HTMT A Hybrid Technology Approach to Petaflops Computing

Thomas Sterling Larry Bergman NASA Jet Propulsion Laboratory February 16, 1999

Warning: This is NOT a **Beowulf** talk and may not be suitable for all audiences.

HTMT Objectives

- Scalable architecture with high sustained performance in the presence of disparate cycle times and latencies
- Exploit diverse device technologies to achieve substantially superior operating point
- Execution model to simplify parallel system programming and expand generality and applicability

Hybrid Technology MultiThreaded Architecture

Petaflops II - HTMT Architecture

Summary of HTMT

- processor: 150 GHz, 600 Gflops
- # processors: 2048
- memory: 16 Tbytes PIM-DRAM, 80ns access time
- interconnect: Data Vortex, 500 Gbps/channel, > 10 Pbps bi-section bw
- 3/2 storage: 1 Pbyte, 10 us access time
- shared memory, 4 level hierarchy
- latency management: multithreaded with percolation

Storage Capacity by Subsystem 2007 Design Point

Subsystem	Unit Storage	# of Units	Total Storage	
CRAM	32 KB	16 K	512 MB	
SRAM	64 MB	16 K	1 TB	
DRAM	512 MB	32 K	16 TB	
HRAM	10 GB	128 K	1 PB	
Primary Disk	100 GB	100 K	10 PB	
Secondary Disk	100 GB	100 K	10 PB	
Таре	Tape1 TB		120 PB	

HTMT Strategy

• High performance

- Superconductor RSFQ logic
- Data Vortex optical interconnect network
- PIM smart memory
- Low power
 - Superconductor RSFQ logic
 - Optical holographic storage
 - PIM smart memory

HTMT Strategy (cont)

- Low cost
 - reduce wire count through chip-to-chip fiber
 - reduce processor count through x100 clock speed
 - reduce memory chips by 3-2 holographic memory layer
- Efficiency \bullet
 - processor level multithreading
 - smart memory managed second stage context pushing multithreading
 - fine grain regular & irregular data parallelism exploited in memory
 - high memory bandwidth and low latency ops through PIM
 - memory to memory interactions without processor intervention
 - hardware mechanisms for synchronization, scheduling,

data/context migration, gather/scatter 16, 1999 Petaflops II - HTMT Architecture

February 16, 1999

HTMT Strategy (cont)

• Programmability

- Global shared name space
- hierarchical parallel thread flow control model
 - no explicit processor naming
- automatic latency management
 - automatic processor load balancing
 - runtime fine grain multithreading
 - automatic context pushing for process migration (percolation)
- configuration transparent, runtime scalable

HTMT Organization

Areas of Accomplishments

- Concepts and Structures
 - approach strategy
 - device technologies
 - subsystem design
 - efficiency, productivity, generality
- System Architecture
 - size, cost, complexity, power
- System Software
 - resource management
 - multiprocessor emulator

- Applications
 - multithreaded codes
 - scaling models
- Evaluation
 - feasibility
 - cost
 - performance
- Future Directions
 - Phase 3 prototype
 - Phase 4 petaflops system
 - Proposals

RSFQ Roadmap (VLSI Circuit Clock Frequency)

Petaflops II - HTMT Architecture

RSFQ TECHNOLOGY ROADMAP

N 1.

Technology	HYPRES	SUNY	VLSI (chunted)	VLSI (upshupted)	
Darameters	upgrade	upgraue	(shunted)	(unshunted)	4
Year	1998	2001	2004	2007	
Josephson junction size (µm)	3.5	1.5	0.8	0.5	
Logic circuit density (Kgates/cm ²)	10	30	100	1,000	
Josephson current density (kA/cm ²)	1	6.5	20	50	
Specific capacitance (aF/µm ²)	45	60	67	75	
<i>I_cR_n</i> product (mV)	0.3	0.6	1.0	1.5	
SFQ pulse duration τ (ps)	4	2	1.2	0.8	
Clock frequency f _{max} (GHz)	150	300	500	700	
Speed of LSI circuits (GHz)	30	60	100	150	
Average power (μW/gate)	0.03	0.06	0.1	0.15	
Cost per junction (millicents)	100	30	10	1	

February 16, 1999

doc-96/rsfqtr78

Advantages

- X100 clock speeds achievable
- X100 power efficiency advantage
- Easier fabrication
- Leverage semiconductor fabrication tools
- First technology to encounter ultra-high speed operation

Superconductor Processor

- 100 GHz clock, 33 GHz inter-chip
- 0.8 micron Niobium on Silicon
- 100K gates per chip
- 0.05 watts per processor
- **100Kwatts per Petaflops**

Petaflops II - HTMT Architecture

Accomplishments - Processor

- SPELL Architecture
- Detailed circuit design for critical paths
- CRAM Memory design initiated
- 1st network design and analysis/simulation
- 750 GHz logic demonstrated
- Detailed sizing, cost, and power analysis
- Estimate for fabrication facilities investment
- Barriers and path to 0.4-0.25 micron regime
- Sizing for Phase 3 50 Gflops processor

Data Vortex Optical Interconnect

February 16, 1999

Petaflops II - HTMT Architecture

DATA VORTEX LATENCY DISTRIBUTION

network height = 1024

Petaflops II - HTMT Architecture

Single-mode rib waveguides on silicon-on-insulator wafers[‡]

Hybrid sources and detectors

Mix of CMOS-like and 'micromachining'-type processes for fabrication

‡ e.g:

R A Soref, J Schmidtchen & K Petermann, IEEE J. Quantum Electron. 27 p1971 (1991)

A Rickman, G T Reed, B L Weiss & F Navamar, IEEE Photonics Technol. Lett. 4 p.633 (1992)

B Jalali, P D Trinh, S Yegnanarayanan & F Coppinger IEE Proc. Optoelectron. 143 p.307 (1996)

Data Vortex Parameters for Petaflops in 2007

- Bi-section sustained bandwidth: 4000 Tbps
- Per port data rate: 640 Gbps
- Single wavelength channel rate: 10 Gbps
- Level of WDM: 64 colors
- Number of input ports: 6250
- Angle nodes: 7
- Network node height: 4096
- Number of nodes per cylinder: 28672
- Number of cylinders: 13
- Total node number: 372736 February 16, 1999 Petaflops II - HTMT Architecture

Accomplishments - Data Vortex

- Implemented and tested optical device technology
- Prototyped electro-optical butterfly switch
- Design study of electro-optic integrated switch
- Implemented and tested most of end-to-end path
- Design of topology to size
- Simulation of network behavior under load
- Modified structure for ease of packaging
- Size, complexity, power studies
- Initial interface design

PIM Provides Smart Memory

- Merge logic and memory
- Integrate multiple logic/mem stacks on single chip
- Exposes high intrinsic memory bandwidth
- Reduction of memory access
 latency
- Low overhead for memory oriented operations
- Manages data structure manipulation, context coordination and percolation

February 16, 1999

Petaflops II - HTMT Architecture

Multithreaded PIM DRAM

Multithreaded Control of PIM Functions

- multiple operation sequences with low context switching overhead
- maximize memory utilization and efficiency
- maximize processor and I/O utilization
- multiple banks of row buffers to hold data, instructions, and addr
- data parallel basic operations at row buffer
- manages shared resources such as FP

Direct PIM to PIM Interaction

- memory communicates with memory within and across chip boundaries without external control processor intervention by *"parcels"*
- exposes fine grain parallelism intrinsic to vector and irregular data structures
- e.g. pointer chasing, block moves, synchronization, data balancing

February 16, 1999

Petaflops II - HTMT Architecture

Accomplishments - PIM DRAM

- Establish operational opportunity and requirements
- Win \$12.2M DARPA contract for DIVA
 - USC ISI prime
 - Caltech, Notre Dame, U. of Delaware
 - Deliver 8 Mbyte part in FY01 at 0.25 micron
- Architecture concept design complete
 - parcel message driven computation
 - multithreaded resource management
- Analysis of size, power, bandwidth
- Diva to be used directly in Phase 3 testbed

Holographic 3/2 Memory

Performance Scaling

	1998	2001	2004
Module capacity	1 Gbit	1 GB	10 GB
Number of modules		10 ⁵	10 ⁵
Access time	1 ms	100 µs	10 µs
Readout bandwidth	1 Gb/s	.1 PB/s	1 PB/s
Record bandwidth	1 Mb/s	1 GB/s	.1 PB/s

Conjugate Readout

Advantages

٠

٠

- petabyte memory
- competitive cost
- 10 µsec access time
- low power
- efficient interface to DRAM

Disadvantages

- recording rate is slower than the readout rate for LiNbO₃
- recording must be done in GB chunks
 - long term trend favors DRAM unless new materials and lasers are used

February 16, 1999

Petaflops II - HTMT Architecture

•

Accomplishments - HoloStore

- Detailed study of two optical storage technologies
 - photo refractive
 - spectral hole burning
- Operational photo refractive read/write storage
- Access approaches explored for 10 usec regime
 - pixel array
 - wavelength multiplexing
- Packaging studies
- power, size, cost analysis

Multilevel Multithreaded Execution Model

- •Extend latency hiding of multithreading
- •Hierarchy of logical thread
 - •Delineates threads and thread ensembles
 - •Action sequences, state, and precedence constraints
- •Fine grain single cycle thread switching
- •Processor level, hides pipeline and time of flight latency
- •Coarse grain context "percolation"
 - •Memory level, in memory synchronization
 - •*Ready* contexts move toward processors, *pending* contexts towards big memory

HTMT Thread Activation State Diagram

Percolation of Active Tasks

- Multiple stage latency management methodology
- Augmented multithreaded resource scheduling
- Hierarchy of task contexts
- Coarse-grain contexts coordinate in PIM memory
- Ready contexts migrate to SRAM under PIM control releasing threads for scheduling
- Threads pushed into SRAM/CRAM frame buffers
- Strands loaded in register banks on space available basis

HTMT Percolation Model

Floor Area

1.	HTMT	1,000
2.	Server	250
3.	Pump/MG	3,000
4.	Laser 980	1,000
5.	Disk Farm (80)	1,600
6.	Tape Robot Farm (20)	4,000
7.	Operator Room	1,000
TC	0TAL = 11,850 sq ft	

Power Dissipation by Subsystem Petaflops Design Point

Subsystem	Unit Type	Unit Power	# of Units	Total Power
Cryostat/Cooling	System	400 kW	1	400 kW
SRAM	PIM	5 W	16 K	80 kW
WDM source/amps	Port	15 W	4 K	62 kW
Data Vortex	Subnet	2 kW	128	258 kW
DRAM	PIM	625 mW	32 K	20 kW
HRAM	HRAM	100 mW	128 K	13 kW
Primary Disk	Disk	15 W	100 K	1500 kW
Таре	Silo	1 kW	20	20 kW
Server	Machine	100 kW	1	100 kW
			TOTAL	2.4 MW

Subsystem Interfaces 2007 Design Point

Subsystem	Interface to	Wires/Port	Speed/Wire (bps)	#ports	Aggregate BW (Byte/s)	Wire count	type of IF
RSFQ	SRAM	16000	20.0E+9	512	20.5E+15	8.2E+6	wire
SRAM	RSFQ	1000	2.0E+9	8000	2.0E+15	8.0E+6	TBD
SRAM	Data Vortex	1000	2.0E+9	8000	2.0E+15	8.0E+6	wire
Data Vortex	SRAM	1	640.0E+9	2048	163.8E+12	2.0E+3	fiber
Data Vortex	DRAM	1	640.0E+9	2048	163.8E+12	2.0E+3	fiber
DRAM	Data Vortex	1000	1.0E+9	33000	4.1E+15	33.0E+6	wire
DRAM	HRAM	1000	1.0E+9	33000	4.1E+15	33.0E+6	wire
DRAM	Server	1	800.0E+6	1000	100.0E+9	1.0E+3	wire
Server	DRAM	1	800.0E+6	1000	100.0E+9	1.0E+3	(fiber channel)
Server	Disk	1	800.0E+6	1000	100.0E+9	1.0E+3	(fiber channel)
Server	Таре	1	800.0E+6	200	20.0E+9	200.0E+0	(fiber channel)
HRAM	DRAM	800	100.0E+6	1.00E+05	1.0E+15	80.0E+6	wire

Same colors indicate a connection between subsystemsHorizontal lines group interfaces within a subsystem

Accomplishments - Systems

- System architecture completed
- Physical structure design
- Parts count, power, interconnect complexity analysis
- Infrastructure requirements and impact
- Feasibility assessment

Distributed Isomorphic Simulator

- Executable Specification
 - subsystem functional/operational description
 - inter-subsystem interface protocol definition
- Distributed Low-cost Cluster of processors
- Cluster partitioned and allocated to separate subsystems
- Subsystem development groups "own" cluster partitions, and develop functional specification
- Subsystem partitions interact by agreed-upon interface protocols
- Runtime percolation and thread scheduling system software put on top of emulation software. February 16, 1999

