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The purpose of this paper is to prove a conjecture made by Stephen
Wolfram in 1985, that an elementary one dimensional cellular automaton
known as “Rule 110” is capable of universal computation. I developed
this proof of his conjecture while assisting Stephen Wolfram on research
for A New Kind of Science [1].

1. Overview

The purpose of this paper is to prove that one of the simplest one di-
mensional cellular automata is computationally universal, implying that
many questions concerning its behavior, such as whether a particular se-
quence of bits will occur, or whether the behavior will become periodic,
are formally undecidable. The cellular automaton we will prove this for
is known as “Rule 110” according to Wolfram’s numbering scheme [2].

Being a one dimensional cellular automaton, it consists of an infinitely
long row of cells "Ci # i $ !%. Each cell is in one of the two states
"0, 1%, and at each discrete time step every cell synchronously updates
itself according to the value of itself and its nearest neighbors: &i, C'i (
F(Ci)1, Ci, Ci*1), where F is the following function:

F(0, 0, 0) ( 0
F(0, 0, 1) ( 1
F(0, 1, 0) ( 1
F(0, 1, 1) ( 1
F(1, 0, 0) ( 0
F(1, 0, 1) ( 1
F(1, 1, 0) ( 1
F(1, 1, 1) ( 0

This F encodes the idea that a cell in state 0 should change to state 1
exactly when the cell to its right is in state 1, and that a cell in state 1
should change to state 0 just when the cells on both sides are in state
1. Borrowing an analogy from the well known “Game of Life” two
dimensional cellular automaton [3], we can think of a cell in state 1 as

!The work was performed when the author was with Wolfram Research, Inc.
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a “live” cell, and a cell in state 0 as an “empty” cell. Then our function
says that life spreads to the left, but live cells that have no room to
breathe will die and become empty. For this reason, this automaton is
also known as “LeftLife”, a name which can help remind one how to
mentally perform the updates.

If a cellular automaton has fewer than two states for the cells, or has
two states but fewer than three cell values as arguments for F, then it is
easy to show that universal behavior is impossible, so this result is the
best possible in these regards.

There have been several previous results in the direction of finding
small universal one dimensional cellular automata [4, 5, 6], but they
have all been based on explicitly using the automaton’s lookup table to
implement the desired behavior, an approach which naturally requires
a lookup table large enough to express the chosen universal algorithm.

The approach taken here is not to design a new cellular automaton,
but to take the very simplest one that naturally exhibits complex behav-
ior, and see if we can find within that complex behavior a way to make
it do what we want. We will not concern ourselves directly with the
lookup table given above, but instead we will look at the behavior that
is naturally exhibited by the action of the automaton over time.

The automaton itself is so simple that its universality gives us a new
tool for proving that other systems are universal. For example, we can
construct Turing machines that are universal because they can emulate
the behavior of Rule 110. These machines, shown in Figure 1, are far
smaller than any previously known universal Turing machines [7].

2. Universal Systems

In the words of Minsky, a universal system is “a completely general
instruction-obeying mechanism.” When we say that some system is
universal, or is capable of universal computation, we mean that it can
run any program, or, in other words, execute any algorithm. Of course,
the data for the program must be encoded in some form that the system
can use, and the system’s output must be similarly decoded. To make
sure that the encoding and decoding processes aren’t bearing the brunt
of the computational burden of generating the output given the input,
we typically require that they should be able to encode and decode the
data fairly quickly, within some time limit that depends only on how
much data needs to be converted.

The Church-Turing thesis [9] states that Turing machines1 are capable
of universal computation. In other words, given any algorithm, there is
a way to have a Turing machine implement that algorithm, as long as

1We assume the reader has seen Turing machines before. If not, there is an introduction
to them in [10].
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S01 (1L, Sx0, R) (1L, S11, R) X X
S11 (1L, Sx0, R) (0L, S11, R) X X

0 1 B
Sx0 (0, Sx0, R) (1, S01, R) (0, SB, L)
S01 (1, Sx0, R) (1, S11, R) X
S11 (1, Sx0, R) (0, S11, R) X
SB (0, SB, L) (1, SB, L) (0, Sx0, R)

0 1
Sx0 (0, Tx0, R) (1, T01, R)
S01 (1, Tx0, R) (1, T11, R)
S11 (1, Tx0, R) (0, T11, R)
SL (0, Tx0, L) (1, Tx0, L)

Tx0 (1, Sx0, R) (0, SL, L)
T01 (1, S01, R) X
T11 (1, S11, R) X

Figure 1. Some small Turing machines which are universal due to being able
to emulate the behavior of Rule 110 by going back and forth over an ever
wider stretch of tape, each time computing one more step of Rule 110’s activity.
The column headings show the symbols, and the row headings show the states.
Entries marked “X” are not used by the machine.[8]

you are willing to have the input and output be in the form of characters
on a Turing machine tape. If we like, we can consider this to be the
definition of an algorithm.

Then, to show that some other specific class of machines is also
capable of universal computation, all we need to show is that given
any Turing machine program, there is a machine from the other class
that can run an equivalent program. The standard way of doing this is
to present a “compiler”, which can take any Turing machine program
and data and compile it into a program and data for the other kind
of machine. The existence of such a compiler demonstrates that those
machines can do anything a Turing machine can do, so in particular
they must be able to execute any algorithm, and they are universal.
This compiler, like the data encoder, is required to always finish within
a predictable amount of time, without regard to what the program being
compiled is designed to do.
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2.1 Tag Systems

As our first example of another universal system, we will consider tag
systems, which were originally considered by Post [11]. A tag system is
a machine that operates on a finite tape, reading symbols off the front
of the tape, and writing symbols onto the end of the tape. At every
step, the machine removes two symbols, and based solely on the first
one, decides what to append to the end of the tape, according to a fixed
lookup table that defines the machine.2

For example, if the tape is ACDABBE, and the machine’s lookup
table lists the appendant CCDD for the symbol A, then the next step of
the machine will be to delete AC from the front of the tape, and since
the first one was A, it will append CCDD to the end of the tape, yielding
DABBECCDD as the new tape. The step after that would read two
more symbols and add the appendant for D. As we can see, half of
the symbols are ignored. When an appendant is placed on the end of
the tape, the parity of the length of the tape determines which symbols
within the appendant will eventually be used and which will be ignored.

To prove that tag systems are universal, we will show that the be-
havior of any Turing machine can be emulated by a tag system. Since
the class of Turing machines which use just two symbols is known to be
universal, we will show how to emulate a Turing machine that uses just
two symbols.3 Following a proof of Cocke [12], we will also restrict
ourselves to Turing machines operating on a tape on which only a finite
number of cells have a symbol other than 0.4 This will allow us to
think of the tape as two binary numbers, one on each side of the head,
with the less significant digits towards the head and the more significant
digits farther from the head.

To emulate a Turing machine with m states, we will use a tag system
with 10m symbols:

"Lk, Lk0, Lk1, Rk, Rk0, Rk1, Rk!, Hk, Hk0, Hk1%,

k $ states of the Turing machine

If the cells on the tape to the left of the Turing machine’s head form the
number TL, and the cells on the tape to the right of the Turing machine’s
head form the number TR, then our tag system tape will represent these

2More generally, a tag system can remove a fixed number p of symbols at each step,
still only considering the first one.

3The proof we present is easily extended to Turing machines that use p symbols, if we
use a tag system that removes p symbols at each step.

4The proof can be extended to accomodate periodic patterns on the tape by using a
special symbol to mark the end of the tape, and when the Turing machine encounters this
symbol, it “writes” another period onto the end of the tape as if the tape were a number
in base pperiod.
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numbers in unary like this:

Hk1Hk0[Lk1Lk0]TL[Rk1Rk0]TR

As we proceed, we will think of the tag system as alternately using
and ignoring symbols, so we may present a tape whose first symbol
will be ignored. The price for this is that we must pay attention to
the alignment of the system: whether the first symbol will be used or
ignored.

Here, the bit in the cell that the Turing machine’s head is at is repre-
sented by the alignment of the tag system: If the bit is 1, then the tag
system is aligned so that the “k1” cells will be read and the “k0” cells
will be ignored. If the bit is 0, then the tag system will read the “k0”
cells and ignore the “k1” cells.

As the tag system processes the tape, it must emulate the Turing
machine writing a bit at its current location, moving the head left or
right, and changing to a new state.

To move the head right, we must multiply the number of Ls by 2 and
the number of Rs by 1

2 , whereas to move the head left, we would have
to double the Rs and halve the Ls. To write the bit we must add either
0 or 1 units to the unary representation of the part that got doubled.
Changing to the new state simply consists of making sure the appended
symbols are subscripted by the new state k'. So we can use the following
lookup table entries, whose exact forms vary as shown according to the
Turing machine’s action upon reading bit z in state k, to implement these
processes in the tag system:

Hkz ! [Rk'!Rk'!]
a[Hk' ]

bHk' [Lk'Lk' ]
c

Lkz ! Lk' [Lk'Lk'Lk' ]
d

Rkz ! Rk' [Rk'Rk'Rk' ]
e

z $ "0, 1%

a - include when kz indicates a move to the left, writing a 1.
b - include when z is 0.
c - include when kz indicates a move to the right, writing a 1.
d - include when kz indicates a move to the right.
e - include when kz indicates a move to the left.

Then, when the tag system processes all the symbols originally on the
tape, the tape will be transformed as follows:

Hk1Hk0[Lk1Lk0]TL[Rk1Rk0]TR

.

[Rk'!Rk'!]
a[Hk' ]

bHk' [Lk'Lk' ]
(d?2- 12 )TL*(c?1-0)[Rk'Rk' ]

(e?2- 12 )TR

Complex Systems, 15 (2004) 1–40
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We use the notation (condition?x - y) to denote one of two values,
depending on a condition: It represents x if the condition is present, and
y otherwise.

The tag system will still be aligned so that if it had read a 1, it will read
the odd positions on the tape as shown, ignoring the even ones, while if
it read a 0 it will read the even positions and ignore the odd ones. We
see that in either case, it will definitely read the final Hk' shown, as the
optional preceding one was inserted if and only if it would be ignored.
So, with the lookup table entries for Rk! given by

Rk! ! RkRk

the tape will, in another few (or perhaps zero) steps, be the following,
with the alignment such that the first symbol will be read, the second
ignored, and so on:

Hk' [Lk'Lk' ]
(d?2- 12 )TL*(c?1-0)[Rk'Rk' ]

(e?2- 12 )TR*(a?1-0)

So now, the number of units representing the side of the tape that
the Turing machine is moving away from has been multiplied by two
(representing shifting away from the Turing machine head) and the
output bit has been written by adding one, or not, to that number. On
the other hand, the units representing the other side of the tape, that the
Turing machine is moving towards, have been halved. This is almost
correct, but it might leave half a unit, depending on the value at the
cell that the Turing machine is moving onto. This half unit should be
truncated if present, and the value should somehow be read by the tag
system.

As it turns out, this will happen automatically given the above state of
the tag system’s tape. If there are a whole number of units representing
one side of the tape (an even number of Ls or Rs), then each unit will
be read exactly once by the tag system. But if there is an extra half unit
(a single L or R), then that half unit will be ignored by the tag system,
since the tag system is only reading the first position, third position, and
so on. Although it won’t be read, the half unit if present will disturb
the alignment so that the tag system will ignore the last symbol shown
above rather than reading it.

Now, if the lookup table entries for Hk, Lk, and Rk are given by:

Hk ! Hk1Hk0
Lk ! Lk1Lk0
Rk ! Rk1Rk0

then as the tag system continues processing the tape, it will be trans-
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formed:

Hk' [Lk'Lk' ]
(d?2- 12 )TL*(c?1-0)[Rk'Rk' ]

(e?2- 12 )TR*(a?1-0)

.

Hk'1Hk'0[Lk'1Lk'0]T'L[Rk'1Rk'0]T'R

and the alignment of the tag system will be such that if the symbol read
by the Turing machine was a 1 (i.e. if there was a half unit present to
disturb the alignment), then the symbols with subscripts containing 1
will be read, but if a 0 was read by the Turing machine, then symbols
with subscripts containing 0 will now be read.

This tape is in exactly the same format (including alignment) as when
we started examining the behavior of the tag system, so at this point the
tag system has emulated exactly one step of the Turing machine.

As time goes on, it will emulate more steps of the Turing machine, thus
executing whatever algorithm the Turing machine would have executed.
Therefore, tag systems are capable of universal computation.

2.2 Cyclic Tag Systems

For our next example of a universal system, we will consider cyclic tag
systems, a new class of machines similar to tag systems, but simplified
so as not to require a random access lookup table.

Like tag systems, cyclic tag systems work on a finite tape which is
read from the front and appended to based on what is read. But instead
of a table mapping characters to appendants, the machine is defined by
just a plain list of appendants. At each step, the machine moves on to
the next appendant in the list (cyclically going back to the beginning
when the end of the list is reached), and considers whether or not to
append it. The choice is controlled by what is read from the front of the
tape. Unlike other systems, cyclic tag systems do not allow an arbitrary
alphabet; they intrinsically require the two letter alphabet "Y, N%. At
each step, the system reads exactly one character, and if that character
is Y, then it appends the appendant under consideration, while an N
causes the appendant to be skipped.

We can easily show that cyclic tag systems are universal by showing
that they can emulate tag systems. Given a tag system, we can construct
a cyclic tag system that emulates it in the following manner: We will
use a string of Ns containing a single Y to represent a symbol of the
tag system. If we number the k symbols of the tag system from 1 to k,
then symbol number i can be represented in the cyclic tag system by a
string of length k in which the ith character is Y while the rest of the
characters are N. The tape can be converted in this way, and so can the
appendants in the lookup table. If the lookup table is also sorted so that
the k appendants for the k symbols appear in order according to our
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numbering of the symbols, and we then add k appendants of length zero,
the resulting list of 2k appendants will define our cyclic tag system5.

It is easy to see how this cyclic tag system emulates the original
tag system. Each time it starts reading a sequence of k characters
corresponding to a symbol of the original tag system, it will alternately
be either at the beginning of its list of 2k appendants or exactly halfway
through the list. If it is at the beginning of the list when it starts reading
the sequence of k characters, then the single Y will cause exactly one
appendant to be appended, namely the one corresponding to the one
that the tag system would have appended. If it is halfway through the
list when it starts reading a sequence of k characters, then since the
second half of the list consists entirely of appendants of length zero,
even the single Y will not cause anything to be appended to the tape,
and so the entire sequence of k characters will have no effect at all.
This corresponds to the tag system ignoring a symbol. Just as the tag
system alternates between appending a sequence based on the symbol
and ignoring the symbol, the cyclic tag system alternates between using
the first half of the list to append an encoded sequence based on the
encoded symbol and using the second half of the list to ignore the
encoded symbol. In this way, a cyclic tag system can precisely emulate a
tag system’s behavior, and thus cyclic tag systems are universal machines.

2.3 Glider Systems

As our penultimate example of a universal system, we will consider
glider systems, which are machines that idealize the notion of a system
containing moving particles. We will consider one dimensional glider
systems, which are machines that manipulate moving points on a line.
Each moving point is called a glider. Like the alphabets of previous
systems, a glider system has a finite set of types of gliders. The type
of a glider specifies a fixed direction and speed for the glider. When
two gliders meet, a lookup table specifies what the result of the collision
should be. The result is a set of zero or more gliders which emanate
from the point of collision.6

Glider systems bear a strong resemblance both to what is seen in ex-
perimental particle physics, and to what is seen in experimental cellular
automaton simulations.

5More generally, if the tag system removes p symbols at each step, then we add (p)1)k
appendants of length zero, resulting in a list of pk appendants.

6To prevent the gliders from taking advantage of the continuity of the system and having
an infinite number of collisions in a finite time, the results of collisions are specified only
when the collisions occur at least some time or distance Ε apart from each other. It is also
often useful to have temporary gliders that “decay” by having a spontaneous collision
a fixed amount of time after their creation. However, neither of these issues will be of
concern in this section.

Complex Systems, 15 (2004) 1–40
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In general, glider systems are very flexible, and it is fairly easy to
create one with gliders that do what you want. However, our interest in
them here is just to show how one might implement a cyclic tag system
using a glider system, so that we can then use the same approach for
Rule 110.

Our approach will be to have the tape be represented by stationary
gliders, which we will refer to as tape data. We will orient the tape so
that the front is to the right, and the end is to the left.7 An entry from
the list of appendants, containing table data gliders to represent its Ys
and Ns, will glide in from the right and hit the first piece of tape data,
which represents the first tape element. If the tape data represents an N,
then the table data for the appendant will be wiped out. But if the first
piece of tape data represents a Y, then the table data for the appendant
will travel through the rest of the tape, to be appended onto the left end.
The way we will append it is by having ossifier gliders waiting after the
end of the tape, and when a symbol of the appendant hits an ossifier, it
gets turned into new tape data, i.e. new stationary gliders representing
a new symbol at the end of the tape.

The process of wiping out an appendant, or transmitting it, is not
quite as simple as the last paragraph made it appear. To aid in these
processes we will find it useful to have a preparatory glider that precedes
the appendant, which we will call a leader. When the leader hits a tape
data N, the result is a rejector glider that procedes to hit and eliminate
each symbol of table data, until eventually it hits the next leader, which
absorbs it. On the other hand, when the leader hits a tape data Y, the
result is an acceptor glider that crosses over each symbol of table data,
converting each into a symbol of moving data, until it too eventually
hits the next leader, and is absorbed. Each symbol of moving data will
cross the tape and then hit an ossifier, which will convert it into tape
data.

Figure 2 shows a time history of such a glider system, with the initial
state shown at the top, and time increasing down the picture, so a glider
with zero velocity appears as a vertical line, while a rightward moving
glider slants to the right as it goes down. The ossifiers, in the upper
left area, are shown as having a non-zero velocity, which will turn out
later to be useful, but for now it might cause some concern, since it
means the tape data is spaced unevenly, and if there is an extended
period of time during which no moving data emerges from the tape,
then an ossifier could actually bump into a piece of tape data, which
would not be good. Fortunately, if the cyclic tag system being emulated
is constructed along the lines of Section 2.2 to emulate a tag system
which in turn is constructed along the lines of Section 2.1, so that all the

7This may feel “backwards”, but this is the orientation we will use later with Rule
110, so it is best to get used to it now.
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Figure 2. A glider system emulating a cyclic tag system which has a list of two
appendants: YYY and N. Time starts at the top and increases down the picture.
The gliders that appear to be entering on the sides actually start at the top, but
the picture is not wide enough to show it. The gliders coming from the right are
a periodic sequence, as are the ones on the left. The vertical stripes in the central
chaotic swath are stationary gliders which represent the tape of the cyclic tag
system, which starts here at the top with just a single Y. Ys are shown in black,
and Ns are shown in light gray. When a light gray N meets a leader (shown as
a zig-zag) coming from the right, they produce a rejector which wipes out the
table data until it is absorbed by the next leader. When a black Y meets a leader,
an acceptor is produced, turning the table data into moving data which can
cross the tape. After crossing the tape, each piece of moving data is turned into
a new piece of stationary tape data by an ossifier coming from the left. Despite
the simplicity of the appendant list and initial tape, this particular cyclic tag
system appears to be immune to quantitative analysis, such as proving whether
the two appendants are used equally often on average.

lookup table entries have a length greater than zero, then we know that
at least once during the cycle of cyclic tag system appendants, we will
append an appendant of positive length. This gives us an upper bound
on the length of time between consecutive emerging pieces of moving
data, which means that it is indeed possible to space the ossifiers in a
fixed way so that they will always hit moving data and never tape data.

If the Turing machine that is ultimately being simulated is universal,
then we can execute any program merely by encoding the program on
its tape. This corresponds in the glider system to being able to encode
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any program in just the tape data portion of the initial arrangement,
while always using a fixed repeating pattern on the right and on the
left.

To find a specific example of an undecidable question in such a glider
system, we can easily suppose that one of the Turing machine states
represented in the tag system has the peculiar property that all of its H,
L, and R symbols lead to empty appendants for the end of the tape.
Then, if this state is ever entered, the tag system will stop appending
symbols to the tape, and the glider system will stop sending moving data
to the end of the tape, causing ossifiers to hit tape data after all. This
can lead to a new kind of glider being produced. So one undecidable
question is, “Will the following glider ever appear?”

We could also easily suppose that one of the Turing machine states
represented in the tag system has the property that it halves both the L
and R symbols of the tape, and always stays in the same state. In this
case, the tape will eventually be zeroed out, and the tag system’s behavior
will become periodic with period one, and the behavior of the glider
system will likewise become periodic, with a specific predeterminable
(space, time) period. So another example of an undecidable question is,
“Will the behavior become periodic with the following period?”

If the glider system becomes periodic at all, then the emulated tag
system must be periodic as well, meaning that the Turing machine is in
an infinite loop where it keeps entering the same state, with the same
tape to the left and right. Conversely, if the Turing machine enters
such a loop, then the glider system must become periodic. Since it is
undecidable whether a Turing machine will enter such a loop, another
example of an undecidable question for the glider system is, “Will the
behavior become periodic at all?”

In Section 4, we will show how Rule 110 can behave just like this
kind of glider system, and the above undecidable questions will apply
to it as well.

3. The Gliders of Rule 110

In this section, we will discuss the gliders of Rule 110, presenting con-
cepts and tools that will be useful for the construction in Section 4.

Since we humans find it easier to identify objects in a two dimensional
picture than a one dimensional picture, we will use space-time diagrams
to show how Rule 110 acts on a row of cells. We will show cells in
state 1 as black pixels, and cells in state 0 as white pixels, and successive
rows of pixels in the picture will correspond to successive time steps.
For example, in Figure 3, the top row of pixels is completely random.
After each cell updates itself according to Rule 110’s update function,
the result is shown as the second row of pixels. Figure 3 shows the
activity of 400 cells over a period of 250 time steps.

Complex Systems, 15 (2004) 1–40



12 Matthew Cook

Figure 3. A space-time history of the activity of Rule 110, started at the top
with a row of randomly set cells.

Although there are no known methods to prove that it should happen,
we can plainly see that as time goes on, the cells stop being completely
random, and in the lower part of the picture we can visually identify
many phenomena a dozen or fewer cells wide that are periodic in time,
and “move” through a lattice “background” of little white triangles.
These periodic phenomena are the gliders, and the background lattice
of white triangles is called ether.

Figure 4 shows all of the known gliders in Rule 110. One might think
that the key to building constructions would be to find more gliders.
However, when working with gliders in one dimension, it is useful to
stick with ones that occur naturally. Indeed, every time two pieces of
data cross each other in the confines of one dimension, they disrupt each
other and must be “recreated”, as if by chance, after they collide. For
this reason, it is much more profitable to always use gliders that are
easily created in chance reactions than to try to invent or discover new
gliders or other objects with special properties. Even using common
gliders, it can be quite hard to find reactions that produce the desired
gliders in the desired positions. Imagine how much harder it would be
if the reaction had to produce some unnatural object!

Similarly, although Rule 110 can support other backgrounds besides
the standard ether, such other backgrounds do not arise naturally, and
in particular they would be extremely unlikely to re-arise in between the
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A A2 A3 A4 B B̄1 B̄2 B̄3 B̂1 B̂2 B̂3 C1 C2 C3 D1 D2

Ē E1 E2 E3 E4 F G1 G2 G3 G4 H glider gun

Figure 4. This shows all the known gliders that exist in the standard background,
or ether, of Rule 110. Also, a “glider gun” is shown, which emits A and B gliders
once per cycle. The lower gliders are shown for a longer time to make their
longer periods more evident. A gliders can pack very closely together, and n
such closely packed As are denoted by An as if they were a single glider. The
other gliders with exponents are internally extendable, and the exponent can
again be any positive integer, indicating how extended it is. The subscripts for
C and D gliders indicate different alignments of the ether to the left of the glider,
and may only have the values shown. Gliders are named by the same letter iff
they have the same slope. The glider gun, H, B̂n, and B̄n02 are all rare enough
that we say they do not arise naturally. Since the B̄n arises naturally only for
n ( 1, B̄1 is usually written as just B̄.

gliders produced by a reaction. In short, if we hope to create a pattern
of coherent interaction among discernable entities, our best odds are if
we take what Rule 110 willingly offers us, and play with it until we see
how to build something out of it.

3.1 Glider Properties

One of the first things we can calculate for the gliders is their width,
as given in Figure 5. Given a glider, if we consider the ether to its left
compared with the ether to its right, we will probably find that these
ether regions would not match up exactly if we were to extend them so
that they overlapped. The ether to its right can be thought of as shifted
w cells to the right from where it would be if it were just a continuation
of the ether on the left. Since the ether has a horizontal period of 14,
the value of w is a number mod 14, and we say that it is the width of
the glider. We see that the sum of the widths of several adjacent gliders,
mod 14, gives the offset of the ether on the far right compared to the
ether on the far left, and so it is a conserved quantity that is not affected
by collisions among the gliders.
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period
width (t, x) (

!
A,
!
B)

A 6 (3, 2) (1, 0)
B 8 (4,)2) (0, 1)
B̄n 13 * 9n (12,)6) (0, 3)
B̂n 2 * 9n (12,)6) (0, 3)
C1 9 (7, 0) (1, 1)
C2 3 (7, 0) (1, 1)
C3 11 (7, 0) (1, 1)

period
width (t, x) (

!
A,
!
B)

D1 11 (10, 2) (2, 1)
D2 5 (10, 2) (2, 1)
En 11 * 8n (15,)4) (1, 3)
Ē 7 (30,)8) (2, 6)
F 1 (36,)4) (4, 6)

Gn 2 * 8n (42,)14) (2, 9)
H 11 (92,)18) (8, 17)

Figure 5. The width of a glider is the horizontal offset (mod 14) of the ether
on its right with respect to the ether on its left. The period of each glider is
given as a (time, horizontal displacement) pair. Due to the lattice structure of
the background, this period can always also be expressed as a positive integral
linear combination of the A period and the B period.

Since the sum of the widths is conserved mod 14, it is also conserved
mod 2, and so the number of odd width gliders (Cs, Ds, Es, and Fs are
the only natural ones) is conserved mod 2.

Although more gliders are bound to exist, we can find some general
limits on what speeds they might have. A case analysis of possible pixel
values shows that the A and various B gliders travel at the maximum
possible right and left speeds within the standard ether. The known B
forms are the only possible gliders that can travel at their speed, and the
A is the only possible glider that can travel to the right faster than a D.

If we think of a glider as including a little bit of the ether on each
side, we see that its possible locations are constrained by the periodicity
of the ether. If we want to move a glider, without changing the ether
it lies in, we must move it by a vector which represents a periodicity of
the background ether. If we call the period of an A glider an

!
A unit, and

the period of a B glider a
!
B unit, then every periodicity of the ether is

an integral combination of
!
A units and

!
B units, and conversely. Since a

glider can be moved by its own period without changing anything, the
period of each glider must be an integral combination of

!
A and

!
B units.

Figure 5 shows how each glider’s period can be expressed in this way.
It is an interesting exercise to show that the number of different

kinds of collisions between two gliders is given by the “cross product”
of their (

!
A,
!
B) periods: If one glider has an (

!
A,
!
B) period of (pa, pb),

and the other’s is (qa, qb), then the number of ways they can collide
is """"paqb ) pbqa

"""". As a simple example, the A and B gliders can collide
in only one way, which results in mutual annihilation (note that their
widths sum to 0 mod 14).
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Figure 6. The six possible collisions between an A4 and an Ē.

3.2 Glider Measurements

Often we will want to compare the relative locations of nearby gliders.
In fact, this is the only kind of measurement that will turn out to be
useful. Absolute measurements, in terms of a fixed (x, y) coordinate
system, turn out to be almost impossible to work with, and so we won’t
use them.

For example, let’s look at the six ways an A4 can hit an Ē, shown in
Figure 6. The relative positions of the gliders as they collide determines
which outcome will occur. What we need is some simple way to measure
their relative positions. The way we will do this is with! distance.

3.2.1 ! Distance

The idea of ! (pronounced “up”) distance is to associate a diagonal
row of ether triangles, parallel to the A slope, with each glider. Since
the ethers on the two sides of a glider are separated by the glider, we
can do this independently on the two sides of the glider. For example,
for an Ē, we associate the rows shown in Figure 7. Then, if we want to
compare two Ēs which have no other gliders in between them, such as
the two shown in Figure 7, we look in the ether region between them to
see how the second Ē’s rows compare to the first Ē’s rows. If their rows
match, then we say the second Ē is !0 from the first. If a row of the
second Ē is one row to the upper right from a row of the first Ē, then
we say the second Ē is!1 from the first, and so on. Since Ēs associate
themselves with every sixth row due to their periodicity, the! distance
between them is necessarily a value mod 6. In Figure 7, the second Ē is
!5 from the first.

For an An glider, the associated ether row on each side is simply
the row adjacent to the glider. Now we know how to describe the six
relative positions of the A4 and Ē in Figure 6: They are the cases where
the Ē is!0,!1,!2,!3,!4, and!5 from the A4.
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Figure 7. The! distance for Ēs is defined by associating diagonal rows of ether
triangles with the Ēs as shown. On each side of an Ē, we associate it with the
rows that penetrate farthest into the Ē.

In this paper, our concern with! distance will almost always ulti-
mately be in relation to Ēs, so for the remainder of the paper, it should
be understood that all! distances are a value mod 6. The only excep-
tion will be that when we are comparing two A gliders, we might be
interested in the absolute distance between them, in which case we will
write it in small type between the As, so for example A 0A represents
two As with just one diagonal row of ether triangles between them, so
that both As associate themselves with this row. By extension, A )1A is
the same as A2.

3.2.2 ! Distance
The idea of ! (pronounced “over”) distance is to associate a vertical
column of ether triangles with each glider. Since the ether triangles in a
vertical column are not adjacent to each other, such a column does not
make itself as clear to our eyes as did the diagonal rows used for !
distance. Nonetheless, it is fairly easy to measure the distance between
such columns. If we move one column over, the triangles of the new
column are staggered with respect to the original column. If we move
two columns over, then the triangles are at about the same height and
adjacent to the original triangles.8

For an Ē, we associate the columns shown in Figure 8. Since Ēs
repeat themselves every fourth column, the ! distance to or from an Ē

8Since ! distance measures pure horizontal displacement, we could in this case make
equivalent measurements by using absolute space time coordinates and considering just
the spatial coordinate. However, the use of ! distance better illuminates the general
method of using the background’s periodicity as an aid to practical measurement.
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Figure 8. The ! distance for Ēs is defined by associating vertical columns of
ether triangles with each Ē as shown. The markings extending to the middle of
the picture mark every fourth column and allow one to easily compare the two
gliders.

only makes sense mod 4. Since we will be using ! distance in relation
to Ēs, we will understand ! distances to always be interpreted mod 4.
In Figure 8, the second Ē is 3! from the first.

For a C2 glider, the associated column of ether triangles on each side
is simply the column closest to the glider. We can describe the four
relative positions of the C2 and Ē in Figure 9 as being the cases where
the Ē is 0!, 1!, 2!, and 3! from the C2.

Between C gliders, we can measure an absolute ! distance, which we
will indicate by writing it in small type between the Cs, so for example
C1

1C1 represents two C1s that have exactly two vertical columns of
ether triangles between them, each C1 associating itself with the nearer
column.

3.2.3 Preservation of Spacing

Looking at Figure 10, we see that it contains many collisions between
C2s and Ēs. Each collision is of the form of the fourth collision in
Figure 9, where the Ē is 3! from the C2, and the result is that a new Ē
and C2 get created. We can and will think of this collision as a C2 and
an Ē crossing each other.

Since the emerging C2 from one of these collisions is 0! from the Ē
that produced it, and the next Ē must be 3! from this emerging C2 in
order to cross it, we see that the second Ē must be 3! from the first Ē if
they are both to cross the “same” C2.

Similarly, we can examine the left side of one of these collisions, and
note that the C2 leading to the collision is 3! from the Ē it produces.
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Figure 9. The four possible collisions between a C2 and an Ē.

Since we know this emerging Ē must be 3! from the next C2 it will pass
through, we can add these (mod 4) to find that two C2s must be 2! from
each other in order for an Ē to be able to cross them both.

So we know that if we have several C2s spaced 2! from each other,
followed by several Ēs spaced 3! from each other, and the first Ē is 3! from
the last C2, then all of the initial collisions will be crossing collisions, as
in Figure 10.

But what about the remaining collisions? We do not have much
control over the gliders resulting from the earlier collisions, so how can
we make sure the newly produced gliders will be aligned so as to cross
each other? If we consider several C2s crossing an Ē, it is clear that each
C2 suffers exactly the same absolute displacement during its crossing,
since the crossing collisions are identical, and so the positions of the C2s
relative to each other is perfectly preserved once they have all crossed
the Ē. This means that if they were 2! from each other to begin with,
then they will still be 2! from each other after an Ē has crossed them all,
and so a second Ē, if it crosses the first C2, will cross all the C2s just
like the first Ē did. So in fact the only possibility for all the remaining
collisions is that they must all be crossing collisions!

In general, when several C2s cross several Ēs, as in Figure 10, the
C2s will end up with exactly the same spacing as they started with,
and the same is true for the Ēs. For example, in Figure 10, the C2s
start out in the form C2

6C2
10 C2

14 C2, and they end up in just the same
arrangement.
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Figure 10. When Ēs cross C2s, the spacings are preserved, both between the C2s,
and between the Ēs.

We do not need to do any calculations, or even know exactly how
much displacement results from each crossing, to know that the relative
spacings will be preserved. This phenomenon of spacing preservation
provides a neat solution to one of the main obstacles in one dimensional
computation: The problem of getting data to cross over other data. By
representing data in terms of spacings between gliders of the same type,
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we can enable data travelling at two different speeds to cross without
interference, all using just one single type of crossing collision.

If we were ever tempted to use different types of gliders to represent
different values of data, we should disabuse ourselves of that conceit
now that we see how this method of representing data only requires one
type of crossing collision in order to let all values of data cross each other,
whereas using different gliders for different values would require many
different crossing collisions to happen to exist in phases compatible with
each other in order for any transfer of data to be possible.

Now it is clear why our measurements all concern themselves only
with the relative positions of neighboring gliders: Not only is that what
determines which collisions will occur, but it is also the way we will
represent data.

3.2.4 Data Conversion
In Figure 6, we saw three collisions in which an A4 effectively converted
an Ē into a C2. Is it possible to use this as a way to convert data encoded
with Ēs into data encoded with C2s?

Recalling that if two Ēs cross a C2, such as in Figure 10, then the
second must be 3! from the first, and that an Ē must also be 3! from
the C2 it is going to cross, we see that the C2 it is going to cross must
always be 0! from the preceding Ē. Looking at the three collisions of
Figure 6 which convert an Ē into a C2, we see that for the first one,
the resulting C2 is 3! from the Ē instead of 0!, meaning that the next Ē
that comes along would not be able to cross it, so this collision cannot
be used for data conversion. However, for the second and third C2
producing collisions, the C2 does happen to be 0! from the Ē, and so
both of these collisions can work for data conversion. Based on their
relative appearances, we will call the third one, where the Ē is!5 from
the A4, the “short” collision, and we will call the second one, where the
Ē is!2 from the A4, the “big” collision.

Let’s consider the first collision shown in Figure 6, where the end
result is that the A4 and Ē are recreated on opposite sides of each other.
Again, we can consider this as an A4 crossing an Ē. The A4 is displaced
significantly by the crossing, but like before, this will not concern us.
If we want two consecutive A4s to pass through an Ē, we see that the
first A4 is!5 from the Ē emitted from the first collision, which in turn
must be!0 from the next A4 in order to pass through it, so the upper
A4 must be!5 from the lower in order for them both to both be able to
pass through an Ē. We will in general assume that A4s should be spaced
like this, since that will allow us to send Ēs through them if necessary.

Now we are in a position to better examine the spacings between Ēs.
If we consider two Ēs, the second of which is !k from the first, and
we suppose that the first one crosses an A4, then since the A4 emerging
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from that crossing is!1 from the Ē above it, the second Ē will only be
!k)1 from that emerging A4. This means that the relation between the
two Ēs, plus the knowledge that the first Ē will cross the A4, is enough
to tell us how the second Ē will hit the A4. So for example if we want
the second Ē to cross the A4 just like the first one did, then since we
want it to be!0 from the A4 in order to cross it, we will need it to be
!1 from the first Ē. However, if we want the second Ē to be converted
into a C2 with the short reaction, then we will want it to be !5 from
the A4 so as to cause a short reaction, and so we would need it to be!6
(i.e. !0) from the first Ē.

Now let’s consider the same question, but this time suppose that the
first Ē is turned into a C2 by the A4 (say with the short reaction) instead
of passing through it. So we have two Ēs, the second of which is !k
from the first, and we suppose that the first one is turned into a C2 by
a short reaction with an A4. If the Ēs are 3! from each other then we
know that the second Ē will pass through the C2, and then if there is
another A4, we would like to know what collision will occur between
it and the second Ē. We will assume as before that the A4s are!5 from
each other. But we have a problem, in that the ether used for comparing
the two Ēs is separated by the C2 from the ether in which the emerging
Ē will hit the A4, so we can’t immediately compare that A4 to either of
the original Ēs.

Solving this problem turns out to be quite simple; we merely need to
associate diagonal ether rows on one side of the C2 with diagonal ether
rows on the other side. To do this, we first notice that on both sides of
the C2, the diagonal rows used for! measurements end at the C2 next
to one of the C2’s large triangles. So let’s associate each large triangle
of the C2 with the diagonal row that ends at it, both on the left and on
the right. This gives us an association between rows on opposite sides
of the C2.

So now, we can combine known measurements that will answer our
question. We know that the upper A4 is!5 from the lower A4, and we
can measure that the first Ē is!4 from the upper A4 as measured through
the lower ethers through the C2 below the first collision, and the second
Ē is!k from the first Ē, and we can measure that the Ē emerging from
the crossing is !4 from the incoming second Ē as measured through
the ethers across the C2 above the crossing, so in total, since the C2
was crossed once each way, thus cancelling any offset it might have
contributed, the emerging Ē is!5*4*k*4, or!k*1, from the lower A4.

So for example, if we want the second Ē to be converted into a C2
with a short reaction just like the first one was, then we want it to be!5
from the lower A4, which means it should just be!4 from the previous
Ē. Or, if we want the second Ē to pass on through the A4, then since it
should be !0 from the A4, we conclude that it should be !5 from the
previous Ē.
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Figure 11. Assuming each A4 is!5 from the previous, then Ēs which are 3! from
each other can either pass through all the A4s, or be converted into C2s, based
solely on their relative! distances from each other.

Complex Systems, 15 (2004) 1–40



Universality in Elementary Cellular Automata 23

We can sum up some of our results on data transmission and conver-
sion for future reference:

If we space C2s so that each is 2! from the previous, then if an Ē crosses
one, it will cross them all.

If we space Ēs so that each is 3! from the previous, then if the first one
crosses a C2, then they all will.

If we space A4s so that each is!5 from the previous, then if an Ē crosses
one, it will cross them all.

If an Ē crosses an A4, the next Ē will too if it is!1 from the first Ē.

If an Ē crosses an A4, the next Ē will instead have a short reaction if it is
!0 from the first Ē.

If an Ē has a short reaction with an A4, then the next Ē will also have a
short reaction (with the next A4) if it is!4 from the first Ē.

If an Ē has a short reaction with an A4, then the next Ē will instead pass
through the next A4 if it is!5 from the first Ē.

Now, as our final measurement task, we will examine how the spac-
ings between Ēs are converted by A4s into spacings between C2s. As we
saw, if two neighboring Ēs are going to be converted into two C2s by
short reactions with two properly spaced A4s, then the second Ē must
be 3! and!4 from the first. However, this still leaves some flexibility in
the overall distance between the two, and this flexibility is what can be
used to encode transmitted data.

We will assume that the spacing between the A4s is fixed, and look
at how a change in the Ē spacing affects the C2 spacing. To examine
changes in the Ē spacing, we will hold the first Ē fixed, and look at
how we can move the second Ē while maintaining its 3!!4 relation with
the first Ē. Maintaining the!4 relation is the same as maintaining the
!0 position with respect to the lower A4, and any such position can be
attained simply by moving the Ē back and forth in the

!
A direction, so

that the A4 hits it sooner or later than it otherwise would. By moving
the Ē one unit in the

!
A direction, its ! distance from its neighbors is

changed by one. So to preserve the 3! relation which allows it to cross
the C2, we must move it by four

!
A units at a time.

If we move the second Ē to the lower right by 4
!
A, then the collision

with the A4 will occur exactly four
!
A units to the lower right of its

original position, and so the resulting C2 will be produced exactly four
columns to the right of its original position, closer to the first produced
C2. So widening the gap between the Ēs leads to a narrower gap between
the C2s, and this gap between the C2s can be adjusted in increments of
four columns with this method. This makes sense, since we already
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knew that the short collision is guaranteed to create the second C2 so
that the first one is 2! from it, or in other words that only spacings of
the form C2

4k*2C2 are possible. Now we see that not only are possible
spacings restricted to this form, but also conversely every spacing of this
form is possible, within the maximum spacing allowed by the A4s and
the minimum spacing of C2

10C2 obtainable from these collisions.
If instead of holding the A4s fixed and varying the spacing between

Ēs, we consider the spacing between two Ēs to be fixed and vary the
lower A4 by increments of 6

!
B, we see that the location of the collision

can be adjusted in increments matching the Ē’s period, which again
corresponds to being able to adjust the position of the C2 in increments
of four columns. So given some specific spacing between Ēs that are!4
and 3! from each other, and any particular goal of C2

4k*2C2 with k 0 2,
it is always possible to have A4s that are properly spaced to achieve this
goal.

So now we see how information, encoded in spacings between Ēs,
can travel through C2s, be converted into spacings between C2s by A4s,
and remain intact while allowing more Ēs to cross over.

4. The Construction

Now it’s time to put everything together, finding explicit arrangements
of gliders in Rule 110 to implement something along the lines of the
universal glider system of Section 2.3.

4.1 The General Idea

In Figure 10 we saw how Ēs and C2s could cross over each other, so
they seem like good candidates for representing moving data crossing
tape data. And the ability of A4s to convert the Ēs into C2s is just what
we need for an ossifier. So our approach will be to use C2s for tape data,
Ēs for moving data, and A4s for ossifiers.

As suggested in Section 3.2.3, we will encode the Ys and Ns of tape
data and moving data by using different spacings between C2s for tape
data, and between Ēs for moving data. The specific details of what
spacings to use are flexible, so let’s turn our attention to the right hand
side.

On the right hand side, we still have to represent leaders and table
data in some way, so that when a leader hits the tape, the result is either
a rejector, wiping out the ensuing table data, or an acceptor, converting
the table data into moving data.

With the help of a good nondeterministic oracle, we can quickly
determine that the representations shown in Figure 12 will turn out to
be useful. Figure 12 shows a sequence of eight E gliders (mostly Ēs)
coming from the right, hitting four vertical C2s. The four C2s together
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Figure 12. A character of tape data being hit by a leader. In the first picture, the
leader hits an N and produces a rejector A3. In the second picture, a Y is hit,
producing an acceptor A 4A 1A. In both cases, two “invisible” Ēs are emitted
to the left. The first Ē of the leader reacts with the four C2s in turn, becoming
an invisible Ē at the end, and emitting two As along the way. The difference
in spacing between the center two C2s in the two pictures, representing the
difference between an N and Y of tape data, leads to different spacings between
the two emitted As. This causes the second A to arrive to the C3–E4 collision at
a different time in the two cases. In the first case, the A converts the C3 into a
C2 just before the collision, while in the second case, it arrives in the middle of
the collision to add to the mayhem. The different outcomes are then massaged
by the five remaining Ēs so that a properly aligned rejector or acceptor is finally
produced.
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represent one character of tape data, and the eight Es together form a
leader. To the lower right, either a rejector, A3, or an acceptor, A 4 A 1A,
is emitted.

But, disturbingly, in each case, two Ēs have been emitted to the left,
heading into the rest of the tape. As it will turn out, they are in the
phase where they will not only pass through the tape, but also pass
right through the A4s that would ossify normal moving data. We will
call them invisibles, since they pass through both the tape data and the
ossifiers with no effect.

One nice thing about invisibles is that since they never go away, they
constitute a permanent record of everything that has happened. Since
each acception or rejection generates a pair of invisibles, with the gap
between them indicating whether it was an acception or rejection that
generated them, the invisibles encode a complete history of the activity
of the cyclic tag system that is being emulated.

If we continue questioning our oracle, we can quickly find the promis-
ing components shown in Figure 13. These components have the nice
property that they are erased by a rejector but turned into two Ēs by
an acceptor. The rejector or acceptor then continues on, ready to reject
or accept more components, until finally, the rejector or acceptor will
be absorbed by the next leader as shown in Figure 14, converting that
leader from a raw leader into the prepared leader form originally shown
in Figure 12.

For reasons that will become clear later, the first component after
a leader is always a primary component, and all the rest are standard
components. Two components together represent one character of table
data. The spacing between them determines which character: A wider
spacing is used to represent an N, and a narrower spacing is used
to represent a Y. If accepted, the two components produce four Ēs,
representing one character of moving data. Again, the spacing between
the middle two Ēs determines which character is represented by the
moving data. An ossifier consists of four A4s, and converts the four
Ēs of a character of moving data into four C2s, representing a new
character of tape data. This process inverts the spacings, so now a
narrow gap between the middle two C2s indicates an N, while a wider
gap indicates a Y, as seen in Figure 12.

So now we see the overall form of the construction. But we do not
yet see why it should actually work — when two gliders collide, they can
do so in many ways, and there is no reason to blindly assume that we
will be able to arrange the parts described above so that the collisions
will all work out as promised.

Luckily, our oracle was wise, and it will all work out. The remaining
parts of this section will present the details of how this works.
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Figure 13. Components getting accepted or rejected. The left pictures show
primary components; the right pictures show standard components. The upper
pictures show acception; the lower pictures show rejection.
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Figure 14. Both an acceptor and a rejector are absorbed by a raw leader, which
becomes a prepared leader in the process.

4.2 Details of the Middle

In the middle, we have moving data crossing to the left over tape data.
As long as the C2s are spaced 2! from each other, and each Ē is 3! from
the first C2 it’s supposed to pass through, we know that all the collisions
will be “crossing” collisions, just like in Figure 10.
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For completeness, we also need to be sure that the gliders are spaced
far enough from each other that the crossing collisions will not bump
into each other. For the C2s, that means they must be spaced no closer
than C2

6C2. For the Ēs, there isn’t any real danger, since if there is any
ether between them, then they are able to both cross a C2.

So the middle will work as planned if the following conditions are
met:

The C2s must be spaced 2! from each other.

Adjacent C2s must be spaced no closer than C2
6C2.

Each Ē must be 3! from the first C2 it crosses.

4.3 Details of the Left

On the left, moving data is turned into tape data by the ossifiers, while
invisibles pass through the ossifiers unharmed. We will use the “short”
reaction from Section 3.2.4, rather than the “big” one, for ossification.9

Like in Section 3.2.4, using the short reaction to convert an Ē into a
C2 guarantees that the C2 will be spaced 2! from the last one that the Ē
went through, with a minimum spacing of C2

10 C2, so we see that the
first two conditions listed for the middle to work correctly will always
be satisfied, since all tape data will arise from this reaction, except for
the tape data present in the initial conditions when the system is started,
which can of course be explicitly arranged so as to satisfy the conditions.

Two consecutive ossifiers (two groups of four A4s) must have a gap
of the form A4 6k*5A4 between them, with k large enough to satisfy the
spacing condition of Section 2.3. This requirement is easily satisfied,
since the spacings between the A4s can be set directly with the initial
conditions.

The very first (rightmost) A4 of the first ossifier must pass through
the very first Ē that it hits, since that will be the first invisible from the
first tape symbol being read. Since in this case there is no previous Ē,
we cannot say that the Ē will be hit correctly based on its relation to
a previous Ē. However, we can easily make sure that it is hit correctly
just by explicitly setting up the initial conditions so that the ossifiers are
correctly aligned for this collision.

So here on the left, all that remains to be shown is that the tape data
characters that are created by ossification will have the correct spacings
to properly represent Y and N characters. As shown in Figure 12,

9The construction can also be attempted using the “big” reaction, but then it turns out
to be impossible to adjust the gliders so that the calculations in Section 4.4.1 can work
out correctly, and so such a construction cannot work. This emphasizes the importance
of checking such details whenever a “construction outline” is proposed, before believing
that the construction will actually work as claimed.
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a tape data Y is represented by C2
18 C2

18C2
14 C2, and a tape data N is

represented by C2
18C2

10 C2
14 C2. As discussed in Section 3.2.4, reducing

the central C2 spacing from 18 to 10 can be accomplished by increasing
the central Ē spacing by 8

!
A. Since the first and third C2 spacings are

constant, the third and first Ē spacings should be constant.
As far as the collisions not bumping into each other, it is clear from

Figures 12 and 13 that the Ēs will be spaced far enough apart that they
will have no problem, except possibly the last Ē of some moving data
could be close to the first invisible from the following leader, so we
should make sure those aren’t super close to each other. Since the Ēs
will not be too close to each other, the A4s will have to be fairly far
apart in order to generate the small C2 spacings, so there won’t be any
danger of the A4 collisions bumping into each other.

So, our conditions for proper operation of the left hand side are:

An invisible Ē following a previous invisible Ē must be!1 from it.

A moving data Ē following an invisible Ē must be!0 from it.

A moving data Ē following a previous moving data Ē must be!4 from it.

An invisible Ē following a moving data Ē must be!5 from it.

The moving data for a Y and N should be the same, except that the
central spacing for an N should be 8

!
A larger.

The last Ē of moving data shouldn’t be super close to the following
invisible.

4.4 Details of the Right

The right hand side is where all the trickiness lies. We must arrange
everything so as to satisfy all the constraints required by the middle and
the left. Luckily, we have one thing to our advantage: When adjusting
the leaders and components, we can adjust their ! and ! distances
independently. To see this, note that if we move something vertically
by one C period, i.e. the distance from one triangle in a vertical ether
column to the next one, then we have not affected its ! distance, but we
have changed its ! distance by 1. Conversely, if we move something
diagonally by one A period, i.e. the distance from one triangle in a
diagonal ether row to the next one, then we have not affected its !
distance, but we have changed its ! distance by 1. So by using these
two methods of adjustment, we can clearly get any combination of!
and ! distances.

In light of this, we will consider the! and ! distances separately.
Even when the! and ! distances are specified for a leader or com-

ponent, there is still some flexibility in its location. Using this flexibility
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as described in Section 3.2.4, we can easily satisfy the last two condi-
tions listed for the left side to work. In general, we will not abuse the
flexibility; we will be consistent in our spacing so that the end result is
a periodic sequence encoding the cyclic appendant list.

4.4.1 ! Distances on the Right

As discussed in Section 3.2.4, an invisible Ē must be !1 and 3! from a
previous invisible, and Figure 12 shows that this is indeed the relation of
the second invisible to the first, in both the acception and the rejection
cases.

Since the primary and standard components are the same except for
the first two spacings in their Ēs, they yield exactly the same spacing
between the two emitted Ēs when accepted. This means that the first
and third spacings are always the same in the Ēs for a character of
moving data. The central spacing can be increased or decreased by 8

!
A

by moving the entire second component 8
!
A farther or closer to the first.

Such a motion will clearly not affect the component’s interaction with
the acceptor or rejector — the entire interaction will move by the same
amount, and the emitted acceptor or rejecter will be in exactly the same
position as it otherwise would.

We know that a moving data Ē must be!4 from a previous moving
data Ē. Between the Ēs of an accepted component, Figure 13 shows us
that this will be the case. But how do we know whether this will be
the case between consecutive Ēs generated by neighboring components?
We can tell by comparing both Ēs to the acceptor which connects the
components. In both primary and standard components, the emerging
acceptor is !0 from the second Ē of emitted moving data. And in the
ensuing component, which will always be a standard component, the
first emitted Ē is!4 from the incoming acceptor. Putting these together,
we see that the first Ē emitted by the second component will always be
!4 from the previous Ē of moving data. So now we see that consecutive
Ēs of moving data will always have the second being!4 from the first.

Note that in order for the acceptor signal to hit a standard com-
ponent correctly, the first Ē of the component must be !5 from the
acceptor. Since the acceptor is itself!3 from the last Ē of the previous
component, a standard component must always be placed!2 from the
previous component in order for acception to work correctly. Fortu-
nately, the corresponding calculation based on a rejector also indicates
that a standard component must be!2 from the previous component in
order for rejection to work correctly, so this placement works for both
acception and rejection.

Now all we have left to check is the ! distances between moving
data and invisibles, and between components and leaders.

Let’s look at the first component after a leader, which is always a
primary component. In the case of acception, the acceptor is !0 from
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the last invisible, and the first Ē of moving data emitted from the primary
component is in turn!0 from the acceptor, so the moving data is a total
of!0 from the invisible, which is just right.

If we look at how the primary component should be placed relative
to the leader, we see that the first Ē of the primary component must
be !5 from the acceptor, which is in turn !3 from the last Ē of the
leader, so the primary component should be placed a total of!2 from
the leader. Again, the same calculation using the rejector gives the same
requirement, so placing the primary component!2 from the leader will
work for both acception and rejection.

Now let’s look at the last component before a leader. If the com-
ponent was accepted, then we know the acceptor is !0 from the last
emitted Ē of moving data. The first Ē of the prepared leader will be
!0 from the acceptor, so it will also be !0 from the last Ē of moving
data. But this is not the end, because what we really need is the !
distance from the last Ē of moving data to the first invisible that will
eventually be emitted when the leader hits a character of tape data, and
this relation must be measured in the ether to the left of the character
of tape data that will be read.

To do this, we will use the same method of measuring “across” the
C2s as we used in Section 3.2.4. Since the first and third spacings in
the character of tape data are fixed, the relationship between the first
Ē of the prepared leader and the temporary Ē that it becomes after
interacting with two of the C2s is fixed, as is the relationship between
that temporary Ē and the invisible Ē that it becomes after interacting
with the other two C2s. For now let’s say that the first Ē of the prepared
leader is!k from the previously emitted Ē, which may have been either
an invisible or moving data. So, measuring across the C2s, we see that
the invisible is !2 from the temporary Ē, which is !1 from the first Ē
of the prepared leader, which we are saying is!k from the previous Ē,
which is!2 from its position after crossing one C2, which is!2 again
from its position after crossing the second C2, which is !2 yet again
from its position after crossing the third C2, which is !2 again from
its position after crossing the fourth C2. So in total, the invisible is
!2*2*2*2*k*1*2 , or!k*5 from the previous Ē.

Now, if the previous Ē was moving data, as we were assuming before
this big calculation, then k is 0, and the invisible will be !5 from the
previous Ē of moving data, which is just right.

On the other hand, if the previous components were rejected, then the
previous Ē was itself an invisible from back before all the components
got rejected, and we need to see what k would be in this case. As we
see in Figure 14, the leading Ē of the prepared leader is !2 from the
rejector, which in turn as we see in Figure 13 is !5 from its previous
position for every standard component it rejects, and then!1 from its
position before the primary component, which is in turn !4 from the
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previous invisible. So if there were c characters of table data, then
there were 2c components, of which one was primary, so we have
k ( 4 * 1 * 5(2c ) 1) * 2 ( 4c * 2. Since an invisible should be !1
from a previous invisible, we also need to have k*5 ( 1, or k ( 2, since
k is a value mod 6. Equating these expressions for k yields 2 ( 4c * 2,
or 0 ( 4c, mod 6, which is satisfied only if c is a multiple of 3.

This might startle us, but we’ll have to accept the fact that invisibles
will only be lined up correctly after rejection if the number of characters
in the table data was a multiple of three. Luckily, it will turn out that
it is no problem to require that all table data entry lengths must be
multiples of three, as we will show in Section 4.5.

There are still a couple of issues to wrap up concerning the! dis-
tances on the right. One is that we need to be sure that the raw leader
can be positioned after the final component so that both the acceptor
and rejector will prepare it correctly. Since the raw leader does not start
with an Ē, it is not immediately obvious how to measure its position
compared to the final component, perhaps in part because its alignment
must depend on more than just the leading E5, since the Ē that is pro-
duced by the acceptor or rejector must be properly aligned not only with
the neighboring E1, but also with the more distant Ēs, which have twice
the period of Ens. In other words, one has to be careful that the initial
Ē doesn’t wind up one En period, or half an Ē period, off from where it
should be.

Our solution to this problem may seem almost natural by now: We
will associate the diagonal ether rows on opposite sides of an En by
associating its large size 8 and size 5 triangles to each other and to the
ether so that triangles are associated if the jagged lower right edge of
one touches the upper left corner of the next. This gives an association
for every third diagonal row of ether, and the association is trivially
extendable to every row.

Using this association, we can verify that in each of the pictures in
Figures 12 and 14, the second Ē of the prepared leader (after the E4) is
!0 from the prepared leader’s first Ē, as measured through the E1 and E4.

We can also see that in the case of acception, the first Ē of the raw
leader should be!3 from the acceptor, which is in turn!3 from the last
Ē of the last component, so the raw leader must be placed so that its
first Ē is !0 from the last Ē of the preceding component, as measured
throught the Ens. In the case of rejection, the raw leader’s first Ē should
be!0 from the rejector, which is in turn!0 from the last component’s
last Ē, so fortunately we get the same requirement for the placement of
the raw leader in either case.

Finally, it must be pointed out that our formula k ( 4c*2 for the!
distance between a previous invisible and the leading Ē of a prepared
leader is wrong in the case that there are no components at all, since then
there is no primary component and no standard component, whereas
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Figure 15. The left picture shows a short leader absorbing a rejector and then
hitting an N of tape data. The right picture shows a short leader absorbing an
acceptor and then hitting a Y of tape data. Even with the wide spacing of the
Y’s C2s, the second A still turns the C3 into a C2 just before the E4 hits it, so
from that point on, the pictures are the same, and only three Ēs are needed to
turn the signal into a properly aligned rejector.

our formula treated it as being one primary component, minus one
standard component, which doesn’t make sense. Since the formula is
incorrect, the spacing is also incorrect, and so it turns out that we need
to use a different kind of leader when it will not be followed by any
components, which is the case corresponding to an empty appendant.

Complex Systems, 15 (2004) 1–40



Universality in Elementary Cellular Automata 35

Figure 15 shows a raw short leader absorbing a rejector in exactly
the same way a regular leader does, becoming a prepared short leader
and then continuing on to hit a Y of tape data, which yields exactly the
same result as if it hits an N of tape data, since if the appendant is empty
we don’t need to worry about distinguishing a Y from an N. The short
leader always emits a rejector,!0 from the last invisible. Since the next
raw leader (either short or normal) will be placed so that it is prepared
correctly by this rejector, the leading Ē of its prepared form will be!2
from the rejector and therefore also !2 from the previous Ē, which is
just what the formula wanted it to be all along, so the next invisible
will be correctly positioned relative to the last invisible from the short
leader.

In summary, we see that it is possible to arrange the right hand side so
that the! distances throughout the system will be correct, regardless
of which appendants turn out to get accepted or rejected.

4.4.2 ! Distances on the Right

Now we will examine the ! distances and see if we can place the leaders
and components so that the ! distances always turn out as intended.
This analysis will be somewhat simpler than that for! distances, since
our main concern with ! distances is just that each Ē must be 3! from the
first C2 it crosses, which is the same thing as being 3! from the previous
Ē which crossed the C2.

When a component emits two Ēs, as in Figure 13, we can see that the
second is always 3! from the first. The first one’s relation to whatever the
previous Ē was will be determined by the placement of the component.

Since the components can only be compared above the acceptor, and
the emitted Ēs can only be compared below the acceptor, to relate the
two we will need a method of associating the ether columns above an An

with the columns below. This is easy, since such columns are perfectly
aligned with each other anyway, and the vertical columns of dots in a
large An help keep it clear which column is which if they are far apart.
With this association of ether columns across Ans, crossing an An clearly
yields the same associated columns as crossing n As.

We can see that for both primary and standard components, the
first emitted Ē is 2! from the first Ē of the component, and for primary
components, standard components, and leaders (but not short leaders),
the last Ē of the leader or component is 1! from the last emitted Ē.

Where should we place a component so that the emitted Ēs will be
correctly aligned during acception? If we place it so that the first Ē is k!
from the previous Ē of the previous component or leader, then the first
Ē emitted from the component is 2! from the first Ē in the component,
which is k! from the last Ē of the previous component or leader, which is
1! from the previously emitted Ē, so in total the component’s first emitted
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Ē is 2*k*1! from the previously emitted Ē. Since it needs to be 3! from the
previously emitted Ē, we see that k should be 0, so all components
should be placed 0! from the previous component or leader.

The only remaining kind of Ē which needs to be aligned correctly to
pass through the tape data is the first invisible produced by a leader or
short leader. Since the first invisible produced by a leader is always 1!
from where the leftmost C2 of the character of tape data read by the
leader was, and that C2 is 2! from the C2 to its left, the first invisible is
always 3! from the first C2 it needs to cross, as required.

Now we know that all the Ēs which need to pass through the tape data
will be positioned correctly to do so. But there is one very important
case where an Ē should not be positioned so as to pass through the tape
data: The first Ē of a prepared leader must be 1! from the first C2 that it
hits, so that the collision will occur as shown in Figures 12 or 15. This
means it must also be 1! from the previously emitted Ē.

If the previously emitted Ē was the second invisible generated by a
short leader, then since the short leader’s last Ē is 2! from the second
invisible as measured through the rejector it always produces, the first Ē
of the following prepared leader should be 3! from the last Ē of the short
leader, as measured back through the rejector, in order to be a total of
1! from the second invisible.

But if instead the previously emitted Ē was a final Ē of moving data,
then since the last component’s last Ē was 1! from the final Ē of moving
data as measured through the acceptor, the first Ē of the prepared leader
should be 0! from the last component’s last Ē, as measured back through
the acceptor, in order to be a total of 1! from the last emitted Ē.

The only remaining case is that the last Ē emitted prior to the prepared
leader was the second invisible of a regular leader, in which case that
leader must have produced a rejector which wiped out the table data.
Using the alignment information deduced from considering acception,
we will track the ! distances down through the components to see how
the prepared leader will relate to the last Ē in this case, and we hope to
find that it will be aligned correctly.

The last Ē of the previous leader is 1! from the second invisible it
emits, and the first Ē of the first component is 0! from that. For both a
primary component and a standard component, the final Ē is 3! from the
first Ē as measured through the rejector at one end and back through
the rejector at the other end, and as we saw earlier, each component’s
first Ē is 0! from the previous component’s last Ē. The Ē of the prepared
leader must be 0! from the last Ē of the last component as measured
through the rejector, since that’s where it was when we measured it
through an acceptor, and both methods of associating columns across
three As are the same. So in total, the first Ē of the prepared leader must
be 1*3k! from the last emitted invisible, if there were k intervening rejected
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components. Since we were needing this to be 1!, we see that k must be
a multiple of 4. Since there are two components for each character of
table data, we see that there must be an even number of characters of
table data in order for everything to be fine.

As with our previous finding that the number of characters must be
a multiple of three, this will turn out not to be a problem, as the next
section will show.

4.5 Divisibility Requirements

As we saw in the course of analyzing our construction, the number of
characters in each appendant of the cyclic tag system being emulated
must be both a multiple of three and a multiple of two, so in other
words it must be a multiple of six.

This will be automatically satisfied if the number of symbols in the
tag system being emulated by the cyclic tag system is a multiple of six.
We can easily add extra symbols to a tag system without changing its
behavior in any way, so we see that this constraint poses no problem at
all.

4.6 Some Undecidable Questions for Rule 110

As discussed in Section 2.3, given a fixed repeating pattern to the left
and right, it is undecidable whether a given finite initial condition will
lead to periodicity in Rule 110’s behavior.

We also explained that it could be undecidable whether a certain
glider ever gets produced, so let’s look at how that works. If an ossifier
does hit a character of tape data, the collision of an A4 with a C2 always
produces an Ē and an A. The A will turn the neighboring C2 into a C1,
while the Ē will continue until it is hit by the next A4, which due to its
spacing from the first A4 will necessarily turn the Ē back into a C2. The
third A4 will hit that C2, again producing an Ē and an A, and this time
the A will turn the neighboring C1 into an F.

So another specific example of an undecidable question for Rule 110
is: Given an initial middle segment, will there ever be an F?

Let us stop here.

References

[1] Stephen Wolfram. A New Kind of Science (Wolfram Media, 2002).

[2] Stephen Wolfram originally introduced his numbering scheme in Statistical
Mechanics of Cellular Automata, in Reviews of Modern Physics, volume
55, pages 601-644 (July 1983).

[3] John Conway wrote an exposition of “The Game of Life” (a now fa-
mous two dimensional cellular automaton that he discovered), including

Complex Systems, 15 (2004) 1–40



38 Matthew Cook

a sketch of how one might build a universal computer within it, in Win-
ning Ways For Your Mathematical Plays, Volume 2, by E. Berlekamp, J.
Conway, and R. Guy (Academic Press, 1982).

[4] Alvy Ray Smith III showed in Simple Computation-Universal Cellular
Spaces, in the Journal of the ACM, volume 18, number 3, 1971, pages
339-353, that there are universal one dimensional cellular automata, and
he gave examples with (k ( 40, r ( .5), (k ( 18, r ( 1), (k ( 11, r ( 1.5),
(k ( 7, r ( 2.5), (k ( 5, r ( 3.5), (k ( 4, r ( 4), (k ( 3, r ( 6), and
(k ( 2, r ( 10), using the (k, r) notation of [14], where k is the number
of states a cell may have, and r is the “radius” of the neighborhood (not
including the cell itself), so the update function has 2r * 1 arguments.

[5] Jürgen Albert and Karel Culik II exhibited a universal one dimensional
cellular automaton with (k ( 14, r ( 1), in A Simple Universal Cellular
Automaton and its One-Way and Totalistic Versions, in Complex Systems,
volume 1, 1987, pages 1-16. (Interestingly, the cover of that first issue
featured a picture of Rule 110’s activity.)

[6] Kristian Lindgren and Mats G. Nordahl exhibited a universal one di-
mensional cellular automaton with (k ( 7, r ( 1) and (k ( 4, r ( 2), in
Universal Computation in Simple One-Dimensional Cellular Automata,
in Complex Systems, volume 4, 1990, pages 299-318.

[7] Alan Turing presented what are now called Turing machines in 1936, and
he was the first to exhibit a universal Turing machine. In 1956, Shannon
proposed looking for universal Turing machines with a minimal states 1
symbols product, and Ikeno found a 10 1 6 one in 1958. Then Watanabe
found an 8 1 6 one in 1960. Minsky found a 7 1 6 one in 1960, followed
by Watanabe finding an 8 1 5 one in 1961, after which Minsky found a
6 1 6 one in 1961 and a 7 1 4 one in 1962. In 1979, Rogozhin presented
24 1 2, 11 1 3, 7 1 4, 5 1 5, 4 1 6, 3 1 10, and 2 1 21 machines.

Based on Rogozhin’s machines, which all use the same underlying idea,
one can conjecture that a numerical measure of (states ) 1) 1 (symbols )
1) is perhaps a little more accurate. This measure also reflects the fact
that universal Turing machines are impossible with only one state or one
symbol.

All of the above machines had a way of halting, whereas the Turing ma-
chines presented here do not, since they emulate Rule 110, which, being a
cellular automaton, does not have an explicit mode of halting. However,
the machines presented here are certainly capable of “effective compu-
tation” in the sense of Minsky, and so questions about their behavior,
such as “Will this sequence of symbols ever appear on the tape?”, are
undecidable.

Another difference is that the above machines start with a tape which,
outside of the finite “initial condition” region, is “blank” (periodic with
period one, with the same symbol used on both the left and right). The
Turing machines presented here require longer (but fixed) periodic patterns
on the left and right. However, as the last paragraph of chapter 5 in [10]
makes clear, this is not much of a conceptual change.

Complex Systems, 15 (2004) 1–40



Universality in Elementary Cellular Automata 39

[8] Thanks to David Eppstein for figuring out that the two-symbol machine
can be achieved with only seven states. (personal communication, 1998)

[9] Alonzo Church’s “effective calculability”, Alan Turing’s “computability”,
Emil Post’s “canonical systems”, Stephen Kleene’s “general recursive func-
tions”, Raymond Smullyan’s “elementary formal systems”, and many
other people’s precise ideas for describing “what can be calculated”, have
all turned out to have exactly the same calculational capability. This sur-
prising phenomenon lead to the thesis, argued for by many of the people
involved as well as others, and generally accepted, that these systems are
capable of carrying out any specifiable procedure whatsoever.

[10] Chapters 6 of Marvin Minsky’s book Computation: Finite and Infinite
Machines (Prentice-Hall, 1972) provides a very readable and motivated
(by chapter 5) introduction to Turing machines.

[11] Emil Post studied tag systems as a graduate student in 1921, and found
that it was very hard to prove anything at all about them.

[12] John Cocke gave essentially this proof in Universality of Tag Systems With
P ( 2 in the Journal of the Association for Computing Machinery, volume
11, number 1, 1964, pages 15-20. (Minsky gave the same proof in part
14.6 of [10].) While following the same basic idea, the proof presented
here is simpler, requiring just 10m symbols instead of 16m (Minsky) or
17m (Cocke, although m of them exist just for clarity and are never
read), and only requiring two “passes” over the tape instead of three, per
Turing machine step. The first proof of universality in tag systems was a
rather complicated proof, for tag systems with p a product of at least two
distinct primes (e.g. 6), given in Recursive Unsolvability of Post’s Problem
of “Tag” and Other Topics in Theory of Turing Machines by Marvin
Minsky in Annals of Mathematics, volume 74, number 3, 1961.

The observation that Cocke’s proof approach works for Turing machines
using k symbols, if a tag system with p ( k is used, appears to be new.
(The point of Cocke’s paper was to show that tag systems with p as low
as 2 could be universal, since they had already been shown by Minsky to
be universal for many higher values of p.)

[13] Table 15 in the appendix (pages 485-557) of Theory and Applications of
Cellular Automata, by Stephen Wolfram (World Scientific, 1986), or on
pages 575-577 of Cellular Automata and Complexity by Stephen Wolfram
(Addison-Wesley, 1994), is devoted to Rule 110.

The table of “particles” (gliders) appearing there, due to Doug Lind,
corresponds to the following: "B̄, B, G1, Ē, E1, F, E2, C3, C1, C2, D1, D2, A%
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