
Return to Main Page

Meet Mach
By James Scott
December 17, 1997

OPENSTEP's (and now, Rhapsody's) beauty is more than
skin deep. The flexibile, object-oriented user and developer
environments are built upon a flexible, object-oriented
operating system kernel called Mach. Mach was designed
from the ground up as a multitasking, multithreaded
operating system with very powerful communications
facilities. It excels in multiprocessor and distributed
environments. Moreover, it's relatively easy to port to a new
hardware architecture. These features have made it the
foundation of several cutting-edge operating systems.

In this article we'll review the history of Mach and outline
the services it provides. This is a conceptual look, suitable
for those who aren't familiar with the Mach architecture.
Excellent technical documentation is available elsewhere;
some pointers are provided below.

History

Mach traces its ancestry to the Rochester Intelligent Gateway
(RIG), an operating system developed in the mid-1970s at
the Rochester Institute of Technology. RIG was designed as a
modular operating system for the Data General Eclipse
minicomputer. Its main goal was demonstrating the utility
and flexibility of an operating system based on a collection
of processes communicating through a message-passing
protocol. RIG achieved its goal, even demonstrating that its
messaging facility could function across a network. Richard
Rashid, one of RIG's designers, continued researching
modular operating systems when he moved to Carnegie-
Mellon University in 1979. The second generation modular
OS ran on an early engineering workstation called the PERQ.
This new operating system, called Accent, expanded RIG's
capabilities. Accent added an innovative virtual memory
system, transparent network messaging, and other features to
RIG's modular base.

The Mach project started in 1984 and grew out of Rashid's
desire to improve on Accent and provide a foundation upon
which other operating systems could be built. Mach was
designed around a microkernel - a small, efficient kernel
providing basic services such as process control and memory
management. Operating system emulators running as user
processes (or tasks in the Mach parlance) used these services
as the basis for higher-level functions such as file system and

http://graphics.stepwise.com/StepwiseGraphics/stepwise_header.map
http://www.stepwise.com/
mailto:jls3@acm.org

network support. In this way, Mach could masquerade as
another operating system, even running several OS emulators
simultaneously. Other features included support for parallel
multiprocessing, multi-threaded tasks, and refinements to
Accent's excellent VM system. The designers targeted
Berkeley Software Distribution (BSD) UNIX as the first
emulated OS, due to the large amount of software available
for it. Before the first release of Mach, the BSD emulation
was moved into the Mach kernel. This violated the
microkernel concept but did ensure complete compatibility
with BSD UNIX - a concern of DARPA, one of the sponsors
of the research. The first release of Mach appeared in 1986,
running on the multiprocessor VAX 11/784.

Many companies have used various versions of the Mach
kernel in commercial products. The first release of
NeXTSTEP utilized the Mach 2.0 kernel, with some features
added by NeXT. Later releases of NEXTSTEP and
OPENSTEP added more features to the kernel, some adapted
from Mach 2.5. The developer release of Apple's Rhapsody
utilizes much of the OPENSTEP architecture and is based on
Mach 2.5. The production version may be based on Mach
3.0, with BSD 4.4 and MacOS emulators. Mach 3.0 has all
OS emulation code running in user space, leaving a
microkernel of pure Mach. Current releases of OSF/1 and
MkLinux from the Open Group are also based on the Mach
3.0 microkernel. Research on Mach at Carnegie-Mellon
ended in 1994, but the Open Software Foundation's
Cambridge and Grenoble Research Institutes continue to
refine Mach's structure.

Architecture

Mach provides a small number of fundamental services -
memory management, process management, communications,
and I/O. These services do not in themselves provide all the
features of a "real" operating system. Emulators running as
user tasks build upon the microkernel to provide higher-level
services, such as a file system and GUI. This approach
provides several advantages. First, the kernel is smaller so it's
easier to maintain. Second, moving the OS emulators into
user space reduces their dependancy on the underlying
hardware, making them much easier to port to a new
architecture. Also, since they run as user tasks, developers
can use standard tools (such as gdb) to debug them. Finally,
more than one OS emulator can run simultaneously, allowing
(for instance) Yellow Box and Blue Box applications to run
side-by-side.

The Mach microkernel manages five fundamental
abstractions - tasks, threads, ports, messages and memory
objects. Tasks and threads provide the environment and
means of executing a program. Ports and messages allow
tasks and threads to interact with each other and with the

kernel. Memory objects provide a very powerful means of
allocating and managing virtual memory. All of these
concepts are discussed in more detail below. For clarity we
will treat the Mach kernel and UNIX emulator as separate
entities, even though this is not technically the case in Mach
releases prior to 3.0.

Tasks and Threads

Tasks provide an environment for execution and are the basic
unit of resource allocation in Mach. They consist mainly of a
virtual, paged address space and at least four ports (ports will
be described in more detail later). The task port (also known
as a task's kernel port) is used to communicate with the
kernel. The task port identifies the process that is requesting a
service and the task which will be affected. The kernel uses a
task's notify port to advise it of changes in port access rights
and the status of messages it has sent. A task receives
notification of exceptions (such as illegal memory access
attempts or protection violations) through its exception port.
The bootstrap port provides initialization information to a
task, including how to access other system services.

A task also contains scheduling information that tells the
kernel how to run its threads, a pointer to its operating
system emulator, and statistics such as how much CPU time
and memory the task has used. A Mach task does not contain
a current working directory, file descriptor array, or user ID -
all of which are associated with UNIX processes. That kind
of information is handled by the OS emulator and is hidden
from the kernel.

Threads are the executable entities in Mach. Tasks are
passive; a task cannot perform any operations unless it
contains at least one thread. Threads execute instructions and
manipulate the contents of an address space. A thread is
associated with exactly one task, but a task can contain
multiple running threads. These threads share the resources
provided by the task and are not protected from each other.
They coexist in the task's virtual memory space.

In addition to its thread port (which is analogous to the task
port above), a thread has a reply port and an exception port.
The reply port is used in Mach remote procedurce calls
(function calls over a network) to identify the calling task to
the replying task. By default, a thread's exception port is set
to NULL and all exceptions are sent to the thread's task.
Ports may be associated with a thread but they are actually
task-level resources. This means that a thread can have
access to the ports of other threads running in the same task.

Threads are useful when several operations can execute
concurrently on the same data. For instance, a file
management program could use several threads at once. The

main thread could provide a display of the current directory
and react to user commands. A user request to format a
floppy disk would be executed in its own thread, allowing the
main thread to remain responsive while the disk is
formatting. On a multiprocessor host, each thread can be
scheduled to execute on a separate processor, greatly
improving performance.

Communications

In Mach, communication among operating system entities is
performed by passing messages between ports. Ports form the
basic object reference in Mach. Operations on objects (such
as threads or tasks) are performed by sending messages to
and receiving messages from the ports associated with those
objects. Messages are of variable length, and may be of any
size up to the size of the virtual address space. On 32-bit
processors, that's 2^32=4GB! Message passing is not limited
to objects on a single node; Mach provides facilities for
passing messages across a network.

Ports can be thought of as mailboxes to which messages are
sent and queued until another object reads them. They are
implemented as message queues inside the kernel. Each port
is protected; the kernel grants send or receive access to
threads allowing them to send messages to or read messages
from a port. Like UNIX pipes, ports support one-way
communication. Only one object can have receive rights on a
port at any given moment, but several objects can hold send
rights for that port. Unlike pipes, ports support message
streams (as opposed to byte streams). Three messages of 100
bytes each are guaranteed to arrive as three messages, not
one message of 300 bytes. The kernel also guarantees that all
messages will be delivered, and that messages sent by a
particular object will arrive in the order in which they were
sent. Ports can be grouped into read-only port sets, which
allow an object to read from several ports at once. This
allows, for instance, a server to listen for input from several
ports without dedicating a thread to each one.

It should be noted that Mach objects and messages do not
correspond to Objective-C objects and messages. The
Objective-C runtime environment uses a different mechanism
for passing messages among its objects.

Virtual Memory

Mach's modularity and flexibility extend to its virtual
memory system. Mach divides memory management
functions into three parts. The first part, known as the pmap
module, runs in the kernel. It manages the hardware MMU
and is therefore machine-specific. The second part of the
virtual memory manager consists of machine-independent
kernel code responsible for processing page faults and

managing task address maps. The third part, known as the
memory manager or external pager, handles logical memory
management duties, such as tracking memory pages stored in
the swapfile on disk. There is a default memory manager that
runs as part of the kernel, but users can supply their own
memory managers (running outside the kernel) for special
situations.

As mentioned above, each task receives a 4GB (on 32-bit
machines) virtual memory space. Mach supports sparse
memory allocation through the use of memory regions. A
memory allocation call can specify a base address in addition
to the size of the region to be allocated, allowing the
programmer to control where in the virtual address space the
memory is allocated. This new memory region does not have
to be continuous with a previously allocated region. The
memory manager keeps a list of allocated regions,
eliminating the need for an inefficient linear table. Mach also
refrains from mapping virtual pages to physical pages until
the thread attempts to write data to a virtual page, keeping
memory usage to a minimum.

Memory regions allocated by a thread are one example of
Mach memory objects. A file on disk can also be mapped
into a previously unused portion of the virtual address space,
forming a memory object. Receiving a message also causes
the creation of a memory object as the message is mapped
into the receiving thread's address space. Think of a
computer's physical memory as a cache for memory objects.
The kernel manages the pages of the memory objects,
keeping track of which ones are in physical memory and
swapping them to disk as needed. The kernel also allows
tasks mapped to those objects to use the physical memory
pages that they occupy.

Mach allows the task to specify protection values for its
virtual memory pages. Protection values can be any
combination of read, write, and execute. These attributes can
be used to control access to memory shared between tasks.
Mach also provides very fine-grained control over memory
inheritance. A task can assign an inheritance attribute for
each allocated page in its address space. Pages marked copy
are mapped into the child task's address space. However, they
are not physically copied to another location until the child
task attempts to write to that address. This is initially much
faster and uses less memory than physically copying all of
the parent task's allocated memory into the child task's
address space. The share attribute allows true sharing
between parent and child tasks - each can read and write the
page, but the programmer is responsible for avoiding race
conditions. If the page is marked absent, the child does not
inherit that page from the parent. That address is left
unallocated in the child's address space.

This elaborate virtual memory system provides features not
found in other operating systems. Its design isolates machine-
dependent code into a few modules, making it very portable.
The memory allocation and protection functions give the
programmer a great deal of control but make very efficient
use of system resources, allocating physical memory only in
response to write requests. Also unique is the way the
memory system supports the messaging system. When an
object receives a message, the kernel simply maps the
message from the sender's memory space into the receiver's
memory space. This is much less taxing that the typical
UNIX implementation, which involves physically copying
the message from the sender, into the kernel, and from there
to the receiver.

Mach manages only the most fundamental system services,
but it offers solid building blocks for more complex
structures. The task and thread management functions
capitalize on whatever resources the system has available -
single processor or multiprocessor. The message passing
facilities allow objects to send complex data structures to
each other and provide for transparent communication over a
network. Mach's virtual memory management is a model of
flexibility and efficiency, maximizing programmer control
while minimizing demands on the physical memory and
swapfile.

There are several sources for more detailed information on
Mach. The NEXTSTEP/OPENSTEP documentation contains
technical documentation on Mach function calls. It also
documents NeXT-specific features such as loadable kernel
servers. General information on the Mach project and a
wealth of published and unpublished material can be found
at the CMU CS Project Mach Homepage. Several textbooks,
including Tannenbaum's Modern Operating Systems (Prentice
Hall 1992) and Distributed Operating Systems (Prentice Hall
1997) review Mach and compare it to other operating
systems.

James Scott has been a NEXTSTEP developer since 1991. He and his trusty
NeXTstation, Grendel, live in St. Louis, Missouri.

Copyright 1996 Scott Anguish. All rights reserved. Stepwise is a trademark of
Whitelight Systems, Inc. Other trademarks are the property of their respective holders.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html
mailto:jls3@acm.org
http://www.stepwise.com/disclaimer.html
http://enterprise.apple.com/

