
The State of the Art in Language Workbenches
Conclusions from the Language Workbench Challenge

Sebastian Erdweg1, Tijs van der Storm2,3, Markus Völter4, Meinte Boersma5, Remi
Bosman6, William R. Cook7, Albert Gerritsen6, Angelo Hulshout8, Steven Kelly9, Alex
Loh7, Gabriël Konat10, Pedro J. Molina11, Martin Palatnik6, Eugen Schindler6, Klemens

Schindler6, Riccardo Solmi12, Vlad Vergu10, Eelco Visser10, Kevin van der Vlist13,
Guido Wachsmuth10, and Jimi van der Woning13

1 TU Darmstadt, Germany 2 CWI, Amsterdam, The Netherlands 3 INRIA Lille Nord Europe,
Lille, France 4 voelter.de, Stuttgart, Germany 5 DSL Consultancy, Leiden, The Netherlands 6

Sioux, Eindhoven, The Netherlands 7 University of Texas, Austin, US 8 Delphino Consultancy,
Best, The Netherlands 9 MetaCase, Jyväskylä, Finland 10 TU Delft, The Netherlands 11

Icinetic, Sevilla, Spain 12 Independent, Bologna, Italy 13 Universiteit van Amsterdam

Abstract. Language workbenches are tools that provide high-level mechanisms
for the implementation of (domain-specific) languages. Language workbenches
are an active area of research that also receives many contributions from industry.
To compare and discuss existing language workbenches, the annual Language
Workbench Challenge was launched in 2011. Each year, participants are chal-
lenged to realize a given domain-specific language with their workbenches as a
basis for discussion and comparison. In this paper, we describe the state of the art
of language workbenches as observed in the previous editions of the Language
Workbench Challenge. In particular, we capture the design space of language work-
benches in a feature model and show where in this design space the participants of
the 2013 Language Workbench Challenge reside. We compare these workbenches
based on a DSL for questionnaires that was realized in all workbenches.

1 Introduction

Language workbenches, a term popularized by Martin Fowler in 2005 [19], are tools
that support the efficient definition, reuse and composition of languages and their IDEs.
Language workbenches make the development of new languages affordable and, there-
fore, support a new quality of language engineering, where sets of syntactically and
semantically integrated languages can be built with comparably little effort. This can
lead to multi-paradigm and language-oriented programming environments [8, 59] that
can address important software engineering challenges.

Almost as long as programmers have built languages, they have also built tools to
make language development easier and language use more productive. The earliest
language workbench probably was SEM [50]; other early ones include MetaPlex [7],
Metaview [49], QuickSpec [42], and MetaEdit [47]. Graphical workbenches that are
still being developed today include MetaEdit+ [28], DOME [24], and GME [37]. On
the other hand, language workbenches that supported textual notations include Cen-
taur [5], the Synthesizer generator [45], the ASF+SDF Meta-Environment [30], Gem-
Mex/Montages [2], and Lisa [41]. These systems were originally based on tools for the

http://www.stg.tu-darmstadt.de/
http://www.cwi.nl
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe
http://www.voelter.de/
http://www.dslconsultancy.com/
http://www.sioux.eu/en/
http://www.cs.texas.edu
http://www.delphino-consultancy.nl/
http://www.metacase.com/
http://www.tudelft.nl
http://www.icinetic.com/
http://www.uva.nl

formal specification of general purpose programming languages [20]. Nonetheless, many
of them have been successfully used to build practical domain-specific languages (DSLs)
as well [40]. Textual workbenches like Rascal [32, 33], Spoofax [27], and Xtext [17]
can be seen as successors of these systems, leveraging advances in editor technology of
mainstream IDEs. At the same time, projectional language workbenches like MPS [55]
and Intentional [46] are reviving and refining the old idea of structure editors [9], opening
up the possibility of mixing arbitrary notations.

Throughout their development, language workbenches and domain-specific languages
have been used in industry. Examples include:

– Eurofighter Typhoon [1], with IPSYS’s HOOD toolset (later ToolBuilder).
– Nokia’s feature phones [43], with MetaEdit+.
– RISLA, a DSL for interest-rate products [3], with ASF+SDF.
– Polar’s heart rate monitors and sports watches [26], with MetaEdit+.
– WebDSL [54] and Mobl [22] for building Web applications and mobile applications

respectively, with Spoofax.
– File format DSL for digital forensics tool construction [51], with Rascal.
– mbeddr [56, 57] a C-based language for embedded software development, including

extensions such as units of measure, components, requirements tracing, and variability,
based on MPS.

Language workbenches are currently enjoying significant growth in number and diversity,
driven by both academia and industry. Existing language workbenches are so different in
design, supported features, and used terminology that it is hard for users and developers
to understand the underlying principles and design alternatives. To this end, a systematic
overview is helpful.

The goal of the Language Workbench Challenge (LWC) is to promote understanding
and knowledge exchange on language workbenches: Each year a language engineering
challenge is posed and the submissions (often but not exclusively by tool developers)
implement the challenge; documentation is required as well, so others can understand
the implementation. All contributors then meet to discuss the submitted solutions. By
tackling a common challenge, the approaches followed by different workbenches become
transparent, and understanding about design decisions, capabilities, and limitations
increases. In this paper, we channel the lessons learnt from the previous iterations of the
LWC and document this knowledge for the scientific community at large. In particular,
we make the following contributions:

– We describe the history of the LWC.
– We establish a feature model that captures the design space of language workbenches

as observed in the previous LWCs.
– We present and discuss the 10 language workbenches participating in LWC’13 by

classifying them according to our feature model.
– We present empirical data on 10 implementations of the LWC’13 assignment (a

questionnaire DSL).
– Based on our investigation, we document the state of the art of language workbenches.

2

2 Background

The idea of the LWC was born during discussions at the 2010 edition of the Code
Generation conference. Since then, LWC has been held three times, each year with a
different language to implement as assignment. Below we briefly review the assignments
of 2011, 2012, and 2013. Then we describe the methodology we followed in this paper.

2.1 The Challenges of LWC

The LWC’11 assignment1 consisted of a simple language for defining entities and
relations. At the basic level, this involved defining syntax for entities, simple constraint
checking (e.g., name uniqueness), and code generation to a general-purpose language. At
the more advanced level, the challenge included support for namespaces, a language for
defining entity instances, the translation of entity programs to relational database models,
and integration with manually written code in some general-purpose language. To
demonstrate language modularity and composition, the advanced part of the assignment
should be realized without modifying the solution of the basic assignment.

In the LWC’12 assignment2, two languages had to be implemented. The first language
captured piping and instrumentation models which can be used, for instance, to describe
heating systems. The elements of this language included pumps, valves, and boilers. The
second language consisted of a state machine-like controller language that could be used
to describe the dynamic behavior of piping and instrumentation models. Developers
were supposed to combine the two languages to enable the simulation of piping and
instrumentation systems.

The LWC’13 assignment3 consisted of a DSL for questionnaires, which should be
rendered as an interactive GUI that reacts to user input to present additional questions.
The questionnaire definition should be validated, for instance, to detect unresolved names
and type errors. In addition to basic editor support, participants should modularly develop
a styling DSL that can be used to configure the rendering of a questionnaire. We describe
the details of the LWC’13 assignment in Section 5.

2.2 Research Methodology

The main goal of this paper is to document the state of the art of language workbenches
in a structured and informative way. We assemble the relevant information based on
our experience and involvement in the LWC from 2011 to 2013. Nevertheless, for this
paper we focused on the most recent challenge of 2013. We invited all participants of
LWC’13 to contribute to the domain analysis and to the language workbench comparison
as described below.
Domain analysis. The first part of our methodology addresses the goal of accurately
describing the domain of language workbenches. We have asked all participants of
LWC’13 to provide a detailed list of features supported by their language workbench.

1 http://www.languageworkbenches.net/index.php?title=LWC_2011
2 http://www.languageworkbenches.net/index.php?title=LWC_2012
3 http://www.languageworkbenches.net/index.php?title=LWC_2013

3

http://www.languageworkbenches.net/index.php?title=LWC_2011
http://www.languageworkbenches.net/index.php?title=LWC_2012
http://www.languageworkbenches.net/index.php?title=LWC_2013

The first three authors then started to “mine” a feature model [25] to capture the relevant
aspects of the language-workbench domain. Since non-functional features have not been
in scope of any previous LWC, we solely focused on the functional properties of language
workbenches. The extracted feature model was then presented to all participants for
feedback. The refined feature model presented in Section 3 provides a way to categorize
language workbenches according to which features they support.

Empirical data. In addition to a general overview of language workbenches, we investi-
gated empirical data on the solutions submitted to the LWC’13. We constructed a feature
model for the features of the questionnaire DSL and asked the participants to indicate
which features they realized in their solution. We present a description of the assignment
and the feature model in Section 5.

To get an impression about how different language workbenches achieve various
(subsets of) features of the questionnaire DSL, we also asked all participants to answer
the following three questions:

– What is the size of your solution? The suggested metric for the answer was SLOC
(Source Lines of Code)4.

– What are the static, compile-time dependencies? This captures the various libraries,
frameworks, and platforms that are needed to run the compiler and IDE of the ques-
tionnaire DSL.

– What are the dynamic, runtime dependencies? This addresses the additional software
components that are needed to run the generated questionnaires GUIs.

We present the answers to these questions and discuss the language workbenches in view
of these results in Section 6 and Section 7 respectively.

Generality of the survey. Not all existing language workbenches were represented
at LWC’13. Language workbenches that contributed to earlier challenges, but not to
LWC’13, include commercial ones, such as the Intentional workbench [46], OOMega5,
and Obeo Designer6, as well as academic systems such as Atom3 [36], Cedalion [38],
and EMFText [21]. As we show in Section 4, the language workbenches covered in
our study are very diverse regarding the features they support. To our knowledge, the
features of aforementioned language workbenches are covered by our feature model.
Hence, even though not all language workbenches are part of this survey, we consider
the domain of language workbenches sufficiently covered.

3 A Feature Model for Language Workbenches

Language workbenches exist in many different flavors, but they are united by their
common goal to facilitate the development of (domain-specific) languages. Based on
input provided by the participants of LWC’13, we derived the feature model shown in
Fig. 1. It outlines the most important features of language workbenches. We use standard
feature-diagram notation and interpretation [4]: The root node (Language workbench

4 Note that SLOC only works for textual languages; we come back to this problem in Section 6.
5 http://www.oomega.net/
6 http://www.obeodesigner.com/

4

http://www.oomega.net/
http://www.obeodesigner.com/

�$�*����,%'!��$��

�%)�)�%$

��-)*�"

�.#�%"(

'�&����" ���*"�'

��#�$)��(

�'�$("�)�%$�"

�%��"�)%�)�-) �%��"�)%�#%��"

�%$�'�)��(.$)�-

�$)�'&'�)�)�+�

���)%'

��)�)�$��#%��

	'����%'# �'% ��)�%$�"

�.$)��)���(�'+���(

����"���)�$� �*)"�$� 	%"��$� �.$)��)����%#&"�)�%$ ���� �*)%��%'#�))�$�

��#�$)���(�'+���(

����'�$���'�(%"*)�%$ ��#�$)����%#&"�)�%$ �����)%'�$� �''%'�#�'!�$� �*��!���-�(�'���$�)'��!�$� �+��)'�$("�)�%$

��"���)�%$

�)'*�)*'�" ��#�$)��

��#�$� �.&�(�'%�'�##�)��

��()�$�

���)�()�$� ������*���$� ���&'%�'�#����*���$�

�%#&%(���"�).

�.$)�-�+��,(��"���)�%$� ��#�$)��(� ���)%'�(�'+���(

���$��

��$��)%'.

�&)�%$�"

�'

Fig. 1: Feature model for language workbenches. With few exceptions, all features in the feature model apply to the languages that can be
defined with a language workbench, and not to the definition mechanism of the language workbench itself.

in Fig. 1) is always selected. A mandatory feature (filled circle) has to be selected if its
parent is selected. An optional feature (empty circle) does not have to be selected even if
its parent is selected. In a list of Or children (filled edge connector), at least one feature
has to be selected if the parent is selected.

We separate language workbench features into six subcategories. A language work-
bench must support notation, semantics, and an editor for the defined languages and
its models. It may support validation of models, testing and debugging of models and
the language definition, as well as composition of different aspects of multiple defined
languages. In the remainder of this section, we explain the feature model in more detail.

Every language workbench must support the mandatory feature notation, which
determines how programs or models are presented to users. The notation can be a mix of
textual, graphical, and tabular notations, where textual notation may optionally support
symbols such as integrals or fraction bars embedded in regular text.

A language workbench must support the definition of language semantics. We dis-
tinguish translational semantics, which compiles a model into a program expressed in
another language, and interpretative semantics, which directly executes a model with-
out prior translation. For translational semantics we distinguish between model-to-text
translations, which are based on concatenating strings, and model-to-model translations,
which are based on mapping abstract model representations such as trees or graphs. To
simplify the handling of abstract model representations, some language workbenches
support concrete syntax for source and target languages in transformation rules.

Editor support is a central pillar of language workbenches [19] and we consider
user-defined editor support mandatory for language workbenches. The two predominant
editing modes are free-form editing, where the user freely edits the persisted model
(typically the source code), and projectional editing, where the user edits a projection
of the persisted model in a standard, fixed layout. In addition to a plain editor, most
language workbenches provide a selection of syntactic and semantic editor services.
Syntactic editor services include:
– Customizable visual highlighting in models, such as language-specific syntax coloring

for textual languages or language-specific node shapes for graphical languages.
– Navigation support via an outline view.
– Folding to hide part of a model.
– Code assist through syntactic completion templates that suggest code, graph, or tabular

fragments to the user.
– Comparison of programs via a diff -like tool (the basis for version control).
– Auto formatting, restructuring, aligning, or layouting of a model’s presentation.
Semantic editor services include:
– Reference resolution to link different concepts of the defined language such as decla-

rations and usages of variables.
– Code assist through semantic completion that incorporates semantic information such

as reference resolution or typing into the completion proposal.
– Semantics-preserving refactorings of programs or models, ranging from simple re-

naming to language-specific restructuring.
– In case an error is detected in the model, an error marker highlights the involved

model element and presents the error message to the user.

6

– Quick fixes may propose ways of fixing such an error. When the user selects any of
the proposed fixes, the faulty model is automatically repaired.

– When transforming models, keeping track of a model’s origin enables linking elements
of the transformation result back to the original input model. This is particularly useful
for locating the origin of a static or dynamic error in generated code. It is also useful
in debugging.

– To better understand the behavior of a model, it can be useful to have a view of the
code that a model compiles to. Language workbenches that feature live translation
can display the model and the generated code side-by-side and update the generated
code whenever the original model changes.

In addition to the above services, the language editor provided by most language work-
benches can display information about the result of language-specific validations. We
distinguish validations that are merely structural, such as containment or multiplicity
requirements between different concepts, and validations that are more semantic, such
as name or type analysis. Language workbenches may facilitate the definition of user-
defined type systems or name binding rules. However, many language workbenches
do not provide a declarative validation mechanisms and instead allow the definition of
validation rules programmatically in a general-purpose programming language.

Another important aspect of building languages is testing of the language definition.
Testing a language definition may be supported by unit-testing the different language
aspects: the syntax (parser or projections), semantics (translation or interpretation), editor
(completion, reference resolution, refactoring, etc.), and validation (structure or types).
Some language workbenches support debugging. We distinguish between support for
debugging the language definition (validation or semantics), and support for constructing
debuggers for the defined language. The latter allows, for instance, the definition of
domain-specific views to display variable bindings, or specific functionality for setting
breakpoints.

Finally, composability of language definitions is a key requirement for supporting
language-oriented programming [8, 59] where software developers use multiple lan-
guages to address different aspects of a software system. Language workbenches may
support incremental extension (syntactic integration of one language into another) and
language unification (independent languages can be unified into a single language) [12].
This composition should be achieved for all aspects of a language: syntax, validation,
semantics, and editor services.

In summary, our feature model captures most of the design space for language
workbenches. In creating this feature model, we ignored how the various features can be
supported by a language workbench. This is the focus of the subsequent section.

4 Language Workbenches
In this section, we introduce the language workbenches that participated at LWC’13 and
show which features of our feature model they support.

4.1 Introduction of the Tools

Ensō (since 2010, http://www.enso-lang.org) is a greenfield project to enable a
software development paradigm based on interpretation and integration of executable

7

http://www.enso-lang.org

specification languages. Ensō has its roots in an enterprise application engine developed
at Allegis starting in 1998, which included integrated but modular interpreters for
semantic data modeling, policy-based security, web user interfaces, and workflows.
Between 2003 and 2010 numerous prototypes were produced that sought to refine the
vision and establish an academic foundation for the project. The current version (started
in 2010) is implemented in Ruby. Rather than integrate with an existing IDE, Ensō seeks
to eventually create its own IDE. The goal of the project is to explore new approaches to
the model-based software development paradigm.

Más (since 2011, http://www.mas-wb.com) is a web-based workbench for the creation
of domain-specific languages and models. Más uses projectional editing to provide
convenient styling of models and an intuitive editor experience for “non-dev” users, and
makes language definition as simple as possible. Language semantics is defined through
“activations”, consisting, for instance, of declarative code generation templates. Más
aims at lowering the entry barrier for language creation far enough to allow adoption
and scaling of the model-driven approach across disciplines and industries.

MetaEdit+ (since 1995, http://www.metacase.com) is a mature, platform-independent,
graphical language workbench for domain-specific modeling [28]. MetaEdit+ aims to be
the easiest domain-modeling tool to learn and to use, removing accidental complexity to
allow users to concentrate on creating productive languages and good models. MetaEdit+
is commercially successful, used by customers in both industry and academia. Empirical
research has consistently shown that MetaEdit+ increases productivity of developers by
a factor of 5–10 compared to programming [26, 29, 43].

MPS (since 2003, http://www.jetbrains.com/mps/) is an open-source language work-
bench developed by JetBrains. Its most distinguishing feature is a projectional editor
that supports integrated textual, symbolic, and tabular notations, as well as wide-ranging
support for composition and extension of languages and editors. MPS realizes the
language-oriented programming paradigm introduced by Sergey Dmitriev [8] and has
evolved into a mature and well-documented tool. It is used by JetBrains internally to
develop various web-based tools such as the Youtrack bugtracker. It has also been used
to develop various systems outside of JetBrains, the biggest one probably being the
mbeddr tool for embedded software development [56].

Onion (since 2012) is a language workbench and base infrastructure implemented in
.NET for assisting in the creation of DSLs. Onion has evolved from Essential (2008), a
textual language workbench with a focus on model interpretation and code generation.
The main goals of the Onion design is to provide the tools to speed up DSL creation for
different notations (text, graphical, projectional) and provide scalability for big models
via partitioning and merging capabilities. Onion emphasizes speed of parsing and code
generation, enabling real-time synchronization of models and generated code.

Rascal (since 2009, http://www.rascal-mpl.org) is an extensible metaprogramming
language and IDE for source code analysis and transformation [23, 32, 33, 52]. Rascal
combines and unifies features found in other tools for source code manipulation and
language workbenches. Rascal provides a simple, programmatic interface to extend
the Eclipse IDE with custom IDE support for new languages. Rascal is currently used
as a research vehicle for analyzing existing software and the implementation of DSLs.

8

http://www.mas-wb.com
http://www.metacase.com
http://www.jetbrains.com/mps/
http://www.rascal-mpl.org

It provides the implementation platform for a real-life DSL in the domain of digital
forensics [51]. The tool is accompanied with interactive online documentation and is
regularly released as a self-contained Eclipse plugin.
Spoofax (since 2007, http://www.spoofax.org) is an Eclipse-based language work-
bench for efficient development of textual domain-specific languages with full IDE
support [27]. In Spoofax, languages are specified in declarative meta-DSLs for syntax
(SDF3 [58]), name binding (NaBL [34]), editor services, and transformations (Strat-
ego [6]). From these specifications, Spoofax generates and dynamically loads an Eclipse-
based IDE which allows languages to be developed and used inside the same Eclipse
instance. Spoofax is used to implement its own meta-DSLs. Spoofax has been used to
develop WebDSL [54] and Mobl [22], and is being used by Oracle for internal projects.
SugarJ (since 2010, http://www.sugarj.org) is a Java-based extensible programming
language that allows programmers to extend the base language with custom language
features [11, 14]. A SugarJ extension is defined with declarative meta-DSLs (SDF,
Stratego, and a type-system DSL [39]) as part of the user program and can be activated
in the scope of a module through regular import statements. SugarJ also comes with a
Spoofax-based IDE [13] that can be customized via library import on a file-by-file basis.
A language extension can use arbitrary context-free and layout-sensitive syntax [15] that
does not have to align with the syntax or semantics of the base language Java. Therefore,
SugarJ is well-suited for the implementation of DSLs that combine the benefits of
internal and external DSLs. Variants of SugarJ support other base languages: JavaScript,
Prolog, and Haskell [16].
Whole Platform (since 2005, http://whole.sourceforge.net) is a mature projec-
tional language workbench supporting language-oriented programming [48]. It is mostly
used to engineer software product lines in the financial domain due to its ability to
define and manage both data formats and pipelines of model transformations over big
data. The Whole Platform aims to minimize the explicit metamodeling efforts, so that
users can concentrate on modeling. The Whole Platform aims to reduce the use of
monolithic languages and leverages grammar-based data formats for integrating with
legacy systems.
Xtext (since 2006, http://www.eclipse.org/Xtext/) is a mature open-source frame-
work for development of programming languages and DSLs. It is designed based on
proven compiler construction patterns and ships with many commonly used language
features, such as a workspace indexer and a reusable expression language [10]. Its flexi-
ble architecture allows developers to start by reusing well-established and commonly
understood default semantics for many language aspects, but Xtext scales up to full
programming language implementations, where every single aspect can be customized
in straightforward ways by means of dependency injection. Companies like Google,
IBM, BMW and many others have built external and internal products based on Xtext.

4.2 Language Workbench Features

We position the language workbenches above in the design space captured by our feature
model as displayed in Table 1. In the remainder of this subsection, we reflect on some of
the findings.

9

http://www.spoofax.org
http://www.sugarj.org
http://whole.sourceforge.net
http://www.eclipse.org/Xtext/

E
ns

ō

M
ás

M
et

aE
di

t+

M
PS

O
ni

on

R
as

ca
l

Sp
oo

fa
x

Su
ga

rJ

W
ho

le

X
te

xt

Notation Textual
Graphical
Tabular
Symbols

Semantics Model2Text
Model2Model
Concrete syntax
Interpretative

Validation Structural
Naming
Types
Programmatic

Testing DSL testing
DSL debugging
DSL prog. debugging

Composability Syntax/views
Validation
Semantics
Editor services

Editing mode Free-form
Projectional

Syntactic services Highlighting
Outline
Folding
Syntactic completion
Diff
Auto formatting

Semantic services Reference resolution
Semantic completion
Refactoring
Error marking
Quick fixes
Origin tracking
Live translation

Table 1: Language Workbench Features (= full support, = partial/limited support)

Notation and editing mode. Most language workbenches provide support for textual
notations. Only MetaEdit+ is strictly non-textual. Más, MetaEdit+, MPS, and the Whole
Platform provide support for tabular notations. Más, MPS and Onion employ projectional
editing, which simplifies the integration of multiple notation styles. Currently, only Ensō
combines textual and graphical notations by providing support for custom projections
into diagram editors. All other language workbenches only support textual notation,

10

edited in a free-form text editor. MetaEdit+, MPS, and the Whole Platform also support
mathematical symbols, such as integral symbols or fractions.

Semantics. Except for Ensō, all language workbenches follow a generative approach,
most of them featuring both model-to-text and model-to-model transformations, and
many additionally supporting interpretation of models. In contrast, Ensō eschews gener-
ation of code and is solely based on interpreters, following the working hypothesis that
interpreters compose better than generators.

Validation. Some language workbenches lack dedicated support for type checking
and/or constraints. These concerns are either dealt with programmatically, or assumed
to be addressed by the use of semantically rich meta models. MPS, SugarJ [39], and
Xtext provide declarative languages for the definition of type systems. Spoofax has a
declarative language for describing name binding rules [34].

Testing. MPS, Spoofax, and Xtext feature dedicated sublanguages for testing aspects
of a DSL implementations, such as parsing, name binding, and type checking. Rascal
partially supports testing for DSLs through a generic unit testing and randomized testing
framework. Five language workbenches provide debuggable specification languages.
Four language workbenches support the debugging of DSL programs. For example,
Xtext automatically supports debugging for programs that build on Xbase and compile
to Java. MPS has a debugger API that can be used to build language-specific debuggers.
It also defines a DSL for easily defining how debugging of language extension works.
Both Xtext and MPS rely on origin tracking of data created during generation. In the
Whole Platform both metalanguage and defined language can be debugged using the
same infrastructure which has support for conditional breakpoints and variable views.

Composability. Composability allows languages to be built by composing separate,
reusable building blocks. Ensō, Rascal, Spoofax, and SugarJ obtain syntactic compos-
ability through the use of generalized parsing technology, which is required because
only the full class of context-free grammars is closed under union. The composability
of Xtext grammars is limited, since it is built on top of ANTLR’s LL(*) algorithm [44].
Syntactic composition in Onion is based on composing PEG [18] grammars. The lan-
guage workbenches MPS and MetaEdit+, which do not use parsing at all, allow arbitrary
notations to be combined.

The composability of validation and semantics in Rascal, Spoofax, and SugarJ is based
on the principle of composing sets of rewrite rules. In Ensō, composition of semantics
is achieved by using the object-oriented principles of inheritance and delegation in
interpreter code. In MPS, different language aspects use different means of composition.
For example, the type system relies on declarative typing rules which can be simply
composed. On the other hand, the composition of transformations relies on the pair-wise
specification of relative priorities between transformation rules.

Editor. The free-form textual language workbenches that are built on Eclipse (Rascal,
Spoofax, SugarJ, Xtext) all provide roughly the same set of IDE features: syntax coloring,
outlining, folding, reference resolution, and semantic completion. Spoofax, SugarJ, and
Xtext have support for syntactic completion. Rascal, Spoofax, and Xtext allow the
definition of custom formatters to automatically layout DSL programs. Projectional
editors such as MPS, Whole Platform or Más always format a program as part of the

11

Fig. 2: An example of a textual QL model (left) and its default rendering (right).

projection rules, so this feature is implicit. Textual free-form language workbenches get
the Diff feature for free by reusing existing version-control systems. MPS comes with a
dedicated three-way diff/merge facility that works at the level of the projected syntax.
MetaEdit+ provides a dedicated differencing mechanism so that modelers can inspect
recent changes; for version-control a shared repository is used.

5 LWC 2013 Assignment: A DSL for Questionnaires

We use the assignment of LWC’13 for comparing the language workbenches introduced
in the previous section. In the present section, we briefly introduce the assignment and
its challenges, which was to develop a Questionnaire Language (QL)7. A questionnaire
consists of a sequence of questions and derived values. A question may be conditionally
visible based on the values of earlier questions. A questionnaire is presented to a user
by rendering it as a GUI, as exemplified in Fig. 2. In addition to these mandatory
features, we asked participants to realize a number of optional features. All features are
shown in the feature model of Fig. 3. Specifically, we asked for a QL language and IDE
implementation supporting the following features:

– Syntax: provide concrete and abstract syntax for QL models.
– Rendering: compile to code that executes a questionnaire GUI (or interpret directly).
– Propagation: generate code that ensures that computed questions update their value as

soon as any of their (transitive) dependencies changes.
– Saving: generate code that allows questionnaire users to persist the values entered into

the questionnaire.
– Names: ensure that no undefined names are used in expressions.
– Types: check that conditions and expressions are well-typed.
– Cycles: detect cyclic dependencies through conditions and expressions.
– Determinism: check that no two versions of equally-named questions are visible

simultaneously (requires SAT solving or model checking).

7 Original assignment text: http://www.languageworkbenches.net/images/5/53/Ql.pdf

12

http://www.languageworkbenches.net/images/5/53/Ql.pdf

������

��

�*!&�))��'&�"!

��!��$�!� �$"#���&�"! ��(�!�

������&�"!

� �% �*#�% �*���% ��&�$ �!�%

	��&"$

�������&�!� �'&��!� ����$�!��% 	$$"$� �$��!�

���

���&�"!% ����% �&*��% �����&% �$"%%�(�����&�"!

����!��

��!��&"$*

�#&�"!��

�$

Fig. 3: Feature model of the QL assignment.

– Highlighting: provide customized visual clues to distinguish language constructs.
– Outline: provide a hierarchical view or projection of QL models.
– References: support go-to-definition for variables used in conditions and expressions.
– Error marking: visually mark offending source-model elements in case of errors.

We also asked participants to develop a second language called QLS for declaring the
style and layout of QL questionnaires. QL has the requirement that it should be possible
to apply a QLS specification to an existing questionnaire without anticipation in the
definition of the questionnaire itself. Specifically, we asked for the following features:

– Sectioning: allow questions to be (re)arranged in sections and subsections.
– Pagination: allow questions to be distributed over multiple pages.
– Styling: allow customization of fonts, colors, and font styles for question labels.
– Widgets: enable the selection of alternative widget styles for answering questions.
– Cross-validation: check that the references within a QLS specification refer to valid

entities of the corresponding questionnaire model.

Taken together, there are 17 features of which 3 are mandatory (syntax, rendering and
propagation). The next section discusses empirical data on the submitted solutions
themselves.

6 Results

The results presented in this section are based on the solutions submitted to LWC’13
(links to the sources of these solutions are listed in Table 2). In Table 3 show for
each language workbench which features the corresponding QL/QLS implementation
supports. The feature-based categorization of the solutions provides a qualitative frame
of reference for interpreting the size and dependency results given in Table 4. To indicate
the completeness of a solution, we computed feature coverage as shown in the bottom
row of Table 3. The coverage is computed by counting the number of supported features
(= 1, = 0.5), and then dividing by the total number of features (17).
Table 4 summarizes the results on the size of each QL/QLS solution. As a size metric,
we use the number of source lines of code (SLOC), excluding empty lines and comments.

13

Lang. Workbench Links to the corresponding QL solutions

Ensō https://github.com/enso-lang/enso/tree/master/demos/Questionaire

Más http://www.mas-wb.com/secure/concrete/language?id=120001&securityToken=
restricted_public_token
http://www.mas-wb.com/languages/inspector?id=120001

MetaEdit+ http://www.metacase.com/support/50/repository/LWC2013.zip

MPS http://code.google.com/p/mps-lwc13

Onion https://bitbucket.org/icinetic/lwc2013-icinetic

Rascal https://github.com/cwi-swat/QL-R-kemi

Spoofax https://github.com/metaborg/lwc2013

SugarJ https://github.com/seba--/sugarj/tree/questionnaire/case-studies/
questionnaire-language

Whole Platform https://github.com/wholeplatform/whole-examples/tree/master/org.whole.
crossexamples.lwc13

Xtext http://code.google.com/a/eclipselabs.org/p/lwc13-xtext/

Table 2: Published sources of the QL solutions.

Because in some language workbenches non-textual notations are used to realize (parts
of) the solution, SLOC does not tell the whole story. In these cases, we also count
and report the number of model elements (NME). Model elements include any kind of
structural entity that is used to define aspects of a language. For example, in MetaEdit+,
modeling elements include graphs, objects, relationships, roles, and properties.

For the textual language workbenches Ensō, Onion, Rascal, Spoofax, SugarJ, and
Xtext, SLOC were measured using the script cloc.pl8 or by manual count. For Más,
MetaEdit+, and the Whole Platform we counted the number of model elements and
measured the size additional code artifacts. Since MPS is purely projectional but still
provides a textual presentation of languages, we use an approximate SLOC count: We
counted modeling elements and computed SLOC of an equivalent Java program by
multiplying the number of model elements with different factors for different types of
modeling elements [57]. In addition we report the number of SLOC/NME per feature.
The number is obtained by dividing the total SLOC/NME by the number of supported
features. Finally, the table also shows the compile-time and runtime dependencies of
each solution to appreciate the complexity of deploying the resulting QL/QLS IDE and
the generated questionnaire applications.

It is important to realize it is not our intention to present the quantitative results of
Table 4 as an absolute measure of implementation effort or complexity (as is, e.g., done
in [35]). They cannot be used to rank language workbenches. Factors that prevent such
ranking include:

– The SLOC count is incomplete in systems where non-textual languages are used,
such as in Más, MetaEdit+, MPS and Whole Platform. The NME count only partially
makes up for this.

– A single number of SLOC is presented, but in each language workbench (a multiplicity
of) different programming, modeling, and specification languages are used.

– The architecture and design may be substantially different across QL/QLS solutions.
For instance, chosing a client-server Web architecture over a desktop GUI design may
or may not affect SLOC.

– Different QL/QLS features may require varying amounts of effort, which may not
be reflected in SLOC. Furthermore, the degree as to how much effort is needed for a
particular feature may vary per language workbench. The coarse granularity of the

8 http://cloc.sourceforge.net

14

https://github.com/enso-lang/enso/tree/master/demos/Questionaire
http://www.mas-wb.com/secure/concrete/language?id=120001&securityToken=restricted_public_token
http://www.mas-wb.com/secure/concrete/language?id=120001&securityToken=restricted_public_token
http://www.mas-wb.com/languages/inspector?id=120001
http://www.metacase.com/support/50/repository/LWC2013.zip
http://code.google.com/p/mps-lwc13
https://bitbucket.org/icinetic/lwc2013-icinetic
https://github.com/cwi-swat/QL-R-kemi
https://github.com/metaborg/lwc2013
https://github.com/seba--/sugarj/tree/questionnaire/case-studies/questionnaire-language
https://github.com/seba--/sugarj/tree/questionnaire/case-studies/questionnaire-language
https://github.com/wholeplatform/whole-examples/tree/master/org.whole.crossexamples.lwc13
https://github.com/wholeplatform/whole-examples/tree/master/org.whole.crossexamples.lwc13
http://code.google.com/a/eclipselabs.org/p/lwc13-xtext/
http://cloc.sourceforge.net

E
ns

ō

M
ás

M
et

aE
di

t+

M
PS

O
ni

on

R
as

ca
l

Sp
oo

fa
x

Su
ga

rJ

W
ho

le

X
te

xt

Syntax
Execution Rendering

Propagation
Saving

Validation Names
Types
Cycles
Determinism

IDE Coloring
Outline
References
Marking

QLS Sectioning
Pagination
Styling
Widgets
Validation

Feature coverage (in percent) 24 44 88 74 82 88 97 59 65 94

Table 3: Implemented QL and QLS features per language workbench (= “fully imple-
mented”, = “partially implemented”).

QL feature model may obscure this even more. For instance, the feature model does
not distinguish between the number of questionnaire data types that are supported.

– Even though, intuitively, more features would imply more effort, this relation is almost
certainly not linear, since more features increase the risk of feature interaction. The
SLOC/feature metric ignores this aspect.

– The SLOC count may be influenced by the developer’s familiarity with the language
workbench. For instance, some of the solutions have been developed by the language
workbench implementors themselves (e.g., Más, SugarJ), whereas others are built by
first-time (e.g., MPS) or second-time (e.g., Rascal) users of a language workbench.
We did not record the time spent on a particular solution.

– Even if all risks above could be mitigated, our data set is to small to derive any
statistically significant conclusions. Moreover, in the low end end of the SLOC data
set there are very few data points, and in the upper region of the data set there is high
variability.

In summary, we are aware that the presented numbers are a gross simplification of
reality. Nevertheless, juxtaposing the size, size per feature, and dependencies helps to
spot outliers and can enable interesting observations. Furthermore, this can guide future
investigations by workbench users or implementors. In the next section, we present our
findings based on the results above.

15

SLOC / NME SLOC/NME
per feature

Compile-time dependencies Runtime dependencies

Ensō 83 / − 21 / − Ensō, NodeJS or Ruby 1.9 Ensō, NodeJS, browser with
JavaScript, jQuery

Más 413 / 56 55 / 9 Más, browser with JavaScript browser with JavaScript, jQuery
MetaEdit+ 1177 / 68 78 / 5 MetaEdit+ browser with JavaScript
MPS 1324 / − 106 / − MPS, JDK, Sacha Lisson’s

Richtext Plugins
JRE

Onion 1876 / − 134 / − Onion, .NET 4.5,
StringTemplate

browser with JavaScript

Rascal 2408 / − 161 / − Rascal, Eclipse, JDK, IMP PHP server, browser with
JavaScript, jQuery and validator

Spoofax 1420 / − 86 / − Spoofax, Eclipse, JDK, IMP,
WebDSL

WebDSL runtime, SQL database,
browser with JavaScript

SugarJ 703 / − 70 / − SugarJ, JDK, Eclipse, Spoofax JRE
Whole 645 / 313 59 / 28 Whole Platform, Eclipse, JDK JRE, SWT, Whole LDK
Xtext 1040 / − 65 / − Xtext, Eclipse, ANTLR, Xtend JRE, JSF 2.1, JEE container

Table 4: Size metrics and dependency information on the QL/QLS solutions.

7 Observations

Completeness All solutions fulfilled the basic requirements of rendering and executing
QL models. Furthermore, 9 out of 10 solutions provide IDE support for the QL language.
Additionally, 7 of those solutions also provide confusing IDE support for the optional
QLS language. All of the solutions achieve these results with fewer than 2 500 SLOC; for
the language workbenches based on non-textual notations, the raw SLOC count is below
1 200. For comparison, a simple QL implementation in Java, consisting of a (generated)
parser, type checker and interpreter, rougly requires around 3 100 SLOC, excluding
IDE support and QLS features9. This shows that state of the art language workbenches
indeed provide advanced support for language engineering, and confirms earlier research
providing evidence that the use of DSL tools leads to language implementations which
are easier to maintain [31].
Diversity Reflecting upon Tables 1 and 4 we can observe a striking diversity among the
tools, even though they perform more or less equally well in terms of the assignment.
In our study, half of the workbenches are developed in an academic context (Ensō,
Rascal, Spoofax, SugarJ, and the Whole Platform) and the other half in industry (Más,
MetaEdit+, MPS, Onion, and Xtext). Feature coverage and SLOC per feature show
no bias to either side. Similarly, the age of the language workbenches varies from 18
years (MetaEdit+) to 1 year (Onion). Yet, again there seems to be no bias towards a
particular age category. It is to be expected that the maturity, stability, and scalability
of industrial and academic tools differ; however, this has not been focus of our study.
Indeed, scalability will likely be one of the focuses of the next LWC, from which we
hopefully gain further insight into the field of language workbenches.

Another interesting distinction is whether a language workbench provides a single,
generic metalanguage or a combination of smaller metalanguages. For instance, Rascal
provides a unified language with domain-specific features (grammars, traversal, rela-

9 This number is based on computing the median SLOC in Java code and grammar rules (ANTLR,
Rats! or JACC) of 47 QL implementations, constructed by students of the Software Construction
course in the Master Software Engineering, University of Amsterdam, 2013. See: https:
//github.com/software-engineering-amsterdam/sea-of-ql.

16

https://github.com/software-engineering-amsterdam/sea-of-ql
https://github.com/software-engineering-amsterdam/sea-of-ql

tional calculus, etc.) to facilitate the construction of languages. Similarly, apart from
metamodels in Más and grammars and metamodels in Onion, these two language work-
benches interface with general purpose languages for the heavy lifting (Xtend in Más,
C# in Onion). Both MPS and Xtext provide escapes to Java should the need arise.

On the other hand, Spoofax provides a multiplicity of declarative languages dedicated
to certain aspects of a language implementation (e.g., SDF3 for parsing and pretty
printing, Stratego for transformation, NaBL for name binding, etc.). Along the same
lines, MPS and SugarJ provide support for building such sub-languages on top of an
open, extensible base language. In this way, SugarJ integrates SDF, Stratego and a
language for type systems into the base language. MPS uses specialized languages for
type system rules, transformation rules and data flow specification, among others.

Finally, considering editor model and notation style, there seems to be no predomi-
nant language-workbench style: textual, projectional and graphical notations are well
represented and have been found equally able to realize the QL/QLS assignment. It
is interesting to note however, that such boundaries are blurring. MPS already sup-
ports tabular, symbolic, and textual notations. Both MPS and Spoofax are currently
working towards integrating graphical notations (see e.g., [53]). In the Onion language
workbench, textual parsing is combined with projectional editing. Finally, Ensō apriori
does not commit to one particular style and supports both textual and graphical editing.
Thus there seems to be a convergence towards language workbenches where multiple,
heterogeneous notations or editing modes may co-exist within one language, similar to
the original vision of intentional programming [46].

Language reuse and composition An important goal of language-oriented program-
ming [59] is the ability to combine different languages describing different aspects
of software systems. The results on the QL/QLS assignment reveal first achievements
in this direction. First of all, as indicated above, a number of language workbenches
approach language-oriented programming at the meta level: language definitions in MPS,
Spoofax, and SugarJ are combinations of different metalanguages. Second, some of the
language workbenches achieve high feature coverage using relatively low SLOC num-
bers. Notably, the low SLOC/feature number of Ensō, MPS, Spoofax, SugarJ and Xtext
can be explained by reusing existing languages or language fragments. The Ensō, MPS,
SugarJ, and Xtext solutions reuse a language for expressions, thus getting aspects like
syntax, type checking, compilation or evaluation for free. The Spoofax solution targets
the WebDSL platform, thus reusing execution logic at runtime. In contrast, the Rascal
solution includes full implementations of both syntax and semantics of expressions and
the execution logic of questionnaires.

Another observation in line with language-oriented programming is the fact that all
language workbenches considered in this paper are themselves compile-time depen-
dencies for the QL/QLS IDE. This suggests that the goal of state-of-the-art language
workbenches is not so much to facilitate the construction of independent compilers
and IDEs, but to provide an extensible environment where those compilers and IDEs
can live in. In Ensō, MetaEdit+, MPS, SugarJ, and the Whole Platform, new languages
are really extensions of or additions to the language workbench itself. MPS, Ensō and
SugarJ go sofar as to even facilitate extension of the metalanguages. Furthermore, with

17

the exception of Xtext, all language workbenches allow new languages or language
extensions to be activated dynamically within the same instance of the IDE.

8 Concluding Remarks

To document the state of the art of language workbenches, we established a feature model
that captures the design space of language workbenches. We positioned existing language
workbenches in this design space by identifying the features they support. As our study
reveals, all features of our feature model are realized by some language workbench, but
no language workbench realizes all features. To investigate the 10 language workbenches
of our study in more detail, we collected empirical data on feature coverage, size, and
required dependencies of implementations of a language for questionnaires with styling
(QL/QLS) in each language workbench. Based on the results, our observations can be
summarized as follows:

– Language workbenches provide adequate abstractions for implementing a language
like QL. The results show a marked advantage over manual implementation.

– The language workbench space is very diverse: different sets of supported features,
age ranging from 1 to 18 years, single metalanguage or multiple metalanguages,
industry or research, etc. Based on our results it is impossible to conclude that any
particular category performs better than others.

Finally, we have observed trends towards:

– Integrating different notation styles (textual, graphical, tabular, symbolic) and editing
modes (free-form and projectional).

– Reuse and composition of languages, leading to language-oriented programming both
at the object level and meta level.

– Viewing language workbenches as an extensible environments, instead of a tools to
create other tools.

References
1. A. Alderson. Experience of bi-lateral technology transfer projects. In Diffusion, Transfer and

Implementation of Information Technology, 1997.
2. M. Anlauff, P. W. Kutter, and A. Pierantonio. Tool support for language design and prototyping

with Montages. In CC, pages 296–299. Springer, 1999.
3. B. R. T. Arnold, A. v. Deursen, and M. Res. An algebraic specification of a language for

describing financial products. In Formal Methods Application in Software Engineering, pages
6–13. IEEE, 1995.

4. D. S. Batory. Feature models, grammars, and propositional formulas. In SPLC, volume 3714
of LNCS, pages 7–20. Springer, 2005.

5. P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. Centaur:
the system. SIGPLAN Not., 24(2):14–24, 1988.

6. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17. A language
and toolset for program transformation. Sci. Comput. Program., 72(1-2):52–70, 2008.

7. M. Chen and J. Nunamaker. Metaplex: An integrated environment for organization and
information system development. In ICIS, pages 141–151. ACM, 1989.

8. S. Dmitriev. Language oriented programming: The next programming paradigm. JetBrains
onBoard, 1(2), 2004.

18

9. V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming environments based on
structured editors: The MENTOR experience. Technical Report 26, INRIA, 1980.

10. S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow, W. Hasselbring, and
M. Hanus. Xbase: Implementing domain-specific languages for Java. In GPCE, pages
112–121, 2012.

11. S. Erdweg. Extensible Languages for Flexible and Principled Domain Abstraction. PhD
thesis, Philipps-Universität Marburg, 2013.

12. S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition untangled. In LDTA, pages
7:1–7:8. ACM, 2012.

13. S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and E. Visser. Growing a
language environment with editor libraries. In GPCE, pages 167–176. ACM, 2011.

14. S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-based syntactic
language extensibility. In OOPSLA, pages 391–406. ACM, 2011.

15. S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. Layout-sensitive generalized parsing.
In SLE, volume 7745 of LNCS, pages 244–263. Springer, 2012.

16. S. Erdweg, F. Rieger, T. Rendel, and K. Ostermann. Layout-sensitive language extensibility
with SugarHaskell. In Haskell Symposium, pages 149–160. ACM, 2012.

17. M. Eysholdt and H. Behrens. Xtext: Implement your language faster than the quick and dirty
way. In SPLASH Companion, pages 307–309. ACM, 2010.

18. B. Ford. Parsing expression grammars: A recognition-based syntactic foundation. In POPL,
pages 111–122. ACM, 2004.

19. M. Fowler. Language workbenches: The killer-app for domain specific languages? Available
at http://martinfowler.com/articles/languageWorkbench.html, 2005.

20. J. Heering and P. Klint. Semantics of programming languages: a tool-oriented approach.
SIGPLAN Not., 35(3):39–48, 2000.

21. F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende. Derivation and refinement of
textual syntax for models. In ECMDA-FA, pages 114–129. Springer, 2009.

22. Z. Hemel and E. Visser. Declaratively programming the mobile web with Mobl. In OOPSLA,
pages 695–712. ACM, 2011.

23. M. Hills, P. Klint, and J. J. Vinju. Meta-language support for type-safe access to external
resources. In SLE, volume 7745 of LNCS, pages 372–391. Springer, 2013.

24. Honeywell Technology Center. Dome guide, 1999.
25. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented

domain analysis (FODA) feasibility study. Technical report, CMU Software Engineering
Institute, 1990.

26. J. Kärnä, J.-P. Tolvanen, and S. Kelly. Evaluating the use of domain-specific modeling in
practice. In DSM, 2009.

27. L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules for declarative specifi-
cation of languages and IDEs. In OOPSLA, pages 444–463. ACM, 2010.

28. S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+: A fully configurable multi-user and multi-
tool CASE and CAME environment. In CAiSE, volume 1080 of LNCS, pages 1–21. Springer,
1996.

29. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society Press, 2008.

30. P. Klint. A meta-environment for generating programming environments. TOSEM, 2(2):176–
201, 1993.

31. P. Klint, T. van der Storm, and J. Vinju. On the impact of DSL tools on the maintainability of
language implementations. In LDTA. ACM, 2010.

32. P. Klint, T. van der Storm, and J. Vinju. EASY meta-programming with Rascal. In GTTSE
III, volume 6491 of LNCS, pages 222–289. Springer, 2011.

33. P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A domain specific language for source
code analysis and manipulation. In SCAM, pages 168–177. IEEE, 2009.

34. G. D. P. Konat, L. C. L. Kats, G. Wachsmuth, and E. Visser. Declarative name binding and
scope rules. In SLE, volume 7745 of LNCS, pages 311–331. Springer, 2012.

19

http://martinfowler.com/articles/languageWorkbench.html

35. T. Kosar, P. E. M. López, P. A. Barrientos, and M. Mernik. A preliminary study on various
implementation approaches of domain-specific language. Inf. Softw. Technol., 50(5):390–405,
2008.

36. J. d. Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling. In
FASE, pages 174–188. Springer, 2002.

37. A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom, J. Sprin-
kle, and P. Volgyesi. The generic modeling environment. In Intelligent Signal Processing,
2001.

38. D. H. Lorenz and B. Rosenan. Cedalion: A language for language oriented programming. In
OOPSLA, pages 733–752. ACM, 2011.

39. F. Lorenzen and S. Erdweg. Modular and automated type-soundness verification for language
extensions. In ICFP, 2013. to appear.

40. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM Comput. Surv., 37(4):316–344, 2005.

41. M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer. LISA: An interactive environment for
programming language development. In CC, pages 1–4. Springer, 2002.

42. Meta Systems Ltd. Quickspec reference guide, 1989.
43. MetaCase. MetaEdit+ revolutionized the way Nokia develops mobile phone software. Online,

2007. http://www.metacase.com/cases/nokia.html (June 5th, 2013).
44. T. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Software Practice

and Experience, 25(7):789–810, 1995.
45. T. Reps and T. Teitelbaum. The synthesizer generator. SIGPLAN Not., 19(5):42–48, 1984.
46. C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In OOPSLA, pages 451–464.

ACM, 2006.
47. K. Smolander, K. Lyytinen, V.-P. Tahvanainen, and P. Marttiin. MetaEdit—a flexible graphical

environment for methodology modelling. In CAiSE, pages 168–193. Springer, 1991.
48. R. Solmi. Whole platform. PhD thesis, University of Bologna, 2005.
49. P. G. Sorenson, J.-P. Tremblay, and A. J. McAllister. The Metaview system for many

specification environments. IEEE Software, 5(2):30–38, 1988.
50. D. Teichroew, P. Macasovic, E. Hershey III, and Y. Yamato. Application of the entity-

relationship approach to information processing systems modeling, 1980.
51. J. van den Bos and T. van der Storm. Bringing domain-specific languages to digital forensics.

In ICSE SEIP, pages 671–680. ACM, 2011.
52. T. van der Storm. The Rascal Language Workbench. CWI Technical Report SEN-1111, CWI,

2011.
53. O. van Rest, G. Wachsmuth, J. Steel, J. G. Süss, and E. Visser. Robust real-time synchroniza-

tion between textual and graphical editors. In ICMT, 2013.
54. E. Visser. WebDSL: A case study in domain-specific language engineering. In GTTSE II,

volume 5235 of LNCS, pages 291–373. Springer, 2007.
55. M. Voelter and V. Pech. Language modularity with the MPS language workbench. In ICSE,

pages 1449–1450. IEEE, 2012.
56. M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating a language workbench

in the embedded software domain. Journal of Automated Software Engineering, 2013.
57. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an extensible C-based programming

language and IDE for embedded systems. In SPLASH Wavefront, pages 121–140. ACM,
2012.

58. T. Vollebregt, L. C. L. Kats, and E. Visser. Declarative specification of template-based textual
editors. In LDTA, 2012.

59. M. P. Ward. Language-oriented programming. Software – Concepts and Tools, 15:147–161,
1995.

20

http://www.metacase.com/cases/nokia.html

	The State of the Art in Language Workbenches

