constructs can be used in place of the replicate terms in the Jackknife SE to give confidence
intervals from the t distribution. However, the method is criticized by Efron and Tibshirani, who
write “This interval does not work very well: in particular, it is not significantly better than cruder
intervals based on normal theory (ibid., p. 145).”

Nevertheless, it can easily be shown that pseudovalues can be used to construct a normal test of
hypotheses. Since each pseudovalue is independent and identically distributed (iid), it follows that
their average conforms to a normal distribution as the sample size grows large. The average of the
pseudovalues is just θ̂jack, and the expected value of that average, owing by construction to the
unbiasedness of the estimator, is the parameter under investigation, θ. Thus, we have that

√
n
(
1
n

∑n
i=1(nϕn(X)− (n− 1)ϕn−1(X[i]))− θ

)
Ŝ

→ N(0, 1),

where Ŝ is the square root of the sum of the squared differences of the pseudovalue compared
against θ̂jack, divided by the sample size minus 1 (the unbiased estimate of variance).

The Jackknife can be used in many situations. However, the method is inappropriate for correlated
data or time series data. The method assumes independence between the random variables (and
identically distributed data points), and if that assumption is violated, the results will be of no
use. Another condition of note is that the Jackknife estimate is composed of a linear function
(subtraction) and hence will only work properly for linear functions of the data and/or parameters,
or on functions that are smooth enough to be modeled as continuous without much of a problem.

3 Examples

Imagine that we know that we are sampling from a uniform distribution on interval [0, θ], θ > 0,
and we are interested in estimating the upper bound. A simple, intuitive estimator is the sample
maximum, but is this biased? The expectation of the maximum, Y = max({Xn}), is∫ ∞

−∞
y f(y)dy =

∫ θ

0
yn

(
y

θ

)n
dy =

n

n+ 1
θ

This estimate is clearly biased. Since the maximum of a given fixed sample drawn from a continuous
CDF is the same element for (n− 1) out of the n Jackknife samples, and is the second-largest term
in the single Jackknife sample subset that excludes the largest element of the original sample, it is
clear that the average of the Jackknife replicates is

θ̂(·) =
n− 1

n
X(n) +

1

n
X(n−1)
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and so the Jackknife estimate of the maximum is

θ̂jack = X(n) +
n− 1

n
(X(n) −X(n−1))

By the results above, we have that the bias of this estimator will be smaller than that of the sample
maximum, but if we had wanted to we could have just corrected the sample maximum by the
constant (n+ 1)/n to yield a totally unbiased estimator. However, the Jackknife estimator is gen-
eralizable to any distribution that has an upper bound that we would like to estimate, regardless
of whether the random variable is distributed uniformly or not. This property is extremely useful
when the distribution is unknown, or when it is unclear how to correct for the bias of the sample
maximum.

To show empirically that the Jackknife bias is smaller than the maximum for X ∼ U(0, θ), I wrote
an R script that sampled from a uniform distribution on the interval [0, 5], and recorded the average
number of times that the absolute bias between the Jackknife estimate and 5 was less than the
absolute bias between the sample maximum and 5. I ran 100,000 simulations for sample sizes 10,
30, and 100. The R code for sample size 100 and results follow:

numvec<-rep(NA,100000)

maxbiasvec<-rep(NA,100000)

jackbiasvec<-rep(NA,100000)

for (i in 1:100000){

5 samp<-runif(100, min = 0, max = 5)

jack<-max(samp)+(100-1)/100*(max(samp)-max(samp[!samp==max(samp)]))

numvec[i]<-ifelse(abs(5-jack)<abs(max(samp)-5), 1,0)

maxbiasvec[i]<-abs(5-max(samp))

jackbiasvec[i]<-abs(5-jack) }

10 mean(numvec)

mean(jackbiasvec)

mean(maxbiasvec)

100K Samples N=10 N=30 N=100

% JN bias < Sample Max bias 68.9% 67.73% 66.94%
Average Bias Jack: abs(JK-5) 0.4324 0.1582 0.0492
Average Bias Max: abs(max-5) 0.4549 0.1608 0.0496

For each sample size N the Jackknife bias was smaller than the bias of the sample maximum about
68% of the time. Of course, simply multiplying the maximum by a constant would be ideal in this
case, but again, the method is generalizable to more complicated situations.
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4 Applications

One interesting application I came upon in a course on Microarray analysis is the genomic software
application EASE (Expression Analysis Systematic Explorer).6 In experiments and analyses that
use gene expression data, researchers often finalize their study with an annotated list of genes found
to be differentially expressed between biological conditions. For example gene X may be expressed
more in cancerous cells than in normal cells. Researchers often annotate a list of candidate genes
one-by-one by looking up relevant information on the genes from an online database, or automating
the process for a large gene set. The results of such a search are often difficult to interpret, especially
for those not versed in the finer elements of biochemistry and cell biology. The gene set annotation
will not inform nonspecialists as to whether the group of genes discovered in the analysis stage of
the study is related to a plausible biological function category that has already been investigated
previously: for example, genes known to regulate hemoglobin characteristics in a study to discover
genes associated with sickle cell anemia.

The EASE software queries publicly available databases with the option of adding user-defined
ontology categories. The program initially gives a Fisher exact (hypergeometric) test for each
known class. As an example, researchers discover gene set A is found to be associated with some
phenotype of interest. They compare gene set A against annotation ontology set X, which lists all
known genes related to some biological function, say, apoptosis (programmed cell death) to see if
gene set A is overrepresented in this biological theme more than would be expected by chance. If
so, this knowledge can be used to confirm a hypothesis, or suggest a new avenue of research. Each
gene in set A either is or is not in gene set X, hence, we can give an exact p-value to the probability
of observing at least as many genes in discovery set A as in the known ontology gene set X.

The software also computes an “EASE” score, which is a Jackknifed score for the exact test. The
goal of this test is to construct a conservative score that is similar to the score given to most ontology
sets, but which penalizes those known gene sets that have very few members. The program takes
the discovery set A, and in calculating the hypergeometric test for each ontology gene set it removes
a single gene from the discovery set and computes Fisher p-values anew for every subset of genes
in the discovery set having one gene excluded.

As an example, if there is only a single gene in some ontology category X, and that gene happens
to appear in discovery set A which contains 206 genes, then the p-value for that gene set X is
0.0152. However a different ontology gene set Y would be only slightly less significant if it had 787
genes, with 20 of our discovery set being members of that class. This is obviously a problem in
commensurability. The authors of the paper write:

“From the perspective of global biological themes, a theme based on the presence of a
single gene is neither global nor stable and is rarely interesting. If the single [discovery]
gene happens to be a false positive, then the significance of the dependent [ontology]
theme is entirely false. However, the EASE score for these two situations is p = 1 for
category X and p < 0.0274 for category Y, and thus the EASE score eliminates the
significance of the ‘unstable’ category X while only slightly penalizing the significance
of the more global theme Y.”
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5 Differences Between Jackknife and other Resampling Methods

That the Jackknife is asymptotically equivalent to the bootstrap is inventively shown by Efron and
Tibshirani in their monograph (ibid.). They discuss the process of sampling from blocks of data
as equivalent to defining a multinomial distribution on the sample n-tuple with equal probabilities
for each sample point. In the case of n = 3, the list of possible points is described as a triangle
where each point can be selected from the set of all possible resamples of the three elements, and
is graphically represented as points along the three edges of the triangle. The graphic below is
reproduced from the Efron and Tibshirani paper presented in 1986.7

It shows the domain of the sample functional, where the ideal bootstrap sample represents the sur-
face attained by the domain points on the simplex. Then the jackknife sample is an approximating
hyperplane to the bootstrap surface.

I now present the theorem given by Efron and Tibshirani (cf. 2, p. 287-288).

Define P0 = (1/n, . . . , 1/n)T , and U = (U1, U2, . . . , Un)T such that the elements of U sum to 0.
Then T(P0) is the original sample statistic, and T(P(i)) is the jackknife replicate for sample point

i: P(i) = (1/(n− 1), . . . , 0, . . . 1/(n− 1))T .

9



The Jackknife Estimation Method Avery I. McIntosh

A linear statistic T(P∗), where T is the functional of the vector of all probabilities such that each
element is in [0, 1] and the sum of the elements is 1, has the following form:

T (P∗) = c0 + (P∗ −P0)TU

The linear statistic defines a hyperplane over simplex Sn. The following result states that for any
statistic the jackknife estimate of the variance of T(P∗) is almost the same as the bootstrap esti-
mate for a certain linear approximation to T(P∗).

Theorem: Let TLIN be the unique hyperplane passing through the Jackknife points (P(i), T (P(i))),

i = 1, 2, . . . , n. Then var ∗ TLIN = (n − 1)/nvarjack, where var∗ is the variance under the
multinomial distribution of all probability vectors. In the case n = 3, it would just be the addition
of the possible samples weighted by their probabilities; varjack is the usual formula given above,
and reprinted here for clarity:

n− 1

n

n∑
i=1

(θ̂(i) − θ̂(·))2

Thus, the Jackknife estimate of the variance for our estimator of interest θ̂ is n/(n− 1) times the
bootstrap estimate of variance for the linear approximation to the surface described by the boot-
strap simplex.

Proof: By solving n linear equations of the form θ̂(i) = TLIN (P(i)) for c0 and the components of the

U vector, we find that c0 = θ̂(i) and Ui = (n−1)(θ̂(·)−θ̂(i)). Using the fact that P∗ is distributed as a
multiple of the multinomial distribution with mean and covariance matrix (P0, [I/n2−P0P0T/n]),
and that the Ui terms sum to 0 we have that var ∗ TLIN (P∗) = UT (var ∗ P∗)U = 1/n2UTU =
(n− 1)/n

{
(n− 1)/n

∑n
i=1(θ̂(i) − θ̂(·))2

}
. QED.

Thus, the accuracy of the Jackknife as a linear approximation to the bootstrap depends on how
well the hyperplane TLIN approximates T (P∗).
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