
Proceedings of the
Linux Symposium

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc.
Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

ext4 online defragmentation

Takashi Sato
NEC Software Tohoku, Ltd.
sho@tnes.nec.co.jp

Abstract

ext4 greatly extends the filesystem size to 1024PB com-
pared to 16TB in ext3, and it is capable of storing many
huge files. Previous study has shown that fragmenta-
tion can cause performance degradation for such large
filesystems, and it is important to allocate blocks as con-
tiguous as possible to improve I/O performance.

In this paper, the design and implementation of an online
defragmentation extension for ext4 is proposed. It is de-
signed to solve three types of fragmentation, namely sin-
gle file fragmentation, relevant file fragmentation, and
free space fragmentation. This paper reports its design,
implementation, and performance measurement results.

1 Introduction

When a filesystem has been used for a long time, disk
blocks used to store file data are separated into discon-
tiguous areas (fragments). This can be caused by con-
current writes from multiple processes or by the kernel
not being able to find a contiguous area of free blocks
large enough to store the data.

If a file is broken up into many fragments, file read per-
formance can suffer greatly, due to the large number of
disk seeks required to read the data. Ard Biesheuvel has
shown the effect of fragmentation on file system perfor-
mance [1]. In his paper, file read performance decreases
as the amount of free disk space becomes small because
of fragmentation. This occurs regardless of the filesys-
tem type being used.

ext3 is currently used as the standard filesystem in
Linux, and ext4 is under development within the Linux
community as the next generation filesystem. ext4
greatly extends the filesystem size to 1024PB compared
to 16TB in ext3, and it is capable of storing many huge
files. Therefore it is important to allocate blocks as con-
tiguous as possible to improve the I/O performance.

In this paper, an online defragmentation feature for ext4
is proposed, which can solve the fragmentation problem
on a mounted filesystem.

Section 2 describes various features in current Linux
filesystems to reduce fragmentation, and shows how
much fragmentation occurs when multiple processes
writes simultaneously to disk. Section 3 explains the de-
sign of the proposed online defragmentation method and
Section 4 describes its implementation. Section 5 shows
the performance benchmark results. Existing work on
defragmentation is shown in Section 6. Section 7 con-
tains the summary and future work.

2 Fragmentations in Filesystem

Filesystem on Linux have the following features to re-
duce occurrence of fragments when writing a file.

• Delayed allocation

The decision of where to allocate the block on the
disk is delayed until just before when the data is
stored to disk in order to allocate blocks as con-
tiguously as possible (Figure 1). This feature is al-
ready implemented in XFS and is under discussion
for ext4.

• Block reservation

Contiguous blocks are reserved right after the last
allocated block, in order to use them for successive
block allocation as shown in Figure 2. This feature
is already implemented in ext4.

Although ext4 and XFS already have these features
implemented to reduce fragmentation, writing multiple
files in parallel still causes fragmentation and decrease
in file read performance. Figure 3 shows the differ-
ence in file read performance between the following two
cases:

• 179 •

180 • ext4 online defragmentation

 This block is freed before the data is
 written to disk, we can write it on the
 contiguous blocks

Data

write

Figure 1: Delayed allocation

i. Pick up the
reserved block

Data

reserved blocks

ii. Write to disk

write

Figure 2: Block reservation

• Create the file by writing 32 1GB files sequentially

• Create the file by writing 32 1GB files from 32
threads concurrently

File read performance decreases about 15% for ext3,
and 16.5% for XFS.

Currently ext4 does not have any defragmentation fea-
ture, so fragmentation will not be resolved until the file
is removed. Online defragmentation for ext4 is neces-
sary to solve this problem.

3 Design of Online Defragmentation

3.1 Types of Fragmentation

Fragmentation could be classified into the following
three types [2].

Seconds 1GB file read time(real time)

XFSEXT3

13 252 2 288
16

17

18

19

20

21

22

Fragments in 1GB file
The environment of the measurement:
kernel: 2.6.18-rc4 with Mingming’s ext4 patch set
CPU: Xeon 3.0GHx
Memory: 1GB
Arch: i386

 degrade

14.8%

 degrade

16.5%

Figure 3: The influence of fragments

• Single file fragmentation
Single file fragmentation occurs when a single file
is broken into multiple pieces. This decreases the
performance of accessing a single file.

• Relevant file fragmentation
Relevant file fragmentation occurs when relevant
files, which are often accessed together by ap-
plications are allocated separately on the filesys-
tem. This decreases the performance of applica-
tions which access many small files.

• Free space fragmentation
Free space fragmentation occurs when the filesys-
tem has many small free areas and there is no large
free area consisting of contiguous blocks. This will
make the other two types of fragmentation more
likely to occur.

Online defragmentation should be able to solve these
three types of fragmentation.

3.2 Single File Fragmentation

Single file fragmentation could be solved by moving file
data to contiguous free blocks as shown in Figure 4.

Defragmentation for a single file is done in the following
steps (Figure 5).

1. Create a temporary inode.

2. Allocate contiguous blocks to temporary file as in
Figure 5(a).

2007 Linux Symposium, Volume Two • 181

File

Disk

 Move the data to
 contiguous blocks

Contiguous free blocks

Figure 4: Defragment for a single file

3. Move file data for each page as described in Figure
5(b). The following sequence of events should be
committed to the journal atomically.

(a) Read data from original file to memory page.

(b) Swap the blocks between the original inode
and the temporary inode.

(c) Write data in memory page to new block.

3.3 Relevant File Fragmentation

Relevant file fragmentation could be solved by moving
the files under the specified directory close together with
the block containing the directory data as presented in
Figure 6.

Defragmentation for relevant files is done in the follow-
ing steps (Figure 7).

1. The defragmentation program asks the kernel for
the physical block number of the first block of the
specified directory. The kernel retrieves the physi-
cal block number of the extent which is pointed by
the inode of the directory and returns that value as
in Figure 7(a).

2. For each file under the directory, create a temporary
inode.

3. The defragmentation command passes the physical
block number obtained in step 1 to the kernel. The
kernel searches for the nearest free block after the
given block number, and allocates that block to the
temporary inode as described in Figure 7(b).

4. Move file data for each page, by using the same
method as for single file defragmentation.

User

Kernel

(a) Allocate contiguous blocks

ioctl

Contiguous blocks

Target
inode

Temporary
inode

Create temporary
inode and allocate
contigurous blocks

ioctl

User

Kernel

(b) Replace data blocks

Contiguous blocks

write to
block

read from
block

page cacheTarget
inode

Temporary
inode

Figure 5: Resolving single file fragmentation

directory

File2File1
Block No

60000 70000

Block No = 100

directory

File1
Block No

 101 102

Block No = 100

File2

Figure 6: Defragment for the relevant files

5. Repeat steps 2 to 4 for all files under the specified
directory.

3.4 Free Space Fragmentation

If the filesystem has insufficient contiguous free blocks,
the other files are moved to make sufficient space to allo-
cate contiguous blocks for the target file. Free space de-
fragmentation is done in the following steps (Figure 8).

1. Find out the block group number to which the tar-
get file belongs. This could be calculated by using
the number of inodes in a group and the inode num-
ber as below.

groupNumber =
inodeNumber

iNodesPerGroup

182 • ext4 online defragmentation

(a) Get block mapping

(b) Specify goal as allocation hint

extent1
start = 204

5blocks

extent0
start = 104

5blocks

Specify "0"
as the file

relative block
number

Return "104" as
the physical

block number

ioctl

inode

User

Kernel

User

Kernel

ioctl ()goal = 100

original
inode

temporary
inode

Block No = 101Block No = 60000

goal
Allocate a block
near

Figure 7: Resolving relevant files fragmentation

2. Get the extent information of all the files belonging
to the target group and choose the combination of
files to evict for allocating contiguous blocks large
enough to hold the target file as in Figure 8(a).

3. Reserve the chosen blocks so that it will not be used
by other processes. This is achieved by the kernel
registering the specified blocks to the reservation
window for each file as presented in Figure 8(b).

4. Move the data in the files chosen in step 2 to other
block groups. The destination block group could
be either specified by the defragmentation com-
mand or use the block group which is farthest away
from the target group as in Figure 8(c). The file
data is moved using the same method as for single
file defragmentation.

5. Move the data in the target file to the blocks which
have been just freed. The kernel allocates the freed
blocks to the temporary inode and moves the file
data using the same method as for single file de-
fragmentation as in Figure 8(d).

reservation window

(a) Get extens

extent1
start=108
4blocks

extent0
start=104
4blocks

User

Kernel

ioctl()

inode
(inode No=201)

exten0
start=104

4blos

exten1
start=108

4blocs

extent
start=104
4blocks

inode

extent
start=104
4blocks

(b) Reserve blocks

Register blocks to
avoid being used

by other files.

ioctl()

User

Kernel

User

Kernel

(d) Insert the specified extent to temporary
 inode

ioctl

Contiguous free blocks

Target
inode

Temporary
inode

User

Kernel

(c) Move victim file

ioctl

Target
inode

Temporary
inode

 Search free blocks
 from the farthest
 group from the
 target inode.

 extent
start=104
14blocks

group0 group1 group2 groupN

 extent
start=104
14blocks

Figure 8: Resolving free space fragmentation

2007 Linux Symposium, Volume Two • 183

4 Implementation

The following five ioctls provide the kernel function for
online defragmentation. These ioctls use Alex Tomas’s
patch [3] to implement multi-block allocation feature
to search and allocate contiguous free blocks. Alex’s
multi-block allocation and the proposed five ioctls are
explained below.

The ioctls described in Section 4.3 to 4.6 are still under
development, and have not been tested. Also, moving
file data for each page is currently not registered to the
journal atomically. This will be fixed by registering the
sequence of procedures for replacing blocks to the same
transaction.

4.1 Multi-block allocation

Alex’s multi-block allocation patch [3] introduces a
bitmap called "buddy bitmap" to manage the contigu-
ous blocks for each group in an inode which is pointed
from the on-memory superblock (Figure 9).

The buddy bitmap is divided into areas to keep bitmap
of contiguous free blocks with length of powers of two,
e.g. bitmap for 2 contiguous free blocks, bitmap for 4
contiguous free blocks, etc. The kernel can quickly find
contiguous free blocks of the desired size by using the
buddy bitmap. For example, when the kernel requests
14 contiguous free blocks, it searches in the area for 8,
4, and 2 contiguous free blocks and allocates 14 con-
tiguous free blocks on disk.

Bits for
4 contiguous blocks

Bits for
8 contiguous blocks

Bits for
2 contiguous blocks

Contiguous 14 blocks

Buddy bitmap manages
contiguous blocks in group.

Group nGroup1Group0

i_mapping

inodeext4 superblock

s_buddy_cache

Noral
bitmap

Buddy
bitmap

Disk

 1 1 1 1 1 1 0 1 1 0 0

Figure 9: Multi-block allocation

4.2 Moving Target File Data
(EXT4_IOC_DEFRAG)

This ioctl moves file data from fragmented blocks to the
destination. It uses the structures ext4_ext_defrag_
data and ext4_extent_data shown in Figure 10 for
input parameters. The behavior of this ioctl differs de-
pending on the type of defragmentation it is used for.

• Single file fragmentation
Both the start offset of defragmentation
(start_offset) and the target size (defrag_size)
need to be specified. When both goal and ext.len
are set to 0, the kernel searches for contiguous free
blocks starting from the first block of the block
group which the target file’s inode belongs to, and
replaces the target file’s block with the free blocks.

• Relevant file fragmentation
In addition to start_offset and defrag_size, goal
should be set to the physical block number of the
first block in the specified directory. When goal is
set to a positive number, the kernel searches for free
blocks starting from the specified block, and re-
places the target file’s blocks with the nearest con-
tiguous free blocks.

• Free space fragmentation
In addition to start_offset and defrag_size, ext
should be set to the information of the extent which
represents the new contiguous area for replace-
ment. When ext.len is set to a positive number,
the kernel replaces the target file’s blocks with the
blocks in ext

Since I am still designing the implementation of the fol-
lowing four ioctls, I haven’t tested them yet.

4.3 Get Group Information (EXT4_IOC_GROUP_
INFO)

This ioctl gets the group information. There is no in-
put parameter. The kernel gets the number of blocks
in a group (s_blocks_per_group) and the number of
the inodes (s_inodes_per_group) from ext4 memory su-
perblock (ext4_sb_info) and returns them with the struc-
ture (ext4_group_data) in Figure 11.

blocks_per_group is not used in the current implemen-
tation, but it is returned in case of future use.

184 • ext4 online defragmentation

4.4 Get Extent Information (EXT4_IOC_GET_
EXTENTS_INO)

This ioctl gets the extent information. The structure
shown in Figure 12 is used for both input and output.
The command sets the first extent number of the tar-
get extent to entries. The kernel sets the number of re-
turned extents upon return. Since there might be very
large number of extents in a file, the kernel returns ex-
tents up to max_entries specified as input. If the number
of extents is larger than max_entries, the command can
get all extents by calling this ioctl multiple times with
updated entries.

4.5 Block Reservation (EXT4_IOC_RESERVE_
BLOCK)

This ioctl is used to reserve the blocks, so that it will
not be used by other processes. The blocks to reserve is
specified in the extent information (ext4_extent_data).
The kernel reserves the blocks using the existing block
reservation function.

4.6 Move Victim File (EXT4_IOC_MOVE_
VICTIM)

This ioctl moves a file from the block group where it be-
longs to other block groups. ext4_extents_info structure
is used for input parameter. ino stores the inode number
of the target file, and entries holds the number of extents
specified in ext. ext points to the array of extents which
specify the areas which should be moved, and goal con-
tains the physical block number of the destination.

The kernel searches for a contiguous free area starting
from the block specified by goal, and replaces the tar-
get file’s blocks with the nearest contiguous free blocks.
If goal is 0, it searches from the first block of the
block group which is farthest away from the block group
which contains the target file’s inode.

5 Performance Measurement Results

5.1 Single File Fragmentation

Fifty fragmented 1GB files were created. Read perfor-
mance was measured before and after defragmentation.
Performance measurement result is shown in Table 1. In
this case, defragmentation resulted in 25% improvement
in file read performance.

Fragments
I/O performance

(Sec)
Before defrag 12175 618.3
After defrag 800 460.6

Table 1: The measurement result of the defragmentation
for a single file

5.2 Relevant File Fragmentation

The Linux kernel source code for 2.6.19-rc6 (20,000
files) was extracted on disk. Time required to run find
command on the kernel source was measured before and
after defragmentation. Performance measurement result
is shown in Table 2. In this case, defragmentation re-
sulted in 29% performance improvement.

I/O performance
(Sec)

Before defrag 42.2
After defrag 30.0

Table 2: The measurement result of the defragmentation
for relevant files

Defragmentation for free space fragmentation is still un-
der development. Performance will be measured once it
has been completed.

6 Related Work

Jan Kara has proposed an online defragmentation en-
hancement for ext3. In his patch [4], a new ioctl to
exchange the blocks in the original file with newly al-
located contiguous blocks is proposed. The implemen-
tation is in experimental status and still lacks features
such as searching contiguous blocks. It neither supports
defragmentation for relevant files nor defragmentation
for free space fragmentation.

During the discussion in linux-ext4 mailing list, there
were many comments that there should be a common
interface across all filesystems for features such as free
block search and block exchange. And in his mail [5],
a special filesystem to access filesystem meta-data was
proposed. For instance, the extent information could
be accessed by reading the file data/extents. Also the
blocks used to store file data could be exchanged to con-
tiguous blocks by writing the inode number of the tem-
porary file which holds the newly allocated contiguous

2007 Linux Symposium, Volume Two • 185

struct ext4_ext_defrag_data {
// The offset of the starting point (input)
ext4_fsblk_t start_offset;
// The target size for the defragmentation (input)
ext4_fsblk_t defrag_size;
// The physical block number of the starting
// point for searching contiguous free blocks (input)
ext4_fsblk_t goal
// The extent information of the destination.
struct ext4_extent_data ext;

}

struct ext4_extent_data {
// The first logical block number
ext4_fsblk_t block;
// The first physical block number
ext4_fsblk_t start;
// The number of blocks in this extent
int len;

}

Figure 10: Structures used for ioctl (EXT4_IOC_DEFRAG)

struct ext4_group_data {
// The number of inodes in a group
int inodes_per_group
// The number of blocks in a group
int blocks_per_group;

}

Figure 11: Structures used for ioctl (EXT4_IOC_GROUP_INFO)

struct ext4_extents_info {
//inode number (input)
unsigned long long ino;
//The max number of extents which can be held (input)
int max_entries;
//The first extent number of the target extents (input)
//The number of the returned extents (output)
int entries;
//The array of extents (output)
//NUM is the same value as max_entries
struct ext4_extent_data ext[NUM];

}

Figure 12: Structures used for ioctl (EXT4_IOC_GET_EXTENTS_INO)

186 • ext4 online defragmentation

blocks to data/reloc. During the discussion, two demer-
its were found. One is that common procedures across
all filesystems are very few. The other is that there are a
lot of overheads for encoding informations in both user-
space and the kernel. Therefore this discussion has gone
away. This discussion is for unifying interface and is not
for the implementation for the online defragmentation
which is explained by this paper.

7 Conclusion

Online defragmentation for ext4 has been proposed and
implemented. Performance measurement has shown
that defragmentation for a single file can improve read
performance by 25% on a fragmented 1GB file. For
relevant file fragmentation, defragmentation resulted in
29% performance improvement for accessing all file in
the Linux source tree.

Online defragmentation is a promising feature to im-
prove performance on a large filesystems such as ext4.
I will continue development on the features which have
not been completed yet.

There are also work to be done in the following areas:

• Decrease performance penalty on running pro-
cesses
Since it is possible for defragmentation to purge
data on the page cache which other processes might
reference later, defragmentation may decrease per-
formance of running processes. Using fadvice to
alleviate the performance penalty may be one idea.

• Automate defragmentation
To reduce system administrator’s effort, it is nec-
essary to automate defragmentation. This can be
realized by the following procedure.

1. The kernel notifies the occurrence of frag-
ments to user space.

2. The user space daemon catches the notifica-
tion and executes the defragmentation com-
mand.

References

[1] Giel de Nijs, Ard Biesheuvel, Ad Denissen, and
Niek Lambert, “The Effects of Filesystem

Fragmentation,” in Proceedings of the Linux
Symposium, Ottawa, 2006, Vol. 1, pp. 193–208,
http://www.linuxsymposium.org/2006/

linuxsymposium_procv1.pdf.

[2] “File system fragmentation.”
http://en.wikipedia.org/wiki/File_

system_fragmentation.

[3] Alex Tomas. “[RFC] delayed allocation, mballoc,
etc.” http://marc.info/?l=linux-ext4&m=
116493228301966&w=2.

[4] Jan Kara. “[RFC] Ext3 online defrag,”
http://marc.info/?l=linux-fsdevel&m=

116160640814410&w=2.

[5] Jan Kara. “[RFC] Defragmentation interface,”
http://marc.info/?l=linux-ext4&m=

116247851712898&w=2.

