
Taming the Elephants: New TCP Slow Start ∗

Sangtae Ha
Department of Computer Science

North Carolina State University
Raleigh, NC 27695, USA

sha2@ncsu.edu

Injong Rhee
Department of Computer Science

North Carolina State University
Raleigh, NC 27695, USA

rhee@ncsu.edu

Abstract
Standard slow start does not work well under large bandwidth-
delay product (BDP) networks. We find two causes of this
problem in existing three popular operating systems, Linux,
FreeBSD and Windows XP. The first cause is that because
of the exponential increase of cwnd during standard slow
start, heavy packet losses occur. Recovering from heavy
packet losses puts extremely high load on end systems which
renders the end systems completely unresponsive for a long
time, resulting in a long blackout period of no transmission.
This problem commonly occurs with the three operating sys-
tems. The second cause is that some of proprietary protocol
optimizations applied for slow start by these operating sys-
tems to relieve the system load happen to slow down the
loss recovery followed by slow start. To remedy this prob-
lem, we propose a new slow start algorithm, called Hybrid
Start (HyStart) that finds a “safe” exit point of slow start
at which slow start can finish and safely move to congestion
avoidance without causing any heavy packet losses. HyStart
uses ACK trains and RTT delay samples to detect whether
(1) the forward path is congested or (2) the current size
of congestion window has reached the available capacity of
the forward path. HyStart is a plug-in to the TCP sender
and does not require any change in TCP receivers. We im-
plemented HyStart for TCP-NewReno and TCP-SACK in
Linux and compare its performance with five different slow
start schemes with the TCP receivers of the three differ-
ent operating systems in the Internet and also in the lab
testbeds. Our results indicate that HyStart works consis-
tently well under diverse network environments including
asymmetric links and high and low BDP networks. Espe-
cially with different operating system receivers (Windows
XP and FreeBSD), HyStart improves the start-up through-
put of TCP more than 2 to 3 times.

1. INTRODUCTION
Long distance networks spanning several continents are gain-
ing importance. Many multi-national companies are now
centralizing their data centers due to economical reasons.
Thus, the high performance of TCP over these networks
is critical for the effective operation of these data centers.
These networks typically have large bandwidth and delay
products (BDP) ranging from several 1,000’s to 100,000’s.
This is not a typical environment where most existing com-
mercial TCP stacks are optimized for. Often we find that

∗An earlier short version [21] of this paper was presented at
the International Workshop on Protocols for Fast and Long
Distance Networks in 2008.

when these stacks run in these environments, they fall in
some “rare” states where TCP gets extremely low perfor-
mance. One of the most commonly cited problems of TCP
in these networks is its slow window growth. There have
been many proposals to adopt more scalable window growth
functions to fix the sluggish performance of TCP in these
networks. However, there are many other functions of TCP
that still require much more optimizations. One of these
functions are slow start.

Standard TCP doubles congestion window (cwnd) in ev-
ery round-trip time (RTT) during slow start. However, the
exponential growth of cwnd results in burst packet losses.
Since the cwnd overshoots beyond the path capacity as large
as the whole BDP, in large BDP networks, this overshoot
causes strong perturbation in the networks. This may cause
high loss synchronization among many competing flows, re-
sulting in low utilization of networks. Furthermore, long
bursts of packet losses caused by the overshoot also add a
lot of burden on the end systems for loss recovery and this
burden often translates into consecutive timeouts and a long
blackout period of no transmission.

The selective acknowledgement (SACK) option [28, 19, 10]
relives some of these burdens. As SACK informs to the
sender the blocks of packets successfully received, the sender
can be more intelligent about recovering from multiple packet
losses. SACK is currently enabled in most commercial TCP
stacks [29]. However, for a large BDP network where the
number of packets are in flight, the processing overhead
of SACK information at the end points can be quite over-
whelming because each SACK block invokes a search into
the large packet buffers of the sender for the acknowledged
packets in the block, and every recovery of a lost packet
causes the same search at the receiver. During fast recov-
ery, every packet reception generates a new SACK packet.
Given that the size of cwnd can be quite large (sometimes,
beyond 100,000), the overhead of search can be sometimes
overwhelming. This system overload is quite devastating:
it can prevent the system from responding to other services
and processes, and it can cause multiple timeouts (as even
packet transmissions and receptions are delayed) and a long
period of zero throughput. Many operating systems attempt
to optimize the SACK processing using better data struc-
tures for packet buffers or limiting the number of SACKs.
But we find that despite these optimizations, multiple packet
losses still cause almost 100% CPU utilization or a reduced
number of SACKs extremely slows down loss recovery result-

ing in a blackout period of no transmission over 100 seconds.
The problems consistently occur in all three dominant op-
erating systems, Linux, Windows XP and FreeBSD during
more than 40% of slow start runs in large BDP networks.

There are clearly two general approaches to fixing the prob-
lem. One is to further optimize the SACK processing so
that even under many occurrences of loss bursts, the system
does not get overloaded. The other is to fix slow start so
that the occurrences of loss bursts are reduced. Both ap-
proaches are important. As many embedded systems with
low system resources are becoming popular and also slow
starts are not necessarily the only causes of long bursts, the
first approach is important. The second approach is also
important since aggressive slow starts burden networks as
well as end-systems. This paper primarily focuses on the
second approach.

To examine the extent of damage caused by the overshoot-
ing of cwnd during slow start, we closely examine the SACK
processing overhead of Linux by profiling related compo-
nents. We evaluate the slow start performance optimiza-
tions of current TCP stack implementations in Linux, Win-
dows XP and FreeBSD and discuss their own pitfalls. We
then present a new slow start algorithm, called Hybrid Slow
Start (HyStart) [21] that effectively prevents the overshoot-
ing of slow start while maintaining the full utilization of
the network. While keeping the exponential growth of slow-
start, HyStart finds the “exit” point where it can safely fin-
ish the exponential growth before overshooting and move
to congestion avoidance. The overshooting prevention of
HyStart greatly reduces the occurrences of loss bursts and
avoids system overload during fast recovery. HyStart re-
quires modification only at the sender side of TCP and can
be incrementally deployed in the Internet. In this paper, we
demonstrate its performance by implementing HyStart and
various other proposed solutions on the latest Linux kernel
and testing them with Linux, FreeBSD, and Windows XP
receivers both in real production networks and in a labora-
tory testbed. We report superior performance of HyStart
over the other solutions in terms of network and CPU uti-
lization.

2. MOTIVATIONS
In this section, we identify two main reasons for the poor
slow-start performance of current commercial TCP stacks.
One is the overwhelming processing load during slow start in
large BDP networks. The other is the proprietary optimiza-
tions of slow start performed by the developers of various
operating systems that inadvertently cause extremely slow
packet loss recovery after multiple packet losses during slow
start.

2.1 Processing Overload during Slow Start
We investigate how the system overhead during slow start
can affect TCP performance. System overload is frequently
observed during slow start which are followed by multiple
timeouts or long blackouts of no transmission. The prob-
lem occurs consistently with all three popular operating
systems, Linux, Windows XP and FreeBSD. Figure 1 (a),
(b) and (c) illustrates the throughput observed at a router
when two TCP-SACK flows join at different times in a net-
work of 400 Mbps bandwidth and 240 ms RTT. We also

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200

(M
bp

s)

Time (second)

flow1
flow2

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 u

til
iz

at
io

n
(%

)

Time (second)

sender1
sender2

(b) CPU utilization of two senders

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 u

til
iz

at
io

n
(%

)

Time (second)

receiver1
receiver2

(c) CPU utilization of two receivers

Figure 1: The example of two black-out periods.
The bandwidth, one-way delay, and buffer sizes are
set to 400 Mbps, 120 ms and 100% BDP of a net-
work.

measure the CPU utilization of the Linux senders and re-
ceivers. We use the latest version of Linux, Linux 2.6.26-rc4
for this test. What is shown is typical and repeatable phe-
nomena observed about 30 to 40% of times we run the ex-
periment. (The results of repeated experiments are given in
Section 5.) The experimental setup of our testbed is detailed
in Section 5.1. From the figure, both flows have almost zero
throughput for over 30 seconds after a timeout. These black-
outs follow after the saturation of the CPU utilization at the
senders and receivers. When the system reaches the over-
load, it cannot react fast enough to perform loss recovery,
which results in timeouts. Repeated losses of retransmitted
packets during timeouts also cause back-to-back timeouts
with exponential backoff of RTO (retransmission timeout)
timers where the senders do not transmit any packets.

2.1.1 The processing overhead at TCP senders
We first examine the SACK processing overhead of the TCP
sender in Linux. Figure 2 illustrates how the Linux TCP

2

A C K is

v alid ?

ACK Y es

N o

N ot interes ted

A C K

adv anc es

s nd _una ?

Y es

S A C K ed?
N o

tcp_clean_rtx_queue

sacktag _write_queue
Y es

N o N o

A C K is

dubious ?

tc p_c ong _ av oid

tc p_ c ong _av oid

tcp_fastretrans _alert

tc p_ ac k

done

N o

Y es

(1)

(2)

(3)

Figure 2: Linux TCP ACK processing

sender processes an ACK packet. tcp ack() called at the re-
ception of ACK, check whether the ACK number is within
the left and right edges of congestion window - snd una and
snd nxt. Then sacktag write queue() is called to search for
the acknowledged packets in the retransmit queue and es-
timate the number of packets in flight (packets in flight).
The Linux TCP stack controls ensures that packets in flight
always matches the size of the congestion window. Af-
ter that, tcp clean rtx queue() is called to remove and free
the acknowledged packets from the retransmit queue, and
packets out is decremented by the number of the freed pack-
ets. tcp fastretrans alert() executes fast retransmit and
updates the scoreboard that keeps track of lost and acknowl-
edged packets. For every ACK, tcp cong avoid() is called
which increases cwnd by entering slow start and congestion
avoidance phases.

The retransmit queue is implemented using a linked list to
hold all the packets currently in flight to the receiver. Each
SACKed packet is searched for in this list sequentially. The
size of the list is proportional to the number of packets in
flight. Three functions marked (1), (2), and (3) in Figure 2
are most CPU-intensive as they need multiple traversals of
the retransmit queue. Suppose that the TCP sender has sent
W packets in the retransmit queue and receives W

2
delayed

ACKs in one RTT round and let us examine each of these
functions below.

• sacktag write queue(): SACK contains up to four SACK
information blocks, each of which consists of a block
of the sequence numbers of packets received out of se-
quence by the receiver. For every SACK, it searches in
the retransmit queue for the packets whose sequence
number is in between each SACK block and updates
their states. In the worst case, one SACK block causes
a traversal of the entire retransmit queue. Therefore, it
requires O(W 2) running time within one RTT round.

• tcp clean rtx queue(): It frees the packets cumula-
tively acknowledged in each incoming ACK (i.e., pack-
ets in the left edge of cwnd). Each incoming ACK typ-
ically frees two packets in the retransmit queue due to
delayed ACK. In the worst case, one cumulative ACK
packet acknowledges W packets all at once. There-
fore, W

2
ACK packets require O(W) running time in

one RTT round.

• tcp fastretrans alert(): Invoked at the reception of a
duplicate ACK, it updates a variable left out to ac-
count for the number of lost packets. It usually marks
the first packet in the retransmit queue to be retrans-
mitted first. In the worst case, a retransmission time-
out happens and all packets in the retransmit queue
are timed out. Then. it needs at most one traversal of
the retransmit queue to mark all the packets in the re-
transmit queue and therefore, requires O(W) running
time.

We profile the CPU usage of the three functions by using
OProfile [5] in Linux. OProfile collects the number of stan-
dard CLK UNHALTED counters for the functions in the
kernel and presents their CPU utilization. We run the same
testing shown in Figure 1 for the profiling. Figure 3 (a)
shows the results of 100 runs and we plot them in a log
scale. sacktag write queue() consumes around 10% to 100%
CPU clocks. Also the overhead of tcp clean rtx queue()
is larger than tcp fastretrans alert() because of the cost
of freeing memory, but it is significantly less than that of
sacktag write queue().

To see the relationship between W (cwnd) and CPU uti-
lization, we change the bottleneck buffer size from 1% to
200% of the path BDP while maintaining the same testing
parameters. Figure 3 (b) plots the CPU usage of the three
functions as W increases in a log scale. The CPU usage
of tcp clean rtx queue() is quite independent of the buffer
size while tcp fastretrans alert() shows a slow increase of
CPU time. We note that sacktag write queue() requires
significantly more CPU times as W increases.

2.1.2 The processing overhead at TCP receivers
In Linux TCP, tcp data queue() processes the data in re-
ceived packets. If packets are received in order, it copies
the data in the packets to the user space. When packets
arrives out of order, it puts the packets in the out-of-order
queue. The packets in the out-of-order-queue can only be
freed when the left edge of the receiver window advances.
When receiving a retransmitted packet, the receiver searches
the out-of-order queue to place the packet in the right order.
Linux TCP uses a linked list for the out-of-order queue. The
increase of the right edge of the congestion window during
fast recovery does not affect the performance very much as
it typically goes to the end of the queue. However, with
the large number of retransmitted packets, the processing
overload occurs when each retransmitted packet causes a
traversal of the queue to place the packet into the right
place.

We profile the receiver kernel and measure the system clocks
of tcp data queue() of the second receiver shown in Figure 1
(c). Our profile shows that tcp data queue() consumes more
than 30% of CPU time for the entire run which is a major
contributor to the period of 100% CPU utilization around
140-th second in Figure 1 (c). The data copy to the user
takes only 2% of CPU time.

2.2 Protocol Misbehavior during Slow Start

3

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100

C
P

U
 U

sa
ge

 (
%

)

Run #

sacktag_write_queue()
tcp_clean_rtx_queue()
tcp_fastretrans_alert()

(a) SACK processing overhead

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100

C
P

U
 U

sa
ge

 (
%

)

BDP (%)

sacktag_write_queue()
tcp_clean_rtx_queue()
tcp_fastretrans_alert()

(b) BDP (W) vs. CPU utilization

Figure 3: CPU utilization of the three functions in
TCP SACK processing

In this section, we examine the protocol misbehaviors of
slow-start implementations in various operating systems that
are another cause of sluggish performance during TCP start-
up. To alleviate the effect of system overload and focus only
more on the protocol misbehaviors upon long loss bursts, we
run the following experiment. In the experiment, we scale
down BDP by adjusting the bandwidth to 100 Mbps, one
way delay to 120 ms and the buffer size to 100% BDP (2050
for 1 KB packets) of the network. In this experiment, we
use tcp dump to track the protocol behaviors.

Figure 4 shows the results of experiment involving TCP-
NewReno senders and receivers of various operating sys-
tems. All stacks show very poor performance – after the
overshooting of cwnd during slow-start, all stacks enter fast
retransmit and recovery, but their recovery speed is very
slow. This happens because these stacks implement “Slow-
but-Steady variant of NewReno” (SS-NewReno) [18] where
the TCP sender resets the timeout timer whenever a partial
acknowledgment acknowledging the left edge of the window
arrives. This effectively prevents the sender from entering
timeouts during fast recovery. When almost every packet in
a window is lost (other than some duplicate ACKs to trigger
the initial fast recovery), each retransmission recovers only
the left-edge of the current window. Thus it takes a long
time for the sender to recover all the lost packets.

This problem of a slow ramp-up after slow start does not oc-
cur in TCP-SACK since the sender is more informed about
lost packets beyond the left-edge and retransmits all the
lost packets almost immediately. Figure 5 shows the per-
formance of TCP-SACK for the three operating systems.∗

∗For the FreeBSD experiment, we use a Linux receiver be-

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 0 10 20 30 40 50 60

M
bp

s

time (seconds)

Linux
FreeBSD
Windows

(a) Throughput

(b) Time vs. sequence numbers

Figure 4: TCP-NewReno on the three systems.

We find that all stacks now enter a timeout quickly. While
FreeBSD and Linux recover relatively quickly, Windows XP
shows a very slow recovery. This is because the number of
SACK blocks sent by the Windows XP receiver is limited
and after some threshold, the receiver simply reports only
cumulative ACKs. This is an optimization added by the
Windows developers for various purposes including reducing
system overloads during fast recovery or limiting buffering
at the receiver. This forces the sender to act like TCP-
NewReno, showing the similar behavior as in Figure 4. We
can also obtained the same performance result even if we
use a Linux sender along with a Windows XP receiver.

3. EXISTING SOLUTIONS
There are basically two approaches to fix the start-up per-
formance of TCP. One is a reactive approach. While letting
burst losses occur, it devises better techniques to handle
many multiple packet losses more efficiently and effectively.
Most operating systems use this approach. This approach
is important as it can be applied to any situations where
burst losses occur (not necessarily to slow-start only). The
second approach is to prevent burst losses by designing a
better slow-start protocol. It is important for preventing
both network and system overloads. In this section, we dis-
cuss existing techniques for the two approaches.

3.1 Linux: Linked-list optimization
Since Linux 2.6.15, SACK processing has undergone sev-
eral improvements in all cases involving better caching and
data structures to reduce the look-up time in the retransmit

cause the latest version of FreeBSD does not enable SACK
properly although FreeBSD sender and receiver negotiate
for the SACK option. This is a bug in FreeBSD.

4

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 0 10 20 30 40 50 60

M
bp

s

time (seconds)

Linux
FreeBSD
Windows

(a) Throughput

(b) Time vs. sequence numbers

Figure 5: TCP-SACK on the three systems.

queue. Figure 6 shows the improvement on Linux SACK
processing over the evolution of the Linux kernel for the
same experiment shown in Figure 1.

Linux 2.6.14 is the version that uses a linked list without any
caching. The other three versions include incremental opti-
mizations using caching. We run 10 sets of the experiment
shown in Figure 1 with different kernel versions and mea-
sure the CPU utilization of sacktag write queue(). We can
see the overhead reduces as the the kernel version increases.
However, the SACK processing overhead has reduced only
about 20% in the latest version. Improving the system bot-
tlenecks by efficiently optimizing data structures is valuable
and it still requires further improvement. As we have seen
in Figure 1, the latest version of Linux still consumes almost
100% of CPU time during fast recovery after slow start in
large BDP networks.

3.2 FreeBSD - Limiting CWND
FreeBSD implements a method to limit the congestion win-
dow to the BDP of the network. It estimates the bandwidth
by dividing the amount of packets it sent by the minimum
RTT observed This method is very similar to the method
used in TCP-Vegas [11] and TCP-Westwood [14] and can
prevent the overshooting of the slow start. The sender al-
ways sends at most the estimated bandwidth. This approach
works well in some environments, but we observe that it
can lead to very frequent under-estimation because of noise
in RTT estimation. Because of the bursty packet trans-
mission of TCP especially during slow start, packets are
frequently queued in the bottleneck buffer even if the cur-
rent average sending rate is lower than the capacity. Thus,
the proposed technique often prematurely ends slow start.
as the estimation technique is too simple and often makes

 0

 20

 40

 60

 80

 100

C
P

U
 u

til
iz

at
io

n
(%

)

2.6.14
2.6.18-rc4

2.6.23.9
2.6.26-rc4

Figure 6: Improvement of SACK processing on
Linux after slow-start in a large BDP network. The
SACK processing have been improved over the evo-
lution of Linux kernel.

under-estimation of BDP. For instance, we find that TCP-
SACK with this technique shows 15.6% link utilization, in
the 100Mbps and 120ms one-way delay networks. We have
more performance results of TCP-Vegas in the next section.

3.3 Windows - Suppressing SACK options
When the TCP-SACK receiver on Windows XP has many
SACK blocks to report, it suppresses the SACK options and
sends only cumulative ACKs. The TCP-SACK receiver dis-
cards all the out-of-ordered packets received after reaching
this limit. Sending only cumulative ACKs prevents the TCP
sender from being overloaded. But the sender acts like TCP-
NewReno and exhibits very slow recovery as shown in Fig-
ure 4.

3.4 Existing Slow Start Algorithms
Hoe [23] proposes to estimate the bottleneck bandwidth us-
ing a packet-pair measurement, and to use the estimated
value to set the ssthresh of TCP-NewReno. [15], however,
indicates that this estimation is not robust enough and may
need sophisticated filtering. It is also problematic because
other cross traffic may hinder proper estimation, resulting in
a frequent over-estimation of the bottleneck link bandwidth.

Vegas [12] introduces a modified slow start mechanism which
allows an exponential growth of cwnd at every other RTT
and, in between, compares its current transmission rate with
the expected rate to see whether the path has still some
room to increase. The modified slow start of Vegas is known
to incur a premature termination of Slow Start because of an
abrupt increase of RTT caused by temporal queue build-ups
in the router during bursty TCP transmission [35].

Limited slow start [16] is an experimental RFC. It is de-
signed to prevent a large number of packet losses in one
RTT by limiting the increment of congestion window to
max ssthresh/2 per RTT. But using the fixed number of
max ssthresh does not scale well. For example, assume the
upper bound of the capacity is 5000 packets and max ssthresh
is set to 100. It takes 21 seconds† before reaching the con-
gestion window size of 5000 under RTT of 200ms. Quick-
Start [17, 32] determines its allowed sending rate very quickly,

†log(100) + (5000-100)(100/2) = 105 RTT rounds. When
the RTT is 200ms the total time is around 20 seconds.

5

but it needs cooperation with the routers that approve Quick-
Start along the path.

Adaptive start [35] repeatedly resets its ssthresh to the value
of the expected rate estimation (ERE) when ERE is greater
than ssthresh. Therefore, with adaptive start, TCP repeats
the exponential growth and linear growth of the window un-
til a packet loss. However, adaptive start can be slower than
stardard slow start, and it is not easily integrated with other
congestion control algorithms than TCP-Westwood [27].

Padmanabhan et al. [30] suggest to use the cached informa-
tion of previous connections. Wang et al. [34] throttle down
the exponential increasing rate when the congestion window
approaches to ssthresh. However, in all cases, as an avail-
able bandwidth keep changing and also it is hard to pick an
initial value of ssthresh, there is always a high possibility of
wrong decisions.

4. HYBRID SLOW START (HYSTART)
In this section we describe our slow start algorithm, called
HyStart that reduces burst packet losses during slow start
and hence achieves better throughput and lower system load.
The algorithm does not change the doubling of cwnd during
slow start, but based on hints from ACK spacing and round-
trip delays it heuristically finds safe exit points at which
it can finish slow start and move to congestion avoidance
before cwnd overshooting. When packet losses occur during
slow start, HyStart behaves the same way as the original
slow start protocol. HyStart is a plugin to the sender side
of TCP and is easy to implement as it uses only TCP state
variables available in common TCP stacks.

4.1 Safe Exit Points
The main objective of slow start is to ramp up fast cwnd as
closely as possible to the capacity of the forward path while
maintaining TCP ACK clocking. The capacity of a path
can be informally defined by the sum of unused available
bandwidth in the forward path and the size of buffers at
bottleneck routers. Typically, this capacity estimation is
given by ssthresh. But when a flow starts, ssthresh is set to
an arbitrarily large number. Thus, slow start may overshoot
beyond the capacity of the forward path. Similar situations
may occur even after timeouts when path conditions change
after the timeouts so that the ssthresh set at the timeout
event is a wrong estimation of the network capacity. These
factors motivate the need for more intelligent slow start that
finds a safe exit point when it can stop slow start and move
to congestion avoidance.

The safe exit point corresponds to the size of cwnd before
slow start finishes safely without incurring losses and low
network utilization. Let the unused available bandwidth of
the forward path, the minimum forward path one-way delay
and available buffer space of the forward path be B, Dmin

and S respectively. Then a safe exit point must be less than
C = B×Dmin +S. If cwnd gets larger than C, then packet
losses occur. Slow start cannot finish arbitrarily before this
upper bound which then causes low network utilization. We
need a lower bound. After slow start, congestion avoid-
ance will grow cwnd if there is no loss. Under steady state
where the average capacity of a path does not change, stan-
dard TCP reduces cwnd by half (C/2) for fast recovery, af-

ter which congestion avoidance takes over to increase cwnd
to another half (C/2). This also happens during a time-
out where ssthresh. Therefore, it is reasonable to set the
lower bound for a safe exit point to be C/2 minus the buffer
space. As far as network utilization is concerned, when cwnd
reaches beyond B × Dmin, it has 100% utilization. Thus,
the buffer space does not influence the utilization. In sum-
mary, a safe exit point is bounded in between B×Dmin×β
and C where β is the multiplicative decrease factor of cwnd
during fast recovery (i.e., 0 < β < 1). Standard TCP sets
β to be 0.5 and other high speed variants use a value larger
than 0.5.

4.2 Algorithm Description
HyStart uses two pieces of information - the time space be-
tween consecutively received ACK packets and round-trip
delays and applies heuristic methods to look for an indica-
tion that the current value of cwnd is larger than the avail-
able bandwidth. HyStart uses a passive measurement and
estimation techniqu – it does not inject a probe packet of its
own. Below we describe the two methods. Both run inde-
pendently at the same time and slow start exits when any
of them detects an exit point. Algorithm 1 shows its pseudo
code.

4.2.1 ACK train length
Estimating unused bandwidth in a path has been an active
topic of research [13, 24, 8]. Many bandwidth estimation
techniques, such as packet-pair [25] and packet train [15]
uses active probing to estimate bandwidth by sending probes
back-to-back in a short period of time.

Dovrolis et al. [15] recently showed that the mean of packet
train dispersion can be translated into Average Dispersion
Rate (ADR), a rate in between available bandwidth and
the maximum capacity of the path. Formally, the sender
sends N back-to-back probe packets of size L to the receiver.
When N > 2, we call these probe packets a packet train. The
packet train length can be written as ∆(N)=

∑N−1
k=1 δk where

N is the number of packets in a train and δk is the inter-
arrival time between packet k and k + 1. Using the packet
train length, the receiver measures the bandwidth b(N) as
follows.

b(N) =
(N − 1)L

∆(N)
(1)

However, packet-pair or train techniques are not practically
implementable in existing commercial TCP stacks. First,
they require modifications in both TCP sender and receiver
programs. This requirement hinders their incremental de-
ployment. Even with such modifications, it is not practical
to accurately measure the time spacing between two con-
secutively received packets in the current operating systems
because it requires a high-resolution system clock and real-
time interrupt handling. Because of extremely short time
spacing between two consecutively received probes due to
the high speed of the network, even slight system delays in
getting the timestamps of probes pose significant errors in
the estimation. Under high system load of packet trans-
mission during slow start, avoiding the system delays is not

6

Algorithm 1: Hybrid Slow Start (HyStart)

// When found > 0, it leaves slow start.

Initialization:
//We sample initial 8 ACKs every RTT round, so the lower bound

of ssthresh is set to 16 by considering a delayed ACK.

low ssthresh ←− 16 nSampling ←− 8
found ←− 0
At the start of each RTT round:
begin

if !found and cwnd ≤ ssthresh then
//Save the start of an RTT round

roundStart ←− lastJiffies ←− Jiffies
lastRTT ←− curRTT
curRTT ←− ∞
// Reset the sampling count

cnt ←− 0

end
On each ACK:
begin

RTT ←− usecs to jiffies(RTTus)
dMin ←− min(dMin, RTT)
if !found and cwnd ≤ ssthresh then

// ACK is closely spaced, and the train length reaches
to Tforward?

if Jiffies− lastJiffies ≤ msecs to jiffies(2) then
lastJiffies ←− Jiffies
if Jiffies− roundStart ≥ dMin/2 then

//First exit point

found ←− 1

// Samples the delay from first few packets every round

if cnt < nSampling then
curRTT ←− min(curRTT, RTT)
samplingCnt ←− samplingCnt + 1

// Delay increase (η) should have some bounds

η ←− min(8, max(2, dlastRTT/16e))
// If the delay increase is over η

if cnt ≥ nSampling and curRTT ≥ lastRTT + η then
//Second exit point

found ←− 2

if found and cwnd ≥ low ssthresh then
ssthresh ←− cwnd

end
Timeout:
begin

// Reset the variables on timeouts

dMin ←− ∞ found ←− 0

end

trivial.

To remedy these problems, we propose the following ap-
proach. For now, suppose that we can measure the unused
available bandwidth B of the forward path and the mini-
mum forward one-way delay Dmin. The bandwidth and de-

lay product of the path is b(N)Dmin. Since b(N) = (N−1)L
∆(N)

,

a safe exit point is when cwnd (i.e., (N − 1)L) becomes as
close to the one-way forward path BDP as possible. Cwnd
becomes equal to the BDP when ∆(N) is equal to Dmin.
Thus, by checking whether ∆(N) is larger than Dmin, we
can detect whether cwnd has reached the available capacity
of the path. This intuition permits the following heuristics
to measure the BDP of the network in real systems.

1. We can data packets transmitted during slow start as
packet probes for a packet train. During slow start,
many packets are sent in burst. We can use those pack-
ets transmitted within the same window as a packet

train. This removes the need for active probes. To es-
timate ∆(N) at the sender, we use the train of ACKs
received in response to a packet train. Figure 7 il-
lustrates the difference between an ACK train and a
packet train. Since ACKs take reverse paths, the time
spacing between two consecutively received ACKs, λi,
is always larger than δi. The total sum of λi, Λ(N), is
always larger than ∆(N). This permits conservative
estimation of the available capacity of the path.

2. It is not practical to measure δi directly in without a
high resolution clock. But we do not need individual
samples of δi or λi. Instead, our scheme requires the
sum of inter-arrival times of packets in a train. We
measure Λ(N) by measuring the time period between
the receptions of the first and last ACKs in an ACK
train.

3. It is not feasible to measure Dmin at the sender. We
approximate it by dividing the measured minimum
RTT by two. This approximation is not accurate when
the path is asymmetric. Below, we explain why this
does not lead to under or over-estimation of the capac-
ity.

Discussion. There are several issues with the above heuris-
tics. First, if the reverse path is heavily congested, then
Λ(N) can be much larger than ∆(N). Since TCP ACKs are
less than 50 bytes, it is not very common that ACKs are
being delayed because of congestion. In this case, it allows
slow start to exit before the forward path saturates. Exiting
slow start early in this case is reasonable because the reverse
path is too congested to carry even the ACK traffic.

Second, the receiver may use a delayed ACK scheme where
ACKs are transmitted only for every other packets received.
In some systems, ACKs are arbitrarily delayed, but ACKs
are always generated right at a reception of a packet (not
necessarily a reception of every packet, though). The ACK
delay does not affect the performance of HyStart much be-
cause Λ(N) is computed by taking the time difference be-
tween the reception times of the first and last ACKs in a
train. Since ACKs are triggered right after a reception of
a packet, Λ(N) may contain the delay for the last delayed
ACK. Since an ACK train is typically large, this delay does
not move the exit point beyond its safety bounds. To allevi-
ate this problem, we filter out the ACK train length samples
if the last ACK of a train is significantly delayed and mixed
with the ACKs for the next train.

Third, path delay asymmetry may significantly thwarts the
correct estimation of safe exit points. Analyze this situation.
Suppose that a and b are the forward and reverse path one-
way delays respectively. We estimate a by (a+b)/2. Suppose
again that K is the BDP of the forward path is K and K′

is our estimated BDP, and Λ(N) = ∆(N). Then if a =
b, then HyStart can precisely compute K. If a 6= b, then
K′/K is (a+b)/(2a). Considering the safe exit point bounds
discussed in Section 4.1, our scheme satisfies the bounds
if K′/K is larger than β, but less than 1 + S/K. Since
β is 0.5 in standard TCP, as long as b is larger than 0,
it satisfies the lower bound. Thus, when the reverse path
delay is much smaller than the forward path delay, under-
utilization is very unlikely. For the upper bound, suppose

7

… δk-1 δk

∆(N) = ∑δk

λk-1 λk-2λk

δ1

Sender

1 ... … … N (size L)
b(N)

Receiver

ACK

Data packets

Λ(N) = ∑λk

Figure 7: ACK train measurement

that S = αK. Then if K′/K is less than 1 + α, our scheme
meets the upper bound which means that b must be less
than a(2α + 1). If α = 1 (i.e., S is as large as the BDP), b
can be as large as 3a to meet the upper bound. According
to a recent measurement study of delay asymmetry in the
Internet [31], the fraction of paths whose reverse path delays
are 3 times larger than the forward path delays is less than
5%. Thus, for those fractions of Internet paths, HyStart
behaves like standard slow start since it may overestimate
the BDP and the overshooting of cwnd will trigger packet
losses as in standard slow start.

4.2.2 Delay increase
When a path is not completely empty and one or more flows
are competing the same path, it may not be possible to mea-
sure the minimum RTT of the path. So the above ACK train
based technique would be less effective. To handle this situ-
ation, we use increase in round-trip delays as another metric
to find the safe exit point. However, as TCP sends packets
in burst, it causes temporary queuing even if cwnd is less
than available BDP. Thus, measuring RTT using all packets
may lead to erroneous exit points. In fact, this is a common
problem of many delay-based slow start schemes [11]. We
remedy this problem by using the RTT samples of a few
ACKs at the beginning of each ACK trains. Since pack-
ets arrive at the beginning of each train do not suffer from
queuing caused by packet bursts, these samples return more
accurate estimations of persistent queuing delays. Suppose
that RTTk is the average RTTs of a few packets in the be-
ginning of the k-th train. We trigger an early exit when
RTTk is larger than RTTk−1 + η where η is a fixed thresh-
old. This scheme does not require the estimation of the
minimum delay of a path and thus can be used for both
congested and lightly loaded networks. Note that our delay-
based technique can also be effective even when the network
is asymmetric, especially when the reverse path delays are
much larger than the forward path delays.

5. EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We set up a dumbbell topology composed of a set of Dell
Intel Xeon 2.8GHz servers as shown in Figure 8 where two
dummynet routers are located at the bottleneck between two
end points. Two servers at each side are dedicated for send-
ing and receiving TCP flows and Iperf [3] is used to measure
the goodput of the TCP flows. The other two servers at each
side are dedicated to generate a cross background traffic by
using a modification of Surge [9], a Web traffic generator
and Iperf for emulating long-lived TCP flows such as FTP
connections.

TCP Sender 1

TCP Sender 2

TCP Receiver 1

TCP Receiver 2

Short and Long -lived

Traffic Generator 1

Short and Long -lived

Traffic Generator 2

Short and Long -lived

Traffic Generator 3

Short and Long -lived

Traffic Generator 4

Dummynet

Router 1

(Drop Tail)

Bottleneck Link

Dummynet

Router 2

(Delay Generator)

Bottleneck

Point

RTT for Background Traffic

Figure 8: Testbed

The socket buffer size of background traffic machines is fixed
to default 64KB while four TCP sender and receiver ma-
chines are configured to have a very large buffer so that the
congestion control algorithm of TCP senders are only af-
fected by the algorithm itself. Dummynet has been installed
on two FreeBSD machines in the middle of the dumbbell
and controls the bottleneck bandwidth, round-trip time of
the flows, and the buffer size in the bottleneck. Specifically,
the first Dummynet router monitors the throughput of the
bottleneck link and the second Dummynet router assigns
per-flow delays to background traffic flows based on the em-
pirical distribution from an Internet measurement study [7].

Linux 2.6.23.9, FreeBSD 7.0 and Windows XP are installed
on the two TCP servers at each side. Two dummynet routers
and four TCP servers (two TCP servers at each side) are
tuned to generate and forward traffic close to 1Gbps. To
eliminate any overloading of the Dummynet routers, we set
the bottleneck bandwidth below 400 Mbps. TCPProbe [6]
and SIFTR [33] are used for actively tracking the TCP state
variables in Linux and FreeBSD, respectively. For Windows
XP, we use tcpdump. All performance numbers are aver-
aged from 10 to 30 runs. Results are reported with 95%
confidence interval.

5.2 Comparison with other Slow Starts
We compare the typical behaviors of various slow-start pro-
tocols including HyStart and those discussed in Section II.
All protocols are implemented over TCP-SACK in Linux
2.6.23.9. In the tests, the bottleneck bandwidth is set to
100Mbps, the RTTs of two flows are set to 102ms, and the
buffer size is set to 100% BDP. We add no background traffic
for this experiment.

Figure 9 presents the trajectories of cwnd and ssthresh of
six different slow-start protocols discussed in Section 3. The
original standard slow start of TCP-SACK (SS) (a) shows
a high burst of packets around ten seconds and experiences
a high rate of losses. Limited slow start (LSS) (b) reduces
the burst losses observed in SS (a) by limiting the incre-
ment of congestion window in one RTT. With HyStart (c),
using the information of the ACK train length, the first flow
finishes slow start around packet 870 at which point, cwnd
reaches the BDP of the path. The second flow detects the
congestion of the path using a delay increase caused by the
first flow, and leaves slow-start early on. Adaptive Start

8

 0

 500

 1000

 1500

 2000

 2500
Se

gm
en

ts
(a) Slow Start

cwnd (flow1)
ssthresh (flow1)

cwnd (flow2)
ssthresh (flow2)

 0

 500

 1000

 1500

 2000

 2500

Se
gm

en
ts

(b) Limited Slow Start
cwnd (flow1)

ssthresh (flow1)
cwnd (flow2)

ssthresh (flow2)

 0

 500

 1000

 1500

 2000

 2500

Se
gm

en
ts

(c) Hybrid Slow Start
cwnd (flow1)

ssthresh (flow1)
cwnd (flow2)

ssthresh (flow2)

 0

 500

 1000

 1500

 2000

 2500

Se
gm

en
ts

(d) Adaptive Start
cwnd (flow1)

ssthresh (flow1)
cwnd (flow2)

ssthresh (flow2)

 0

 500

 1000

 1500

 2000

 2500

Se
gm

en
ts

(e) Packet Pair
cwnd (flow1)

ssthresh (flow1)
cwnd (flow2)

ssthresh (flow2)

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

Se
gm

en
ts

time (secs)

(f) Vegas
cwnd (flow1)

ssthresh (flow1)
cwnd (flow2)

ssthresh (flow2)

Figure 9: Two TCP-SACK flows with five different
Slow Start proposals. The BDP for this experiment
is around 883 packets. Therefore, when cwnd is be-
tween 883 and 1766 packets, the link is fully utilized.

(AStart) (d) calculates ERE upon receiving ACKs and sets
ssthresh to ERE if ERE is larger than cwnd during slow-
start. But ERE is consistently smaller than cwnd in this
experiment. As a result, AStart shows the same overshoot-
ing behavior as SS. The packet-pair slow-start (PSS) (e)
shows an inconsistent estimation of path capacity for each
run because of lack of high resolution clocks and real-time
interrupt handling. The two flows estimates the capacity of
100Mbps path to be 248Mbps (2300 packets) and 308Mbps
(2800 packets), respectively. Also, the modified slow-start
of Vegas (VStart)(f) terminates slow-start too prematurely.

5.3 Impact of delayed ACK schemes
We evaluate HyStart under various ACK schemes including
(a) a quick ACK, (b) a quick ACK initially and a delayed
ACK later on, and (c) a delayed ACK. A quick ACK sends
an ACK for each received packet. Delayed ACKs imple-
mented in Linux sends ACK for every two data packets re-
ceived. When an ACK is not delayed, the spacing between
consecutive ACKs are small and consistent. This makes a

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 11 12 13 14 15 16
 160

 180

 200

 220

 240

 260

 280

S
eg

m
en

ts

rt
t (

m
s)

time (seconds)

x width = length of ack train

no largely spaced ACKs

delay increase

BDP

cwnd (flow1)
cwnd (flow2)

rtt (flow1)
rtt (flow2)

(a) Quick ACK (Linux 2.4)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 11 12 13 14 15 16
 160

 170

 180

 190

 200

 210

 220

 230

 240

S
eg

m
en

ts

rt
t (

m
s)

time (seconds)

x width = length of ack train

largely spaced ACKs

delay increase

BDP

cwnd (flow1)
cwnd (flow2)

rtt (flow1)
rtt (flow2)

(b) Quick ACK + Delayed ACK (Linux 2.6)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 12 14 16 18 20 22 24 26
 150

 160

 170

 180

 190

 200

 210

S
eg

m
en

ts

rt
t (

m
s)

time (seconds)

x width = length of ack train

delay increase

BDP

cwnd (flow1)
cwnd (flow2)

rtt (flow1)
rtt (flow2)

(c) Delayed ACK (Windows and FreeBSD)

Figure 10: Two TCP-SACK flows with HyStart, by
varying the ACK schemes at receivers.

packet-train measurement effective. Delayed ACK may dis-
turb the estimation of the ACK train length.

In this experiment, we introduce background traffic as the
background traffic may disturb the behavior of the algo-
rithm by varying available link bandwidth. The bottleneck
bandwidth is set to 400Mbps and the buffer size is set to
100% BDP. Two TCP-SACK flows with the same one way
delay of 80 ms start within the first 10 seconds of the test-
ing. The background traffic we generated includes mid-sized
flows [20] whose average throughput is around 50Mbps. The
background traffic is introduced in both forward and reverse
directions of the path.

Figure 10 tracks the cwnd and RTT of two flows for three
different ACK schemes while running HyStart. Figure 10
(a) confirms that no delayed ACKs are found in between

9

two consecutive RTT rounds. Hence, it correctly calculates
the ACK train length. The exit point is the round at which
cwnd crosses over the BDP of the forward path. Linux, how-
ever, deliberately sends a quick ACK for up to initial 16 seg-
ments to quickly ramp up the rate during slow-start. Even
if Linux employs both quick and delayed ACKs, the ACK
train is mostly composed of the closely spaced ACKs sent
in burst due to the initial quick ACKs. Figure 10 (b) shows
that a small number of largely spaced ACKs are found in be-
tween two chunks of ACK trains. Our delayed ACK filtering
described in Section 4.2 filters out any significantly delayed
lack ACK of a train. This allows HyStart to correctly esti-
mate the BDP of the network. HyStart finishes slow start
only one round before cwnd reaches the BDP. FreeBSD and
Windows XP send delayed ACKs from the beginning of a
connection and consequently, ACKs are spread over an en-
tire RTT round. Even under this situation, our filtering
scheme works fairly well. Figure 10 (c) shows that HyStart
finishes slow start only one round before cwnd reaches the
BDP.

5.4 Integration with high-speed protocols
In this section, we show the effectiveness of HyStart on high-
speed TCP variants protocols. Most of high-speed variants
use their own congestion avoidance algorithms while keeping
the existing slow-start. As the algorithm of HyStart requires
only an inter-arrival time of ACKs and RTT samples, we can
easily integrate it into any protocols. We implemented the
HyStart as an exported functions inside the Linux kernel so
that it can be called from any protocols.

Figures 11 and 12 present the results of two CUBIC [22]
flows with and without HyStart, respectively in the same
experiment setup as in Figure 1. We plot the trajectory
of cwnd and ssthresh and the throughput measured in the
bottleneck router. In the experiment of CUBIC with SS,
the first flow shows the initial timeout for 20 seconds be-
cause it overshoots up to 20,000 packets which is more than
two times of BDP of the network. When the second flow
joins the network, the path is already fully utilized. But the
second flow perturbs the link utilization with its exponen-
tial probing and this leads to synchronized packet losses for
both CUBIC flows and background traffic.

With HyStart, however, two CUBIC flows do not incur
packet losses. The first flow detects an exit point a bit before
the full utilization of the link. The second flow, which joins
at 130th second, detects the congestion of the path using
delay increase and exits to congestion avoidance.

5.5 Testing with other OS Receivers
In this experiment, we evaluate the performance of three
representative slow-start algorithms, HyStart, SS and LSS,
by varying the receiver side operating system. We run two
TCP flows. The sender machines are fixed to Linux 2.6.23.9.
We set the bottleneck bandwidth to 400 Mbps and RTT to
100 ms. We add about 50 Mbps background traffic. Note
that with FreeBSD and Windows XP receivers, the Linux
sender behaves like TCP-NewReno as explained in Section 3.
Figure 13 shows that HyStart works much better than SS
independent of the operating systems of the receivers. LSS
works relatively as well as HyStart under this setup. Lower
performance of SS under Windows XP and FreeBSD is be-

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 50 100 150 200 250 300

(M
bp

s)

Time (second)

Throughout at Routers

flow1
flow2

Long-lived Background Flows
Mid-sized Background Flows

Total Forward Traffic

Figure 11: CUBIC with standard slow start. The
first flow experiences heavy packet losses around the
first 10 seconds and multiple timeouts over a 20 sec-
ond period.

cause these operating systems force the sender to behave like
TCP-NewReno and they cannot handle high packet losses
caused by the overshooting of cwnd in SS. However, HyStart
finishes slow start before this overshooting happens. Thus,
even if the sender behaves like TCP-NewReno, since there
are no heavy packet losses, it shows a reasonably good per-
formance.

5.6 More diverse experimental settings
In this experiment, we compare the performance among all
slow-start proposals discussed in Section 5.2 and HyStart
under more diverse experimental settings. To measure the
start-up throughput, we use two flows starting at the 10th
and 40th seconds, respectively and the utilization is mea-
sured between the 10th and 70th second. We vary band-
width from 10 Mbps to 400 Mbps, RTT from 10 ms to 160
ms, and the buffer sizes from 10% to 200% BDP. For RTT
and bandwidth experiments, we fix the buffer size to 100%
BDP of a flow. For buffer size experiments, we fix the band-
width to 400 Mbps and RTT to 240 ms. We use TCP-
SACK for both sender and receiver. Figure 14 show the
performance results. HyStart shows consistently good net-
work utilization independent of network bandwidth, buffer
space and RTTs except with very small buffer spaces (where
no protocols work well). Especially under large BDP net-
works, HyStart outperforms the other schemes more than
3-5 times. The other schemes suffer high performance losses
as the BDP increases.

Figure 15 measures the CPU utilization of the sender when
running various slow start protocols in Figure 14 (a). The
results from other runs are similar. We find that the CPU
utilization under SS and AStart is extremely high under

10

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 50 100 150 200 250 300

(M
bp

s)

Time (second)

Throughout at Routers

flow1
flow2

Long-lived Background Flows
Mid-sized Background Flows

Total Forward Traffic

Figure 12: CUBIC with HyStart. HyStart exits
from slow start before packet losses occur.

 0

 0.2

 0.4

 0.6

 0.8

 1

WindowsFreeBSD 6.2Linux 2.6

U
til

iz
at

io
n

HyStart
SS

LSS

Figure 13: Two CUBIC flows with three different
slow-start algorithms (HyStart, SS and LSS), by
changing the OS of receivers.

medium and high BDP networks. LSS also shows relatively
high CPU utilization. HyStart, PSS and VStart show very
low CPU utilization because they terminate slow start much
before packet losses occur. While PSS and VStart do so too
early causing low network utilization, HyStart maintains a
good network utilization.

5.7 Testing over asymmetric links
Recent Internet measurement [31] reports that when there
is an asymmetry in delays in the Internet, more than 80% of
the paths shows less than 20 ms delay difference between for-
ward and reverse paths. The performance of HyStart may
get affected by the asymmetry in delays and bandwidth.
In this experiment, we test all slow-start proposals under
various asymmetric network environments by changing the
bandwidth and delays in forward and reverse directions. We
use two TCP-SACK flows starting at the 10th and 40th sec-
onds, respectively and measure the utilization until the 70th

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

U
til

iz
at

io
n

RTT (ms)

HyStart
SS

LSS
AStart

PSS
VStart

(a) RTT vs. Utilization

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

U
til

iz
at

io
n

Buffer Size (BDP)

HyStart
SS

LSS
AStart

PSS
VStart

(b) Buffer size vs. Utilization

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

U
til

iz
at

io
n

Bandwidth (Mbps)

HyStart
SS

LSS
AStart

PSS
VStart

(c) Bandwidth vs. Utilization

Figure 14: Two TCP-SACK flows with different
slow-start algorithms by varying their RTTs (a),
buffer sizes (b), and bandwidth (c).

second. For bandwidth asymmetry testing, we fix RTT to
120 ms, and vary the bandwidth ratio between forward and
reverse directions from 1/4 to 4 by using the bandwidth
from 100 Mbps to 400 Mbps. We also introduce background
traffic in both forward and reverse direction of the bottle-
neck. The amount of background traffic is around 15% of
the minimum bandwidth between the two. For delay asym-
metry testing, we fix the bandwidth both in forward and
reverse direction to 400 Mbps, and vary the ratio between
the forward delay and reverse delay from 1/3 to 3, and make
the sum of the delay in both directions, RTT, to 120 ms. We
introduce the background traffic comparable to 50 Mbps in
both foward and reverse directions. Figure 16 (a) and (b)
show the results respectively. HyStart obtains a good start-
up throughput even under high asymmetry in bandwidth
and delay.

6. INTERNET2 EXPERIMENT

11

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
P

U
 U

til
iz

at
io

n

RTT (ms)

HyStart
SS

LSS
AStart

PSS
VStart

Figure 15: CPU utilization of the Linux sender with
various slow start schemes for the run in Figure
14(a).)

We show the results of all the slow start proposals with TCP-
SACK in three production networks such as Internet2 [2],
National LamdaRail (NLR) [4] and GEANT [1].

6.1 Experimental setups
Figure 17 shows the Internet 2 testbed. Internet2 and NLR
paths from North Carolina to Chicago (25 ms RTT) and
from Chicago to Japan (225 ms RTT) have a 1Gbps con-
nection, and the GEANT path from North Carolina to Ger-
many (107 ms RTT) has a 100 Mbps connection. Espe-
cially, the GEANT testing involves the servers inside the
campus networks, so some of traffic load is expected. We
run two TCP flows with different slow-start algorithms over
the paths to Chicago, Germany and Japan from North Car-
olina. The first flow starts at the 10th second and the second
flow starts at the 30th second and the utilization is measured
until 50th second. We run the experiment in three different
periods of each day (EDT 5 AM to 9 AM, 1 PM to 5 PM,
and 9 PM to 1 AM). Linux is installed on all the machines
in testbed.

6.2 Internet2 results
Figure 18 shows the results of various slow-start algorithms
with a TCP-SACK sender and receiver. SS, LSS and HyS-
tart achieves good network utilization in relatively small
BDP networks (both Chicago and Germany paths). HyStart
shows the exceptionally good throughput for the high-BDP
path between North Carolina and Japan, which has 250 ms
RTT and 1Gbps link speed while LSS shows the worst per-
formance due to its sluggish increase of cwnd in the same
link. PSS mostly reports the under-estimated bandwidth
so that its performance is not guaranteed. VStart also ter-
minates the slow-start period prematurely and shows low
utilization even under small BDP networks. In all testings,
HyStart delivers the consistent start-up throughput.

To further motivate the use of HyStart, we run a TCP-
NewReno sender at the North Carolina site over the Ger-
many path. Since we cannot modify the receiver site servers,
we change the sender side only. This set-up is emulating
the behavior when using Windows XP receiver which forces
the sender to behave like TCP-NewReno under medium and
large size BDP networks. Figrue 19 shows the result. SS
shows extremely low utilization because of slow recovery af-
ter heavy packet losses. However, LSS and HyStart gives

 0

 20

 40

 60

 80

 100

U
til

iz
at

io
n

Ratio (forward BW / reverse BW)

HyStart
SS

LSS
AStart

PSS
VStart

(a) Effect of asymmetric bandwidth ratios (f/r)

 0

 20

 40

 60

 80

 100

U
til

iz
at

io
n

Ratio (forward delay / reverse delay)

HyStart
SS

LSS
AStart

PSS
VStart

(b) Effect of asymmetric delay ratios (f/r)

Figure 16: Two TCP-SACK flows with different
slow-start algorithms, under asymmetric delays (a)
and bandwidth (b).

pretty good utilization as HyStart exits slow start before
packet losses and LSS reduces the cwnd growth rates during
slow start thus, preventing heavy packet losses. This result
indicates that a protocol like HyStart or LSS must be used
to gain a good performance under medium size BDP net-
works when the receiver is Windows XP or end-systems use
TCP-NewReno.

7. CONCLUSION
In this paper, we investigate the causes of long blackouts
after slow-start by evaluating the current TCP stack imple-
mentations in Linux, FreeBSD and Windows XP. We real-
ize that the overshooting of slow-start causes system bottle-
necks and/or extreme slow loss recovery during fast recov-
ery, thus resulting in frequent long blackouts with no trans-
mission. This problem frequently happen with TCP-SACK
and TCP-NewReno which are the most popular versions of
TCP used in the Internet. Especially with TCP-NewReno,
the problem happens even in medium size BDP networks
(around 100 to 1000 ranges). Our new slow start proto-
col, HyStart, fixes this problem by detecting safe exit points
of slow start that does not lead to heavy packet losses or
low network utilization, preventively avoiding heavy system
overload or low performance during the start-up of TCP.
HyStart uses the concept of packet trains and RTT delay
increase to find the safe exit points. To the best of our
knowledge, our work is the first one that shows a practical
implementation of packet pair and train based estimation
of available bandwidth for TCP. The performance of Win-
dows XP with standard slow start is extremely poor as it
uses SACK suppression and forces the sender to behave like
TCP-NewReno. The utility of our work gets maximized

12

Figure 17: Research testbed (Internet2, NLR and
GEANT)

when the receiver-side end systems is Windows as HyStart
can greatly outperform standard slow start in this setup
(even in medium-size BDP networks). This is very likely
usage patterns as around 40% of the Internet servers are
Linux and many end-system users are Windows users. The
performance of HyStart under large BDP networks is unsur-
passed by any existing slow start protocols independent of
the receiver operating systems.

8. ACKNOWLEDGMENTS
This work is financially supported in part by a generous gift
from Cisco Systems.

9. REFERENCES
[1] GEANT - pan-european research and education

network. http://www.geant.net/ .

[2] Internet2. http://www.internet2.edu/ .

[3] IPerf - the TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/projects/Iperf/ .

[4] National LamdaRail. http://www.nlr.net/ .

[5] Oprofile - a system profiler for linux.
http://oprofile.sourceforge.net/news/ .

[6] TCPProbe - observe the TCP flow with kprobes.
http://lxr.linux.no/linux+v2.6.26.5/net/ipv4/tcp probe.c.

[7] Aikat, J., Kaur, J., Smith, F., and Jeffay, K.
Variability in TCP round-trip times. In Proceedings of
the ACM SIGCOMM Internet Measurement
Conference (Miami, FL, October 2003).

[8] Allman, M., and Paxson, V. On estimating
end-to-end network path properties. In SIGCOMM
’99: Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer
communication (New York, NY, USA, 1999), ACM,
pp. 263–274.

[9] Barford, P., and Crovella, M. Generating
representative web workloads for network and server
performance evaluation. In Measurement and
Modeling of Computer Systems (1998), pp. 151–160.

[10] Blanton, E., Allman, M., Fall, K., and Wang,
L. A Conservative Selective Acknowledgment
(SACK)-based Loss Recovery Algorithm for TCP.
RFC 3517 (Proposed Standard), Apr. 2003.

[11] Brakmo, L., and Peterson, L. TCP vegas: End to
end congestion avoidance on a global internet. IEEE
Journal of Selected Areas in Communications
(October 1995).

 0

 20

 40

 60

 80

 100

9PM - 1PM1PM - 4PM5AM - 9AM

U
til

iz
at

io
n

HyStart
SS

LSS
Astart

PSS
VStart

(a) Chicago (1 Gbps and 25 ms RTT)

 0

 20

 40

 60

 80

 100

9PM - 1PM1PM - 4PM5AM - 9AM

U
til

iz
at

io
n

HyStart
SS

LSS
Astart

PSS
VStart

(b) Germany (100 Mbps and 107 ms RTT)

 0

 20

 40

 60

 80

 100

9PM - 1PM1PM - 4PM5AM - 9AM

U
til

iz
at

io
n

HyStart
SS

LSS
Astart

PSS
VStart

(c) Japan (1 Gbps and 250 ms RTT)

Figure 18: The network utilization of two TCP-
SACK flows with different slow-start algorithms
over the three Internet paths.

[12] Brakmo, L. S., and Peterson, L. L. TCP vegas:
End to end congestion avoidance on a global internet.
IEEE JSAC 13, 8 (1995), 1465–1480.

[13] Carter, R. L., and Crovella, M. E. Measuring
bottleneck link speed in packet-switched networks.
Perform. Eval. 27-28 (1996), 297–318.

[14] Casetti, C., Gerla, M., Mascolo, S., Sanadidi,
M. Y., and Wang, R. TCP Westwood: Bandwidth
estimation for enhanced transport over wireless links.
In Proceedings of ACM Mobicom (Rome, Italy, July
2001).

[15] Dovrolis, C., Ramanathan, P., and Moore, D.
Packet-dispersion techniques and a
capacity-estimation methodology. IEEE/ACM
Transactions on Networking 12, 6 (2004), 963–977.

[16] Floyd, S. Limited Slow-Start for TCP with Large
Congestion Windows. RFC 3742 (Experimental), Mar.
2004.

[17] Floyd, S., Allman, M., Jain, A., and Sarolahti,
P. Quick-Start for TCP and IP. RFC 4782
(Experimental), Jan. 2007.

13

 0

 20

 40

 60

 80

 100

5AM - 9AM

U
til

iz
at

io
n

HyStart
SS

LSS
Astart

PSS
VStart

Figure 19: The network utilization with various slow
start protocols when the sender is TCP-NewReno.
The run is over a path between Germany and North
Carolina.)

[18] Floyd, S., Henderson, T., and Gurtov, A. The
NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 3782 (Proposed Standard), Apr.
2004.

[19] Floyd, S., Mahdavi, J., Mathis, M., and
Podolsky, M. An Extension to the Selective
Acknowledgement (SACK) Option for TCP. RFC
2883 (Proposed Standard), July 2000.

[20] Ha, S., Le, L., Rhee, I., and Xu, L. Impact of
background traffic on performance of high-speed TCP
variant protocols. Computer Networks 51, 7 (2007),
1748–1762.

[21] Ha, S., and Rhee, I. Hybrid slow start for
high-bandwidth and long-distance networks. In
Proceedings of the fourth PFLDNet Workshop
(Manchester, UK, March 2008).

[22] Ha, S., Rhee, I., and Xu, L. Cubic: A new
tcp-friendly high-speed tcp variant. SIGOPS Oper.
Syst. Rev. 42, 5 (2008), 64–74.

[23] Hoe, J. C. Improving the start-up behavior of a
congestion control sheme for TCP. In ACM
SIGCOMM (1996).

[24] Jain, M., and Dovrolis, C. End-to-end available
bandwidth: measurement methodology, dynamics, and
relation with tcp throughput. IEEE/ACM Trans.
Netw. 11, 4 (2003), 537–549.

[25] Keshav, S. A control-theoretic approach to flow
control. Proceedings of the conference on
Communications architecture & protocols (1993).

[26] Leith, D., Shorten, R., McCullagh, G.,
Heffner, J., Dunn, L., and Baker, F. Delay-based
AIMD congestion control. In PFLDNet (February
2007).

[27] Mascolo, S., Casetti, C., Gerla, M., Sanadidi,
M. Y., and Wang, R. TCP westwood: Bandwidth
estimation for enhanced transport over wireless links.
In Mobile Computing and Networking (2001),
pp. 287–297.

[28] Mathis, M., Mahdavi, J., Floyd, S., and
Romanow, A. TCP Selective Acknowledgment
Options. RFC 2018 (Proposed Standard), Oct. 1996.

[29] Medina, A., Allman, M., and Floyd, S. Measuring
the evolution of transport protocols in the internet.
SIGCOMM Comput. Commun. Rev. 35, 2 (2005),
37–52.

[30] Padmanabhan, V., and Katz, R. Tcp fast start: a
technique for speeding up web transfers.

[31] Pathak, A., Pucha, H., Zhang, Y., Hu, Y. C.,
and Mao, Z. M. A measurement study of internet
delay asymmetry. In Proceedings of Passive and Active
Measurement Conference (PAM) (Cleveland, Ohio,
April 2008), pp. 37–52.

[32] Scharf, M., Hauger, S., and K”ogel, J.
Quick-start TCP: From theory to practice. In
Proceedings of the third PFLDNet Workshop (UK,
March 2008).

[33] Stewart, L., Armitage, G., and Healy, J.
Characterising the behavior and performance of siftr
v1.1.0. Technical Report 070824A (August 2007).

[34] Wang, H., Xin, H., Kang, D., and Shin, G. A
simple refinement of slow start of TCP congestion
control, 2000.

[35] Wang, R., Pau, G., Yamada, K., Sanadidi, M.,
and Gerla, M. TCP Startup Performance in Large
Bandiwdth Delay Networks. In Proceedings of IEEE
INFOCOM (Hong Kong, 2004).

14

