
OSGi Service Platform Release 4
Version 4.2 - Early Draft

Revision 1.0
5 August 2008

OSGi Service Platform Release 4
Version 4.2 - Early Draft

DISTRIBUTION AND FEEDBACK LICENSE

DISTRIBUTION PACKAGE TITLE: OSGi Service Platform Release 4 Version 4.2 - Early Draft

DATE OF DISTRIBUTION: 6 August 2008

© 2008 OSGi Alliance

The OSGi Alliance hereby grants you a limited copyright license to copy and display this document (the “Distribution”) in any
medium without fee or royalty. This Distribution license is exclusively for the purpose of reviewing and providing feedback to
the OSGi Alliance. You agree not to modify the Distribution in any way and further agree to not participate in any way in the
making of derivative works thereof, other than as a necessary result of reviewing and providing feedback to the Distribution.
You also agree to cause this notice, along with the accompanying consent, to be included on all copies (or portions thereof)
of the Distribution. The OSGi Alliance expressly reserves all rights not granted pursuant to this limited copyright license
including termination of the license at will at any time.

EXCEPT FOR THE LIMITED COPYRIGHT LICENSE GRANTED ABOVE, THE OSGi ALLIANCE DOES NOT GRANT,
EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL PROPERTY IT, OR ANY THIRD PARTIES,
OWN OR CONTROL. Title to the copyright in the Distribution will at all times remain with the OSGi Alliance. The example
companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted therein
are fictitious. No association with any real company, organization, product, domain name, email address, logo, person,
place, or event is intended or should be inferred.

THE DISTRIBUTION IS PROVIDED "AS IS," AND THE OSGi ALLIANCE (INCLUDING ANY THIRD PARTIES THAT HAVE
CONTRIBUTED TO THE DISTRIBUTION) MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DISTRIBUTION ARE SUITABLE FOR ANY PURPOSE;
NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.
NEITHER THE OSGi ALLIANCE NOR ANY THIRD PARTY WILL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF
THE DISTRIBUTION.

Implementation of certain elements of this Distribution may be subject to third party intellectual property rights, including
without limitation, patent rights (such a third party may or may not be a member of the OSGi Alliance). The OSGi Alliance is
not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party
intellectual property rights.

The Distribution is a draft. As a result, the final product may change substantially by the time of final publication, and you are
cautioned against relying on the content of this Distribution.

The OSGi Alliance is willing to receive input, suggestions and other feedback (“Feedback”) on the Distribution. By providing
such Feedback to the OSGi Alliance, you grant to the OSGi Alliance and all its Members a non-exclusive, non-transferable,
worldwide, perpetual, irrevocable, royalty-free copyright license to copy, publish, license, modify, sublicense or otherwise
distribute and exploit your Feedback for any purpose. Likewise, if incorporation of your Feedback would cause an
implementation of the Distribution, including as it may be modified, amended, or published at any point in the future (“Future
Specification”), to necessarily infringe a patent or patent application that you own or control, you hereby commit to grant to
all implementers of such Distribution or Future Specification an irrevocable, worldwide, sublicenseable, royalty free license
under such patent or patent application to make, have made, use, sell, offer for sale, import and export products or services
that implement such Distribution or Future Specification. You warrant that (a) to the best of your knowledge you have the
right to provide this Feedback, and if you are providing Feedback on behalf of a company, you have the rights to provide
Feedback on behalf of your company; (b) the Feedback is not confidential to you and does not violate the copyright or trade
secret interests of another; and (c) to the best of your knowledge, use of the Feedback would not cause an implementation
of the Distribution or a Future Specification to necessarily infringe any third-party patent or patent application known to you.
You also acknowledge that the OSGi Alliance is not required to incorporate your Feedback into any version of the
Distribution or a Future Specification.

I HEREBY ACKNOWLEDGE AND AGREE TO THE TERMS AND CONDITIONS DELINEATED ABOVE.

5 August 2008 © 2008 OSGi Alliance Page ii
All Rights Reserved.

OSGi Service Platform Release 4
Version 4.2 - Early Draft

Preface

This document is the Early Draft of the OSGi Service Platform Release 4 Version 4.2 specifications. As an early
draft, it contains non-final specification work and it is not organized in the format normally associated with final
release OSGi specifications. This document contains copies of OSGi design documents which either modify
existing published OSGi specifications from the OSGi Service Platform Release 4 Version 4.1 specification
documents or propose new specifications to potentially be incorporated in the final OSGi Service Platform
Release 4 Version 4.2 specification documents.

Since this early draft is not a complete specification document, the reader is expected to be familiar with OSGi
Technology and the currently published OSGi Service Platform Release 4 Version 4.1 specification documents.
The reader should refer to http://www.osgi.org/About/Technology for more information on the OSGi Technology.
There the reader can find a description of the OSGi Technology, as well as links to whitepapers and the OSGi
Service Platform Release 4 Version 4.1 specification documents, which are all available for download.

In an effort to make this early draft available as quickly as possible, it contains OSGi design documents
(“RFCs”). These documents have been declassified by the OSGi Alliance so that they may be made available in
this early draft. This early draft contains a majority of the design documents the OSGi expert groups currently
anticipate will be incorporated into the final specification documents.

Pursuant to the Distribution and Feedback License above, the OSGi expert groups welcome your feedback on
this early draft. Feedback comments can be mailed to speccomments@mail.osgi.org.

BJ Hargrave
Chief Technical Officer
OSGi Alliance

5 August 2008 © 2008 OSGi Alliance Page iii
All Rights Reserved.

mailto:speccomments@mail.osgi.org?subject=Early Draft Review Comments

Core Design Documents
OSGi Service Platform Release 4

Version 4.2 - Early Draft

Revision 1.0
5 August 2008

Copyright © 2008.
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 120 - Security Enhancements

Draft

40 Pages
Abstract

This RFC proposes the ability to deny access to resources. The current system only allows the granting of
privileges. Adding the ability to deny privileges leads to simpler administration of security in many use cases and

hence a more secure system.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 2 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

0 Document Information

0.1 Table of Contents

0 Document Information ..2
0.1 Table of Contents ...2
0.2 Terminology and Document Conventions ..3
0.3 Revision History..3

1 Introduction..4

2 Application Domain...5
2.1 Terminology + Abbreviations ..5

3 Problem Description ...5

4 Requirements...6

5 Technical Solution...6
5.1 Ordered Table with Decision Column Discussion ..6
5.2 Conditional Permission Table Requirements ...8
5.3 Negative Condition Requirements..10
5.4 Atomic API Discussion..10
5.5 Javadoc...11

5.5.1 org.osgi.service.condpermadmin Class BundleLocationCondition11
5.5.2 org.osgi.service.condpermadmin Class BundleSignerCondition..........................12
5.5.3 org.osgi.service.condpermadmin Interface Condition ..13
5.5.4 org.osgi.service.condpermadmin Interface ConditionalPermissionAdmin16
5.5.5 org.osgi.service.condpermadmin Interface ConditionalPermissionInfo................19
5.5.6 org.osgi.service.condpermadmin Interface ConditionalPermissionInfoBase20
5.5.7 org.osgi.service.condpermadmin Interface ConditionalPermissionsUpdate22
5.5.8 org.osgi.service.condpermadmin Class ConditionInfo ...24

5.6 Open Issues..27
5.7 Closed Issues ...27

5.7.1 Default Decision...27
5.7.2 An Alternate Update model..28
5.7.3 Utility methods ...29

6 Considered Alternatives ...29
6.1 com.bea.sandbox.security.permission Class DeniablePermission29

6.1.1 DeniablePermission ...31
6.1.2 DeniablePermission ...31

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 3 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

6.1.3 implies..31
6.1.4 hashCode...32
6.1.5 equals...32
6.1.6 toString...32

6.2 Deny Permission Column ...32
6.2.1 Add Deny Column to Permission Table Discussion ..32
6.2.2 NOT Condition Discussion...34
6.2.3 NotCondition Requirements...35
6.2.4 NotCondition Javadoc..36

org.osgi.service.condpermadmin Class NotCondition...36
getCondition..36
6.2.5 Other API modifications ...37
6.2.6 org.osgi.service.condpermadmin.ConditionInfo ..37
ConditionInfo...37
isNot ..37
6.2.7 org.osgi.service.condpermadmin.ConditionPermissionInfo...................................37
getDenyPermissionInfos ...38
6.2.8 org.osgi.service.condpermadmin.ConditionalPermissionAdmin38
addConditionalPermissionInfo ..38
setConditionalPermissionInfo ...38
6.2.9 Issues...39
6.2.10 Friends API ..39

7 Security Considerations ...40

8 Document Support ..40
8.1 References..40
8.2 Author’s Address ..40
8.3 Acronyms and Abbreviations..40
8.4 End of Document ..40

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in [1].

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial Aug 8, 2007 Initial revision. Covers only a few enhancements as well as a
discussion of a mechanism that has been considered but rejected

John Wells, BEA Systems, Inc., jwells@bea.com

mailto:jwells@bea.com

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 4 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Revision Date Comments

0.2 Dec 14, 2007 Clean up document after initial review. Add support for Boolean
condition expressions. Include more use case examples.

0.3 Jan. 10, 2008 Yet another change in direction

0.4 Feb. 7, 2008 Remove ABSTAIN and create an atomic update API

0.5 Feb. 15, 2008 Change to a different style of update API

0.6 Mar. 10, 2008 Cleanup to the API based on review comments

0.7 May 7, 2008 More API cleanup

0.8 Jun 25, 2008 Add better algorithm description, fix how postponed conditions should
work and fix the example to make more sense

0.9 Jul 23, 2008 Algorithm for postponed conditions

0.91 Aug 05, 2008 Changes to simplify postponed conditions algorithm + updated javadoc

Thomas Watson, IBM, tjwatson@us.ibm.com

1 Introduction

One reasonable property of many “enterprise” servers is that they host user code along with vendor supplied
“system” code within the same Java VM. In order to do this there needs to be some reasonable way to allow
system code to separate itself from the user code so that the system code can safely offer services, packages
and other resources to which it does not wish user code to have access.

This RFC is a response to RFP-78 ([3]). It extends the existing security tuple table, while maintaining backward
compatibility with all existing API and security file formats.

mailto:tjwatson@us.ibm.com

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 5 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

2 Application Domain

From [3]:

The application domain is OSGi server applications where third party bundles may be deployed alongside trusted
bundles from the application server provider. The ability to split the set of bundles into categories like these is
already well defined in the Conditional Permission Admin Service.

2.1 Terminology + Abbreviations
• Application Server: In this paper an application server refers to a running OSGi system that has trusted

system bundles written by the application server vendor running alongside third-party user bundles that
are provided by the end customer (i.e., not the application server vendor). It does not imply a JEE, .NET
or database server, but simply a server whose job it is to host other services and provide them a
consistent set of system services upon which they can rely.

• Conditional Permission Service: This is the service defined in Chapter 9 of the OSGi Service Platform
Core Specification (R4). It defines conditions, permissions and how security is applied in the R4 OSGi
platform.

3 Problem Description

From [3]:

The existing permission classes in OSGi do not have the flexibility needed to handle certain use cases. This
includes but is not limited to

• org.osgi.framework.PackagePermission

• org.osgi.framework.ServicePermission

• org.osgi.service.event.TopicPermission

• org.osgi.service.wireadmin.WirePermission

• org.osgi.service.cm.ConfigurationPermission

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 6 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Providing these capabilities on the OSGi platform will facilitate the adoption of OSGi into enterprise application
server environments.

4 Requirements

From [3]:

1. The solution MUST enable restricting certain bundles from offering a service, without having to list all of
the services that bundle might offer.

2. The solution MUST enable restricting certain bundles from getting a reference to a service, without having
to list all of the other services that bundle might want access to.

3. The solution MUST enable restricting certain bundles from importing or exporting a package, without
having to list all of the packages a bundle might import or export.

4. The solution MAY allow for a general Permission denial model

5. The solution MUST NOT alter the bundle programming model

6. The solution MAY boost performance by allowing for Permission implies decisions to be cached

7. Any RFC written MUST support all existing OSGi execution environments

5 Technical Solution

5.1 Ordered Table with Decision Column Discussion
In this solution we change the security table in two ways. Firstly, we make it an ordered table. Secondly, we add
another column to the table which determines if the decision of the row is to “allow” access to the resource or
“deny” access to the resource.

A few example use cases will make this clear.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 7 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

In the first use case ACME, a provider of system software, would like to allow all other bundles access to the
com.acme package family but restrict them from accessing the “com.acme.secret” and “com.acme.sauce”
packages.

Name Conditions Permissions Decision

R1 NOT Signed by ACME Package(“com.acme.secret”)

Package(“com.acme.sauce”)

DENY

R2 Signed by ACME Package(“com.acme.*”) ALLOW

R3 <Empty> Package(“com.acme.*”) ALLOW

Suppose ACME is attempting to access package “com.acme.secret”. Row R1 will not be evaluated since the
condition does not match. Row R2 will be evaluated, and since Package(“com.acme.*”) implies
“com.acme.secret” this check will succeed.

Now suppose Iona is attempting to access package “com.acme.secret”. Row R1 would be evaluated and since
Package(“com.acme.secret”) implies “com.acme.secret” this check would return DENY and would fail as
expected.

If instead Iona is attempting to access package “com.acme.service” then Row R1 would be evaluated. However,
since neither Package(“com.acme.secret”) nor Package(“com.acme.sauce”) implies “com.acme.service” the row
will not be evaluated (in effect the decision of this row is to ABSTAIN). Row R2 will be skipped (since the
condition does not match) and row R3 will be evaluated. Since Package(“com.acme.*”) implies
“com.acme.service” the decision of ALLOW will be taken and the permission check will succeed.

Note that the next table is equivalent to the table above:

Name Conditions Permissions Decision

R1 NOT Signed by ACME Package(“com.acme.secret”)

Package(“com.acme.sauce”)

DENY

R2 <Empty> Package(“com.acme.*”) ALLOW

One use case (which is not in the original set of use cases) that is handled cleanly by this solution is the friends
use case. In this use case we want to express the following scenario:

1. Pepsi wants to deny permissions to com.pepsi.* for everyone but Pepsi

2. Pepsi wants to allow Coke to have permission to com.pepsi.friends.*

3. All people should have access to all other packages

The following table enables the above use case:

Name Conditions Permissions Decision

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 8 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Name Conditions Permissions Decision

R1 Signed by Coke Package(“com.pepsi.friends.*”) ALLOW

R2 Not Signed by Pepsi Package(“com.pepsi.*”) DENY

R3 <Empty> Package(“*”) ALLOW

The reason that the above use case works is that the table is now ordered, and will be evaluated in row order.

If Coke attempts to access the “com.pepsi.friends.foo” package then row R1 will be evaluated first and since
Package(“com.pepsi.friends.*”) implies package “com.pepsi.friends.foo” the ALLOW decision is taken and the
check will succeed.

If Coke attempts to access the “com.pepsi.secret” package then row R1 will be evaluated first and since
Package(“com.pepsi.friends.*”) does not imply package “com.pepsi.secret” the row is not evaluated (in essence
row R1 abstains from the decision). Row R2 also applies to Coke and since Package(“com.pepsi.*”) implies
package “com.pepsi.secret” the decision of DENY is found and hence this check would fail (properly).

If I am Pepsi on the other hand, if I attempt to access package “com.pepsi.friends” or package “com.pepsi.secret”
then neither rows R1 or R2 apply, and only row R3 will be considered. Since Package(“*”) implies both the
packages listed above the decision of ALLOW is found and hence this check would succeed.

Also, RC Cola, who is *not* a friend of Pepsi, does not have access to either “com.pepsi.friends.*” or
“com.pepsi.*” but does have access to all the other packages in the system.

5.2 Conditional Permission Table Requirements
A fourth column shall be added to the conceptual Conditional Permission table. The cells in this column shall take
a single java.lang.String object. The allowable values for this string shall be “allow” or “deny”. The allowable
decision strings shall be added to the org.osgi.service.condpermadmin.ConditionalPermissionInfoBase class.

Previously the order of the rows in the conceptual Conditional Permission table were not significant. The rows of
the conceptual Conditional Permission table shall now be ordered by the index of the row. In other words, all
rows shall be evaluated in index order (lowest to highest). This includes rows with postponed conditions.

A permission check starts when the Security Manager checkPermission method is called with permission P as
argument. This Security Manager must be implemented by the Framework and is therefore called the Framework
Security Manager; it must be fully integrated with the Conditional Permission Admin service.

The Framework Security Manager must get the Access Control Context in effect. It must call the AccessController
getContext() method to get the default context if it is not passed a specific context.

The AccessControlContext checkPermission method must then be called, which causes the call stack to be
traversed. At each stack level the Bundle Protection Domain of the calling class is evaluated for the permission P
using the ProtectionDomain implies method. This complete evaluation must take place on the same thread.

P must be implied by the local permissions of the Bundle Protection Domain. If this is not the case, the check
must end with a failure.

The Bundle Protection Domain must now decide which rows in its instantiated conditional permission table are
applicable and imply P.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 9 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

It must therefore execute the following instructions or reach the same result in an alternative way:

• For each row R in the domain’s instantiated conditional permission table:
o If R has immediate conditions, evaluate all these immediate Condition objects. If any of these

objects is not satisfied, continue with next row.
o If R’s permissions do not imply P, continue with the next row.
o If R contains postponed Condition objects then add R to the end of the postpone list for the

domain’s instantiated conditional permission table (which will postpone the evaluation of R) and
continue with the next row.

o Otherwise:
 If there are no rows have been postponed for the domain then return true if R’s decision

is Grant; otherwise return false if R’s decision is Deny.
 Otherwise the postponed list for the domain’s instantiated conditional permission table

shall be inspected from the END to the START removing all postponed rows that have
the same decision as R’s decision until a postponed row is encountered with the opposite
decision

 If all postponed rows are removed then return true if R’s decision is Grant; otherwise
return false if R’s decision is Deny.

 Otherwise the remaining postponed rows along with R’s immediate decision must be
postponed and true must be returned

• After all rows have been processed and no immediate decision has been found
o If there were any postponements, then return true. Otherwise, return false.

After the Framework Security Manager has called the checkPermission method of the Access Control Context, it
must decide to fail or handle the postponed rows for each domain. If this method returns false, then the
Framework Security Manager’s checkPermission method fails.

If it returns true, there could still be a list of postponed rows for each Bundle Protection Domain’s instantiated
conditional permission table. Each of these postponed rows already imply permission P, otherwise they must not
have been placed on the postponed list for the domain’s instantiated conditional permission table. However, their
Condition objects still need to be satisfied before the decision of the row can apply to the security check.

Frameworks are free to implement an algorithm that finds optimal ways to permute the postponed rows from the
different domains involved in the permission check. The end result must return the same answer as the following
algorithm for processing postponed conditions.

• For each domain D that has and order list of postponed rows

o For each postponed row R

 For each postponed condition C

• Call Condition.isSatisified(Condition[], Dictionary) with the single condition
instance C. Each call to Condition.isSatisified(Condition[], Dictionary) for a
single condition type must use the same Dictionary instance during a single
permission check.

• If Condition.isSatisified(Condition[], Dictionary) returns false then continue to the
next postponed row; Otherwise continue to the next condition.

 If the decision is Grant then continue to the next domain

 If the decision is Deny then throw a SecurityException

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 10 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

o If there was an immediate decision recorded along with the postponed rows of domain D then

 If the immediate decision is Grant continue to the next domain

 If the decision is Deny then throw a SecurityException

o Otherwise no rows apply to the permission check for this domain; a SecurityException must be
thrown.

• If every domain is processed without throwing a SecurityException then the permission is granted.

The algorithm described above is descriptive and other implementations of how the postponed lists work may be
used, as long as the end goal of having the security table behave as if it is ordered (even if the conditions are not
actually evaluated in the given order) is achieved.

5.3 Negative Condition Requirements
The org.osgi.service.condpermadmin.BundleLocationCondition and
org.osgi.service.condpermadmin.BundleSignerCondition shall have an optional second string added to their
initialization arguments. If this string is equal to “!” then the Condition shall return the logical NOT of the result of
the match of the first string (the DN in the case of the BundleSignerCondition and the bundle location in the case
of the BundleLocationCondition).

5.4 Atomic API Discussion
In order to support an ordered permission table it is necessary to support an atomic style of updating that table.
In particular multiple entries may need to be added or removed from the table in a single operation in order to
avoid either granting or denying too many rights. However, the original API was not designed for atomic update.
In particular, the “delete” method on the ConditionalPermissionInfo objects as the means to remove items from
the table does not lend itself to atomicity.

In order to support atomic updates to the table a new object called the ConditionalPermissionAdminUpdate (or
just “Update” for short) has been created. The Update is originally created with a copy of the existing Permission
Table. There may be any number of Update objects in the system based on the running Permission Table.
However an Update will only successfully commit if the running permission table has not changed.

The ConditionalPermissionInfo interface has been split into two interfaces, the ConditionalPermissionInfoBase
interface and the existing ConditionalPermissionInfo interface. All of the methods previously in the
ConditionalPermissionInfo interface have been moved to the ConditionalPermissionInfoBase interface with the
exception of the delete method, which has remained in the ConditionalPermissionInfo interface. The
ConditionalPermissionInfo interface extends the ConditionalPermissionInfoBase interface. In this way both
source and binary compatibility is achieved, while still allowing an atomic coding paradigm. (Note that source
compatibility does not extend to the use of reflection, which may now get different results).

The Update’s List can be modified by the code without affecting the currently running permission table. At the
time the commit method is called on the Update’s list will become the new permission table as long as no other
update has been committed on the Permission Table since the Update was created. There is no requirement that
the commit method be called on an Update object.

While the Update mechanism helps satisfy the requirement for atomic updates to the permission table, there are
some idiosyncrasies associated with the approach. For example, since there is no lock it is not possible to write
code using this API that can be completely isolated from the possibility of losing the Update race. Therefore to be

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 11 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

completely correct all code using this new API must handle the case where the Update race is lost. This may or
may not be difficult to achieve in general code.

The exact mechanism and behavior for the atomic updates of the permission table can be found in the javadoc
section of this document.

5.5 Javadoc
Several classes need to be modified to support the specified requirements. The javadoc should be considered a
binding part of this specification. Note that only API that has been modified or added is included in this document.
All API not in this document shall continue to behave as per prior art.

A
ll P

age W
ithin This Box

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5.1 org.osgi.service.condpermadmin
Class BundleLocationCondition

java.lang.Object
 org.osgi.service.condpermadmin.BundleLocationCondition

public class BundleLocationCondition
extends java.lang.Object

Condition to test if the location of a bundle matches or does not match a pattern. Since the bundle's
location cannot be changed, this condition is immutable.

Pattern matching is done according to the filter string matching rules.
Version:

$Revision: 5185 $

Method Summary
static Condition getCondition(Bundle bundle, ConditionInfo info)

 Constructs a condition that tries to match the passed Bundle's location to the
location pattern.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Method Detail
5.5.1.1 getCondition

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 12 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

public static Condition getCondition(Bundle bundle,
 ConditionInfo info)

Constructs a condition that tries to match the passed Bundle's location to the location pattern.
Parameters:
bundle - The Bundle being evaluated.
info - The ConditionInfo from which to construct the condition. The ConditionInfo must specify one or
two arguments. The first argument of the ConditionInfo specifies the location pattern against which to
match the bundle location. Matching is done according to the filter string matching rules. Any '*'
characters in the first argument are used as wildcards when matching bundle locations unless they are
escaped with a '\' character. The Condition is satisfied if the bundle location matches the pattern. The
second argument of the ConditionInfo is optional. If a second argument is present and equal to "!", then
the satisfaction of the Condition is negated. That is, the Condition is satisfied if the bundle location does
NOT match the pattern. If the second argument is present but does not equal "!", then the second
argument is ignored.
Returns:
Condition object for the requested condition.

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5.2 org.osgi.service.condpermadmin
Class BundleSignerCondition

java.lang.Object
 org.osgi.service.condpermadmin.BundleSignerCondition

public class BundleSignerCondition
extends java.lang.Object

Condition to test if the signer of a bundle matches or does not match a pattern. Since the bundle's signer
can only change when the bundle is updated, this condition is immutable.

The condition expressed using a single String that specifies a Distinguished Name (DN) chain to match
bundle signers against. DN's are encoded using IETF RFC 2253. Usually signers use certificates that are
issued by certificate authorities, which also have a corresponding DN and certificate. The certificate
authorities can form a chain of trust where the last DN and certificate is known by the framework. The
signer of a bundle is expressed as signers DN followed by the DN of its issuer followed by the DN of
the next issuer until the DN of the root certificate authority. Each DN is separated by a semicolon.

A bundle can satisfy this condition if one of its signers has a DN chain that matches the DN chain used
to construct this condition. Wildcards (`*') can be used to allow greater flexibility in specifying the DN
chains. Wildcards can be used in place of DNs, RDNs, or the value in an RDN. If a wildcard is used for
a value of an RDN, the value must be exactly "*" and will match any value for the corresponding type in

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 13 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

that RDN. If a wildcard is used for a RDN, it must be the first RDN and will match any number of
RDNs (including zero RDNs).
Version:

$Revision: 5185 $

Method Summary

A
ll P

age W
ithin This Box

static Condition getCondition(Bundle bundle, ConditionInfo info)
 Constructs a Condition that tries to match the passed Bundle's location to the
location pattern.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Method Detail
5.5.2.1 getCondition

public static Condition getCondition(Bundle bundle,

ConditionInfo info)
Constructs a Condition that tries to match the passed Bundle's location to the location pattern.
Parameters:
bundle - The Bundle being evaluated.
info - The ConditionInfo from which to construct the condition. The ConditionInfo must specify one or
two arguments. The first argument of the ConditionInfo specifies the chain of distinguished names pattern
to match against the signer of the bundle. The Condition is satisfied if the signer of the bundle matches
the pattern. The second argument of the ConditionInfo is optional. If a second argument is present and
equal to "!", then the satisfaction of the Condition is negated. That is, the Condition is satisfied if the
signer of the bundle does NOT match the pattern. If the second argument is present but does not equal
"!", then the second argument is ignored.
Returns:
A Condition which checks the signers of the specified bundle.

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5.3 org.osgi.service.condpermadmin
Interface Condition

public interface Condition

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 14 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

The interface implemented by a Condition. Conditions are bound to Permissions using Conditional
Permission Info. The Permissions of a ConditionalPermission Info can only be used if the associated
Conditions are satisfied.
Version:

$Revision: 5184 $

Field Summary

A
ll P

age W
ithin This Box

static Condition FALSE
 A Condition object that will always evaluate to false and that is never postponed.

static Condition TRUE
 A Condition object that will always evaluate to true and that is never postponed.

Method Summary
isMutable boolean ()
 Returns whether the Condition is mutable.
isPostponed boolean ()
 Returns whether the evaluation must be postponed until the end of the permission check.
isSatisfied boolean ()
 Returns whether the Condition is satisfied.
isSatisfied boolean (Condition[] conditions, java.util.Dictionary context)
 Returns whether a the set of Conditions are satisfied.

Field Detail
5.5.3.1 TRUE

static final Condition TRUE

A Condition object that will always evaluate to true and that is never postponed.

5.5.3.2 FALSE

static final Condition FALSE

A Condition object that will always evaluate to false and that is never postponed.

Method Detail
5.5.3.3 isPostponed

boolean isPostponed()

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 15 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

Returns whether the evaluation must be postponed until the end of the permission check. This method
returns true if the evaluation of the Condition must be postponed until the end of the permission check. If
this method returns false, this Condition must be able to directly answer the isSatisfied() method.
In other words, isSatisfied() will return very quickly since no external sources, such as for example users,
need to be consulted.
Returns:
true to indicate the evaluation must be postponed. Otherwise, false if the evaluation can be
immediately performed.

5.5.3.4 isSatisfied

boolean isSatisfied()

Returns whether the Condition is satisfied.
Returns:
true false to indicate the Conditions is satisfied. Otherwise, if the Condition is not satisfied.

5.5.3.5 isMutable

boolean isMutable()

Returns whether the Condition is mutable.
Returns:
true isSatisfied()

A
ll P

age W
ithin This Box

 to indicate the value returned by can change. Otherwise, false if the value
returned by isSatisfied() will not change.

5.5.3.6 isSatisfied

boolean isSatisfied(Condition[] conditions,
 java.util.Dictionary context)

Returns whether a the set of Conditions are satisfied. Although this method is not static, it must be
implemented as if it were static. All of the passed Conditions will be of the same type and will correspond
to the class type of the object on which this method is invoked.
Parameters:
conditions - The array of Conditions.
context - A Dictionary object that implementors can use to track state. If this method is invoked multiple
times in the same permission evaluation, the same Dictionary will be passed multiple times. The
SecurityManager treats this Dictionary as an opaque object and simply creates an empty dictionary and
passes it to subsequent invocations if multiple invocations are needed.
Returns:
true false if all the Conditions are satisfied. Otherwise, if one of the Conditions is not satisfied.

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 16 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

5.5.4 org.osgi.service.condpermadmin
Interface ConditionalPermissionAdmin

public interface ConditionalPermissionAdmin

Framework service to administer Conditional Permissions. Conditional Permissions can be added to,
retrieved from, and removed from the framework. Conditional Permissions are conceptually managed in
an ordered table called the Conditional Permission Table.
Version:

$Revision: 5188 $

Method Summary

A
ll P

age W
ithin This Box

 ConditionalPermissionInfo addConditionalPermissionInfo(ConditionInfo[] conds,
PermissionInfo[] perms)
 Deprecated. Since 1.1. Use ConditionalPermissionsUpdat
instead.

 ConditionalPermissionInfoBase createConditionalPermissionInfoBase(java.lang.String name
ConditionInfo[] conditions, PermissionInfo[] permissions
java.lang.String decision)
 Creates a ConditionalPermissionInfoBase with the specified fields.

 ConditionalPermissionsUpdate createConditionalPermissionsUpdate()
 Creates an update for the Conditional Permission Table.
getAccessControlContext Java.security.AccessControlContext (java.lang.String[] signers)
 Returns the Access Control Context that corresponds to the specifie
signers.

 ConditionalPermissionInfo getConditionalPermissionInfo(java.lang.String name)
 Return the Conditional Permission Info with the specified name.
getConditionalPermissionInfos java.util.Enumeration ()
 Returns the Conditional Permission Infos from the Conditiona
Permission

 ConditionalPermissionInfo setConditionalPermissionInfo(java.lang.String name,
ConditionInfo[] conds, PermissionInfo[] perms
 Deprecated. Since 1.1. Use ConditionalPermissionsUpdat
instead.

Method Detail
5.5.4.1 addConditionalPermissionInfo

ConditionalPermissionInfo addConditionalPermissionInfo(ConditionInfo[] conds,
 PermissionInfo[] perms)

Deprecated. Since 1.1. Use ConditionalPermissionsUpdate instead.
Create a new Conditional Permission Info in the Conditional Permission Table.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 17 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

The Conditional Permission Info will be given a unique, never reused name. This entry will be
added at the beginning of the Conditional Permission Table with a grant decision of

A
ll P

age W
ithin This Box

ALLOW.

Since this method changes the Conditional Permission Table any
ConditionalPermissionsUpdates that were created prior to calling this method can no longer
be committed.
Parameters:
conds - The Conditions that need to be satisfied to enable the corresponding Permissions.
perms - The Permissions that are enabled when the corresponding Conditions are satisfied.
Returns:
The ConditionalPermissionInfo for the specified Conditions and Permissions.
Throws:
java.lang.SecurityException - If the caller does not have AllPermission.

5.5.4.2 setConditionalPermissionInfo

ConditionalPermissionInfo setConditionalPermissionInfo(java.lang.String name,

ConditionInfo [] conds,
 PermissionInfo[] perms)

Deprecated. Since 1.1. Use ConditionalPermissionsUpdate instead.
Set or create a Conditional Permission Info with a specified name in the Conditional Permission Table.

If the specified name is null, a new Conditional Permission Info must be created and will be
given a unique, never reused name. If there is currently no Conditional Permission Info with the
specified name, a new Conditional Permission Info must be created with the specified name.
Otherwise, the Conditional Permission Info with the specified name must be updated with the
specified Conditions and Permissions. If a new entry was created in the Conditional Permission
Table it will be added at the beginning of the table with a grant decision of ALLOW.

Since this method changes the underlying permission table any
ConditionalPermissionsUpdates that were created prior to calling this method can no longer
be committed.
Parameters:
name - The name of the Conditional Permission Info, or null.
conds - The Conditions that need to be satisfied to enable the corresponding Permissions.
perms - The Permissions that are enabled when the corresponding Conditions are satisfied.
Returns:
The ConditionalPermissionInfo that for the specified name, Conditions and Permissions.
Throws:
java.lang.SecurityException - If the caller does not have AllPermission.

5.5.4.3 getConditionalPermissionInfos

java.util.Enumeration getConditionalPermissionInfos()

Returns the Conditional Permission Infos from the Conditional Permission

The returned Enumeration will return elements in the order they are kept in the Conditional
Permission Table.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 18 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

The Enumeration returned is based on a copy of the Conditional Permission Table and therefore
will not throw exceptions if the Conditional Permission Table is changed during the course of
reading elements from the Enumeration.
Returns:
An enumeration of the Conditional Permission Infos that are currently in the Conditional Permission
Table.

5.5.4.4 getConditionalPermissionInfo

A
ll P

age W
ithin This Box

ConditionalPermissionInfo getConditionalPermissionInfo(java.lang.String name)
Return the Conditional Permission Info with the specified name.
Parameters:
name - The name of the Conditional Permission Info to be returned.
Returns:
The Conditional Permission Info with the specified name.

5.5.4.5 getAccessControlContext

java.security.AccessControlContext
getAccessControlContext(java.lang.String[] signers)

Returns the Access Control Context that corresponds to the specified signers.
Parameters:
signers - The signers for which to return an Access Control Context.
Returns:
An AccessControlContext that has the Permissions associated with the signer.

5.5.4.6 createConditionalPermissionsUpdate

ConditionalPermissionsUpdate createConditionalPermissionsUpdate()

Creates an update for the Conditional Permission Table. The update is a working copy of the current
Conditional Permission Table. If the running Conditional Permission Table is modified before commit is
called on the returned update, then the call to commit will fail. That is, the commit method will return false
and no change will be made to the running Conditional Permission Table. There is no requirement that
commit is eventually called on the returned update.
Returns:
An update for the Conditional Permission Table.
Since:
1.1

5.5.4.7 createConditionalPermissionInfoBase

ConditionalPermissionInfoBase
createConditionalPermissionInfoBase(java.lang.String name,

ConditionInfo[] conditions,

PermissionInfo[] permissions,

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 19 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

java.lang.String decision)

Creates a ConditionalPermissionInfoBase with the specified fields.
Parameters:
name - The name of the created ConditionalPermissionInfoBase or null to have a unique name
generated when the created ConditionalPermissionInfoBase is committed in an update to the Conditional
Permission Table.
conditions - The Conditions that need to be satisfied to enable the corresponding Permissions.
permissions - The Permissions that are enabled when the corresponding Conditions are satisfied.
decision - One of the following values:

allow

A
ll P

age W
ithin This Box

•

deny•

Returns:
ConditionalPermissionsUpdateA ConditionalPermissionInfoBase object suitable for insertion in a .

Throws:
java.lang.IllegalArgumentException - If the decision string is invalid.
Since:
1.1

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5.5 org.osgi.service.condpermadmin
Interface ConditionalPermissionInfo

All Superinterfaces:
ConditionalPermissionInfoBase

public interface ConditionalPermissionInfo
extends ConditionalPermissionInfoBase

A binding of a set of Conditions to a set of Permissions. Instances of this interface are obtained from the
Conditional Permission Admin service.
Version:

$Revision: 5188 $

Field Summary

Fields inherited from interface org.osgi.service.condpermadmin.ConditionalPermissionInfoBase
ALLOW, DENY

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 20 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

Method Summary
delete

A
ll P

age W
ithin This Box

 void ()
 Removes this Conditional Permission Info from the Conditional Permission Table.

Methods inherited from interface org.osgi.service.condpermadmin.ConditionalPermissionInfoBase
getConditionInfos, getGrantDecision, getName, getPermissionInfos

Method Detail
5.5.5.1 delete

void delete()

Removes this Conditional Permission Info from the Conditional Permission Table.

Since this method changes the underlying permission table any
ConditionalPermissionsUpdates that were created prior to calling this method can no longer
be committed.
Throws:
java.lang.SecurityException - If the caller does not have AllPermission.

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5.6 org.osgi.service.condpermadmin
Interface ConditionalPermissionInfoBase

All Known Subinterfaces:
ConditionalPermissionInfo

public interface ConditionalPermissionInfoBase

A binding of a set of Conditions to a set of Permissions. Instances of this interface are obtained from the
Conditional Permission Admin service.
Since:

1.1
Version:

$Revision: 5185 $

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 21 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

Field Summary
ALLOW

A
ll P

age W
ithin This Box

static java.lang.String
 This string is used to indicate that a row in the conditional permission
admin table should return a grant decision of ALLOW if the conditions are all
satisfied and at least one of the permissions is implied.
DENYstatic java.lang.String
 This string is used to indicate that a row in the conditional permission
admin table should return a grant decision of DENY if the conditions are all
satisfied and at least one of the permissions is implied.

Method Summary
getConditionInfos ConditionInfo[] ()
 Returns the Condition Infos for the Conditions that must be satisfied to enable the
Permissions.
getGrantDecision java.lang.String ()
 Returns the grant decision for this Conditional Permission Info.
getName java.lang.String ()
 Returns the name of this Conditional Permission Info.
getPermissionInfos PermissionInfo[] ()
 Returns the Permission Infos for the Permission in this Conditional Permission Info.

Field Detail
5.5.6.1 ALLOW

static final java.lang.String ALLOW

This string is used to indicate that a row in the conditional permission admin table should return a grant
decision of ALLOW if the conditions are all satisfied and at least one of the permissions is implied.
See Also:
Constant Field Values

5.5.6.2 DENY

static final java.lang.String DENY

This string is used to indicate that a row in the conditional permission admin table should return a grant
decision of DENY if the conditions are all satisfied and at least one of the permissions is implied.
See Also:
Constant Field Values

Method Detail
5.5.6.3 getConditionInfos

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 22 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

ConditionInfo[] getConditionInfos()
Returns the Condition Infos for the Conditions that must be satisfied to enable the Permissions.
Returns:
The Condition Infos for the Conditions in this Conditional Permission Info.

5.5.6.4 getPermissionInfos

PermissionInfo[] getPermissionInfos()

Returns the Permission Infos for the Permission in this Conditional Permission Info.
Returns:
The Permission Infos for the Permission in this Conditional Permission Info.

5.5.6.5 getGrantDecision

java.lang.String getGrantDecision()

Returns the grant decision for this Conditional Permission Info.
Returns:
One of the following values:

allow• - The grant decision is allow.

deny• - The grant decision is DENY.

5.5.6.6 getName

java.lang.String getName()

Returns the name of this Conditional Permission Info.
Returns:
The name of this Conditional Permission Info.

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5.7 org.osgi.service.condpermadmin
Interface ConditionalPermissionsUpdate

public interface ConditionalPermissionsUpdate

Update the Conditional Permission Table. There may be many update objects in the system at one time.
If commit is called and the Conditional Permission Table has been modified since this update was
created, then the call to commit will fail and this object should be discarded.
Since:

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 23 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

1.1
Version:

$Revision: 5188 $

Method Summary
commit

A
ll P

age W
ithin This Box

 boolean ()
 Commit the update.
getConditionalPermissionInfoBases Java.util.List ()

ConditionalPermissionInfoBase This method returns the list of s for this
update.

Method Detail
5.5.7.1 getConditionalPermissionInfoBases

java.util.List getConditionalPermissionInfoBases()

ConditionalPermissionInfoBaseThis method returns the list of s for this update. This list is
originally based on the Conditional Permission Table at the time this update was created. The list
returned by this method will be replace the Conditional Permission Table if commit is called and is
successful.

The elements of the list must NOT be instances of type ConditionalPermissionInfo, but must
rather be of type ConditionalPermissionInfoBase. This is to ensure the delete method
cannot be mistakenly used.

The list returned by this method is ordered and the most significant table entry is the first entry in
the list.
Returns:

ListA of the Conditional Permission Info Bases which represent the Conditional Permissions
maintained by this update. Modifications to this list will not affect the Conditional Permission Table until
successfully committed. The elements in this list must be of type ConditionalPermissionInfoBase.
The list may be empty if the Conditional Permission Table was empty when this update was created.

5.5.7.2 commit

boolean commit()

Commit the update. If no changes have been made to the Conditional Permission Table since this update
was created, then this method will replace the Conditional Permission Table with this update's Conditional
Permissions. This method may only be successfully called once on this object.

If any of the ConditionalPermissionInfoBase objects in the update list has null as a name it
will be replaced with a ConditionalPermissionInfoBase object that has a generated name
which is unique within the list.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 24 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

No two entries in this update's Conditional Permissions may have the same name. Other
consistency checks may also be performed. If the update's Conditional Permissions are
determined to be inconsistent in some way then an will be thrown. IllegalStateException

This method returns false if the Conditional Permission Table has been modified since the
creation of this update.
Returns:
true if the commit was successful. false if the Conditional Permission Table has been modified since
the creation of this update.
Throws:
java.lang.SecurityException - If the caller does not have AllPermission.
java.lang.IllegalStateException - If the update's Conditional Permissions are not valid or
inconsistent. For example, if this update has two Conditional Permissions in it with the same name, then
this exception will be thrown.

A
ll P

age W
ithin This Box

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5.8 org.osgi.service.condpermadmin
Class ConditionInfo

java.lang.Object
 org.osgi.service.condpermadmin.ConditionInfo

public class ConditionInfo
extends java.lang.Object

Condition representation used by the Conditional Permission Admin service.

This class encapsulates two pieces of information: a Condition type (class name), which must implement
, and the arguments passed to its constructor. Condition

In order for a Condition represented by a ConditionInfo to be instantiated and considered during a
permission check, its Condition class must be available from the system classpath.

The Condition class must either:

getCondition• Declare a public static method that takes a Bundle ConditionInfo object and a
object as arguments. That method must return an object that implements the Condition interface.

• Implement the Condition Bundle interface and define a public constructor that takes a object and a
ConditionInfo object as arguments.

Version:
$Revision: 5183 $

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 25 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

Constructor Summary
ConditionInfo

A
ll P

age W
ithin This Box

(java.lang.String encodedCondition)
 string. Constructs a ConditionInfo ConditionInfo object from the specified encoded

ConditionInfo(java.lang.String type, java.lang.String[] args)
 from the specified type and args. Constructs a ConditionInfo

Method Summary
equals boolean (java.lang.Object obj)

 objects. ConditionInfo Determines the equality of two

getArgs Java.lang.String[] ()
. ConditionInfo Returns arguments of this

getEncoded java.lang.String ()
ConditionInfo Returns the string encoding of this in a form suitable for

. restoring this ConditionInfo

getType java.lang.String ()
 Returns the fully qualified class name of the condition represented by this

. ConditionInfo

hashCode int ()
 Returns the hash code value for this object.
toString java.lang.String ()

. ConditionInfo Returns the string representation of this

Methods inherited from class java.lang.Object
Clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Detail
5.5.8.1 ConditionInfo

public ConditionInfo(java.lang.String type,
 java.lang.String[] args)

Constructs a ConditionInfo from the specified type and args.
Parameters:
type ConditionInfo - The fully qualified class name of the Condition represented by this .
args - The arguments for the Condition. These arguments are available to the newly created Condition
by calling the getArgs() method.
Throws:
java.lang.NullPointerException - If type null is .

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 26 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

5.5.8.2 ConditionInfo

public ConditionInfo(java.lang.String encodedCondition)

A
ll P

age W
ithin This Box

Constructs a ConditionInfo object from the specified encoded ConditionInfo string. White space
in the encoded ConditionInfo string is ignored.
Parameters:
encodedCondition ConditionInfo - The encoded .
Throws:
java.lang.IllegalArgumentException encodedCondition - If the is not properly formatted.
See Also:
getEncoded()

Method Detail
5.5.8.3 getEncoded

public final java.lang.String getEncoded()

Returns the string encoding of this ConditionInfo in a form suitable for restoring this
ConditionInfo.

The encoding format is:

 [type "arg0" "arg1" ...]

where argN are strings that are encoded for proper parsing. Specifically, the " \, , carriage return, and line
feed characters are escaped using \", \\, \r \n, and , respectively.

The encoded string contains no leading or trailing whitespace characters. A single space
character is used between type and "arg0" and between the arguments.
Returns:

ConditionInfoThe string encoding of this .

5.5.8.4 toString

public java.lang.String toString()

ConditionInfo. The string is created by calling the Returns the string representation of this
getEncoded ConditionInfo method on this .
Overrides:
toString in class java.lang.Object
Returns:
The string representation of this ConditionInfo.

5.5.8.5 getType

public final java.lang.String getType()

ConditionInfo. Returns the fully qualified class name of the condition represented by this
Returns:

ConditionInfoThe fully qualified class name of the condition represented by this .

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 27 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

5.5.8.6 getArgs

public final java.lang.String[] getArgs()

A
ll P

age W
ithin This Box

Returns arguments of this ConditionInfo.
Returns:
The arguments of this ConditionInfo. An empty array is returned if the ConditionInfo has no
arguments.

5.5.8.7 equals

public boolean equals(java.lang.Object obj)

Determines the equality of two ConditionInfo objects. This method checks that specified object has
the same type and args as this ConditionInfo object.
Overrides:
equals in class java.lang.Object
Parameters:
obj ConditionInfo - The object to test for equality with this object.
Returns:
true if obj is a ConditionInfo ConditionInfo, and has the same type and args as this object;
false otherwise.

5.5.8.8 hashCode

public int hashCode()

Returns the hash code value for this object.
Overrides:
hashCode in class java.lang.Object
Returns:
A hash code value for this object.

Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.6 Open Issues
5.7 Closed Issues
5.7.1 Default Decision

5.7.1.1 Original Issue
In a system where denying permissions is explicitly and appropriately handled, it is useful to be able to control the
decision if no-one has an explicit decision. Currently if no row in the table matches, then the decision taken is to
disallow the requested permission. This behavior is fine in a system where rights cannot be denied as well as

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 28 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

granted. Since this system allows for permissions to be denied it becomes useful (and would lead to fewer table
entries) if the decision taken when no-one has made an explicit decision could be set to allow the request.

One common use-case where this is important is when someone wishes to have the last row in the table turn on
all of the permissions. The below table is an example:

Name Conditions Permissions Decision

R1 <whatever> <whatever> DENY

LastRow <empty> java.lang.AllPermission ALLOW

In this use case, the last row in the table allows all permissions to everyone. This makes the security of the
system based on what is denied as opposed to what is granted. However, many of the API (in particular the
legacy API) have specified that they add elements to the end of the table. Also, it is very easy to add items to the
end of a list, whereas adding things next-to-the end is somewhat trickier. Therefore, it would make the
programming model easier if instead there were a “default” decision that was taken if no rows of the table
matched. If people knew that the default decision to be taken was ALLOW as opposed to abstain, they could
safely add their entries to the end of the list, rather than having to add a row that must always remain at the end of
the list.

This enhancement has not been specified pending further discussion of the merits of the proposal.

5.7.1.2 Resolution
Despite the difficulties introduced to the programmer when using an ordered table this enhancement will not be
done. The javadoc for the original API that added items to the table have been modified to specify that they will
add their entries to the beginning of the table rather than the end so that it might be easier to use the old API in
conjunction with the Update API.

5.7.2 An Alternate Update model

5.7.2.1 Original Issue
Another model for atomic updates is one in which the “createUpdate” method can create multiple updates and
that only the “commit” method need be atomic. In this mode, each update gets a working copy of the Permission
Admin Table and when commit happens successfully its copy becomes the new Permission Admin Table. If
multiple Updates are based off of the same conceptual table generation number then only one of the updates
would succeed at commit time. All of the other updates would fail at commit time, with an explicit exception being
thrown indicating that the update was based on an older generation number. It would be up to the code at that
point to re-do the work it had done.

This option is viable and has the advantage that blocking semantics and timeouts need not be specified. It
however suffers the drawback that the error case will happen even in properly written code and thus will need to
be dealt with by the client code. In both proposals the client code needs to deal with the problems of inconsistent
lists and other semantic issues, but in this proposal the code would also have to deal with the hirsute problem of a
lost race.

Since the existing proposal seems to be easier to use from a client perspective it has been chosen, pending
further discussion of the merits of the multiple-update proposal.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 29 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

5.7.2.2 Resolution
This model has been adopted in this version of the specification. Version 0.4 of this document proposed a
mechanism whereby an exclusive lock could be held, ensuring multiple simultaneous updates could not occur. In
this solution there is no supplied methodology to ensure races do not occur. Lost races are reported to the user,
who is responsible for redoing the work lost.

5.7.3 Utility methods

5.7.3.1 Original Issue
The methods createInfoBase() and generateUniqueName() are currently specified on the
org.osgi.service.condpermadmin.ConditionalPermissionAdminUpdate object. However, these methods have
nothing to do with the particular update and would be better served as static methods on some Utility class.
There does not seem to be any generic “Utility” class in the OSGi framework. It would be useful to have such a
class for methods like these to be specified.

Since this RFC does not appear to be the proper place to propose such a Utility class the methods will remain
where they are, pending further discussion.

5.7.3.2 Resolution
Since Java has a deficiency in supporting static style methods, these methods will remain on an interface.
However, they have been moved from the Update interface to the Admin interface.

6 Considered Alternatives

The idea here is to have a “DeniablePermission” class that extends BasicPermission. All of the classes listed
above that currently extend BasicPermission would be changed to extend DeniablePermission.

This solution has the advantage of being very easy to implement. However, there are subtleties of the syntax
which are not desirable. For example, if someone were to specify “*-a.b” and also “*-a.c” resolves to “*”. Instead,
the user who wanted to restrict both a.b and a.c should have said “*-a.b,a.c”. This might confuse people and
make it difficult to read and understand the security constraints placed on the Permission.

The javadoc for the DeniablePermission can be found below:

6.1 com.bea.sandbox.security.permission
Class DeniablePermission
java.lang.Object
 java.security.Permission
 java.security.BasicPermission A

ll P
age W

ithin This Box

 com.bea.sandbox.security.permission.DeniablePermission
All Implemented Interfaces:

Serializable, Guard

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Guard.html

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 30 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

public class DeniablePermission
extends BasicPermission

This is an extension of BasicPermission which understands denials as well as grants.

The name for a DeniablePermission has two parts, the part before the '-' character, and the part after the
'-' character. If there is no '-' character in the name then DeniablePermission acts exactly like a
BasicPermission. The firt part of the name is the Permission granted, while the second part of the name
are the things denied.

The rules for the first part of the name (things granted) follow the same rules as BasicPermission. The
first part of the name for a DeniablePermission is the name of the given permission (for example, "exit",
"setFactory", "print.queueJob", etc). The naming convention follows the hierarchical property naming
convention. An asterisk may appear by itself, or if immediately preceded by a "." may appear at the end
of the name, to signify a wildcard match. For example, "*" and "java.*" are valid, while "*java", "a*b",
and "java*" are not valid.

The rules for the second part of the name (things denied) are as follows. The second part of the name
consists of comma separated resource names that should be denied access. The individual resource
names are called denial strings These denial strings may be indiviually listed resources ("exit",
"setFactory", "print.queueJob", etc). The individual denied strings may end with ".*" in order to signify
a wildcard match. Examples of valid names with denial strings are

• "com.acme.*-com.acme.security.*"

• "*-com.acme.accounting.*,com.acme.cfo.getMail"

There are other rules about DeniablePermission names:

• A name may not have a '-' character if the grant portion of the name is not a wildcard

• A denial string may not be "*"

• A denial string may not have an embedded "*"

• The last character of a name may not be '-'
See Also:
Serialized Form

Constructor Summary
DeniablePermission

A
ll P

age W
ithin This Box

(String name) This cuts off anything prior to the '-' character for the super
DeniablePermission(String name, String actions) This cuts off anything prior to the '-' character for the super

Method Summary

http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/serialized-form.html#com.bea.sandbox.security.permission.DeniablePermission
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#DeniablePermission(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#DeniablePermission(java.lang.String, java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 31 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

equals

A
ll P

age W
ithin This Box

 boolean (Object cmp)

hashCode int ()

implies boolean (Permission p)

 String toString()

Methods inherited from class java.security.BasicPermission
getActions, newPermissionCollection

Methods inherited from class java.security.Permission
checkGuard, getName

Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Detail
6.1.1 DeniablePermission

public DeniablePermission(String name)
This cuts off anything prior to the '-' character for the super
Parameters:
name - The name with the optional '-' character

6.1.2 DeniablePermission
public DeniablePermission(String name,

String actions)
This cuts off anything prior to the '-' character for the super
Parameters:
name - The name with the optional '-' character
actions - The actions

Method Detail
6.1.3 implies

public boolean implies(Permission p)
Overrides:
implies in class BasicPermission
See Also:
BasicPermission.implies(java.security.Permission)

http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#hashCode()
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#implies(java.security.Permission)
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#toString()
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#getActions()
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#newPermissionCollection()
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html#checkGuard(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html#getName()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#clone()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#finalize()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#getClass()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#notify()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#notifyAll()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#wait()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#wait(long)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#wait(long, int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#implies(java.security.Permission)
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#implies(java.security.Permission)

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 32 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

6.1.4 hashCode
public int hashCode()
Overrides:
hashCode

A
ll P

age W
ithin This Box

 in class BasicPermission
See Also:
BasicPermission.hashCode()

6.1.5 equals
public boolean equals(Object cmp)
Overrides:
equals in class BasicPermission
See Also:
BasicPermission.equals(java.lang.Object)

6.1.6 toString
public String toString()
Overrides:
toString in class Permission

http://www-beace/beace-
site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html -
skip-navbar_bottom#skip-navbar_bottom

Documentation is available atPackage Class Tree Deprecated Index Help http://docs-stage/msa/docs30
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All

Classes Copyright 2007 BEA Systems
Inc.SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6.2 Deny Permission Column
In this solution a deny permission column was added to the tuple table. There are several reasons this solution
was reject. This solution did not handle certain important use cases (which will be detailed in section 6.2.10).
Furthermore it is difficult to optimize this solution since all rows of the table must be evaluated even if one of the
rows has returned an “allows” result.

The following are the discussions and requirements of that solution.

6.2.1 Add Deny Column to Permission Table Discussion
The first part of the solution is to take the security table which currently has three columns and add a fourth
column. Currently, the three columns would be labeled “name”, “condition” and “permission”. In this solution the
columns of the table would be labeled “name”, “condition”, “allows permission” and “denies permission”.

Today a “permission” cell in the table contains a list of Permission objects. If any of these objects “imply” the
permission being sought then the result of the security check is to allow the operation. Hence, the individual
permissions act like a logical “OR” operation, since if *any* of the Permission objects in the cell return “true” then
the security check returns “true” (or ALLOW). Note that at least one Permission object must “imply” the

http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#hashCode()
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#hashCode()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/BasicPermission.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html#toString()
http://java.sun.com/j2se/1.5.0/docs/api/java/security/Permission.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#skip-navbar_bottom#skip-navbar_bottom
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#skip-navbar_bottom#skip-navbar_bottom
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#skip-navbar_bottom#skip-navbar_bottom
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/package-summary.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/package-tree.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/deprecated-list.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/index-all.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/help-doc.html
http://docs-stage/msa/docs30
http://e-docs.bea.com/copyright.html
http://e-docs.bea.com/copyright.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/index.html?com/bea/sandbox/security/permission/DeniablePermission.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/allclasses-noframe.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/allclasses-noframe.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/allclasses-noframe.html
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#constructor_summary#constructor_summary
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#method_summary#method_summary
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#constructor_detail#constructor_detail
http://www-beace/beace-site/5.0/com.bea.sandbox.dp/javadoc/com/bea/sandbox/security/permission/DeniablePermission.html#method_detail#method_detail

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 33 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

permission. Hence an empty permission set in the “permission” column of the table would always return “false”
(or DENY).

In this solution the “allows permission” cell behaves in the same way as above, and would return the same “true”
(ALLOW) or “false” (ABSTAIN) decision as it does currently. However, after the “allow permission” cell has been
consulted the “denies permission” cell will also be checked. The “denies permission” cell must return “false” in
order for the security check to pass. In other words the security check result can be gotten using the following
pseudo-formula:

Security-check-result = (allow-permission-result) && !(denies-permission-result).

The “denies-permission” cells contains a list of Permission objects, just as the “allows-permission” cells do. The
individual permissions in the “denies-permission” cells are OR’d together to get the result. Therefore in order for
the whole security check to pass ALL of the Permissions in the “denies-permission” cell must NOT imply the
Permission being asked for.

A simple example should make this clear. Assume I wish to grant access to all packages except the
“com.acme.secret” package and the “com.acme.sauce” package. Here is a row of cells in the security table:

Name Condition Allow Permission Deny Permission

Example <empty> (always true) Package(“*”) Package(“com.acme.secret”),
Package(“com.acme.sauce”)

If a bundle is trying to access the package “com.acme.transaction” they would first check against Package(“*”)
which would return “true”. Then the system would check both Package(“com.acme.secret”) which would return
“false” and Package(“com.acme.sauce”) which would return” false”, and so the “Deny Permission” cell would have
a value of “false”. The security check: (allow-permission-result) && !(denies-permission-result) would end up
being (true) && !(false) and would hence be “true” and access to the “com.acme.transaction” package would be
allowed.

On the other hand, if a bundle is trying to access the package “com.acme.secret” they would first check against
Package(“*”) which would return “true”. Then the system would check Package(“com.acme.secret”) which would
return “true”, and so the “Deny Permission” cell would have a value of “true”. The security check (allow-
permission-result) && !(denies-permission-result) would end up being (true) && !(true) and would hence be “false”
and access to the “com.acme.secret” package would be denied.

Some things about this proposed solution:

1. The way the table works today if the permission succeeds against ANY row in the table then the check will
succeed. Hence you could have a scenario where something is denied in one row of the table but succeeds in
another row of the table. According to the current rules that would allow access to that permission. Specifying a
separate “deny” table (rather than adding a column to the existing table) has been considered.

2. In the condition column an empty cell implies “true”. However, in the “Deny Permission” column it appears that
an empty cell should imply “false”.

3. For this RFC to be complete new API and a new “normalized” file format will need to be defined.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 34 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

6.2.1.1 Deny Column Requirements
A fourth column shall be added to the conceptual permission table. For the purposes of these requirements the
existing column in the tuple table will be called the “allow permissions” column while the new column being added
will be called the “deny permissions” column.

The “deny permission” column of the table shall contain a list of PermissionInfo objects. A target permission shall
be implied when the following are true:

1. At least one permission in the “allow permission” column has a permission that implies the target permission

2. None of the permissions in the “deny permission” column has a permission the implies the target permission

If there are no permissions in the “deny permission” column then the column naturally returns “false” and the
result of the permission check comes solely from the permissions in the “allow permission” column.

The “deny permission” column shall be consulted when determining if a tuple should be postponed. Therefore the
boxes in Figure 9.42 of the Conditional Permission Admin Specification that ask if a permission implies P shall
take the “deny permission” column into account as described above.

However, due to these requirements it is no longer the case that any tuple which eventually returns “true” means
that the permission check can succeed. All of the tuples whose conditions match and who have at least one entry
in the “deny permissions” column shall be checked in order to ensure that no denial is present.

6.2.2 NOT Condition Discussion
Using the above specified mechanism it is possible to deny access to resources. While this achieves the
requirements to deny resources there is still something missing. For example, suppose we wanted to allow
bundles signed by the ACME Company to have access to all packages but we wanted all other bundles in the
system to not have access to the “com.acme.secret” and “com.acme.sauce” packages. There is no way using
standard OSGi conditions to allow this to happen. Instead, what is needed is a NOT boolean condition operator.

Consider the use case where you want ACME (the provider of the system software) to have access to all
packages but everyone else should not be allowed access to the “com.acme.secret” and “com.acme.sauce”
packages. In this case, you would need the Not condition. Your permission table would look something like this:

Name Condition Allows Permission Deny Permission

ACME Signed By ACME Package(“*”) <empty>

Non-System NOT Signed By ACME Package(“*”) Package(“com.acme.secret”)

Package(“com.acme.sauce”)

In the above table the bundles signed by ACME will have access to all packages, while all bundles NOT signed
by Acme can access neither the “com.acme.secret” package nor the “com.acme.sauce” package.

Another example will illustrate how you could allow multiple providers of system software to use the deny
permission feature. For example, the ACME Corporation may be using Spring to provide dependency injection.
In this example, both ACME and Spring need to have access to all packages, but no-one else should be granted

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 35 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

access to the same restricted packages as above. In this case, your permission table would look something like
this:

Name Condition AllowsPermission DenyPermission

ACME Signed By ACME Package(“*”) <empty>

Spring Signed By Spring Package(“*”) <empty>

Non-System NOT Signed By ACME

NOT Signed By Spring

Package(“*”) Package(“com.acme.secret”)

Package(“com.acme.sauce”)

Since the Conditions in a single tuple row must ALL satisfy the condition the above table would achieve the
desired result or allowing the system bundles (signed by Acme and Spring) to have access to all packages while
denying access to the “com.acme.secret” and “com.acme.sauce” packages to all non-system bundles.

The interesting thing about the above examples is they can both be simplified with the following table:

Name Condition Allow Permission Deny Permission

Default <empty> Package(“*”) <empty>

Non-System NOT Signed By ACME

NOT Signed by Spring

<empty> Package(“com.acme.secret”)

Package(“com.acme.sauce”)

The above table will achieve the same results as the previous table with fewer entries. The system may choose
to optimize these sorts of conditions.

6.2.3 NotCondition Requirements
A new class named “org.osgi.service.condpermadmin.NotCondition” shall be added to the framework. The
javadoc shall be considered a binding part of this specification, and is found in the next sub-section.

In particular, the NotCondition shall have another condition upon which it bases its return values. This base
condition will be called the “base condition.” The NotCondition shall return the same values as the base for the
mutable and postponed properties and shall return the logical NOT of the base satisfied property.

Currently the system understands the static form:

static Condition getCondition(Bundle bundle, String parameters);

However, the NotCondtion shall have the static factory method:

static Condition getCondition(Bundle bundle, Condition base);

The Encoded ConditionInfo string shall be enhanced to understand the “!” character at the start of the condition.
If the “!” character is found the base condition shall be constructed as before, but it will be used as the base
condition of the NotCondition. The encoded string shall have the form:

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 36 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

“[“ + “!”* + fully-qualified-condition-class + “ \”” + argument-string + “\”]”

Note that the “!” character is optional (denoted by the *).

Some examples of the encoded ConditionInfo string might include:

[!org.osgi.service.condpermadmin.BundleSignerCondition “* ; cn=Whatever, o=ACME, c=US”]

[!org.osgi.service.condpermadmin.BundleLocationCondition “/home/acme/foo/b.jar”]

6.2.4 NotCondition Javadoc
C:\tmp\osgi\rfc120\org\osgi\service\condpermadmin\NotCondition.html - skip-navbar_top#skip-navbar_t

A
ll P

age W
ithin This Box

op
Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.osgi.service.condpermadmin
Class NotCondition
java.lang.Object
 org.osgi.service.condpermadmin.NotCondition

public class NotCondition
extends java.lang.Object

This is a condition that is formed as the logical NOT operation of another condition.

Method Summary
getConditionstatic Condition (Bundle bundle, Condition condition)
 Creates a condition that returns the logical NOT of another condition.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Method Detail
getCondition
public static Condition getCondition(Bundle bundle,
 Condition condition)

This uses the Condition form as proposed in RFC 120
Parameters:
bundle - The bundle for which this condition is being created
condition - The condition to "NOT"
Returns:

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 37 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A condition that will have the same mutable and postponed values as the base condition but which will
return the logical NOT of the satisfied value of the base condition.

C:\tmp\osgi\rfc120\org\osgi\service\condpermadmin\NotCondition.html - skip-navbar_bottom#skip-navbar_bott

A
ll P

age W
ithin This Box

om
Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6.2.5 Other API modifications
In order to fully support the modifications described in sections 6.2.1 and 6.2.2 some existing API’s will also need
to change.

The following sections will give javadoc for the new API and constructors and should be considered a binding part
of this specification.

6.2.6 org.osgi.service.condpermadmin.ConditionInfo
The following API shall be added to the org.osgi.service.condpermadmin.ConditionInfo class:

6.2.6.1 Constructor

ConditionInfo
public ConditionInfo(boolean not,
 java.lang.String type,
 java.lang.String[] args)

Constructs a ConditionInfo from the specified type and args.
Parameters:
not - If true, the condition described should return the associated NotCondition, using the type and args
as the base Condition.
type ConditionInfo - The fully qualified class name of the Condition represented by this .
args - The arguments for the Condition. These arguments are available to the newly created Condition
by calling the getArgs() method.
Throws:
java.lang.NullPointerException - If type null is .

6.2.6.2 isNot method

isNot
public boolean isNot()

Returns true if this ConditionInfo describes a NotCondition
Returns:
true if this ConditionInfo describes a NotCondition

6.2.7 org.osgi.service.condpermadmin.ConditionPermissionInfo
The following API shall be added to the org.osgi.service.condpermadmin.ConditionPermissionInfo interface.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 38 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

6.2.7.1 getDenyPermissionInfos method

getDenyPermissionInfos
PermissionInfo[] getDenyPermissionInfos()

Returns the Permission Infos for the Deny Permission column in this Condition Permission Info.
Returns:
The Deny Permission Infos for the Permission in this Conditional Permission Info.

6.2.8 org.osgi.service.condpermadmin.ConditionalPermissionAdmin
The following API shall be added to the org.osgi.service.condpermadmin.ConditionPermissionAdmin interface.

6.2.8.1 addConditionalPermissionInfo

addConditionalPermissionInfo
ConditionalPermissionInfo addConditionalPermissionInfo(ConditionInfo[] conds,
 PermissionInfo[] perms,
 PermissionInfo[] denyPerms)

Create a new Conditional Permission Info. The Conditional Permission Info will be given a unique, never
reused name.
Parameters:
conds - The Conditions that need to be satisfied to enable the corresponding Permissions.
perms - The Permissions that are enable when the corresponding Conditions are satisfied.
denyPerms - The Permissions that are denied when the corresponding Conditions are satisfied.
Returns:
The ConditionalPermissionInfo for the specified Conditions and Permissions.
Throws:
java.lang.SecurityException - If the caller does not have AllPermission.

6.2.8.2 setConditionalPermissionInfo

setConditionalPermissionInfo
ConditionalPermissionInfo setConditionalPermissionInfo(java.lang.String name,
 ConditionInfo[] conds,
 PermissionInfo[] perms,
 PermissionInfo[] denyPerms)

Set or create a Conditional Permission Info with a specified name. If the specified name is null, a new
Conditional Permission Info must be created and will be given a unique, never reused name. If there is
currently no Conditional Permission Info with the specified name, a new Conditional Permission Info must
be created with the specified name. Otherwise, the Conditional Permission Info with the specified name
must be updated with the specified Conditions and Permissions.
Parameters:
name - The name of the Conditional Permission Info, or null.
conds - The Conditions that need to be satisfied to enable the corresponding Permissions.
perms - The Permissions that are enable when the corresponding Conditions are satisfied.
denyPerms - The Permissions that are denied when the corresponding Conditions are satisfied.
Returns:
The ConditionalPermissionInfo that for the specified name, Conditions and Permissions.
Throws:
java.lang.SecurityException - If the caller does not have AllPermission.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 39 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

6.2.9 Issues

6.2.10 Friends API
One use case (which is not in the original set of use cases) that is not handled cleanly by the above solution is the
friends use case. In this use case we want to express the following scenario:

4. Pepsi wants to deny permissions to com.pepsi.* for everyone but Pepsi

5. Pepsi wants to allow Coke to have permission to com.pepsi.z.*

Using the existing scheme you cannot express the above set of requirements simply. The best you could do
would be to have something like this:

Name Condition Allow Permissions Deny Permissions

N1 ! Signed by Pepsi

! Signed by Coke

Package(*) Package(“com.pepsi.*”)

N2 Signed by Coke Package(*) Package(“com.pepsi.a.*”)

Package(“com.pepsi.b.*”)

…

Package(“com.pepsi.y.*”)

N3 <empty> Package(*) <empty>

Notice that in the N2 row above that it denies access to Coke to every package except the com.pepsi.z.*
package. This is brittle and error prone, since with every new package hierarchy (perhaps com.pepsi.aa.*) that
Pepsi might add to their system a new Permission would have to be added in the N2 line. It is this sort of
complexity that this solution was attempting to address.

Given that this not one of the original use-cases and there does not appear to be a satisfactory solution to this
problem this specification will not address this use case.

A
ll P

age w
ithin this B

ox

 RFC 120 - Security Enhancements Page 40 of 40

 Draft August 6, 2008

Copyright © 2008 All Rights Reserved

A
ll P

age W
ithin This Box

7 Security Considerations

Description of all known vulnerabilities this may either introduce or address as well as scenarios of how the
weaknesses could be circumvented.

8 Document Support

8.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0
[3]. RFP-78 Security Use Cases

8.2 Author’s Address

Name John Wells

Company BEA Systems, Inc.

Address 150 Allen Road, Liberty Corner, NJ

Voice (908) 580-3127

e-mail jwells@bea.com

8.3 Acronyms and Abbreviations

8.4 End of Document

https://www2.osgi.org/members/svn/documents/trunk/rfps/rfp-0078-Security.pdf

RFC 121 Bundle Tracker

Draft

17 Pages

Abstract
The BundleTracker class simplifies tracking bundles much like the ServiceTracker simplified tracking services.

Copyright © IBM Corporation 2007.
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

 RFC 121 Bundle Tracker Page 2 of 17

 Draft 3 October 2007

0 Document Information

0.1 Table of Contents

0 Document Information ..2
0.1 Table of Contents ...2
0.2 Terminology and Document Conventions ..3
0.3 Revision History..3

1 Introduction..3

2 Application Domain...4

3 Problem Description ...4

4 Requirements...4

5 Technical Solution...5
5.1 Design Discussion ..5

5.1.1 Overview ..5
5.1.2 org.osgi.util.tracker package..5
5.1.3 Tracking Criteria...6
5.1.4 Synchronous Listener ..6
5.1.5 Customized object ...7

5.2 org.osgi.util.tracker.BundleTracker.................................... Error! Bookmark not defined.
5.2.1 context... Error! Bookmark not defined.
5.2.2 BundleTracker... Error! Bookmark not defined.
5.2.3 addingBundle .. Error! Bookmark not defined.
5.2.4 close.. Error! Bookmark not defined.
5.2.5 getBundles .. Error! Bookmark not defined.
5.2.6 getObject... Error! Bookmark not defined.
5.2.7 getTrackingCount.. Error! Bookmark not defined.
5.2.8 modifiedBundle ... Error! Bookmark not defined.
5.2.9 open .. Error! Bookmark not defined.
5.2.10 remove .. Error! Bookmark not defined.
5.2.11 removedBundle... Error! Bookmark not defined.
5.2.12 size.. Error! Bookmark not defined.

5.3 org.osgi.util.tracker.BundleTrackerCustomizer.................. Error! Bookmark not defined.
5.3.1 addingBundle .. Error! Bookmark not defined.
5.3.2 modifiedBundle ... Error! Bookmark not defined.
5.3.3 removedBundle... Error! Bookmark not defined.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 3 of 17

 Draft 3 October 2007

6 Considered Alternatives ...14
6.1 Using Services to model Bundles...14
6.2 Using asynchronous Bundle Listener ...15

7 Security Considerations ...16

8 Document Support ..17
8.1 References..17
8.2 Author’s Address ..17
8.3 Acronyms and Abbreviations..17
8.4 End of Document ..17

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in [1].

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial 7 August 2007 Initial Draft.

Draft 2 13 September 2007 Based upon CPEG discussion, I remove support for async
BundleListener use by the tracker.

Draft 3 3 October 2007 Based upon CPEG discussion, I modified the customizer signature to
pass the BundleEvent, if any, which triggered the action.

1 Introduction

Service Tracker[4] has long been around (since Release 2) and has long been a very useful tool providing a
simple and correct way to track a set of services in the face of dynamism. It is very useful for implementing

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 4 of 17

 Draft 3 October 2007
whiteboard pattern approaches. With the advent of the extender model, it is now important to have a simple and
correct way to track a set of bundles in the face of dynamism.

2 Application Domain

Any bundle, such as an extender bundle, that needs to track a set of bundles in a given range of states will need
code to enable this tracking. Currently this is custom code for each such bundle.

3 Problem Description

Tracking bundles and services in the OSGi environment is challenging to do simply and correctly. Bundles may
change state at any time and the bundle which needs to do the tracking will be started after a set of bundles
already are present. The same challenges present for tracking services are also present for tracking bundles. Like
the Service Tracker class introduced in Release 2, a Bundle Tracker class is needed[3] to define a standard,
correct and easy-to-use way to track bundles.

4 Requirements

The following requirements are met by the proposed solution:

1. The Bundle Tracker class must be modeled along the Service Tracker class to provide a familiar pattern
to developers.

2. The Bundle Tracker class must be in the org.osgi.util.tracker package to share code with Service Tracker
reducing size, errors and maintenance.

3. The Bundle Tracker class must be correct with respect to the dynamic nature of OSGi.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 5 of 17

 Draft 3 October 2007

4. The Bundle Tracker class must track all existing bundles which match the specified criteria as well as
bundle whose state change to match the specified criteria after the tracker is opened.

5. The Bundle Tracker must be thread safe.

6. The Bundle Tracker must be able to support early versions of the framework
(SynchronousBundleListener support is the minimal requirement.)

5 Technical Solution

5.1 Design Discussion
5.1.1 Overview
The Service Tracker design is based upon tracking service which are registered and match some specified
criteria. Service events are used to indicate a state change in the service and are (only) synchronously delivered.
During event processing, the event type along with criteria match against the service metadata is used to decide
whether the service is to be added or removed from the tracker, or has just been modified.

The state diagram of a service is very simple.

REGISTERED

REGISTERED
MODIFIED

UNREGISTERING

The state diagram of a bundle is much more complex. The Bundle Tracker design is based upon the bundle’s
state. Bundles are tracked if they are in a set of states and not tracked otherwise. In this design, the state of the
bundle is of primary importance and not the type of the bundle event received by the tracker.

5.1.2 org.osgi.util.tracker package
This design places the new Bundle Tracker into the existing org.osgi.util.tracker package. This is valuable for 2
reasons. First, it enables code sharing with the Service Tracker class. The tracking logic has been refactored from
the Service Tracker class into an abstract base class which is then used by the Bundle Tracker. This reduces
footprint and (hopefully) errors due to maintenance of duplicated code.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 6 of 17

 Draft 3 October 2007
Given the name of the package, which does not include the word “service”, there is no package naming issue.
However section 701 of the spec will need to be renamed from Service Tracker Specification to simply Tracker
Specification.

Furthermore, with this addition to the package, the version of the package is incremented to 1.4.

5.1.3 Tracking Criteria
The tracking criteria for the Bundle Tracker are supplied as a bit mask in the constructor. This mask is an ORing
of a set of bundle states. If a bundle is in one of those states, the Bundle Tracker will track it. Since the tracker
must track bundles whose state matches the criteria at the time the tracker is opened as well as bundles whose
state changes to match the criteria after the tracker is opened, a consistent test is needed.

During tracker open, the only state to test is the bundle’s state as visible via Bundle.getState. However, while
processing bundle events, both the bundle’s state and the event type are available for examination. Bundle event
types are not sufficient to describe the resulting state of the bundle. The event type UNRESOLVED can be fired
for entry to the INSTALLED and UNINSTALLED state.

In order to provide a simple and consistent test, the Bundle Tracker always examines the bundle’s state during
open and bundle event processing. The bundle event type is not use. The delivery of the bundle event is used as
a trigger to test the bundle against the tracking criteria to decide of the bundle should be tracked or untracked.

5.1.4 Synchronous Listener
The Bundle Tracker uses a Synchronous Bundle Listener. With synchronous bundle event processing, the
bundle’s state is set before the event is synchronously fired and the event is delivered before the state can
change again.

The following diagram depicts the bundle states and the event fired upon entry to those states. Note that entry to
STARTING and STOPPING states is only signaled to synchronous bundle listeners and would not be reliably
observable to asynchronous bundle listeners.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 7 of 17

 Draft 3 October 2007

INSTALLED

ACTIVEACTIVE

STOPPINGSTOPPING

STARTINGSTARTING

UNINSTALLEDUNINSTALLED

RESOLVEDRESOLVED

INSTALLEDINSTALLED

UNINSTALLED

RESOLVED

UNRESOLVED
UPDATED†

UPDATED

LAZY_ACTIVATION‡

STARTING

UNRESOLVED
UNINSTALLED

† only if updated

‡ only if lazy activation; STARTING is later fired when activation commences

Events in italics are only delivered to synchronous bundle listeners

STARTED

STOPPING

STOPPED

Events are fired upon entry to state

5.1.5 Customized object
Like Service Tracker, the Bundle Tracker also allows the tracking of a customized object (object returned from
BundleTrackerCustomized.addingBundle) along with the tracked bundle. For Service Tracker, this customized
object is typically the service object. For Bundle Tracker, the default implementation of addingBundle simply
returns the bundle.

5.2 org.osgi.util.tracker.BundleTracker

java.lang.Object
 org.osgi.util.tracker.BundleTracker
All Implemented Interfaces:

BundleTrackerCustomizer

public class BundleTracker
extends java.lang.Object
implements BundleTrackerCustomizer

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 8 of 17

 Draft 3 October 2007

The BundleTracker class simplifies tracking bundles much like the ServiceTracker simplifies
tracking services.

A BundleTracker object is constructed with state criteria and a BundleTrackerCustomizer object. A
BundleTracker object can use the BundleTrackerCustomizer object to select which bundles are
tracked and to create a customized object to be tracked with the bundle. The BundleTracker object can
then be opened to begin tracking all bundles whose state matches the specified state criteria.

The getBundles method can be called to get the Bundle objects of the bundles being tracked. The
getCustomizedObject method can be called to get the customized object for a tracked bundle.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer object while
holding any locks. BundleTrackerCustomizer implementations must also be thread-safe.
Since:

1.4

Field Summary
protected

 org.osgi.framework.BundleContext
context
 Bundle context this BundleTracker object is tracking
against.

Constructor Summary
BundleTracker(org.osgi.framework.BundleContext context, int stateMask,
BundleTrackerCustomizer customizer)
 Create a BundleTracker object for bundles whose state is present in the specified state mask.

Method Summary
 java.lang.Object addingBundle(org.osgi.framework.Bundle bundle,

org.osgi.framework.BundleEvent event)
 Default implementation of the
BundleTrackerCustomizer.addingBundle method.

 void close()
 Close this BundleTracker object.

 org.osgi.framework.Bundle[] getBundles()
 Return an array of Bundle objects for all bundles being tracked by
this BundleTracker object.

 java.lang.Object getObject(org.osgi.framework.Bundle bundle)
 Returns the customized object for the specified Bundle object if the
bundle is being tracked by this BundleTracker object.

 int getTrackingCount()
 Returns the tracking count for this BundleTracker object.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 9 of 17

 Draft 3 October 2007

 void modifiedBundle(org.osgi.framework.Bundle bundle,
org.osgi.framework.BundleEvent event,
java.lang.Object object)
 Default implementation of the
BundleTrackerCustomizer.modifiedBundle method.

 void open()
 Open this BundleTracker object and begin tracking bundles.

 void remove(org.osgi.framework.Bundle bundle)
 Remove a bundle from this BundleTracker object.

 void removedBundle(org.osgi.framework.Bundle bundle,
org.osgi.framework.BundleEvent event,
java.lang.Object object)
 Default implementation of the
BundleTrackerCustomizer.removedBundle method.

 int size()
 Return the number of bundles being tracked by this
BundleTracker object.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Field Detail
5.2.1 context

protected final org.osgi.framework.BundleContext context

Bundle context this BundleTracker object is tracking against.

Constructor Detail
5.2.2 BundleTracker

public BundleTracker(org.osgi.framework.BundleContext context,
 int stateMask,
 BundleTrackerCustomizer customizer)

Create a BundleTracker object for bundles whose state is present in the specified state mask.

Bundles whose state is present on the specified state mask will be tracked by this
BundleTracker object.
Parameters:
context - BundleContext object against which the tracking is done.
stateMask - A bit mask of the ORing of the bundle states to be tracked.
customizer - The customizer object to call when bundles are added, modified, or removed in this
BundleTracker object. If customizer is null, then this BundleTracker object will be used as the

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 10 of 17

 Draft 3 October 2007

BundleTrackerCustomizer object and the BundleTracker object will call the
BundleTrackerCustomizer methods on itself.
See Also:
Bundle.getState()

Method Detail
5.2.3 addingBundle

public java.lang.Object addingBundle(org.osgi.framework.Bundle bundle,
 org.osgi.framework.BundleEvent event)

Default implementation of the BundleTrackerCustomizer.addingBundle method.

This method is only called when this BundleTracker object has been constructed with a null
BundleTrackerCustomizer argument. The default implementation returns the specified Bundle
object.

This method can be overridden in a subclass to customize the object to be tracked for the bundle
being added.
Specified by:
addingBundle in interface BundleTrackerCustomizer
Parameters:
bundle - Bundle being added to this BundleTracker object.
event - The bundle event which caused this customizer method to be called or null if there is no bundle
event associated with the call to this method.
Returns:
The customized object to be tracked for the bundle added to this BundleTracker object.
See Also:
BundleTrackerCustomizer

5.2.4 close

public void close()

Close this BundleTracker object.

This method should be called when this BundleTracker object should end the tracking of
bundles.

5.2.5 getBundles

public org.osgi.framework.Bundle[] getBundles()

Return an array of Bundle objects for all bundles being tracked by this BundleTracker object.
Returns:
Array of Bundle objects or null if no bundles are being tracked.

5.2.6 getObject

public java.lang.Object getObject(org.osgi.framework.Bundle bundle)

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 11 of 17

 Draft 3 October 2007

Returns the customized object for the specified Bundle object if the bundle is being tracked by this
BundleTracker object.
Parameters:
bundle - Bundle being tracked.
Returns:
Customized object or null if the specified Bundle object is not being tracked.

5.2.7 getTrackingCount

public int getTrackingCount()

Returns the tracking count for this BundleTracker object. The tracking count is initialized to 0 when this
BundleTracker object is opened. Every time a bundle is added, modified or removed from this
BundleTracker object the tracking count is incremented.

The tracking count can be used to determine if this BundleTracker object has added, modified
or removed a bundle by comparing a tracking count value previously collected with the current
tracking count value. If the value has not changed, then no bundle has been added, modified or
removed from this BundleTracker object since the previous tracking count was collected.
Returns:
The tracking count for this BundleTracker object or -1 if this BundleTracker object is not open.

5.2.8 modifiedBundle

public void modifiedBundle(org.osgi.framework.Bundle bundle,
 org.osgi.framework.BundleEvent event,
 java.lang.Object object)

Default implementation of the BundleTrackerCustomizer.modifiedBundle method.

This method is only called when this BundleTracker object has been constructed with a null
BundleTrackerCustomizer argument. The default implementation does nothing.
Specified by:
modifiedBundle in interface BundleTrackerCustomizer
Parameters:
bundle - Bundle whose state has been modified.
event - The bundle event which caused this customizer method to be called or null if there is no bundle
event associated with the call to this method.
object - The customized object for the bundle.
See Also:
BundleTrackerCustomizer

5.2.9 open

public void open()

Open this BundleTracker object and begin tracking bundles.

Bundle which match the state criteria specified when this BundleTracker object was created are
now tracked by this BundleTracker object.
Throws:

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 12 of 17

 Draft 3 October 2007

java.lang.IllegalStateException - if the BundleContext object with which this
BundleTracker object was created is no longer valid.
java.lang.SecurityException - If the caller and this class do not have the appropriate
AdminPermission[context bundle,LISTENER], and the Java Runtime Environment supports
permissions.

5.2.10 remove

public void remove(org.osgi.framework.Bundle bundle)

Remove a bundle from this BundleTracker object. The specified bundle will be removed from this
BundleTracker object. If the specified bundle was being tracked then the
BundleTrackerCustomizer.removedBundle method will be called for that bundle.
Parameters:
bundle - Bundle to be removed.

5.2.11 removedBundle

public void removedBundle(org.osgi.framework.Bundle bundle,
 org.osgi.framework.BundleEvent event,
 java.lang.Object object)

Default implementation of the BundleTrackerCustomizer.removedBundle method.

This method is only called when this BundleTracker object has been constructed with a null
BundleTrackerCustomizer argument. The default implementation does nothing.
Specified by:
removedBundle in interface BundleTrackerCustomizer
Parameters:
bundle - Bundle being removed.
event - The bundle event which caused this customizer method to be called or null if there is no bundle
event associated with the call to this method.
object - The customized object for the bundle.
See Also:
BundleTrackerCustomizer

5.2.12 size

public int size()

Return the number of bundles being tracked by this BundleTracker object.
Returns:
Number of bundles being tracked.

5.3 org.osgi.util.tracker.BundleTrackerCustomizer
All Known Implementing Classes:

BundleTracker

public interface BundleTrackerCustomizer

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 13 of 17

 Draft 3 October 2007

The BundleTrackerCustomizer interface allows a BundleTracker object to customize the bundle
objects that are tracked. The BundleTrackerCustomizer object is called when a bundle is being added
to the BundleTracker object. The BundleTrackerCustomizer can then return an object for the tracked
bundle. The BundleTrackerCustomizer object is also called when a tracked bundle has been removed
from the BundleTracker object.

The methods in this interface may be called as the result of a BundleEvent being received by a
BundleTracker object. Since BundleEvents are received synchronously by the BundleTracker, it is
highly recommended that implementations of these methods do not alter bundle states while being
synchronized on any object.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer object while
holding any locks. BundleTrackerCustomizer implementations must also be thread-safe.
Since:

1.4

Method Summary
 java.lang.Object addingBundle(org.osgi.framework.Bundle bundle,

org.osgi.framework.BundleEvent event)
 A bundle is being added to the BundleTracker object.

 void modifiedBundle(org.osgi.framework.Bundle bundle,
org.osgi.framework.BundleEvent event, java.lang.Object object)
 A bundle tracked by the BundleTracker object has been modified.

 void removedBundle(org.osgi.framework.Bundle bundle,
org.osgi.framework.BundleEvent event, java.lang.Object object)
 A bundle tracked by the BundleTracker object has been removed.

Method Detail
5.3.1 addingBundle

java.lang.Object addingBundle(org.osgi.framework.Bundle bundle,
 org.osgi.framework.BundleEvent event)

A bundle is being added to the BundleTracker object.

This method is called before a bundle which matched the search parameters of the
BundleTracker object is added to it. This method should return the object to be tracked for this
Bundle object. The returned object is stored in the BundleTracker object and is available from
the getBundles method.
Parameters:
bundle - Bundle being added to the BundleTracker object.
event - The bundle event which caused this customizer method to be called or null if there is no bundle
event associated with the call to this method.
Returns:
The object to be tracked for the Bundle object or null if the Bundle object should not be tracked.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 14 of 17

 Draft 3 October 2007

5.3.2 modifiedBundle

void modifiedBundle(org.osgi.framework.Bundle bundle,
 org.osgi.framework.BundleEvent event,
 java.lang.Object object)

A bundle tracked by the BundleTracker object has been modified.

This method is called when a bundle being tracked by the BundleTracker object has had its
state modified.
Parameters:
bundle - Bundle whose state has been modified.
event - The bundle event which caused this customizer method to be called or null if there is no bundle
event associated with the call to this method.
object - The tracked object for the modified bundle.

5.3.3 removedBundle

void removedBundle(org.osgi.framework.Bundle bundle,
 org.osgi.framework.BundleEvent event,
 java.lang.Object object)

A bundle tracked by the BundleTracker object has been removed.

This method is called after a bundle is no longer being tracked by the BundleTracker object.
Parameters:
bundle - Bundle that has been removed.
event - The bundle event which caused this customizer method to be called or null if there is no bundle
event associated with the call to this method.
object - The tracked object for the removed bundle.

6 Considered Alternatives

6.1 Using Services to model Bundles
See Member Bug 501[3] for some discussion of this design alternative.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 15 of 17

 Draft 3 October 2007

6.2 Using asynchronous Bundle Listener
The first draft of this RFC suggested allowing BundleTracker to provide the option of using either BundleListener
(asynchronous) and SynchronousBundleListener. This was changed to only support SynchronousBundleListsner
due to issues with using asynchronous BundleListener. Following is the removed text:

The Bundle Tracker supports user configuration to use either a Synchronous Bundle Listener or the
asynchronous Bundle Listener. For synchronous bundle event processing, the bundle’s state is set before the
event is synchronously fired and the event is delivered before the state can change again. However, if
asynchronous bundle event processing is used, then the behavior of the tracker will be different since entry to
some states are not visible to asynchronous bundle listeners and the time between the event firing and event
delivery may prevent some bundle state transitions from being observed.

The following diagram depicts the bundle states and the event fired upon entry to those states. Note that entry to
STARTING and STOPPING states is only signaled to synchronous bundle listeners and are thus not reliably
observable to asynchronous bundle listeners.

INSTALLED

ACTIVEACTIVE

STOPPINGSTOPPING

STARTINGSTARTING

UNINSTALLEDUNINSTALLED

RESOLVEDRESOLVED

INSTALLEDINSTALLED

UNINSTALLED

RESOLVED

UNRESOLVED
UPDATED†

UPDATED

LAZY_ACTIVATION‡

STARTING

UNRESOLVED
UNINSTALLED

† only if updated

‡ only if lazy activation; STARTING is later fired when activation commences

Events in italics are only delivered to synchronous bundle listeners

STARTED

STOPPING

STOPPED

Events are fired upon entry to state

There are also cases when several bundle events can be fired before the first event is asynchronously delivered.
During processing of the first event by the BundleTracker, the state of the bundle at the time the final event was
fired is observed. The can result in the bundle becoming tracked while processing the first event. As the

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 16 of 17

 Draft 3 October 2007
remaining events are then delivered, the bundle’s state does not actually change, but the Bundle Tracker will call
the modifiedBundle method of the customizer for each additional event. There are also cases where the bundle
should be removed and added back the tracker (e.g. bundle update), but delay in delivery of the STOPPED event,
which might result in the bundle being removed from the tracker, until after the bundle has been restarted will
result in the tracker never seeing the bundle leave the ACTIVE state and thus never being removed and then
added back to the tracker.

Thus the value of supporting asynchronous bundle listeners in Bundle Tracker is dubious and we may want to
consider removing it.

To deal with the above issues, two approaches are possible but still may deliver suboptimal results.

1. Process the event types in addition to the bundle state to “simulate” the bundle being removed and
added if necessary. This logic could be fairly complex as it will have to map event type onto the state
map. This would only be necessary for the asynchronous listener.

2. Have Bundle Tracker always use a synchronous bundle listener and wrap the addBundleListener call
in a doPrivileged method to not require the caller to have the necessary permission. This would make
every bundle able to synchronously be notified of bundle events which will provide a form of privilege
elevation in secured systems.

7 Security Considerations

Bundle Tracker runs in the security context of the bundle using it. It doesn't provide or remove any of the security
checks that are already in place for bundles.

In order to support tracking bundles synchronously, a SynchronousBundleListener must be used. In order to
prevent elevation of privilege, the Bundle Tracker implementation must not use doPrivilege when registering the
SynchronousBundleListener object. This means that the code calling the open method (which makes the
addBundleListener call) and the Bundle Tracker class itself must both have the AdminPermission[context bundle,
LISTENER] permission. In particular, the bundle containing the org.osgi.util.tracker package must have this
permission. If the org.osgi.util.tracker package is delivered as part of the framework implementation, then it likely
has AllPermission and this requirement is then met.

Copyright © IBM Corporation 2007 All Rights Reserved

 RFC 121 Bundle Tracker Page 17 of 17

 Draft 3 October 2007

8 Document Support

8.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

[3]. Member Bug 501, https://www2.osgi.org/members/bugzilla/show_bug.cgi?id=501

[4]. Service Tracker Specification, OSGi Core Specification, R4 V4.1, Section 701

8.2 Author’s Address

Name BJ Hargrave

Company IBM Corporation

Address 800 N Magnolia Av, Orlando, FL, USA

Voice +1 386 848 1781

e-mail hargrave@us.ibm.com

8.3 Acronyms and Abbreviations

8.4 End of Document

Copyright © IBM Corporation 2007 All Rights Reserved

https://www2.osgi.org/members/bugzilla/show_bug.cgi?id=501

Copyright © OSGi Alliance 2008.
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 125 - Bundle License

Draft

9 Pages

Abstract

This RFC defines the format and rules for a Bundle-License header in the manifest

 RFC 125 - Bundle License Page 2 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

0 Document Information

0.1 Table of Contents

0 Document Information ...2
0.1 Table of Contents ..2
0.2 Terminology and Document Conventions ...2
0.3 Revision History...2

1 Introduction ..3

2 Application Domain..3

3 Problem Description ..4

4 Requirements ...5

5 Technical Solution ...5

6 Security Considerations ..7

7 Document Support ...7
7.1 References ..7
7.2 Author’s Address ...7
7.3 Acronyms and Abbreviations...7
7.4 End of Document...7

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in [1].

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

 RFC 125 - Bundle License Page 3 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

Revision Date Comments

Initial SEP 27 2007 Initial, Peter Kriens, aQute

1 Introduction

This RFC defines a new header for the next release. It was introduced by Bugzilla bug #483, see [3]. The original
request was denied during a CPEG meeting because it required the maintenance of a licenses list, this was
deemed too cumbersome for the OSGi. However, the use of a Bundle-License header was acknowledged. This
small RFC designs a more acceptable form of a Bundle-License header.

2 Application Domain

It is interesting to note how many technically inclined people on software conferences tend to only discuss
licensing issues. The advent of open source with its myriad of licenses, combined with the (ab)use of licenses in a
very different spirit than intended has created a complex situation. The Open Source Licenses web site, see [4]
has a list with 60 open source compatible licenses. Well known licenses are Mozilla Public License, Eclipse Public
License, Apache Software License, and of course GPL and LGPL. These licenses differ in a grand scale
sometimes, like GPL versus Apache or often quite close.

Currently, licenses are stored in artifacts in an ad hoc way, there are no rules. The requirements on how to handle
the licensing of artifacts is a black art. There is very little jurisprudence in this area and there are usual lawyers
involved that tend to want to err on the safe side by adding the same information many times and seem to only
use upper case fonts for unknown reasons. It is unlikely that a single set of rules can match the requirements of
these lawyers.

Most larger corporations have strict policies of what kind of licenses can be used and which licenses are
compatible with their policy.

Most licenses are defined available over the internet via a URL. Some examples:

• http://www.apache.org/licenses/LICENSE-2.0.txt

• http://www.apache.org/licenses/LICENSE-1.1

 RFC 125 - Bundle License Page 4 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

• http://www.gnu.org/licenses/gpl-2.0.txt

• http://www.gnu.org/licenses/gpl-3.0.txt

• http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt

• http://www.eclipse.org/legal/epl-v10.html

• http://www.opensource.org/licenses/sunpublic.php

•

Many licenses do not have a URL, for example, for BSD only a template could be found that was embedded in a
more philosophical discussion. Also, many licenses do not take versioning into account or update the URL with a
new version without changing the name. For example, the URL http://www.gnu.org/licenses/gpl.txt refers to GPL
3 while it used to refer to GPL 2.0.

There are of course also commercial licenses. Where open source libraries have some form of organization,
commercial licenses can not be assumed to have a URL. Despite the fact that many licenses have a URL, most
software still include the license text in or with the artifact to avoid any confusion.

Licensing can be complicated if the artifact is covered by multiple licenses. There are two possibilities:

• Parts of the artifacts fall under different licenses

• The user has the choice of choosing between difference licenses

I do not think that you ever have the case of multiple licenses that are ALL valid, that is you always accept
only one license for each resource?

In certain case, the receiver can accept different licensing rules. For example, the government often gets different
conditions than ordinary citizens. Or a company could have a special deal for certain large corporations.

A very common use case that the artifact stipulates that was delivered with a license. I.e., the provider of the
artifact has a single delivery artifact but stipulates the license external from the artifact.

3 Problem Description

It should possible for OSGi bundle to include licensing information about the rights of the bundle in such a way
that bundles can be machine read and verified to comply with company policies.

 RFC 125 - Bundle License Page 5 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

4 Requirements

• R001 – Allow parts of the bundle to be licensed differently than other bundles

• R001 – Allow multiple licenses per part

• R002 – Allow unique identification of open source licenses

• R003 – Provide descriptive information so that a processor is not required to go online to show
information to the end user.

• R004 – Allow the licenses to be stored in the bundle and connected to the applied licenses.

• R005 – Provide a human readable name that can be used to select the license information in a list

• R006 – Provide a model where licenses can be targeted at certain entities and not to be considered by
others.

• R007 – Allow a provider to make it clear that the bundle's license is provided through other means. I.e.
the bundle is not self descriptive regarding licenses.

• R008 – Ensure the OSGi Alliance does not have responsibility for the contents

5 Technical Solution

The following header syntax is proposed:

 Bundle-License ::= “<<EXTERNAL>>” | (license (‘,’ license) *)

 license ::= name (‘;’ license-attr) *

 license-attr ::= description | link | covers | local | exclusive

 description ::= ‘description’ ‘=’ string

 link ::= ‘link’ ‘=’ <url>

 local ::= ‘local’ ‘=’ path // see …

 covers ::= ‘covers ‘=’ path | ‘”’ path (‘,’ path) * ‘”’

 RFC 125 - Bundle License Page 6 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

 exclusive ::= ‘exclusive’ ‘=’ bsn | ‘”’ bsn (‘,’ bsn) * ‘”

This header has the following aspects:

• name – Provides a globally unique name for this license, preferably world wide but in minimum for the
other clauses. Clients of this bundle can assume that licenses with the same name refer to the same
license. This can for example be used to minimize the click through licenses. This name is the cardinal
URL of the license, it must not be localized by the developer. This URL does not have to exist but must
not be used for later versions of the license. It is advised to use the following structure, but this is not
mandated:

o http://<domain-name>/licenses/<license-name>-<version>.<extension>

• description – (optional) Provide the description of the license. This is a short description that is usable in a
list box on a UI to select more information about the license.

• The magic name <<EXTERNAL>> is used to indicate that this artifact does not contain any license
information but that licensing information is provided in some other way. This is the default contents of
this header.

• link –(optional) Provide a URL to a page that defines or explains the license. If this link is absent, the
name field is used for this purpose. This field can be localized to allow different URLs for different locales.

• covers – (option) Lists the paths of the bundle that are covered by this license. Paths are supposed to
include the directory they point to and all sub directories. Paths should not start with a /, they are all
assumed to start at the root. The default for covers is empty, indicating the whole bundle. If different
licenses have overlapping values for this, then the license is assume to be a choice for the user, any of
the overlapping licenses is acceptable.

• local – (option) A path to the license inside the bundle. The license include in the bundle has priority over
the url or any license defined by the url or name. However, bundle developer must not store a license file
that is not identical to the one identified by the name or url, this would be considered malice.

• exclusive – (option) This attribute lists the names of entities that can accept this license. In certain cases,
for example the government, different licensing rules apply. If this field is set, it should be considered
absent if the entity name is not recognized as the accepting party. This name is not formally defined but is
assumed to be the domain name of the organization:

o gov

o darpa.mil

o ibm.com

o sales.bea.com

o felix.apache.org

If multiple licenses are listed with an overlapping covers attribute then the user is free to license the resources
under any of the listed licenses.

If the Bundle-License statement is absent, then this does not mean that the bundle is not licensed. Licensing
could be handled outside the bundle.

 RFC 125 - Bundle License Page 7 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A user should accept at least one license for each of the resources in the bundle to consider the bundle as
accepted.

6 Proposed Specification Text

The following section is added before 3.2.1.9 Bundle-Location

6.1 Bundle-License Header
The Bundle-License header provides an optional machine readable form of license information. The purpose of
this header is to automate some of the license processing required by many organizations like for example
license acceptance before a bundle is used. The header is structured to provide the use of unique license naming
to merge acceptance requests as well as links to human readable information about the included licenses. This
header is purely informational for management agents and must not be processed by the OSGi Framework.

The syntax for this header is as follows:

 Bundle-License ::= “<<EXTERNAL>>” | (license (‘,’ license) *)

 license ::= name (‘;’ license-attr) *

 license-attr ::= description | link

 description ::= ‘description’ ‘=’ string

 link ::= ‘link’ ‘=’ <url>

This header has the following attributes:

• name – Provides a globally unique name for this license, preferably world wide but it should at least be
unique with respect to the other clauses. The magic name <<EXTERNAL>> is used to indicate that this
artifact does not contain any license information but that licensing information is provided in some other
way. This is the default contents of this header. Clients of this bundle can assume that licenses with the
same name refer to the same license. This can for example be used to minimize the click through
licenses. This name should be the cardinal URL of the license, it must not be localized by the translator.
This URL does not have to exist but must not be used for later versions of the license. It is recommended
to use URLs for open source code from http://www.opensource.org/licenses/alphabetical. Other licenses
should use the following structure, but this is not mandated:

o http://<domain-name>/licenses/<license-name>-<version>.<extension>

• description – (optional) Provide the description of the license. This is a short description that is usable in a
list box on a UI to select more information about the license.

 RFC 125 - Bundle License Page 8 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

•

• link –(optional) Provide a URL to a page that defines or explains the license. If this link is absent, the
name field is used for this purpose. The URL is relative to the root of the bundle. I.e. it is possible to reer
to a file inside the bundle.

If the Bundle-License statement is absent, then this does not mean that the bundle is not licensed. Licensing
could be handled outside the bundle and the <<EXTERNAL>> form should be assumed.

Clearly, this header is informational and may not have any legal bearing. Consult a lawyer before using this
header to automate licensing processing.

7 Security Considerations

The Bundle-License header has no known security implications.

8 Document Support

8.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

[3]. https://www2.osgi.org/members/bugzilla/show_bug.cgi?id=483

[4]. http://www.opensource.org/licenses

8.2 Author’s Address

 RFC 125 - Bundle License Page 9 of 9

 Draft 15 May 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

Name Peter Kriens

Company aQute

Address 9c, Avenue St. Drézéry

Voice +33467542167

e-mail Peter.Kriens@aQute.biz

8.3 Acronyms and Abbreviations

8.4 End of Document

RFC 126 - Service Registry Hooks

Draft

17 Pages

Abstract

This RFC describes the means for a bundle to hook into the service registry operations.

Copyright © IBM Corporation 2008
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 126 - Service Registry Hooks Page 2 of 17

Draft 10 July 2008

0 Document Information

0.1 Table of Contents

0 Document Information...2
0.1 Table of Contents..2
0.2 Terminology and Document Conventions...3
0.3 Revision History..3

1 Introduction..4

2 Application Domain...4

3 Problem Description..5

4 Requirements...5

5 Technical Solution...5
5.1 Modifications to current API..5

5.1.1 New ServiceEvent type.. 5
5.2 New Hook Classes..6

5.2.1 PublishHook... 6
5.2.2 FindHook.. 6
5.2.3 ListenerHook.. 6

5.3 Backwards Compatibility Requirements..6

6 Javadoc...7
6.1 org.osgi.framework.hooks.service
Interface PublishHook...7

6.1.1 event... 7
6.2 org.osgi.framework.hooks.service
Interface FindHook..8

6.2.1 find.. 8
6.3 org.osgi.framework.hooks.service
Interface ListenerHook..9

6.3.1 initial.. 10
6.3.2 added.. 10
6.3.3 removed.. 10

6.4 org.osgi.framework.hooks.service
Class ListenerHook.Listener...11

6.4.1 ListenerHook.Listener.. 11
6.4.2 getBundleContext... 12

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 3 of 17

Draft 10 July 2008

6.4.3 getServiceListener.. 12
6.4.4 getFilter... 12

7 Considered Alternatives..13
7.1 Pre and post hooks...13
7.2 Listening to specific service names...13
7.3 Framework Proxying of Hook Generated Objects...13
7.4 Full Manipulation Capabilities..13

7.4.2 Exposure to Hook Generated Objects... 14
7.4.3 AdminPermission.. 15

8 Security Considerations..16

9 Document Support...16
9.1 References..16
9.2 Author’s Address...16
9.3 Acronyms and Abbreviations...16
9.4 End of Document...17

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in 9.1.

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial 7 January 2008 Initial Draft of RFC

BJ Hargrave, IBM

2nd draft 18 May 2008 Second draft based upon CPEG feedback.

Mostly small changes. Some of the methods where changed to use
Collections instead of array since it is expected that data is mutated as
control passes along the chain.

Security documentation was added to indicate that hook require
permission to manipulate the services of a bundle.

BJ Hargrave, IBM

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 4 of 17

Draft 10 July 2008

Revision Date Comments

3rd draft 10 June 2008 Third draft based upon CPEG feedback.

Removed the overloaded addServiceListener method and added a new
ServiceEvent type. Without the overloaded addServiceListener method,
the ListenerHook class has been simplified.

Added Exposure to Hook Generated Objects. Additional input from the
EGs is needed here.

BJ Hargrave, IBM

4th draft 10 July 2008 Fourth draft based upon decisions at the CPEG f2f meeting.

CPEG agreed, with approval of the EEG RFC 119 team, to scale this
design back. The changes now do not allow the hooks to inject objects
into the service registry which avoids the issue of creating new
dependencies between the bundles creating and using services and
the hook bundles.

BJ Hargrave, IBM

1 Introduction

This RFC details how a bundle can hook into service layer operations and influence the operation or observe the
operation.

2 Application Domain

This design is targeted at bundles which need to observer and manipulate select service layer operations. In
general these will be highly specialized bundles written by systems programmers. The design is not intended to
be used by so-called “normal” application bundles.

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 5 of 17

Draft 10 July 2008

3 Problem Description

The service layer operations provide no means for a bundle (external to the framework) to observe or manipulate
the operations as they occur. Certain specialized bundles need to be able to alter output results of service layer
find and event delivery operations to affect their purpose. Such purposes may include things like distributed
service model, etc.

4 Requirements

The solution must work with the current service layer model and allow certain bundles to observe the find and
listen operations and to potentially reduce the result to affect their desired goals.

The solution must be secured when java permissions are in effect.

5 Technical Solution

5.1 Modifications to current API
In addition to the API in following section, some changes to current API are needed

5.1.1 New ServiceEvent type
A new type, MODIFIED_ENDMATCH, is added to ServiceEvent to allow a listener to detect when a service property
modification results in the service no longer matching the filter with which the ServiceListener was added.
Existing ServiceListener implementation should properly ignore the new event type since the ServiceEvent class
has long been documented that new types may be added. (We have added new types to the similarly designed
BundleEvent and FrameworkEvent classes in prior releases.) New ServiceListener implementations (such as an
updated ServiceTracker) can use the new ServiceEvent type to detect when a service property modification
results in an end to the filter match. The new ServiceEvent type is only delivered to listeners which were added
with a non-null filter where the filter matched the service properties prior to the modification but the filter does not
match the modified service properties.

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 6 of 17

Draft 10 July 2008

Here is some pseudo code which demonstrates how the framework should process delivery of this new event to a
listener in response to the modification of service properties.

If (listenerFilter == null)
/* if no filter, deliver MODIFIED event */
deliverEvent(listener, ServiceEvent.MODIFIED);

else if (listenerFilter.match(newProperties))
/* if filter matches new properties, deliver MODIFIED event */
deliverEvent(listener, ServiceEvent.MODIFIED);

else if (listenerFilter.match(oldProperties))
/* if filter does not match new properties but does
 match old properties, deliver MODIFIED_ENDMATCH event */
deliverEvent(listener, ServiceEvent.MODIFIED_ENDMATCH);

ServiceTracker must be changed to use the new ServiceEvent type and always register a listener with a user
supplied filter string. ServiceTracker can use MODIFIED_ENDMATCH to untrack a service and avoid having to
evaluate filters in the ServiceListener implementation.

5.2 New Hook Classes
The javadoc in the next section describes the proposed new hook classes.

Service hooks are not called for service operations on other service hooks.

The following hook types are defined.

5.2.1 PublishHook
Bundles registering this service will be called during framework service publish (register, modify, and unregister
service) operations. This method is called prior to service event delivery when a publishing bundle registers,
modifies or unregisters a service and can filter the bundles which receive the event.

5.2.2 FindHook
Bundles registering this service will be called during framework service find (get service references) operations.
This method is called during the service find operation by the finding bundle and can filter the result of the find
operation.

5.2.3 ListenerHook
Bundles registering this service will be called during service listener addition and removal. The hook is notified of
the collection of service listeners and what they may be listening for and well as future changes to that collection.

5.3 Backwards Compatibility Requirements
Hooks are very specialized services which are tied closely to the operations of the service layer of the framework.
While every attempt to maintain the backwards compatibility of the hook api will be made, it is possible that
changes or additions to the service layer API in future versions of the OSGi Core Specification make require
changes to the hook API which breaks backwards compatibility.

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 7 of 17

Draft 10 July 2008

6 Javadoc

This section contains the javadoc for the new hook classes.
function windowTitle()
{
 parent.document.title="PublishHook";
}

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6.1 org.osgi.framework.hooks.service
Interface PublishHook

public interface PublishHook

OSGi Framework Service Publish Hook Service.

Bundles registering this service will be called during framework service publish (register, modify, and unregister
service) operations. Service hooks are not called for service operations on other service hooks.

Version:
$Revision: 5112 $

Method Summary
 void event(ServiceEvent event, java.util.Collection bundles)

 Event hook method.

Method Detail
6.1.1 event

void event(ServiceEventevent,
 java.util.Collectionbundles)

Event hook method. This method is called prior to service event delivery when a publishing bundle
registers, modifies or unregisters a service and can filter the bundles which receive the event.

Copyright © IBM Corporation 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/ServiceEvent.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/ServiceEvent.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/PublishHook.html#event(org.osgi.framework.ServiceEvent, java.util.Collection)
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html

RFC 126 - Service Registry Hooks Page 8 of 17

Draft 10 July 2008

Parameters:
event - The service event to be delivered.
bundles - A Collection of Bundles which have listeners to which the event may be
delivered. The method implementation can remove bundles from the collection to prevent the
event from being delivered to those bundles. Attempting to add to the collection will result in an
UnsupportedOperationException.

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

function windowTitle()
{
 parent.document.title="FindHook";
}

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6.2 org.osgi.framework.hooks.service
Interface FindHook

public interface FindHook

OSGi Framework Service Find Hook Service.

Bundles registering this service will be called during framework service find (get service references) operations.
Service hooks are not called for service operations on other service hooks.

Version:
$Revision: 5112 $

Method Summary
 void find(BundleContext context, java.lang.String name, java.lang.String filter,

boolean allServices, java.util.Collection references)
 Find hook method.

Copyright © IBM Corporation 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/FindHook.html#find(org.osgi.framework.BundleContext, java.lang.String, java.lang.String, boolean, java.util.Collection)
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html

RFC 126 - Service Registry Hooks Page 9 of 17

Draft 10 July 2008

Method Detail
6.2.1 find

void find(BundleContextcontext,
 java.lang.Stringname,
 java.lang.Stringfilter,
 booleanallServices,
 java.util.Collectionreferences)

Find hook method. This method is called during the service find (for example,
BundleContext.getServiceReferences(String, String)) operation by the finding bundle
and can filter the result of the find operation.

Parameters:
context - The bundle context of the finding bundle.
name - The class name of the services to find or null to find all services.
filter - The filter criteria of the services to find or null for no filter criteria.
allServices - true if the find operation is the result of a call to
BundleContext.getAllServiceReferences(String, String)
references - A Collection of Service References to be returned to the finding bundle.
The method implementation can remove references from the collection to prevent the
references from being returned to the finding bundle. Attempting to add to the collection will
result in an UnsupportedOperationException.

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

function windowTitle()
{
 parent.document.title="ListenerHook";
}

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6.3 org.osgi.framework.hooks.service
Interface ListenerHook

public interface ListenerHook

Copyright © IBM Corporation 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html#getAllServiceReferences(java.lang.String, java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html#getServiceReferences(java.lang.String, java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html

RFC 126 - Service Registry Hooks Page 10 of 17

Draft 10 July 2008

OSGi Framework Service Listener Hook Service.

Bundles registering this service will be called during service listener addition and removal. Service hooks are not
called for service operations on other service hooks.

Version:
$Revision: 5115 $

Nested Class Summary
static class ListenerHook.Listener

 A Service Listener wrapper.

Method Summary
 void added(ListenerHook.Listener listener)

 Add listener hook method.

 void initial(ListenerHook.Listener[] listeners)
 Initial listeners hook method.

 void removed(ListenerHook.Listener listener)
 Remove listener hook method.

Method Detail
6.3.1 initial

void initial(ListenerHook.Listener[]listeners)

Initial listeners hook method. This method is called when the hook is first registered to provide the
hook with the set of service listeners which were had been added prior to the hook being registered.
This method is only called once. However, due to the timing of other bundles adding or removing
service listeners, calls to
added(org.osgi.framework.hooks.service.ListenerHook.Listener) or
removed(org.osgi.framework.hooks.service.ListenerHook.Listener) may occur
before the call to this method.

Parameters:
listeners - An array of listeners which are listening to service events.

6.3.2 added

void added(ListenerHook.Listenerlistener)

Add listener hook method. This method is called during service listener addition. This method will be
called once for each service listener added after this hook had been registered.

Copyright © IBM Corporation 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html#removed(org.osgi.framework.hooks.service.ListenerHook.Listener)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html#added(org.osgi.framework.hooks.service.ListenerHook.Listener)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html#removed(org.osgi.framework.hooks.service.ListenerHook.Listener)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html#initial(org.osgi.framework.hooks.service.ListenerHook.Listener[])
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html#added(org.osgi.framework.hooks.service.ListenerHook.Listener)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html

RFC 126 - Service Registry Hooks Page 11 of 17

Draft 10 July 2008

Parameters:
listener - A listener which is now listening to service events.

6.3.3 removed

void removed(ListenerHook.Listenerlistener)

Remove listener hook method. This method is called during service listener removal. This method
will be called once for each service listener removed after this hook had been registered.

Parameters:
listener - A listener which is no longer listening to service events.

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

function windowTitle()
{
 parent.document.title="ListenerHook.Listener";
}

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6.4 org.osgi.framework.hooks.service
Class ListenerHook.Listener

java.lang.Object
 org.osgi.framework.hooks.service.ListenerHook.Listener

Enclosing interface:
ListenerHook

public static class ListenerHook.Listenerextends java.lang.Object

A Service Listener wrapper. This immutable class encapsulates a ServiceListener and the bundle which
added it and the filter with which it was added. Objects of this type are created by the framework and passed to
the ListenerHook.

Copyright © IBM Corporation 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/ServiceListener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/FindHook.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html

RFC 126 - Service Registry Hooks Page 12 of 17

Draft 10 July 2008

Constructor Summary
ListenerHook.Listener(BundleContext context, ServiceListener listener,
java.lang.String filter)
 Create a Service Listener wrapper.

Method Summary
 BundleContext getBundleContext()

 Return the context of the bundle which added the listener.

 java.lang.String getFilter()
 Return the filter with which the listener was added.

 ServiceListener getServiceListener()
 Return the service listener.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail
6.4.1 ListenerHook.Listener

public ListenerHook.Listener(BundleContextcontext,
 ServiceListenerlistener,
 java.lang.Stringfilter)

Create a Service Listener wrapper.

Parameters:
context - The context of the bundle which added the listener.
listener - The ServiceListener object.
filter - The filter with which the listener was added.

Method Detail
6.4.2 getBundleContext

public BundleContext getBundleContext()

Return the context of the bundle which added the listener.

Returns:
The context of the bundle which added the listener.

Copyright © IBM Corporation 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/ServiceListener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html#getServiceListener()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/ServiceListener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html#getFilter()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html#getBundleContext()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/ServiceListener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/BundleContext.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html#ListenerHook.Listener(org.osgi.framework.BundleContext, org.osgi.framework.ServiceListener, java.lang.String)

RFC 126 - Service Registry Hooks Page 13 of 17

Draft 10 July 2008

6.4.3 getServiceListener

public ServiceListener getServiceListener()

Return the service listener.

Returns:
The service listener.

6.4.4 getFilter

public java.lang.String getFilter()

Return the filter with which the listener was added.

Returns:
The filter with which the listener was added. This may be null if the listener was added
without a filter.

Overview Package Class Use Tree Deprecated Index Help

 PREV CLASS NEXT CLASS

FRAMES NO FRAMES <!--
 if(window==top) {
 document.writeln('<A HREF="../../../../../allclasses-
noframe.html">All Classes');
 }
 //--> All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

7 Considered Alternatives

7.1 Pre and post hooks
The original proposal was based upon pre and post hook methods being called before and after each service
operation. The issue with that proposal was matching the pre and post hook calls to a specific service operation
(since service operations can be nested). The current proposal is a stack-based mechanism as each hook is
responsible for calling to the next step of the operation and in general provides a simpler model.

Copyright © IBM Corporation 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/hooks/service/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/PublishHook.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/ListenerHook.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/class-use/ListenerHook.Listener.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/hooks/service/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/ServiceListener.html

RFC 126 - Service Registry Hooks Page 14 of 17

Draft 10 July 2008

7.2 Listening to specific service names
Adding a new addServiceListener method was rejected in favor of adding a new ServiceEvent type to notify
ServiceListeners added with a filter string that a property modification occurred which causes the service to no
longer match the filter.

The BundleContext.addServiceListener method must overloaded with a new method which takes
an array of service names:
addServiceListener(ServiceListener listener, String[] names)
This new method is an alternate to the filter variant of addServiceListener which takes a specific list
of service names to watch. The strings in the names parameter allow the use of the “*” wildcard like
filters. Using this new method is the equivalent of calling addServiceListener with the filter string:

“(|(objectClass=”+name[0]”)” ... “(objectClass=”+name[n]+”)”
This new any new function, but provide a means of registering interest in specific service names
which can allow the framework to make certain optimizations, rather than trying to look inside a
potentially complicated filter string.

7.3 Framework Proxying of Hook Generated Objects
An alternative to Exposure to Hook Generated Objects was rejected. This alternative would require the framework
to proxy wrap all hook generated objects such that no other bundle (including other hooks) would be exposed to
hook generated objects. Then, when a hook service is unregistered, for all object generated by the hook, the
framework generated proxy wrapper would dereference the hook generated objects and route around the
dereferenced object.

While this is simpler and less perturbing than the requirements in Exposure to Hook Generated Objects, this
alternative raised many correctness issues. For example, a hook may have modified the properties of a service
during registration. Now that the hook is removed, the service property on the currently registered service should
be removed. Doing this is harder for the framework to detect and “unwind”.

Due to these correctness issues, this alternative was rejected.

7.4 Full Manipulation Capabilities
The goals of this RFC have been scaled back to avoid the issues with exposure of hook generated objects to
bundle and the associated dependencies which are created and their cleanup.

7.4.1.1 Chained Hook Classes
Service hooks are not called for service operations on other service hooks. Each hook type (except for
ListenerHook which is not chained) is chained and called in a sequence during the processing of a service
operation. Each hook in the chain must call the chain object to continue processing the chain. The “pre” phase of
a hook are the operations that occur prior to calling the chain object to pass control to the next hook in the chain.
This typically includes modifying parameters before calling the chain object. The “post” phase of the hook are the
operations that occur after the chain object returns. This may include modifying the return value of the chain
object.

In general, the hooks are very powerful mechanism that can be used to perform many interesting functions. But
because the hooks are powerful, care must be avoid misusing or abusing them.

The following hook types are defined.

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 15 of 17

Draft 10 July 2008

7.4.1.2 PublishHook
Bundles registering this service will be called during framework service publish (register service) operations. This
hook allows one to influence the service publish (registration) operation.

Since a PublishHook implementation may create and return a ServiceRegistration object (which wraps the
original, framework created ServiceRegistration object), care must be taken by the framework during automatic
service unregistration at bundle stop. Since the hook created ServiceRegistration object may manage resources
that should be freed when the service is unregistered, during automatic service unregistration at bundle stop, the
framework MUST call the unregister method on the ServiceRegistration object returned to the bundle which
registered the service to allow any hook defined processing to occur.

7.4.1.3 FindHook
Bundles registering this service will be called during framework service find (get service references) operations.
This hooks allows one to influence the service find operation. This hook supports things such as just-in-time
service publication by examining the find parameters during the pre phase processing of the hook.

7.4.1.4 BindHook
Bundles registering this service will be called during framework service bind (get service object) operations. This
hook allows one to influence the service bind operation. This hook supports thing such as proxy wrapping of the
service object during the post phase processing of the hook.

7.4.1.5 EventHook
Bundles registering this service will be called during framework service event delivery. This hook allows one to
influence the set of bundles which receive a service event.

7.4.2 Exposure to Hook Generated Objects
During the course of service operations, a bundle may become exposed to hook generated objects. For example,
a hook could create and return a ServiceRegistration wrapper or create and return a service object wrapper to
allow the hook to insert behavior onto the object's operations.

But hooks are services registered from ordinary bundles. Those bundles can be stopped and their hook services
unregistered or the hook bundle may decide for some reason to unregister the hook service. This can leave the
hook generated objects dangling in the system. In order to properly manage these dependencies from the client
bundle to the hook service, the framework must track these dependencies and properly resolve them.

When a hook service returns a hook generated object, if the service operation completes normally resulting in the
client bundle becoming dependent on the hook generated object, the framework must mark the client bundle
dependent upon the hook service. If the client bundle is stopped, then all dependencies on the hook service are
removed. However, if the hook service is unregistered, the client bundles that are dependent on that hook service
must all be stopped and restarted so that they will re-execute the service operations without the presence of the
removed hook service.

Given potential perturbation issues with multiple bundles being restarted multiple times of a set of hook bundles
having a set of hooks service are updated, some care must be taken to avoid this. However, there are several
scenarios to consider:

●Simple unregistration of hook service – The hook bundle may decide to unregister the hook service for some
reason. The unregistration is not as a result of the hook bundle stopping and it is unknown when or if the hook

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 16 of 17

Draft 10 July 2008

service will be reregistered. In this case, there are no other event to wait for to decide to handle the client bundle
dependencies on the hook service.

●Hook bundle is stopped – The hook bundle is stopped for some reason (that is not part of an update operation).
As a result, all hook services from the hook bundle are unregistered. A client bundle may have dependencies on
multiple hook services from the hook bundle. We don't want to restart the client bundle multiple times (once for
each unregistered hook service that the client bundle is dependent upon). Also, it is unknown when or if the hook
bundle will be restarted and its hook service reregistered. In this case, there are no other event to wait for to
decide to handle the client bundle dependencies on the hook services.

●One or more hook bundles are updated – A set of hook bundles are updated (hopefully all stopped, all updated
and all restarted). It is also possible a refreshPackages call may be made on these hook bundles prior to
restarting them. If we know the hook services are being unregistered as part of a larger update operation, we will
want to coordinate restarting the dependent client bundles. In fact, we would want to stop the dependent client
bundles before we stop the hook bundles and restart them after we restart the hook bundles. But this would
require the framework to know things that is does not know. It has been suggested to delay stopping and
restarting the dependent client bundles until refreshPackages is called. This does leave the dependent client
bundles operating while the hook bundles have been stopped and updated.

From a correctness point of view, restarting the dependent client bundles must be done when the hook service is
unregistered. However, there is the potential for multiple restarts. Additional input from CPEG and EEG is
requested here.

7.4.3 AdminPermission
The proposed new action to be added to AdminPermission is rejected. Since the capability of the hook is reduced,
such fine grained control is not necessary.
AdminPermission.SERVICE_HOOK
This new type allows control over whether the hook can manipulate the service operations of the target bundle.

8 Security Considerations

When Java permissions are in effect, this design is secured by ServicePermissions.

The bundle registering the various hook services must have the necessary ServicePermission.REGISTER. Since
there are various hook services, we have fine grained control over what specific hooks a bundle can register.

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 126 - Service Registry Hooks Page 17 of 17

Draft 10 July 2008

9 Document Support

9.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

9.2 Author’s Address

Name BJ Hargrave

Company IBM Corporation

Address 800 N Magnolia Av

Orlando, FL

Voice +1 386 848 1781

e-mail hargrave@us.ibm.com

9.3 Acronyms and Abbreviations

9.4 End of Document

Copyright © IBM Corporation 2008 All Rights Reserved

Accessing Exit Values from Applications

Draft

9 Pages

Abstract

This RFC describes an approach for accessing the exit value from an application launched using an Application

Descriptor in Application Admin.

Copyright © IBM 2008

This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement
and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.

All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

Accessing Exit Values from Applications Page 2 of 9

Draft 5 August 2008

0 Document Information

0.1 Table of Contents

0 Document Information...2
0.1 Table of Contents.. 2
0.2 Terminology and Document Conventions..3
0.3 Revision History.. 3

1 Introduction.. 3

2 Application Domain... 3
2.1 Terminology... 3

3 Problem Description..4

4 Requirements... 4
4.1 Use Cases...4

4.1.1 Launching Native Commands.. 4
4.1.2 Eclipse RCP Applications... 4

5 Technical Solution... 5
5.1 Method getExitValue... 5

5.1.1 ApplicationException JavaDoc... 5
5.1.2 ApplicationHandle JavaDoc.. 5

6 Considered Alternatives..6
6.1 No Block and timeout.. 6

7 Security Considerations..7
7.1 Exit Value Sensitivity... 7
7.2 Exit Value Memory Leak..8

8 Document Support...8
8.1 References..8
8.2 Author’s Address... 8
8.3 Acronyms and Abbreviations... 8
8.4 End of Document...8

Copyright © IBM 2008 All Rights Reserved

Accessing Exit Values from Applications Page 3 of 9

Draft 5 August 2008

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in 8.1.

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial Oct 22 2007 Initial draft using information provided by bug 433

Thomas Watson, IBM, tjwatson@us.ibm.com

Oct 26 2007 Added timeout parameter to getExitValue

Thomas Watson

Aug 05 2008 Final clean up, removed question about where the service property
should be and the security questions

1 Introduction

The Application Admin specification is used to manage an environment with many different types of applications
that are simultaneously available. In some application environments when an application is finished the
application is allowed to return an exit value. Currently the Application Admin Specification does not allow access
to an exit value returned by an application when it is finished.

This RFC describes an approach for accessing an exit value when an application is finished.

Copyright © IBM 2008 All Rights Reserved

Accessing Exit Values from Applications Page 4 of 9

Draft 5 August 2008

2 Application Domain

2.1 Terminology
Exit Value – The result returned by an application after is has finished. This value is application and application
container specific

3 Problem Description

Many application environments allow applications to return an exit value. For example, when launching a process
on many operating system the process will return an integer value indicating a success or failure of the execution.
This is evident in the java.lang.Process#exitValue() method.

Other application environments may allow more complicated exit values for returning results from the application.
For example, in the Eclipse RCP application container applications are allowed to return arbitrary Objects.

4 Requirements

1. Clients which launch an application must be able to access the exit value of an application once it has finished.

2. An application must be able to return an arbitrary value for the exit value once it has finished execution.

3. Clients must be able to determine when an application exit value is available

4. Existing applications and application containers must continue to work without modification

4.1 Use Cases

Copyright © IBM 2008 All Rights Reserved

Accessing Exit Values from Applications Page 5 of 9

Draft 5 August 2008

4.1.1 Launching Native Commands

In Java, native commands can be executed by calling Runtime#exec(...). This returns a Process object which can
be used to track the execution of the command and retrieve exit values. This is similar to how an
ApplicationHandle can be used to track an application instance in Application Admin. Some scenarios may want
to register native commands as ApplicationDescriptor services. The ApplicationHandle implementation could then
use the Process#waitFor method to implement the lifecycle of the ApplicationHandle. But there is no way for the
client to get access to the Process#exitValue from an ApplicationHandle.

4.1.2 Eclipse RCP Applications

In the Eclipse Rich Client Platform an application container is defined for running applications defined by bundles
installed in the framework. An RCP application bundle uses the extension registry to specify an application
definition declaratively with an extension (a la plugin.xml). The application definition specifies an entry point to the
application which is used to run the application. The entry point is a class from the application bundle which
implements an interface specific to the RCP application container. This class is used by the application container
to launch the application and retrieve the exit value from the application when it is finished. Applications in the
RCP application container are allowed to return any object type they like as exit values.

5 Technical Solution

5.1 Method getExitValue
A new method is added to the ApplicationHandle class to get the exit value from an application instance. This
method allows a timeout value to be specified. If a timeout is specified this method will block until either the
application has terminated or the expiration of the timeout. If the application has terminated then the exit value is
returned otherwise an ApplicationException is thrown.

The getExitValue method will not be abstract and the default implementation will throw an
UnsupportedOperationException. This is necessary to allow existing applications and application container
implementations to continue to work without modification or re-compilation. A new ApplicationHandle service
property is added to indicate if the application instance supports exit values (application.supports.exitvalue).

Key Name Type Default Description

application.supports.exitvalue Boolean FALSE Specifies whether the application instance supports an
exit value.

Copyright © IBM 2008 All Rights Reserved

Accessing Exit Values from Applications Page 6 of 9

Draft 5 August 2008

5.1.1 ApplicationException JavaDoc

5.1.1.1 APPLICATION_EXITVALUE_NOT_AVAILABLE

The exit value is not available for an application instance because the instance has not terminated.

5.1.2 ApplicationHandle JavaDoc

5.1.2.1 APPLICATION_SUPPORTS_EXITVALUE

String org.osgi.service.application.ApplicationHandle.APPLICATION_SUPPORTS_EXITVALUE =
"application.supports.exitvalue"

The property key for the supports exit value property of this application instance.

5.1.2.2 GetExitValue

Object org.osgi.service.application.ApplicationHandle.getExitValue(long timeout)

Returns the exit value for the application instance. The timeout specifies how the method behaves when the
application has not terminated. A negative, zero or positive value may be used.

• negative - The method does not wait for termination. If the application has not terminated then an
ApplicationException is thrown

• zero - The method waits until the application has terminated
• positive - The method waits until the application has terminated or the timeout has expired. If the timeout

has expired and the application has not terminated then an ApplicationException is thrown.

The default implementation throws an UnsupportedOperationException. The application model should
override this method if exit values are supported.

Parameters:
timeout The maximum time in milliseconds to wait for the application to timeout.

Returns:
the exit value for the application instance. The value is application specific.

Throws:
UnsupportedOperationException if the application model does not support exit values.
InterruptedException if the wait has been interrupted.
ApplicationException

Copyright © IBM 2008 All Rights Reserved

Accessing Exit Values from Applications Page 7 of 9

Draft 5 August 2008

6 Considered Alternatives

6.1 No Block and timeout
The original proposal did not have the ability to block and wait for an application instance to terminate. If clients
wanted to wait for an application to terminate they could use standard OSGi ServiceEvents to do so. But this left
a rather difficult programming pattern for simple scenarios that simply wanted to launch an application and wait for
the exit value. Something like the following (likely buggy code) would have to be used:

ApplicationHandle handle = app.launch(null);
ServiceReference[] handleRefs =
 context.getServiceReferences(
 ApplicationHandle.class.getName(),
 "(service.pid=" + handle.getInstanceId() +")");
if (handleRefs != null) {
 final boolean[] unregistered = new boolean[] {false};
 ServiceTrackerCustomizer handleCustomizedTracker =
 new ServiceTrackerCustomizer() {
 public Object addingService(ServiceReference reference) {
 return reference;
 }
 public void modifiedService(ServiceReference reference, Object service)
 {
 }
 public void removedService(ServiceReference reference, Object service)
{
 synchronized (unregistered) {
 unregistered[0] = true;
 unregistered.notifyAll();
 }
 }
 };
 ServiceTracker appTracker =
 new ServiceTracker(context, handleRefs[0], handleCustomizedTracker);
 appTracker.open();
 synchronized (unregistered) {
 while (!unregistered[0]) {
 unregistered.wait();
 }
 }
 appTracker.close();
}
Object exitData = handle.getExitValue();

It was determined that the best thing to do would be to allow for a timeout value instead which would make the
above code look like this:

ApplicationHandle handle = app.launch(null);

Copyright © IBM 2008 All Rights Reserved

Accessing Exit Values from Applications Page 8 of 9

Draft 5 August 2008

Object exitData = handle.getExitValue(0);

7 Security Considerations

7.1 Exit Value Sensitivity
The exit value could contain sensitive data. Clients must have ServicePermission to acquire the
ApplicationDescriptor to launch the application instance or to acquire the ApplicationHandle service.

7.2 Exit Value Memory Leak
The ApplicationHandle must maintain a reference to the application value for the lifetime of the ApplicationHandle
object (i.e. until it is GC'ed). ApplicationHandle objects cannot throw away the result as soon as they are
unregistered. If ApplicationHandles are prevented from GC'ing and the exit value consumes large amounts of
memory/resources then a drastic memory leak will occur.

8 Document Support

8.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

8.2 Author’s Address

Copyright © IBM 2008 All Rights Reserved

Accessing Exit Values from Applications Page 9 of 9

Draft 5 August 2008

Name Thomas Watson

Company IBM

Address

Voice (512) 838 4533

e-mail tjwatson@us.ibm.com

8.3 Acronyms and Abbreviations

8.4 End of Document

Copyright © IBM 2008 All Rights Reserved

RFC 0129 Initial Provisioning Update

Draft

6 Pages

Abstract

Initiali Provisioning is gaining in popularity but has at least one problem: the extra field. This RFC describes a
remedies to problems with IP.

Copyright © OSGi Alliance 2008
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 0129 Initial Provisioning Update Page 2 of 6

Draft 16 May 2008

0 Document Information

0.1 Table of Contents

0 Document Information...2
0.1 Table of Contents..2
0.2 Terminology and Document Conventions...2
0.3 Revision History..3

1 Introduction..3

2 Application Domain...3

3 Problem Description..4

4 Requirements...4

5 Technical Solution...4
5.1 Manifest header...4
5.2 Extension..5
5.3 Priority...5
5.4 Bundle MIME Type..5

6 Security Considerations..5

7 Document Support...6
7.1 References..6
7.2 Author’s Address...6
7.3 End of Document...6

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in 7.1.

Source code is shown in this typeface.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0129 Initial Provisioning Update Page 3 of 6

Draft 16 May 2008

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial NOV 24 2007 Peter Kriens, aQute, Initial draft

2nd draft 4 Feb 2008 Updated based upon CPEG discussions 2008-01-31.

BJ Hargrave, IBM

1 Introduction

This RFC investigates any issues with the Initial Provisioning specification and proposes remedies.

2 Application Domain

Initiali Provisioning specifies the process how an initially blank system Service Platform can be configured from a
single URL. The process is described in the compendium in The OSGi Service Platform Specification.

For this RFC, the use of the extra field is the key issue. The extra field in the ZIP entry is used to indicate the type
of the entry. A MIME type is used for this. The following types are supported:

● text text/plain;charset=utf-8

● binary application/octet-stream

● bundle application/x-osgi-bundle

● bundle-url text/x-osgi-bundle-url

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0129 Initial Provisioning Update Page 4 of 6

Draft 16 May 2008

3 Problem Description

The R4 IP specification requires that the MIME type of a Provisioning Dictionary is stored in the extra field of a Zip
entry. Though the extra field is well supported in the Java util.jar package classes, it is not well supported in build
tools. This makes the creating of the Provisioning Dictionary extra hard.

4 Requirements

● Provide an alternative to the IP use of the extra field that is supported by standard tools

5 Technical Solution

5.1 Manifest header
The list of entries to be processed can be specified by this new manifest header.

 InitialProvisioning-Entries ::= entry (’,’ entry)*

entry ::= path (’;’ parameter) *

The entry is the path name of a resource in the JAR file. The following attributes is recognized:

● mime – Describes the mime type of the entry. This must be one of the four valid mime types of the ZIP
entry.

● type – Is one of the 4 types: text, binary, bundle, or bundle-url

If neither the mime or type parameter entry is specified for an entry, then the type will be inferred from the
extension of the entry.

5.2 Extension
The type of an entry can be inferred from its extension. The following extensions to type mappings are proposed:

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0129 Initial Provisioning Update Page 5 of 6

Draft 16 May 2008

Type Extension Description

text .txt The IP Dictionary must contain a String. The file must be encoded in UTF-8

binary Not .txt, .url,
.jar

Any file not recognized as one of the other three types is treated as binary

bundle .jar A jar file is treated as a bundle to be installed

bundle-url .url A text file, UTF-8 encoded, containing a URL to a bundle that will be installed

If the new manifest header is not specified and the extra field of the entry is not specified, then an entry whose
extension matches one of these extensions will be processed as an IP entry.

5.3 Priority
An implementation of the Initial Provisioning must determine the mime type of an entry in the following priority
order:

1. The extra field - This is necessary to prevent existing systems from failing because an extension does not
match the intent.

2. The InitialProvisining-Entries manifest header

3. The extension of the entry.

5.4 Bundle MIME Type
The current mime type used in IP is application/x-osgi-bundle. Subsequent to the creation of the IP specification,
OSGi registered an official mime type for bundles: application/vnd.osgi.bundle. The original application/x-osgi-
bundle mime type may continue to be used as an alternative to the new application/vnd.osgi.bundle type.
However, applications must continue to recognize the older type.

6 Security Considerations

There are no additional security considerations for these modifications.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0129 Initial Provisioning Update Page 6 of 6

Draft 16 May 2008

7 Document Support

7.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

[3]. OSGi Bundle Mime Type,
http://www.iana.org/assignments/media-types/application/vnd.osgi.bundle

7.2 Author’s Address

Name Peter Kriens

Company Aqute

Address 9c, Avenue St. Drezery

Voice +33 467542167

e-mail Peter.Kriens@aQute.biz

7.3 End of Document

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching

Draft

41 Pages

Abstract

This RFC describes a proposed specification for a Command processing interface for the OSGi Framework.

Copyright © OSGi Alliance 2008
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 0132 Command Line Interface and Launching Page 2 of 41

Draft August 5, 2008

0 Document Information

0.1 Table of Contents

0 Document Information...2
0.1 Table of Contents..2
0.2 Terminology and Document Conventions...4
0.3 Revision History..4

1 Introduction..5

2 Problem Description..5
2.1 Framework Launching...5
2.2 Command Interface...5

3 Requirements...6
3.1 Non Functional..6
3.2 Launching..6
3.3 Command Names...6
3.4 Shell..7
3.5 Shell Commands...7
3.6 Source Providers...7

4 Technical Solution...8
4.1 Launching..8
4.2 Life Cycle Issues...9
4.3 Properties..9
4.4 Starting Procedure..10
4.5 Shell Design..11
4.6 Command Service...13
4.7 Thread IO Service...13
4.8 Shell syntax: TSL..14

4.8.1 Introduction to TSL (Tiny Shell Language)... 14
4.8.2 Program Syntax.. 15
4.8.3 Examples of Syntax usage.. 17

4.9 Standard IO Handling..17
4.10 Command Provider Discovery...17
4.11 Other Commands..19
4.12 Piping..19
4.13 Command Calling..19

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 3 of 41

Draft August 5, 2008

4.13.1 Remove Variable.. 20
4.13.2 Assignment... 20
4.13.3 Single Value... 20
4.13.4 Call Cmd... 20
4.13.5 Message Send ... 20

4.14 Argument Coercion...21
4.15 Converters...22
4.16 Printing or Not...23
4.17 TSL In OSGi..23
4.18 Services and their Commands..24
4.19 Help...25

5 Javadoc...25
5.1 org.osgi.framework.launch
Interface SystemBundle..25

5.1.1 SECURITY... 26
5.1.2 STORAGE.. 27
5.1.3 LIBRARIES... 27
5.1.4 EXECPERMISSION... 27
5.1.5 ROOT_CERTIFICATES... 27
5.1.6 WINDOWSYSTEM... 27
5.1.7 init... 28
5.1.8 waitForStop.. 28

5.2 org.osgi.service.command
Interface CommandProcessor...29

5.2.1 COMMAND_SCOPE.. 29
5.2.2 COMMAND_FUNCTION.. 30
5.2.3 createSession... 30

5.3 org.osgi.service.command
Interface CommandSession..30

5.3.1 execute... 31
5.3.2 execute... 32
5.3.3 close... 32
5.3.4 getKeyboard... 32
5.3.5 getConsole... 33
5.3.6 get... 33
5.3.7 put... 33
5.3.8 format... 33
5.3.9 convert.. 34

5.4 org.osgi.service.command
Interface Converter..34

5.4.1 CONVERTER_CLASSES.. 35
5.4.2 INSPECT.. 35
5.4.3 LINE.. 35
5.4.4 PART.. 36
5.4.5 convert.. 36
5.4.6 format... 36

5.5 org.osgi.service.command
Interface Function..37

5.5.1 execute... 37
5.6 org.osgi.service.threadio
Interface ThreadIO..38

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 4 of 41

Draft August 5, 2008

5.6.1 setStreams... 39
5.6.2 close... 39

6 Alternatives..39
6.1 Considered setParentBundle..39

7 Security Considerations..40

8 Document Support...40
8.1 References..40
8.2 Author’s Address...40
8.3 Acronyms and Abbreviations...41
8.4 End of Document...41

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in 8.1.

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial 05 MAR 2008 Peter.Kriens@aQute.biz

Additional
text

03 APR 2008 Added a large number of sections, mainly booting and more details
about the processing of scripts. Also completely changed the API and
added a problem description and requirements section. Changes are so
massive that it was not that useful to track changes (and I forgot
anyway)

Update 15 MAY 2008 More details in booting, minor update in the language aspects

Update 31 JUL 2008 Changed some method names, updated Javadoc and added to build

Update 5 AUG 2008 Updated javadoc section. Changed “boot” to “launch”.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 5 of 41

Draft August 5, 2008

1 Introduction

This RFC is an solution for RFP 99 Command Provider and RFP 80 Framework booting. This RFC outlines the
interfaces necessary to implement command line shells in OSG frameworks as well as providing a generic start
up solution for different implementations of frameworks.

2 Problem Description

This RFC addresses the problem of standardized external access. The purpose of this RFC is to allow any OSGi
framework to launched, configured, and controlled externally from a console, telnet session, serial port or script.
The framework must enable a set of basic commands that are supported by all implementations, but it must
enable that bundles can provide additional commands.

2.1 Framework Launching
Every OSGi framework must invent its own technology for getting started. Therefore, code that may need to
launch the framework from various places must write code that is proprietary for the particular OSGi vendors’
implementation, if they wish to support more than one framework.

In enterprises, where the issues of vendor lock-in can cause a barrier to adoption of the system, this issue
becomes magnified. While it should certainly be the case that each vendor can supply add-ons and extra
features, the standard portions of all OSGi frameworks could be encapsulated in a Framework Launching
specification. Having such a specification would increase the consistency and quality of compliant OSGi
frameworks, and allay fears about vendor lock-in.

2.2 Command Interface
There is a need for a service that allows human users as well as well as programs to interact with on OSGi based
system with a line based interface: a shell. This shell should allow interactive and string based programmatic
access to the core features of the framework as well as provide access to functionality that resides in bundles.

Shells can be used from many different sources it is therefore necessary to have a flexible scheme that allows
bundles to provide shells based on telnet, the Java 6 Console class, plain Java console, serial ports, files, etc.

Supporting commands from bundles should be made very lightweight and simple as to promote supporting the
shell in any bundle. Commands need access to the input and output streams. Commands sometimes need to
store state between invocations in the same session.

There is a need for a very basic shell functionality in small embedded devices, however, the design should permit
complex shells that support background processing, piping, full command line editing, and scripting. It is possible
that a single framework holds multiple shells.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 6 of 41

Draft August 5, 2008

The shell must provide a means to authenticate the user and the commands must be able to investigate the
current user and its authorizations, preferably through standardized security mechanisms. To minimize footprint, it
must also be possible to implement a shell without security.

3 Requirements

3.1 Non Functional
• Lightweight to allow shells for low footprint devices

• Allow shells with piping, background, scripting, etc.

• Make commands trivial to implement

• Make it easy to connect the shell to different sources.

• Provide an optional security framework based on existing security facilities

• Minimize the cost of a command (e.g. do not require eager loads of objects implementing commands)

• Support use of existing code by making a design that closely follows practices for command line
applications in Java.

3.2 Launching
● The solution should allow for scripting languages to behave similarly for all compliant OSGi frameworks.

● The solution must allow for starting, restarting and stopping compliant OSGi frameworks without prior
knowledge of the framework.

● The solution should allow for starting compliant frameworks in the same or different processes (though it
would be OK to fall back on the Java Process verbs if necessary)

● The solution should handle the problems associated with launching multiple OSGi frameworks inside the
same JVM process space.

● The solution must be able to handle vendor specific extensions.

3.3 Command Names
• Provide a list of basic command signatures to manage the framework so they are consistent among

implementations.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 7 of 41

Draft August 5, 2008

3.4 Shell
• Provide interface to execute a string as command

• Allow other bundles to implement commands

• Allow other bundles to provide a connection to: telnet, console, serial port, etc.

• Provide help for each command

• Provide a means to disambiguate commands with the same name

• Provide a means to disambiguate when there are multiple shells

• Authenticate the user

• Provide programmatic access to the shell, that is, a program generates the commands.

3.5 Shell Commands
● Read input from user or previous command

● Write output to user or next command

● Allow sessions, i.e. group commands over a period of time, allowing them to share state

● Provide usage information of the command

● Allow commands to be protected with permissions

● Provide access to he authenticated user via User Admin (though User Admin may not be present)

● Optional: Allow computer readable meta information about the commands to support forms

● Optional: Provide formatting rules + library to standardize look and feel for output. This could consist of
routines to show tables in a consistent form.

● Commands should not have to do low level parsing of command line arguments.

● Commands should be able to have access to the command line arguments

● Commands must be able to get access to the console input

● Commands must be able to use the keyboard input stream

3.6 Source Providers
• Provide an easy way to allow bundles to connect the shell to sources like telnet, serial ports, etc.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 8 of 41

Draft August 5, 2008

4 Technical Solution

4.1 Launching
The solution for the launch process is quite straightforward. Frameworks must designate a class that has an
empty constructor and implements the following interfaces

● org.osgi.framework.Bundle

● org.osgi.framework.launch.SystemBundle (which extends Bundle)

The current specification provides a very detailed description of the System Bundle. The instantiated object
represents this system bundle in an unstarted state (RESOLVED|INSTALLED). However, the system bundle must
be able to provide a valid Bundle Context that can be used to install applications. These applications must not be
started before the system bundle itself is started. The SystemBundle provides a number of methods that can be
used to configure the framework before starting it. The System Bundle object can be configured, started,
stopped, reconfigured, and started again, ad nauseum.

The System Bundle must implement the following methods.

● init(Properties) - The Properties object (which may be null is optionally backed by other Properties such a
the System properties) must be used for the framework properties. The framework must use this
properties as the only source by using getProperty (not get) so that the configurator can use the
Properties linked behavior. If the properties object is null, useful defaults should be used to make the
framework run appropriately in the current VM. I.e. the system packages for the current execution
environment should be properly exported. Any persistent area should be defined in the current directory
with a framework implementation specific name.

The init method should be called before the start method is called. If the start method is called before the
init method has been called, then start must call the init method with a null parameter. After the init
method has been called, the system bundle must have a valid bundle context.

A system bundle can be reinitialized by first stopping it and then calling init(Properties) again. Calling init
when the system bundle is started must throw an Illegal State Exception.

This method is not thread safe and must only be called from a single thread.

● waitForStop() - This method waits until the bundle is stopped and completely finished with the cleanup.
This method will wait until someone calls, or has called, stop. If the system is not ACTIVE, then this
method returns directly. This method is thread safe and can be called by different threads.

The following is a short example of creating a Felix framework, adding bundles to it, launching the framework and
then waiting for it to stop. This assumes that some bundle (for example a shell) will initiate the stop command to
the system bundle.

● f = new org.apache.felix.Felix
● f init
● context = f bundleContext
● $context installBundle http://www.aQute.biz/repo/aQute/sample.jar

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 9 of 41

Draft August 5, 2008

● f start
● f waitForStop

This example makes the main thread wait for the framework to finish.

4.2 Life Cycle Issues
A framework must never do System.exit(n) when stopped. It is the responsibility of the configurator to exit.

A framework can be make repeated start/stop cycles. The semantics of stopping a framework are described in the
core specification. It is not possible to change the properties. The options in the start and stop methods are
ignored.

what happens with update?

4.3 Properties
The configurator can set the following properties. In addition, it can also add framework implementation
dependent properties.

org.osgi.framework.version set by framework implementation

org.osgi.framework.vendor set by framework implementation

org.osgi.framework.language set by configurator, but framework should provide a default when not set

org.osgi.framework.
executionenvironment

set by configurator, but framework should provide a default when not set

org.osgi.framework.processor set by configurator, but framework should provide a default when not set

org.osgi.framework.os.version set by configurator, but framework should provide a default when not set

org.osgi.framework.os.name set by configurator, but framework should provide a default when not set

org.osgi.supports.
framework.extension

set by framework

org.osgi.supports.
bootclasspath.extension

set by framework

org.osgi.supports.framework.
fragment

set by framework to true

org.osgi.supports.framework.
requirebundle

set by framework to true

org.osgi.framework.
bootdelegation

set by configurator, framework provides empty default.

org.osgi.framework.system.
packages

set by configurator, but framework should provide a default when not set

org.osgi.framework.security The name of a Security Manager class with public empty constructor. A valid
value is also true, this means that the framework should instantiate its own
security manager. If not set, security could be defined by a parent framework or
there is no security. This can be detected by looking if there is a security
manager set

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 10 of 41

Draft August 5, 2008

???

org.osgi.framework.storage
A valid file path in the file system to a directory that exists. The framework is
free to use this directory as it sees fit. This area can not be shared with anything
else. If this property is not set, the framework should use a file area from the
parent bundle. If it is not embedded, it must use a reasonable platform default.

org.osgi.framework.libraries A list of paths (separated by path separator) that point to additional directories
to search for platform specific libraries

org.osgi.framework.command.
execpermission

The command to give a file executable permission. This is necessary in some
environments for running shared libraries.

org.osgi.framework.
root.certificates

Points to a directory with certificates.
###??? Keystore? Certificate format?

org.osgi.framework.
windowsystem

Set by the configurator but the framework should provide a reasonable default.

4.4 Starting Procedure
This RFC does not propose a proper shell script for the launch procedure. The Bundle object approach to
framework creation is sufficient to allow almost any Java compatible script language to be used. An example of
such a script language is the shell as proposed in this document (tsl), but any script language will work: Jython,
Jruby, Beanshell, Bex, Groovy, etc.

For example in Groovy

 framework = "org.apache.felix.framework.Felix"
 lib = "file:jar/felix.jar"

 ////// Generic
 storage = new File("osgi- storage").getAbsolutePath()
 storage.mkdirs()

 properties = [
 'org.osgi.framework.system.packages':"org.osgi.framework,\
 org.osgi.service.packageadmin, \
 org.osgi.service.startlevel,\
 javax.sql",
 'org.osgi.framework.storage' : storage.absolutePath,
'org.osgi.service.http.port' : '8080'
]

 this.class.classLoader.rootLoader.addURL(new URL(lib))
 clazz = Class.forName(framework)
 systemBundle = constructor.newInstance()
 systemBundle.init(properties)

 ctx = systemBundle.bundleContext
 servlet = ctx.installBundle("http://www.osgi.org/repository/servlet.jar")
 osgi = ctx.installBundle("http://www.osgi.org/repository/osgi.jar")
 webrpc = ctx.installBundle("http://www.aqute.biz/uploads/Code/aQute.webrpc.jar")
 suduko = ctx.installBundle("http://www.aqute.biz/uploads/Code/aQute.sudoku.jar")

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 11 of 41

Draft August 5, 2008

 http =
ctx.installBundle("http://www.knopflerfish.org/repo/jars/http/http_all-2.1.0.jar")

 http.start()
 webrpc.start()
 suduko.start()

 systemBundle.start()
The shell language, outlined in the following sections, can also be used in the same way. However, this is
combined in a launcher program that gets the framework library and system bundle class from the command line
paramaters:

 org.osgi.framework.system.packages =“
 org.osgi.framework,
 org.osgi.service.packageadmin,
 org.osgi.service.startlevel,
 javax.sql”
 org.osgi.framework.storage = $user.home/osgi
 org.osgi.service.http.port = 8080

 start
 ctx = bundleContext
 addCommand ctx $ctx
 servlet = installBundle http://www.osgi.org/repository/servlet.jar
 osgi = installBundle http://www.osgi.org/repository/osgi.jar
 webrpc = installBundle http://www.aqute.biz/uploads/Code/aQute.webrpc.jar
 suduko = installBundle http://www.aqute.biz/uploads/Code/aQute.sudoku.jar
 http = installBundle
http://www.knopflerfish.org/repo/jars/http/http_all-2.1.0.jar

This design has the tremendous advantage that each organization can use its own script language. Due to the
abstraction of the system bundle, it is trivial to create a launcher that can be combined with any compliant
framework. It is therefore not deemed wise to standardize the script syntax for the launch process, there are
already a sufficient number around.

However, it is advantageous to take advantage of the command provider interface. This model is described later,
but it is based on services. Using the script language approach as defined here, it is quite easy to search the
service registry for new commands. The groovy meta model or the undefined command catch functions can make
this quite transparent.

4.5 Shell Design
The drivers of this design have been:

● Core Engine Implementable in < 30k

● Very easy to add new commands

● Leverage existing mechanisms

The basic idea of the design is that there are three parts. The bundle that interacts directly with the user. This
bundle handles the IO streams and parses out one or more lines of text, called the “program”. This program
creates a Command Session from the selected Command service. This IO processor then gets a command from

Copyright © OSGi Alliance 2008 All Rights Reserved

http://www.knopflerfish.org/repo/jars/http/

RFC 0132 Command Line Interface and Launching Page 12 of 41

Draft August 5, 2008

the input and gives it to a command session execute method. The command session parses the program, and
executes it. The session then returns an Object result.

The command is executed synchronously. The shell will execute all commands in the program. These commands
are implemented by services. A service can be registered with list of COMMAND_FUNCTION properties. These
properties list the commands (potentially wildcarded) that a service can provide to the shell. These functions do
not require a specific prototype, the shell matches the parameters to the function using parameter coercion. The
type information available in the reflection API is used to convert the strings in the input to specific types.

Each command can print to System.out and it can retrieve information from the user (or previous command in the
pipe) with System.in. Each command can also return an object. It is possible to retrieve the last result in the pipe
through the future.

Therefore, the Command Shell service consists of three distinct parts:

● Command Processor service - This service is used by bundles that can connect the shell to an outside
interface like: Telnet, Console, Web, SSH, etc. These bundles get a Command Shell service and use this
service to execute their commands.

● Command Provider service - Command implementations can register this service to provide commands.
Commands are methods on the service. The names (and help) of the methods can be listed through
properties. There is no actual Command Provider interface because a service property allows any service
to provide commands.

● Converter Service – Provide facilities to convert from strings to specific types and from specific types to
strings.

● ThreadIO Service - Commands can use System.in, System.out, and System.err to interact with the user.
However, this requires that different commands are separated in their output. This RFC therefore defines
a service (likely a Framework service) that can multiplex the System IO streams.

Copyright © OSGi Alliance 2008 All Rights Reserved

Telnet
Shell

Command
Shell Impl

Console
Shell

...
Shell

ThreadIO

CommandShell

Framework
Commands

Basic
Commands

...
Commandsl

command provider
org.osgi.command.name=xxx
org.osgi.command.function=yyy

ThreadIO

Eclipse
Converter

Converter

OSGi
converter

Felix
Converter

RFC 0132 Command Line Interface and Launching Page 13 of 41

Draft August 5, 2008

4.6 Command Service
The command service consists of the following interfaces

● CommandProcessor – The engine is running the scripts. It has no UI of its own. A UI (telnet, web,
console, etc, is expected to create a session from this engine. The Command Processor service is
registered by the implementer of the script processor.

● CommandSession – The command session represents the link between a UI processor (telnet) and the
command processor. It maintains a set of variables that can be set by the UI processor as well as from
the script. Commands should maintain any state in the session. The session is also associated with a
keyboard stream as well as a console stream. This allows commands to directly talk to the user,
regardless if they are piped or not.

● Converter – A converter service is registered with a list of classes at the osgi.converter.classes
properties. A converter can convert an object to a CharSequence object and it can convert an object of an
arbitrary class (though likely a CharSequence) to an instance of one of the listed classes. Converters are
heavily used to minimize the command code. The Command Processor will attempt to coerce parameters
and results in the required instances using converters.

● Function – A function is an executable piece of code. Commands providers can add Function objects to
their arguments and execute them. This allows commands that implement iteration blocks, if statements,
etc.

The following code executes a small program, assuming it is injected with a CommandProcessor called cp:
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 CommandSession session = cp.createSession(System.in,bout,System.out);
 Object result = session.execute(“bundles|grep aQute”);
 String s = new String(bout.toByteArray());

4.7 Thread IO Service
The Thread IO service is a framework service that guards the singletons of System.out, System.in, and
System.err. The interface is quite simple, it consists of two methods:

● setStream(InputStream,PrintStream,PrintStream) – Associate the given streams with the current thread.
Any output on the current thread using any of the System Print Streams will in effect be redirected to the
approriate system stream. Input will come from the given input stream. This method can be repeated
multiple times for a thread. That is, an implementation must stack the streams per thread. Streams may
be null, in that case they refer to the last set stream or the default if no streams are set.

● close() - Cancel (or pop) the streams from the thread local stack. If no more streams are available, use
the value of the original System streams.

Usage of the Thread IO service is very straightforward but care must be taken that exceptions do not leave
streams on the stack. For example, the following code grabs the output:
 String grab(ThreadIO threadio) {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 PrintStream pout = new PrintStream(out);
 threadio.setStreams(null,pout,pout);
 try {
 System.out.println(“Starting ...”);

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 14 of 41

Draft August 5, 2008

 doWhatever();
 System.out.println(“... Done”);
 } catch(Throwable t) {
 t.printStackTrace();
 }
 finally {
 threadio.close();
 }
 pout.flush();
 return new String(out.toByteArray());
 }
Additional issues:

● Implementations of Thread IO must use weak references to the stream objects and no longer use them
when they hold the only reference.

● If a framework is embedded then the threadio service must attempt to reuse the threadio implementation
of the parent framework.

4.8 Shell syntax: TSL
The syntax of the shell should be simple to implement because the framework must provide a parser for this
syntax. On the other hand, a more powerful syntax simplifies the implementation of the commands. For example,
when Microsoft introduced a command line shell, it did not support piping. As a consequence , each command
had to implement functionally to page the output. There are other examples like handling of variables, executing
subcommands, etc.

The shell syntax must also be easy to use by a user. That is, a minimum number of parentheses, semicolons, etc.
Some compatibility with the Unix shells like bash is desired to for users to not have to learn completely new
concepts. Then again, the current popular shells have a convoluted syntax because they added more and more
features over time.

An OSGi shell syntax can rely 100% on the fact that there is a Java VM. As shown in the launching section, this
makes it easy to control the framework and implement a shell with Java. However, a shell implies that the users
directly types the commands as they go. The requirements for a shell are therefore different than the
requirements for a programming language. However, in contrast with a shell like bash that must be totally text
based, it seems a waste not to tie the shell language closely to the Java object model. Though there are many
script languages, there seems to be no shell language for Java that provide such a syntax. Jacl comes close but
has the disadvantage that it brings its own function library derived from tcl. Beanshell comes close from the other
side but has a syntax that is virtually the same as Java, which contains a lot of cruft characters. A new syntax can
reuse the concepts of tcl but tie the language close to the Java language. I.e., no need for separate function
libraries.

4.8.1 Introduction to TSL (Tiny Shell Language).
The tsl language consists of a tokenizer that converts a command line to strings and then interprets those strings
as method calls on Java objects where the arguments are converted to the requested type. Some syntactic sugar
is added to minimize typing. The language supports variables, which are real objects. Do not confuse tsl with a
completely string based approach. The type information available in the Java VM is used to infer types and
convert to proper objects as much as possible.

Some examples:
 $ echo Hello World

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 15 of 41

Draft August 5, 2008

 Hello World
The first token is the command name because it is a simple string, and is a command. A command represents
both an instance and the method to be called on that instance. This is in first instance confusing. However, the
way it works is quite simple. Objects implementing a command (that is, having a method with a command name)
are registered as a variable with a structure. The same object can be registered under many different names. That
is, if an object implements ls and cd, then it is registered as file:ls, and file:cd.

As can be seen in this exam,ple, the actual name of the command is a structured name consisting of a <scope>
and a function name, separated by a ':'. I.e. in the earlier example the command '*:echo' is searched because the
scope is not defined.

The commands are coming from the variable space of the session. It must be possible to register commands by
creating variables of the proper name.

A command is represented by a Function object. In the hello world examples, the execute method is called on this
object with two CharSequence parameters: [“Hello”,”World”]. Because the number of arguments of echo is
variable, it is declared with an array of Object.
 public CharSequence echo(Object[] args) {
 StringBuilder sb = new StringBuilder();
 for (Object arg : args)
 sb.append(arg);
 return sb;
 }
Methods can print to System.out, but are normally expected to return an object. Returning an object allows the
result to be used in other commands. Tsl will print out the object to standard out if it is not used as a value in
another command, for example with piping. If a program contains multiple statements, only the last value is
printed out. Converter services are used to print out the objects in a proper format.

4.8.2 Program Syntax
The basic structure of a program is a set of statements separated by a vertical bar.
 program ::= statements ('|' statements) *
The statements are executed in parallel, whereby the output of the earlier statement is the input of the next
statements. These statements are executed in separate threads. Statements consist of a sequence of statement,
separated by a semicolon.
 statements ::= statement (';' statement) *
A statement is initially a set of tokens. This means that they must be tokenized in preparation for a command
execution.
 statement ::= (WS* token)+
A token is parsed out of the input. Important is the first character, this determines the type of the token. If the first
character is a Java Identifier part (digit, alpha, underscore, etc), then the token is parsed until an unescaped WS
is found or one of the special characters is found. with the following rules:
 token ::= JIP (JIP | ^SPECIAL)*
 | ^SPECIAL+
 | '<' <recursive> '>'
 | '{' <recursive> '}'
 | '[' <recursive> ']'
 | '(' <recursive> ')'
 | ''' [^'] '''

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///ls

RFC 0132 Command Line Interface and Launching Page 16 of 41

Draft August 5, 2008

 | '”' [^”] '”'
 | '$' token
 WS ::= <Character.isWhiteSpace>
 JIP ::= <Character.isJavaIdentifierPart - $>
 SPECIAL ::= [=|;<{[$,]
 OPERATORS ::= [!~`#$%^&*-:,/?@.]
The <recursive> indicates that the token should be parsed until a matching closing bracket is found, the parsing
should take escaping and strings into account finding the match. I.e. <<<<>>>, matches, as does <'><'>, as does
{'}}}}}}}}}'}. Though the content is expected to be a valid program, the tokenizer does not have to verify this, nor is
this mandated. Implementing such a tokenizer is quite straightforward and requires very little code. This is the
reason that the syntax does not use the program clause recursively but instead comments that it is a recursive
match.

Character handling. Some characters can escaped from special processing with the backslash character. These
characters will be interpreted as their normal value without any special meaning. Some other characters escaped
will give special codes:
 \\ Backslash (2dh###)
 \t Tab (whitespace) 09h)
 \b backspace (08h)
 \f Form Feed (0ch)
 \n New Line (0ah)
 \r Return (0dh)
 \u9999 Unicode
 \<lf | cr> Make newline a space
 \ Escaped whitespace
need some further work on escaping ...
Whitespace is defined by Java. Unless escaped or in a string, whitespace has no meaning.

The tokens that are parsed out of the input have a special meaning depending on their first character:

● < - The is less than sign indicates a direct execution block. Everything between this sign and the closing
greater than sign must be a valid program. This is equivalent to a function call or the ` ..` operator in a
unix shell. This operator was considered but unfortunately there is no difference between the opening and
closing in unix, requiring complex escaping with recursive use. Everything between the opening and '<'
and matching '>' belongs to the direct execution. That is, the direct execution can contain be recursive to
any reasonable depth.

● '{' - The closure character. The closure contains statements. It is defined until the matching closing brace
'}'. Closures are not interpreted by the shell but passed as is a Closure object the command. The first
character will be the {. Closures can be nested to any reasonable depth. No unescaping is done. This is
the responsibility of the receiver. The purpose of this method is to allow commands to use closures. If a
command declares a Function argument, then tsl must convert a closure to a Function. Closures can refer
to any parameters by using the variables $it (the first argument), $args (an array of all the arguments) and
$0-$9, argument at position 0 through 9.

● '[' - The array character. An array is a whitespace separated sequence of entry. This is stored in a
Collection or Map and can be coerced to arrays, and collection types. Arrays/Maps can be recursively
defined.

● '”' and ''' - The quote characters define a string. Everything between the quote and its matching end quote
is passed as a String. All characters will be unescaped when passed as an argument.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 17 of 41

Draft August 5, 2008

● '$' - The variable character. If the next character is a '{' then the code between this and the matching '}' is
a value, which can be a full program again. The value of this program in runtime is used to lookup a value
in the System properties.

● '(' - The expression character. Everything between this character and the closing ')' defines a filter
expression. This token can be coerced into a filter or a string for a function. A filter can use '(' and ')'
recursively.

An array is a sequence of token separated by whitespace.
 array ::= (WS* entry)*
 entry ::= token (WS* '=' token)*

4.8.3 Examples of Syntax usage
In the following examples it is assumed that there is an echo command which prints the output to System.out.

4.9 Standard IO Handling
The original shells in Apache Felix, Knopflerfish, and Equinox used special handling of input and output (if input
was supported). A huge disadvantage of this method is that it requires all the command to live in a special
context; making the commands hard to test. Reuse of existing code is also harder because it is likely that any io
must be adapted.

This RFC therefore proposes the use standard Java input output with the System.in, System.out, and System.err
streams. This means that any Java program using these streams will work. However, these streams are
singletons and Java does not provide a general way to share these singletons between bundles. This would
create conflicts if multiple shells were running on the system. Even if one shell runs this would be problematic
because a pipeline uses different threads that need different IO streams.

This requires a service that can multiplex the IO streams based on the current thread. In practice this is almost
trivial to do (a test class uses less than 50 lines, where most are actually whitespace) with Thread Local
Variables. However, the key problem is to the synchronization between the different users because it requires
replacing the existing System.in, out, and err with a special multiplexing class. Just like the URL services, these
are singletons. We therefore need a (framework?) service that allows bundles to associate IO streams with a
thread. This is a very useful function in itself.

The setStreams method will associate the given IO streams with the current thread. Any code using System.out,
System.in, or System.err will use the given streams instead of the standard streams. The close method will
restore the previous configuration (the streams will be pushed on a stack). If the bundle that used this service is
stopped, then the stack of streams will be removed.

The Shell service uses this mechanism to associate the streams from the shell drivers with the commands, as
well as for the piping.

4.10Command Provider Discovery
Command Provider discovery is based on the OSGi service model. Any service can be used as a command
provider.

Dedicated command providers must register their service with two properties:

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 18 of 41

Draft August 5, 2008

● osgi.command.scope - This property defines the name of the command provider. This name is not
normally used because the function names are unique. However, if the function names are no longer
unique, then this scope can be used to disambiguate.

● osgi.command.function - The name of the function. This is an simple or an array property, so many
names can be listed. This function name should match to a public method in the service object.

For example, the following code is a DS that provides a few utility commands:
 public class Tools {
 public void grep(String match) throws IOException {
 Pattern p = Pattern.compile(match);
 BufferedReader rdr = new BufferedReader(
 new InputStreamReader(System.in));
 String s = rdr.readLine();
 while (s != null) {
 if (p.matcher(s).find()) {
 System.out.println(s);
 }
 s = rdr.readLine();
 }
 }
 public void echo(Object[] args) {
 StringBuffer sb = new StringBuffer();
 for (Object arg : args)
 sb.append(arg);
 }
}
This command provider can support two commands: echo and grep. The DS scheme for this command would
look like:
<component name="com.acme.Tools">
 <implementation class="com.acme.Tools"/>
 <property name="command.scope" value="acme.tools"/>
 <property name="command.function" value="
 grep
 echo"/>
 <service>
 <provide interface="com.acme.Tools"/>
 </service>
</component>
The properties provide sufficient information for the Command Shell to find the providers. Note that it is not
necessary register the service as a Command Provider, the properties suffice. This makes it possible to register
these properties on an existing service. For example, the Configuration Admin could just register the following
properties:
 osgi.command.scope = 'cm'
 osgi.command.function = { 'createFactoryConfiguration',
 'getConfiguration', 'listConfigurations'}
This will enable shell scripts like:
 cfg = configuration com.acme.pid
 $cfg update [port=23 host=www.acme.com]
Or, for the Log Service

Copyright © OSGi Alliance 2008 All Rights Reserved

http://www.acme.com/

RFC 0132 Command Line Interface and Launching Page 19 of 41

Draft August 5, 2008

 command.scope = 'log'
 command.function = 'log'

 log 2 “hello world”

4.11Other Commands
Any other commands can be added to the shell by storing them in the session variables. Command names are
scoped like <scope>:<function>. The value of this variable can be a plain object, or it can be an instance of
Function. If it is an instance of Function, it can be directly executed. Else, the method with the function name is
called upon it.

For example, the following code registers a function for each public method:
 void addCommand(CommandSession session, String scope, Object target) {
 Method methods[] = target.getClass().getDeclaredMethods();
 for (Method m : methods) {
 if (Modifiers.isPublic(m.getModifiers()))
 session.put(scope +”:” +m.getName(), target);
 }
 }
Tsl also has closures. Closures implement the Function interface. The follow code will add a command written in
tsl:
 $ my:echo = { echo xx $args xx }
 Closure ...
 $ my:echo Hello World
 xxHelloWorldxx

4.12Piping
Piping seems to introduce a significant complexity in the command processing. However, it turns out that it can be
implemented with very little code that easily outweighs the advantages if the increased simplicity of the
commands. The key example is of course the “less” or “more” command. Many of the other commands can
generate output that is too much to fit the screen. Using piping, the output can be paged through a centralized
command. Functions like grep, uniq, etc. are all impossible without piping.

Normal unix shells have io redirection. It was chosen to not implement this, but instead use commands. There ar
two commands that can redirect io:
 cat <file>+ concatenate files and pipe to output
 tac [-f <file>] receive input and store it in file or return object
That is, to get the output of bundles as a string in a variable:
 output = <bundles | tac>

4.13Command Calling
When the program is tokenized it basically consists of set of statements. A statement consists of a set of tokens.
These tokens are parsed into objects. I.e. a reference to a variable is looked up, a <> is executed recursively, a {}
is translated to a Closure, an array into a List or Map. The next step depends on the list of values.
 <string> '=' remove variable <string>
 <string> '=' <value> + execute values as statements, set result as variable
 <string> if cmd exists, call <string>, else no such command

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 20 of 41

Draft August 5, 2008

 <string> <value>+ call cmd <string> with arguments
 <object> <value> <value>* send message <value> to <object> with remaining args

4.13.1 Remove Variable
The form <name> '=' is used to remove a variable from the local scope. There must be no token behind the '=',
not even an empty token, like for example ''
 java.lang.vm =

4.13.2 Assignment
An assignment has the form:
 <property name> '=' statement
The statements part must be executed as if it was entered on an empty line, the result of this execution is stored
in the variable. For example:
 jre-1.6 = javax.xml.parsers, javax....
 org.osgi.framework.systempackages = ${jre-${java.specification.version}}

4.13.3 Single Value
This is an interesting case. If the single value is a string, then it can be a command name, or an object that
needs needs to be returned. If it is not a CharSequence, it is assumed to be an object and it is the value of the
statement. If it is a CharSequence, a command with the given name is searched. If it is found, it is executed
according to the normal rules. If not, it is assumed that the string value suffices as result.
 abcefg // result no such command
 $shell // returns the content of the variable
 <abcef> // returns no such command

4.13.4 Call Cmd
When the first argument is a string, it is assumed to be a command name. This command is looked up in the list
of available Command Providers. If this is not found, an error is raised unless there are no parameters . In that
case the name is returned as the result.

If a Command Provider is found, then this object is the target for a message send, the name of the message
being the command name. See discovery. The arguments are matched as discussed in the “Argument Coercion”
section.
 echo 1

4.13.5 Message Send
If the first argument is not a string but the second is, then a message send is assumed. The method with the
given name is matched to the remaining arguments.
 shell = install http://www.acme.com/b/shell.jar // sets a bundle object
 $shell start // starts the bundle
If there are no arguments and no method matches, then the name should be treated as a property name. The
method name should be adjusted to the beans get property design pattern (i.e. xyz becomes getXyz). If this
method also does not exist, a field with the given name should be tried. I.e. the following command should return
the requested level as an integer:
 log LOG_WARNING

Copyright © OSGi Alliance 2008 All Rights Reserved

http://www.acme.com/b/shell.jar

RFC 0132 Command Line Interface and Launching Page 21 of 41

Draft August 5, 2008

4.14Argument Coercion
In the end, a statement consists of an assignment or the call of a Java function. When a Java function is called, it
is necessary to match the arguments to the correct method. This requires that arguments are coerced in their
correct type.

First finding the proper command in the service. If the cmd is a reserved word in java (static, final, new, etc.) then
the command name must be prefixed with a '_' because otherwise the command could not be implemented in
Java. That is, if the command is “new”, the method name should be “_new”.

The comparison with the method name must be done case insensitive. I.e. installBundle is the same as
installbundle.

The bean syntax must be supported. That is, a command like bundles must find the method getBundles and
setBundles and isBundles. See the beans design patterns for proper converting a name to a getter.

Then, the method must be found. The shell should fetch all the declared methods of the service and try to match
the given parameters to all the methods with the command name. This requires matching the arguments given in
the program to the arguments of the method. Matching of the methods is done with the following priority:

1. The first declared method where all arguments can be properly coerced

2. If too few arguments are specified, pad with null the method with the maximum matching arguments.
Done

3. If too many arguments are specified, the find the first method which has an array at the end and where
the remaining arguments can be coerced into to the array type. Done.

4. An instance “main(Object[])” method

5. The static main(String[]) method

If none is found, a NoSuchMethodException must be thrown.

If the first type of a command is a CommandSession, then the Command Shell must insert the current session in
this parameter. This is a way for a command to receive the shell session itself. This can be used to recursively
execute commands, to get access to the keyboard or console stream, or to get and put variables. The keyboard
stream is for example necessary to do a more command.

Arguments are no strings, they are proper objects. Variables can refer to objects, arrays are objects, and also the
result of a direct command (<>) can result in a proper object. Matching these objects to a method is non-trivial. In
the following section r is the receiving type (defined in the method) and g is the given type. The priority for
coercion is:

1. r is assignable from g, use g

2. r is an array and g is a Collection, convert g to an array r and coerce its members recursively

3. Iterate over all converters that can handle the requested type as listed in the properties, until one returns
a non-null value. Order is service.ranking and the service.id.

4. r is not primitive and has String constructor, convert g to string and use constructor to convert g to r.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 22 of 41

Draft August 5, 2008

5. r is a primitive and g is the matching class, convert g to primitive value and use it

6. fail

4.15Converters
In most shells, the formatting of the input is the majority of work. The tsl has attempted to minimize this work with
the Converter services.

A Converter service registers itself with a list of class names that it can convert or format. Tsl uses these services
to print returned objects or to coerce arguments for method calls.

The service property is osgi.converter.classes. Its value is a single string or an array of strings, reflecting the
classes this converter can convert or print. For conversion, inheritance is not taken into account. For printing, tsl
must start with the implementation class, then its superclass, recursively. If no match is found, it should try to find
all implemented interfaces in the class and its ancestors. For each converter it should combine the output.

hmmm, not sure I like this.

When tsl needs to convert an object to a class or print an object of a specific class, it will call the registered
Converter objects in the following order:

● filtered by matching class

● sorted by service.ranking, service.id

A Converter service implements 2 methods:

● Object convert(Class,Object) – Convert object to the given class. Return null if this can not be done.

● CharSequence format(Object,int) – Convert an object to a Char Sequence using the int parameter as a
hint. This hint can be INSPECT, LINE, or PART. For an INSPECT, the output can be a multiline columnar
output of any reasonable level. A LINE format must make the object look good in a table when different
objects of the same type are printed below each other. It is allowed to use multiple line outputs as long as
the format works well in a table. A PART format is used to identify the object. E.g. a name or identifier.
The PART format should be usable in the convert method when a CharSequence is the object to be
converted. INSPECT, LINE, and PART are ordered. That is, when printing an INSPECT, the next level
should be to format an object with LINE, etc.

The following code shows a simple converter for Bundles that only recognizes the bundle id. (A real one should
also look for symbolic name and version, or for the location, or maybe even a filter). The printing should be much
better in aligning columns.
import org.osgi.framework.*;
import org.osgi.service.command.*;
public class BundleConverter implements Converter {
 BundleContext context;

 BundleConverter(BundleContext context) {
 this.context = context;
 }

 public Object convert(Class type, Object source) {
 if (type != Bundle.class)

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 23 of 41

Draft August 5, 2008

 return null;
 if (source instanceof Number) {
 source = source.toString();
 }

 if (source instanceof CharSequence) {
 long id = Long.parseLong(source.toString());
 return context.getBundle(id);
 }
 return null;
 }

 public CharSequence format(Object o, int level, Converter escape) {
 if (!(o instanceof Bundle))
 return null;
 Bundle b = (Bundle) o;
 StringBuffer sb = new StringBuffer();
 switch (level) {
 case INSPECT:
 cols(sb, "Symbolic Name", b.getSymbolicName());
 cols(sb, "Version", b.getHeaders().get("Bundle-Version"));
 cols(sb, "State", b.getState());
 cols(sb, "Registered Services", escape.format(b
 .getRegisteredServices(), level + 1, escape));
 // ...
 break;
 case PART:
 sb.append(b.getSymbolicName()).append(";").append(
 b.getHeaders().get("Bundle-Version"));
 break;
 case LINE:
 sb.append(" ").append(b.getState()).append(" ").append(
 b.getLocation());
 break;
 }
 return sb;
 }

 void cols(StringBuffer sb, String label, Object value) {
 sb.append(label);
 for (int i = label.length(); i < 24; i++)
 sb.append(' ');
 sb.append(value).append('\n');
 }
}

4.16Printing or Not
In principle, tsl must only print the object when it would otherwise gets lost. It will therefore only print the object
when a command is piped because in that case there is nobody to use the resulting object. In all other cases, the
object is kept.

4.17TSL In OSGi
If the use of tsl is OSGi related then it will have registered commands for all the public methods on the
BundleContext, StartLevelService, PackageAdmin, and PermissionAdmin (if present). The actual bundle context

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 24 of 41

Draft August 5, 2008

in use is from the IO Processor. The scope of the bundle context commands must be osgi. The actual Bundle
Context must be from the Bundle that got the Command Processor. This is usually the IO processor, e.g., the
telnet or console program.

Additionally, the following services should be supported:

● more – Page the input

● grep <regex> – Search in the input and only transfer to output the input that matches the <regex>.

● each <Iteratable> <closure> - Iterate over the iterable and call the closure for each element. The first
argument ($it) is the iterable element.

● echo <value> * - Print the value to the System.out without any spaces in between.

● quit – Quits the shell

● exit – Exits the framework

This makes any public method available:
 $ bundles | grep aQute
 0003 ACT biz.aQute.bnd file:/Ws/aQute/aQute.bnd/bnd.jar
 0023 ACT biz.aQute.fileinstall file:/Ws/aQute/aQute.fileinstall/fileinstall.jar
The bundles command is found as osgi:bundles. This command has the current Bundle Context (defined by the
env again) as the implicit receiver and the name bundles as function. There is no function bundles on Bundle
Context, but in the spirit of the beans, tsl must also look at no arg get methods. I.e. the method name is
getBundles but for brevity, bundles must be matched as well. This method returns null or a Bundle[].

Because this command is input from the user, and piped, tsl will print it to the pipe. The grep function looks like:
 public CharSequence grep(String match) throws IOException {
 Pattern p = Pattern.compile(match);
 BufferedReader rdr = new BufferedReader(
 new InputStreamReader(System.in));
 List<String> list = new ArrayList<String>();
 StringBuilder sb = new StringBuilder();
 String s = rdr.readLine();
 while (s != null) {
 if (p.matcher(s).find()) {
 list.add(s);
 s = rdr.readLine();
 }
 return list;
 }

4.18Services and their Commands
Implementations of services are recommended to provide commands for their service, this is quite straightforward
and described in a later section. For example, assume that the implementation of te Configuration Admin has
registered its method as commands. I.e. all its public methods are available.
$ my.pid = configuration my.pid; $my.pid update [port=5012 host=www.aQute.biz]

Copyright © OSGi Alliance 2008 All Rights Reserved

http://www.aQute.biz/
http://www.aQute.biz/
file:///W:/aQute/aQute.fileinstall/fileinstall.jar
file:///W:/aQute/aQute.bnd/bnd.jar

RFC 0132 Command Line Interface and Launching Page 25 of 41

Draft August 5, 2008

The configuration command is executed against the Configuration Admin service. This returns a Configuration
object. In this case, it is stored in the my.pid variable. In the next statement, we call the update method on the
Configuration object and set a dictionary.

Ok, one more example, based on the fact that the Configuration Admin is available as commands:
 $ listConfigurations (service.pid=com.acme.*)| grep port

4.19Help
tbd

5 Javadoc

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.1 org.osgi.framework.launch
Interface SystemBundle

All Superinterfaces:
Bundle

public interface SystemBundleextends Bundle

This interface should be implemented by framework implementations when their main object is created. It allows a
configurator to set the properties and launch the framework. TODO The javadoc in this class need a good scrub
before release.

Version:
$Revision: 5214 $

Field Summary
static java.lang.String EXECPERMISSION

 The command to give a file executable permission.

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#EXECPERMISSION
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/launch/SystemBundle.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/class-use/SystemBundle.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html

RFC 0132 Command Line Interface and Launching Page 26 of 41

Draft August 5, 2008

static java.lang.String LIBRARIES
 A list of paths (separated by path separator) that point to additional
directories to search for platform specific libraries

static java.lang.String ROOT_CERTIFICATES
 Points to a directory with certificates.

static java.lang.String SECURITY
 The name of a Security Manager class with public empty constructor.

static java.lang.String STORAGE
 A valid file path in the file system to a directory that exists.

static java.lang.String WINDOWSYSTEM
 Set by the configurator but the framework should provide a reasonable
default.

Fields inherited from interface org.osgi.framework.Bundle

ACTIVE, INSTALLED, RESOLVED, START_ACTIVATION_POLICY, START_TRANSIENT, STARTING,
STOP_TRANSIENT, STOPPING, UNINSTALLED

Method Summary
 void init(java.util.Properties configuration)

 Configure this framework with the given properties.

 void waitForStop(long timeout)
 Wait until the framework is completely finished.

Methods inherited from interface org.osgi.framework.Bundle

findEntries, getBundleContext, getBundleId, getEntry, getEntryPaths, getHeaders,
getHeaders, getLastModified, getLocation, getRegisteredServices, getResource,
getResources, getServicesInUse, getState, getSymbolicName, hasPermission,
loadClass, start, start, stop, stop, uninstall, update, update

Field Detail
5.1.1 SECURITY

static final java.lang.String SECURITY

The name of a Security Manager class with public empty constructor. A valid value is also true, this
means that the framework should instantiate its own security manager. If not set, security could be
defined by a parent framework or there is no security. This can be detected by looking if there is a
security manager set

See Also:
Constant Field Values

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/constant-values.html#org.osgi.framework.launch.SystemBundle.SECURITY
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#update(java.io.InputStream)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#update()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#uninstall()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#stop(int)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#stop()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#start(int)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#start()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#loadClass(java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#hasPermission(java.lang.Object)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getSymbolicName()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getState()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getServicesInUse()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getResources(java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getResource(java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getRegisteredServices()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getLocation()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getLastModified()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getHeaders(java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getHeaders()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getEntryPaths(java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getEntry(java.lang.String)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getBundleId()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#getBundleContext()
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#findEntries(java.lang.String, java.lang.String, boolean)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#waitForStop(long)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#init(java.util.Properties)
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#UNINSTALLED
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#STOPPING
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#STOP_TRANSIENT
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#STARTING
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#START_TRANSIENT
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#START_ACTIVATION_POLICY
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#RESOLVED
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#INSTALLED
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html#ACTIVE
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/Bundle.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#WINDOWSYSTEM
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#STORAGE
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#SECURITY
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#ROOT_CERTIFICATES
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html#LIBRARIES

RFC 0132 Command Line Interface and Launching Page 27 of 41

Draft August 5, 2008

5.1.2 STORAGE

static final java.lang.String STORAGE

A valid file path in the file system to a directory that exists. The framework is free to use this directory
as it sees fit. This area can not be shared with anything else. If this property is not set, the framework
should use a file area from the parent bundle. If it is not embedded, it must use a reasonable platform
default.

See Also:
Constant Field Values

5.1.3 LIBRARIES

static final java.lang.String LIBRARIES

A list of paths (separated by path separator) that point to additional directories to search for platform
specific libraries

See Also:
Constant Field Values

5.1.4 EXECPERMISSION

static final java.lang.String EXECPERMISSION

The command to give a file executable permission. This is necessary in some environments for
running shared libraries.

See Also:
Constant Field Values

5.1.5 ROOT_CERTIFICATES

static final java.lang.String ROOT_CERTIFICATES

Points to a directory with certificates. ###??? Keystore? Certificate format?

See Also:
Constant Field Values

5.1.6 WINDOWSYSTEM

static final java.lang.String WINDOWSYSTEM

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.framework/doc/constant-values.html#org.osgi.framework.launch.SystemBundle.ROOT_CERTIFICATES
file:///W:/osgi/org.osgi.framework/doc/constant-values.html#org.osgi.framework.launch.SystemBundle.EXECPERMISSION
file:///W:/osgi/org.osgi.framework/doc/constant-values.html#org.osgi.framework.launch.SystemBundle.LIBRARIES
file:///W:/osgi/org.osgi.framework/doc/constant-values.html#org.osgi.framework.launch.SystemBundle.STORAGE

RFC 0132 Command Line Interface and Launching Page 28 of 41

Draft August 5, 2008

Set by the configurator but the framework should provide a reasonable default.

See Also:
Constant Field Values

Method Detail
5.1.7 init

void init(java.util.Propertiesconfiguration)

Configure this framework with the given properties. These properties can contain framework specific
properties or of the general kind defined in the specification or in this interface.

Parameters:
configuration - The properties. This properties can be backed by another properties, it can
there not be assumed that it contains all keys. Use it only through the getProperty methods.
This parameter may be null.

5.1.8 waitForStop

void waitForStop(longtimeout)
 throws java.lang.InterruptedException

Wait until the framework is completely finished. This method will return if the framework is stopped
and has cleaned up all the framework resources.

Parameters:
timeout - Maximum number of milliseconds to wait until the framework is finished. Specifying
a zero will wait indefinitely.

Throws:
java.lang.InterruptedException - When the wait was interrupted

Overview Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/SystemBundle.html
file:///W:/osgi/org.osgi.framework/doc/index.html?org/osgi/framework/launch/SystemBundle.html
file:///W:/osgi/org.osgi.framework/doc/help-doc.html
file:///W:/osgi/org.osgi.framework/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.framework/doc/deprecated-list.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/package-tree.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/class-use/SystemBundle.html
file:///W:/osgi/org.osgi.framework/doc/org/osgi/framework/launch/package-summary.html
file:///W:/osgi/org.osgi.framework/doc/overview-summary.html
file:///W:/osgi/org.osgi.framework/doc/constant-values.html#org.osgi.framework.launch.SystemBundle.WINDOWSYSTEM

RFC 0132 Command Line Interface and Launching Page 29 of 41

Draft August 5, 2008

5.2 org.osgi.service.command
Interface CommandProcessor

public interface CommandProcessor

A Command Processor is a service that is registered by a script engine that can execute commands. A Command
Processor is a factory for Command Session objects. The Command Session maintains execution state and holds
the console and keyboard streams. A Command Processor must track any services that are registered with the
COMMAND_SCOPE and COMMAND_FUNCTION properties. The functions listed in the
COMMAND_FUNCTION property must be made available as functions in the script language. TODO The javadoc
in this class need a good scrub before release.

Version:
$Revision: 5214 $

Field Summary
static java.lang.String COMMAND_FUNCTION

 A String, array, or list of method names that may be called for this
command provider.

static java.lang.String COMMAND_SCOPE
 The scope of commands provided by this service.

Method Summary
 CommandSession createSession(java.io.InputStream in, java.io.PrintStream out,

java.io.PrintStream err)
 Create a new command session associated with IO streams.

Field Detail
5.2.1 COMMAND_SCOPE

static final java.lang.String COMMAND_SCOPE

The scope of commands provided by this service. This name can be used to distinguish between
different command providers with the same function names.

See Also:
Constant Field Values

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/constant-values.html#org.osgi.service.command.CommandProcessor.COMMAND_SCOPE
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandProcessor.html#createSession(java.io.InputStream, java.io.PrintStream, java.io.PrintStream)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandProcessor.html#COMMAND_SCOPE
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandProcessor.html#COMMAND_FUNCTION

RFC 0132 Command Line Interface and Launching Page 30 of 41

Draft August 5, 2008

5.2.2 COMMAND_FUNCTION

static final java.lang.String COMMAND_FUNCTION

A String, array, or list of method names that may be called for this command provider. A name may
end with a *, this will then be calculated from all declared public methods in this service. Help
information for the command may be supplied with a space as separation.

See Also:
Constant Field Values

Method Detail
5.2.3 createSession

CommandSession createSession(java.io.InputStreamin,
 java.io.PrintStreamout,
 java.io.PrintStreamerr)

Create a new command session associated with IO streams. The session is bound to the life cycle of
the bundle getting this service. The session will be automatically closed when this bundle is stopped
or the service is returned. The shell will provide any available commands to this session and can set
additional variables.

Parameters:
in - The value used for System.in
out - The stream used for System.out
err - The stream used for System.err

Returns:
A new session.

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.3 org.osgi.service.command
Interface CommandSession

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html
file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/constant-values.html#org.osgi.service.command.CommandProcessor.COMMAND_FUNCTION

RFC 0132 Command Line Interface and Launching Page 31 of 41

Draft August 5, 2008

public interface CommandSession

A Command Session holds the executable state of a script engine as well as the keyboard and console streams.
A Command Session is not thread safe and should not be used from different threads at the same time. TODO
The javadoc in this class need a good scrub before release.

Version:
$Revision: 5214 $

Method Summary
 void close()

 Close this command session.

 java.lang.Object convert(java.lang.Class type, java.lang.Object instance)
 Convert an object to another type.

 java.lang.Object execute(java.lang.CharSequence commandline)
 Execute a program in this session.

 java.lang.Object execute(java.lang.CharSequence commandline,
java.io.InputStream in, java.io.PrintStream out,
java.io.PrintStream err)
 Execute a program in this session but override the different streams for
this call only.

 java.lang.CharSequence format(java.lang.Object target, int level)
 Convert an object to string form (CharSequence).

 java.lang.Object get(java.lang.String name)
 Get the value of a variable.

 java.io.PrintStream getConsole()
 Return the PrintStream for the console.

 java.io.InputStream getKeyboard()
 Return the input stream that is the first of the pipeline.

 void put(java.lang.String name, java.lang.Object value)
 Set the value of a variable.

Method Detail
5.3.1 execute

java.lang.Object execute(java.lang.CharSequencecommandline)
 throws java.lang.Exception

Execute a program in this session.

Parameters:
commandline - ###

Returns:

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#put(java.lang.String, java.lang.Object)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#getKeyboard()
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#getConsole()
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#get(java.lang.String)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#format(java.lang.Object, int)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#execute(java.lang.CharSequence, java.io.InputStream, java.io.PrintStream, java.io.PrintStream)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#execute(java.lang.CharSequence)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#convert(java.lang.Class, java.lang.Object)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html#close()

RFC 0132 Command Line Interface and Launching Page 32 of 41

Draft August 5, 2008

the result of the execution
Throws:

java.lang.Exception - ###

5.3.2 execute

java.lang.Object execute(java.lang.CharSequencecommandline,
 java.io.InputStreamin,
 java.io.PrintStreamout,
 java.io.PrintStreamerr)
 throws java.lang.Exception

Execute a program in this session but override the different streams for this call only.

Parameters:
commandline -
in - ###
out - ###
err - ###

Returns:
the result of the execution

Throws:
java.lang.Exception - ###

5.3.3 close

void close()

Close this command session. After the session is closed, it will throw IllegalStateException when it is
used.

5.3.4 getKeyboard

java.io.InputStream getKeyboard()

Return the input stream that is the first of the pipeline. This stream is sometimes necessary to
communicate directly to the end user. For example, a "less" or "more" command needs direct input
from the keyboard to control the paging.

Returns:
InpuStream used closest to the user or null if input is from a file.

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 33 of 41

Draft August 5, 2008

5.3.5 getConsole

java.io.PrintStream getConsole()

Return the PrintStream for the console. This must always be the stream "closest" to the user. This
stream can be used to post messages that bypass the piping. If the output is piped to a file, then the
object returned must be null.

Returns:
###

5.3.6 get

java.lang.Object get(java.lang.Stringname)

Get the value of a variable.

Parameters:
name - ###

Returns:
###

5.3.7 put

void put(java.lang.Stringname,
 java.lang.Objectvalue)

Set the value of a variable.

Parameters:
name - Name of the variable.
value - Value of the variable

5.3.8 format

java.lang.CharSequence format(java.lang.Objecttarget,
 intlevel)

Convert an object to string form (CharSequence). The level is defined in the Converter interface, it
can be one of INSPECT, LINE, PART. This function always returns a non null value. As a last resort,
toString is called on the Object.

Parameters:
target -
level -

Returns:

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 34 of 41

Draft August 5, 2008

###

5.3.9 convert

java.lang.Object convert(java.lang.Classtype,
 java.lang.Objectinstance)

Convert an object to another type.

Parameters:
type - ###
instance - ###

Returns:
###

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.4 org.osgi.service.command
Interface Converter

public interface Converter

A converter is a service that can help create specific object types from a string, and vice versa. The shell is
capable of coercing arguments to the their proper type. However, sometimes commands require extra help to do
this conversion. This service can implement a converter for a number of types. The command shell will rank these
services in order of service.ranking and will then call them until one of the converters succeeds. TODO The
javadoc in this class need a good scrub before release.

Version:
$Revision: 5214 $

Field Summary

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Function.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html
file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandProcessor.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html

RFC 0132 Command Line Interface and Launching Page 35 of 41

Draft August 5, 2008

static java.lang.String CONVERTER_CLASSES
 This property is a string, or array of strings, and defines the classes or
interfaces that this converter recognizes.

static int INSPECT
 Print the object in detail.

static int LINE
 Print the object as a row in a table.

static int PART
 Print the value in a small format so that it is identifiable.

Method Summary
 java.lang.Object convert(java.lang.Class desiredType, java.lang.Object in)

 Convert an object to the desired type.

 java.lang.CharSequence format(java.lang.Object target, int level,
Converter escape)
 Convert an object to a CharSequence object in the requested format.

Field Detail
5.4.1 CONVERTER_CLASSES

static final java.lang.String CONVERTER_CLASSES

This property is a string, or array of strings, and defines the classes or interfaces that this converter
recognizes. Recognized classes can be converted from a string to a class and they can be printed in
3 different modes.

See Also:
Constant Field Values

5.4.2 INSPECT

static final int INSPECT

Print the object in detail. This can contain multiple lines.

See Also:
Constant Field Values

5.4.3 LINE

static final int LINE

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/constant-values.html#org.osgi.service.command.Converter.INSPECT
file:///W:/osgi/org.osgi.service.command/doc/constant-values.html#org.osgi.service.command.Converter.CONVERTER_CLASSES
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html#format(java.lang.Object, int, org.osgi.service.command.Converter)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html#convert(java.lang.Class, java.lang.Object)
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html#PART
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html#LINE
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html#INSPECT
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html#CONVERTER_CLASSES

RFC 0132 Command Line Interface and Launching Page 36 of 41

Draft August 5, 2008

Print the object as a row in a table. The columns should align for multiple objects printed beneath
each other. The print may run over multiple lines but must not end in a CR.

See Also:
Constant Field Values

5.4.4 PART

static final int PART

Print the value in a small format so that it is identifiable. This printed format must be recognizable by
the conversion method.

See Also:
Constant Field Values

Method Detail
5.4.5 convert

java.lang.Object convert(java.lang.ClassdesiredType,
 java.lang.Objectin)
 throws java.lang.Exception

Convert an object to the desired type. Return null if the conversion can not be done. Otherwise return
and object that extends the desired type or implements it.

Parameters:
desiredType - The type that the returned object can be assigned to
in - The object that must be converted

Returns:
An object that can be assigned to the desired type or null.

Throws:
java.lang.Exception

5.4.6 format

java.lang.CharSequence format(java.lang.Objecttarget,
 intlevel,
 Converterescape)
 throws java.lang.Exception

Convert an object to a CharSequence object in the requested format. The format can be INSPECT,
LINE, or PART. Other values must throw IllegalArgumentException.

Parameters:
target - The object to be converted to a String
level - One of INSPECT, LINE, or PART.

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/constant-values.html#org.osgi.service.command.Converter.PART
file:///W:/osgi/org.osgi.service.command/doc/constant-values.html#org.osgi.service.command.Converter.LINE

RFC 0132 Command Line Interface and Launching Page 37 of 41

Draft August 5, 2008

escape - Use this object to format sub ordinate objects.
Returns:

A printed object of potentially multiple lines
Throws:

java.lang.Exception

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.5 org.osgi.service.command
Interface Function

public interface Function

A Function is a a block of code that can be executed with a set of arguments, it returns the result object of
executing the script. TODO The javadoc in this class need a good scrub before release.

Version:
$Revision: 5214 $

Method Summary
 java.lang.Object execute(CommandSession session, java.util.List arguments)

 Execute this function and return the result.

Method Detail
5.5.1 execute

java.lang.Object execute(CommandSessionsession,
 java.util.Listarguments)
 throws java.lang.Exception

Execute this function and return the result.

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Function.html#execute(org.osgi.service.command.CommandSession, java.util.List)
file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Function.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/Function.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/Function.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html
file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Function.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/CommandSession.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html

RFC 0132 Command Line Interface and Launching Page 38 of 41

Draft August 5, 2008

Parameters:
session - ###
arguments - ###

Returns:
the result from the execution.

Throws:
java.lang.Exception - if anything goes terribly wrong

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

5.6 org.osgi.service.threadio
Interface ThreadIO

public interface ThreadIO

Enable multiplexing of the standard IO streams for input, output, and error. This service guards the central
resource of IO streams. The standard streams are singletons. This service replaces the singletons with special
versions that can find a unique stream for each thread. If no stream is associated with a thread, it will use the
standard input/output that was originally set. TODO The javadoc in this class need a good scrub before release.

Version:
$Revision: 5214 $

Method Summary
 void close()

 Cancel the streams associated with the current thread.

 void setStreams(java.io.InputStream in, java.io.PrintStream out,
java.io.PrintStream err)
 Associate this streams with the current thread.

Method Detail

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/ThreadIO.html#setStreams(java.io.InputStream, java.io.PrintStream, java.io.PrintStream)
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/ThreadIO.html#close()
file:///W:/osgi/org.osgi.service.threadio/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/ThreadIO.html
file:///W:/osgi/org.osgi.service.threadio/doc/index.html?org/osgi/service/threadio/ThreadIO.html
file:///W:/osgi/org.osgi.service.threadio/doc/help-doc.html
file:///W:/osgi/org.osgi.service.threadio/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.threadio/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/package-tree.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/class-use/ThreadIO.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/package-summary.html
file:///W:/osgi/org.osgi.service.command/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Function.html
file:///W:/osgi/org.osgi.service.command/doc/index.html?org/osgi/service/command/Function.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/Converter.html
file:///W:/osgi/org.osgi.service.command/doc/help-doc.html
file:///W:/osgi/org.osgi.service.command/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.command/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-tree.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/class-use/Function.html
file:///W:/osgi/org.osgi.service.command/doc/org/osgi/service/command/package-summary.html

RFC 0132 Command Line Interface and Launching Page 39 of 41

Draft August 5, 2008

5.6.1 setStreams

void setStreams(java.io.InputStreamin,
 java.io.PrintStreamout,
 java.io.PrintStreamerr)

Associate this streams with the current thread. Ensure that when output is performed on System.in,
System.out, System.err it will happen on the given streams. The streams will automatically be
canceled when the bundle that has gotten this service is stopped or returns this service.

Parameters:
in - InputStream to use for the current thread when System.in is used
out - PrintStream to use for the current thread when System.out is used
err - PrintStream to use for the current thread when System.err is used

5.6.2 close

void close()

Cancel the streams associated with the current thread. This method will not do anything when no
streams are associated.

Package Class Use Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6 Alternatives

Maybe we should move the syntax to this section. Because we have standard launching the necessity of a
standard syntax has become less. Hmm.

6.1 Considered setParentBundle
This section was denied because it was deemed to premature. An other RFC will look at nested frameworks.

Copyright © OSGi Alliance 2008 All Rights Reserved

file:///W:/osgi/org.osgi.service.threadio/doc/allclasses-noframe.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/ThreadIO.html
file:///W:/osgi/org.osgi.service.threadio/doc/index.html?org/osgi/service/threadio/ThreadIO.html
file:///W:/osgi/org.osgi.service.threadio/doc/help-doc.html
file:///W:/osgi/org.osgi.service.threadio/doc/index-files/index-1.html
file:///W:/osgi/org.osgi.service.threadio/doc/deprecated-list.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/package-tree.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/class-use/ThreadIO.html
file:///W:/osgi/org.osgi.service.threadio/doc/org/osgi/service/threadio/package-summary.html

RFC 0132 Command Line Interface and Launching Page 40 of 41

Draft August 5, 2008

setParentBundle(Bundle) – If a framework is embedded in another framework, then it must give the child
framework the bundle object of its representation in the parent. That is, if you embed a framework in an OSGi
framework, the parent is the bundle object of the code that manages the embedding. This bundle must be
registered in the service registry as a Bundle service with the property: org.osgi.framework.parent=true. Singleton
services like thread IO and URL handlers should use this service to synchronize their behavior with the ancestor
frameworks. This method can be repeatedly called when the framework is not started.

7 Security Considerations

Obviously, a shell language provides ample opportunities for malice. In principle, anything in the system is
accessible, just like from Java. The protection against malicious behavior is based up the Java 2 security model.
This allows the shell and all commands to be ignorant of any security issues, unless they want to perform
operations that they have access to but a potential user has not. Such code must be executed in a doPriviliged
block.

The IO processors have the responsibility for protecting against malicious users.

should copy some of the text of DMT Admin because it follows the same procedures

8 Document Support

8.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

8.2 Author’s Address

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0132 Command Line Interface and Launching Page 41 of 41

Draft August 5, 2008

Name Peter Kriens

Company aQute

Address 9c, Avenue St. Drezery

Voice +33 633982260

e-mail Peter.Kriens@aQute.biz

8.3 Acronyms and Abbreviations

8.4 End of Document

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 0134 Declarative Services Update

Draft

8 Pages

Abstract

This RFC specifies some minor changes requested for Declarative Services.

Copyright © IBM Corporation 2008
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 0134 Declarative Services Update Page 2 of 8

Draft 16 May 2008

0 Document Information

0.1 Table of Contents

0 Document Information...2
0.1 Table of Contents..2
0.2 Terminology and Document Conventions...2
0.3 Revision History..3

1 Introduction..3

2 Application Domain...3

3 Technical Solution...4
3.1 Bug 144: No component instance if no Configuration...4
3.2 Bug 244: Extend SCR to allow alternate activate and deactivate method signatures.........4

3.2.1 Component deactivation reasons... 5
3.3 Bug 567: Allow use of wildcards in Service-Component header ..6
3.4 Bug 600: Making name attributes optional..6
3.5 XML schema namespace change...7

4 Considered Alternatives..7

5 Security Considerations..7

6 Document Support...8
6.1 References..8
6.2 Author’s Address...8
6.3 Acronyms and Abbreviations...8
6.4 End of Document...8

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in 6.1.

Source code is shown in this typeface.

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 0134 Declarative Services Update Page 3 of 8

Draft 16 May 2008

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial 2008 Mar 11 Initial Draft

BJ Hargrave, hargrave@us.ibm.com

2nd draft 2008 Mar 16 Updated based upon feedback from CPEG

BJ Hargrave, hargrave@us.ibm.com

3rd draft 2008 Mar 27 Updated based upon feedback from CPEG

BJ Hargrave, hargrave@us.ibm.com

4th draft 2008 Apr 24 Updated based upon bug 600.

BJ Hargrave, hargrave@us.ibm.com

1 Introduction

Some minor updated to the Declarative Services Specification have been requested since it was released. This
RFC specifies those changes.

2 Application Domain

This RFC defines changes to section 112, Declarative Services, of the specification.

Copyright © IBM Corporation 2008 All Rights Reserved

mailto:hargrave@us.ibm.com
mailto:hargrave@us.ibm.com
mailto:hargrave@us.ibm.com
mailto:hargrave@us.ibm.com

RFC 0134 Declarative Services Update Page 4 of 8

Draft 16 May 2008

3 Technical Solution

3.1 Bug 144: No component instance if no Configuration
A way is needed for the component declaration to say only create a component configurationIF there is a
Configuration(or Configurations).

To support this, the follow attribute is added to the component element:

<attribute name="configuration-policy" type="scr:Tconfiguration-policy"
default="optional" use="optional" />

<simpleType name="Tconfiguration-policy">
<restriction base="string">

<enumeration value="optional" />
<enumeration value="require" />
<enumeration value="ignore" />

</restriction>
</simpleType>

If the attribute is present and set to require, then a component cannot be satisfied (section 112.5.2) unless there is
a Configuration in ConfigurationAdmin for the component. In this situation, the No Configuration case in 112.7
does not apply.If the component is a Factory Component and the component is not satisfied because there is no
Configuration present, then the ComponentFactory service will not be registered.

If the attribute is present and set to ignore, then ConfigurationAdmin will not be consulted for the component. In
this situation, only the No Configuration case in 112.7 applies.

If the attribute is not present or present and set to optional, then SCR will act as it did prior to this RFC. That is, a
Configuration will be used if present in ConfigurationAdmin.

3.2 Bug 244: Extend SCR to allow alternate activate and deactivate method
signatures

A way is needed to avoid using DS API at all in components with SCR. This means the activate and deactivate
methods should not require the ComponentContext parameter. We should also allow the names of the activate
and deactivate methods to be specified to avoid requiring specific method names.

To support this, the follow attributes will be added to the component element:
<attribute name="activate" type="token" use="optional" default="activate" />
<attribute name="deactivate" type="token" use="optional default="deactivate" />

The activate attribute will specify the name of the activate method and the deactivate attribute will specify the
name of the deactivate method.

The signature for the activate and deactivate methods is:

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 0134 Declarative Services Update Page 5 of 8

Draft 16 May 2008

protected void <method-name>(<arguments>);

<arguments> can be zero or more arguments.

For the activate method each argument must be of one of the following types:

● ComponentContext – the Component Context for the component

● BundleContext – the Bundle Context of the component's bundle

If any argument of the activate method is not one of the above types, SCR must log an error message with the
Log Service, if present, and the component configuration is not activated.

For the deactivate method each argument must be of one of the following types:

● int/Integer – the deactivation reason

● ComponentContext – the Component Context for the component

● BundleContext – the Bundle Context of the component's bundle

If any argument of the deactivate method is not one of the above types, SCR must log an error message with the
Log Service, if present, and the deactivation of the component configuration will continue.

The methods may also be declared public. The same rules as specified in 112.5.8 will be used to locate the
activate and deactivate methods in the implementation class hierarchy.

3.2.1 Component deactivation reasons
When a component is deactivated, the reason for the deactivation can be passed to the deactivate method. The
following deactivation reasons are specified in ComponentConstants.

/**
 * The reason the component instance was deactivated is unspecified.
 *
 * @since 1.1
 */
public static final int DEACTIVATION_REASON_UNSPECIFIED = 0;
/**
 * The component instance was deactivated because the component was

disabled.
 *
 * @since 1.1
 */
public static final int DEACTIVATION_REASON_DISABLED = 1;
/**
 * The component instance was deactivated because a reference became

unsatisfied.
 *
 * @since 1.1
 */
public static final int DEACTIVATION_REASON_REFERENCE = 2;

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 0134 Declarative Services Update Page 6 of 8

Draft 16 May 2008

/**
 * The component instance was deactivated because its configuration was

changed.
 *
 * @since 1.1
 */
public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3;
/**
 * The component instance was deactivated because its configuration was

deleted.
 *
 * @since 1.1
 */
public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4;
/**
 * The component instance was deactivated because the component was

disposed.
 *
 * @since 1.1
 */
public static final int DEACTIVATION_REASON_DISPOSED = 5;
/**
 * The component instance was deactivated because the bundle was stopped.
 *
 * @since 1.1
 */
public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6;

3.3 Bug 567: Allow use of wildcards in Service-Component header
A way is needed to allow wild specification of the XML documents containing the component descriptions.

To support this, section 112.4.1 will be updated to state that the path element of the Service-Component header
grammar may include wildcards in the last component of the path. For example:
Service-Component: OSGI-INF/*.xml

Only the last component of the path may use wildcards so that Bundle.findEntries can be used to locate the XML
document within the bundle and its fragments.

3.4 Bug 600: Making name attributes optional
To reduce the amount of XML that must be written for a component description, the name attributes of the
component and reference elements will be changed from required to optional. This change is only effective for
documents in the new namespace.

Copyright © IBM Corporation 2008 All Rights Reserved

RFC 0134 Declarative Services Update Page 7 of 8

Draft 16 May 2008

The default value of the name attribute of the component element is the value of the class attribute of the
nested implementation element.

The default value of the name attribute of the reference element is the value of the interface attribute of the
reference element.

3.5 XML schema namespace change
The schema namespace is updated to

http://www.osgi.org/xmlns/scr/v1.1.0

This is due to changes to support backwards and forwards computability in the future (after this namespace
change). Hopefully we can avoid further namespace changes by introducing extra requirements on the SCR
parser at this time.

4 Considered Alternatives

None at this time.

5 Security Considerations

These changes do not affect the security of the specification.

Copyright © IBM Corporation 2008 All Rights Reserved

http://www.osgi.org/xmlns/scr/v1.1.0

RFC 0134 Declarative Services Update Page 8 of 8

Draft 16 May 2008

6 Document Support

6.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

6.2 Author’s Address

Name BJ Hargrave

Company IBM Corporation

Address 800 N Magnolia Av, Orlando, FL 32803

Voice +1 386 848 1781

e-mail hargrave@us.ibm.com

6.3 Acronyms and Abbreviations

6.4 End of Document

Copyright © IBM Corporation 2008 All Rights Reserved

Enterprise Design Documents
OSGi Service Platform Release 4

Version 4.2 - Early Draft

Revision 1.0
5 August 2008

Copyright © OSGi Alliance 2008.
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 98 Transactions in OSGi

Draft

16 Pages
Abstract

An increasing number of service specifications in the OSGi Service Platform rely on some form of transactional
behaviour. Other service specifications could improve if they had transactional behaviour. This RFC defines a
transaction model and identifies Java transaction APIs for use in OSGi environments, including embedded and

constrained environments.

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 2 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

0 Document Information

0.1 Table of Contents

0 Document Information ..2
0.1 Table of Contents ...2
0.2 Terminology and Document Conventions ..3
0.3 Revision History..3

1 Introduction..4

2 Application Domain...4
2.1 Crash Recovery ..5
2.2 Java Transaction Architecture ..6
2.3 Why Transactions ...7

3 Problem Description ...8

Requirements..8

4 Technical Solution...9
4.1 Using JTA ...9
4.2 Compliance...9
4.3 Components of the Transaction Service ..9

4.3.1 Transaction Originator ...10
4.3.2 Transaction Manager ...10
4.3.3 Volatile Resources ...10
4.3.4 Transaction Resources..10

4.4 Locating OSGI transaction services ...11
4.5 Use Cases ..11

4.5.1 Create Transaction ..11
4.5.2 Join Transaction...11
4.5.3 Commit Transaction...11
4.5.4 Prepare Resource..11
4.5.5 Commit Resource ..11
4.5.6 Rollback Transaction ...12
4.5.7 Rollback Resource...12
4.5.8 Assign Transaction to Thread..12

4.6 Functionality..12
4.6.1 Scope of a global transaction ..12
4.6.2 Correctness of the State ..12
4.6.3 End of Transaction...12

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 3 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

4.6.4 Performance ..12
4.6.5 Management of Transaction ..13
4.6.6 Heuristic Exceptions ..13
4.6.7 Examples ...13

5 Security Considerations ...14
5.1 Imposing as Transaction Manager ...14
5.2 Transaction Permission ..14

6 Document Support ..15
6.1 References..15
6.2 Author’s Address ..15
6.3 Acronyms and Abbreviations..16
6.4 End of Document ..16

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in [1].

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial Aug 30 2004 Peter Kriens

rewriting Oct 30 2007 Pavlin Dobrev

0.2 Oct 31 2007 Apply comments from Valentin Valchev

0.3 Nov 08 2007 Pavlin Dobrev – minor misspellings

0.4 Nov 22 2007 Peter Kriens – edit and added comments

0.5 Nov 29 2007 Pavlin Dobrev – answer on some comments

0.6 Dec 13 2007 Pavlin Dobrev – answer to Thomas Watson <tjwatson@us.ibm.com>
comments

0.7 Jul 09 2008 Ian Robinson/Roman Roelofsen – rebase on JTA.

0.71 6 Aug 2008 Prepare for public draft.

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 4 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

1 Introduction

An increasing number of APIs in the OSGi are requiring transactional concepts. This is to be expected because
transactions can simplify applications that have to run in a dynamic and distributed world. The OSGi expert
groups had earlier discussions regarding transactions but at that time (1999) transactions were deemed too heavy
and complex to add to the specifications. This RFC suffered the same fate in 2004 for the OSGi Release 4 due to
lack of time. However, OSGi R5 seems to be the appropriate time to re-discuss this because of strong
requirement for transactions in EEG.

This RFC introduces the transaction concepts and outlines the different trade-offs that need to be made in the
API.

2 Application Domain

For the purposes of this specification, a transaction is a coordinated series of changes to one or more information
stores . In almost any reasonable case, multiple closely related changes are required for a transaction; these
changes can depend on external or internal values. This quickly introduces the problem of how to keep the
system in a consistent state when there are unexpected failures and multiple parties that may change the same
information. Transaction processing systems that address these problems have been at the heart of business
computing systems since the early sixties. There are many different types of business transaction but this
specification is concerned with those that have the following ACID properties (adapted from [2]):

1. Atomic – A transaction’s changes to the state are atomic: either all happen or none happen. The changes
include database changes, messages and actions on actuators.

2. Consistency – A transaction is a correct transformation of the state. The actions taken as a group do not
violate any of the integrity constraints associated with the state. This requires that a transaction is a
correct program.

3. Isolation – Even though transactions execute concurrently, it appears to each transaction, T, that others
executed either before or after T, but never both.

4. Durability – Once a transaction completes successfully (commits), its changes to the state survive failure.

Trying to achieve these properties in a program without proper assistance of the environment is difficult. It
therefore became clear quickly to the pioneers in this area that centralized support was needed. At first this was
embedded in the database because the problems are most visible in the persistent storage. However, this turned
out to be insufficient when multiple persistent stores were involved in the same transaction. For example, a
money-transfer operation between two accounts is a transactional operation requiring both the credit and debit
parts of the transfer to succeed.

A “local transaction” is one that involves a single information store (resource manager), A “global” or “distributed
transaction” is one that may involve two or more resource managers. (The term “distributed” here does not
necessarily imply that the transaction spans multiple execution processes – it is “distributed” from the perspective

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 5 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

of the resource manager. Both terms are used interchangeably within the literature. This specification will refer to
“global” transactions rather than “distributed” transactions).

A global transaction requires a transaction manager that is logically external from the resource managers to
coordinate their joint outcome. The common model that evolved over the years is the “two phase commit” (2PC)
model with resource managers being directed by the transaction manager. A concrete 2PC protocol implemented
by all popular commercial resource managers and transactions is the XA protocol [3]. In the 2PC model, a
transaction is started and the program will perform the steps to execute the transaction. Operations on
transactional data occur in subsystems such as databases whch are the transactional resource managers. Once
a resource manager is accessed as part of a global transaction, it “joins” the current transaction so that the
transaction manager is aware that the resource manager needs to participate in the outcome of the transaction.
But what is the current transaction? One possibility for this would be to pass a transaction object in each call.
However, this is error prone and cumbersome for the programmer. Since the days of multithreaded server
environments, the usual model is that a transaction context is associated with the current thread of execution. All
calls that are execution in a thread are then assumed to be part of the transaction. A data operation on a certain
thread then implies a data operation in the context of a specific transaction and the resource manager for the data
store joins that specific transaction for outcome coordination and manages any resource locks in the context of
that transaction. A purely thread-based transaction context is obviously not sufficient for distributed systems
where the different systems should be part of the same transaction. Specifications such as CORBA Object
Transaction Service (OTS) [4] and WS-AtomicTransaction [5] defines mechanisms by which transaction contexts
are implicitly propagated on remote requests over IIOP and SOAP/HTTP transports to be used by the transaction
manager in the target system to add the work of the thread in the target system to the overall distributed global
transaction.

At the end of a successful transaction the application program must decide whether to initiate a commit or rollback
request for all the changes made under the transaction. The program requests that the transaction manager
completes the transaction and the transaction manager then negotiates with the resource managers to reach a
coordinated outcome.. In the 2PC model the transaction manager asks each resource manager its opinion during
the initial prepare phase. If any resource manager indicates that there was an error, the transaction is rolled back.
Rolling back means that all changes done inside the transaction are undone. If all the resource managers
respond positively to the prepare request then the transaction manager directs all the resource managers to
commit their updates in the second phase of 2PC. The resource managers must then make their changes
permanent. Resource managers that provide transaction-based locking and isolation then release locks and make
updates visible outside the transaction.

The 2-phase commit model accommodates the possibility that a resource manager may not be able to honour its
responsibility to commit after it has successfully prepared via a heuristics protocol. This indicates a failure of
global atomicity and typically requires administrative intervention to restore data integrity.

Transactions are not limited to changes in a database. Transactions apply equally well to sensors and actuators,
messages and other actions.

2.1 Crash Recovery
An important aspect of transaction atomicity is crash recovery. A crash is when a program or subsystem (for
example transaction manager or resource manager) unexpectedly dies during a transaction. This can happen at
any moment in time, including between the prepare and the commit phase. The XA 2PC protocol is, by definition,
a presumed-abort protocol. This means that the transaction manager and resource managers all agree up-front
that any failure that occurs before the prepare phase can be assumed to result in rollback. This gives resource
managers the right to unilaterally rollback before they are prepared. It also means that a transaction manager
does not need to persist any information about the transaction before a transaction is prepared.
Recovery processing is required following a crash to resolve any parts of a global transaction that were prepared
but not completed at the point when the crash occurred. Resource managers with prepared work may be holding

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 6 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

locks and need to be directed to commit or rollback their work. The XA 2PC protocol defines a recovery protocol
between the TM and RMs to resolve such “in-doubt” work.

2.2 Java Transaction Architecture

As mentioned above, the most ubiquitous standard 2PC protocol between a transaction manager and a resource
manager is the XA protocol [3]. The Java Transaction Architecture (JTA) [6] defines mappings of the XA protocol
to local Java interfaces. It specifies the means for XA-compliant resource managers to be coordinated through a
process-local Java “XA resource adapter” by a Java transaction manager.

A JTA transaction manager implements the interfaces of the javax.transaction package which contains the key
interfaces for transaction management: TransactionManager, UserTransaction, and Transaction. A transactional
resource manager implements the interfaces of the javax.transaction.xa package which contains the XAResource
interface. The model in JTA is that resource managers (XAResource) enlist with the TransactionManager after
which they participate in the transaction.

JTA is a Java mapping of the XA interface. It supports all the well-known optimizations of two-phase commit and
offers a mature and widely-implemented means to support transactions in a Java runtime.

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 7 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

HeuristicCommitException

HeuristicCommitException()
HeuristicCommitException()

HeuristicMixedException

HeuristicMixedException()
HeuristicMixedException()

HeuristicRollbackException

HeuristicRollbackException()
HeuristicRollbackException()

InvalidTransactionException

InvalidTransactionException()
InvalidTransactionException()

NotSupportedException

NotSupportedException()
NotSupportedException()

RollbackException

RollbackException()
RollbackException()

Status

STATUS_ACTIVE : int = 0
STATUS_MARKED_ROLLBACK : int = 1

STATUS_PREPARED : int = 2
STATUS_COMMITTED : int = 3

STATUS_ROLLEDBACK : int = 4
STATUS_UNKNOWN : int = 5

STATUS_NO_TRANSACTION : int = 6
STATUS_PREPARING : int = 7
STATUS_COMMITTING : int = 8

STATUS_ROLLING_BACK : int = 9

Synchronization

beforeCompletion()
afterCompletion()

SystemException
errorCode : int

SystemException()
SystemException()
SystemException()

Transaction

commit()
delistResource()
enlistResource()

getStatus()
registerSynchronization()

rollback()
setRollbackOnly()

TransactionManager

begin()
commit()

getStatus()
getTransaction()

resume()
rollback()

setRollbackOnly()
setTransactionTimeout()

suspend()

TransactionRequiredException

TransactionRequiredException()
TransactionRequiredException()

TransactionRolledbackException

TransactionRolledbackException()
TransactionRolledbackException()

TransactionSynchronizationRegistry

getTransactionKey()
putResource()
getResource()

registerInterposedSynchronization()
getTransactionStatus()

setRollbackOnly()
getRollbackOnly()

UserTransaction

begin()
commit()
rollback()

setRollbackOnly()
getStatus()

setTransactionTimeout()

XAException

errorCode : int
XA_RBBASE : int = 100
XA_RBROLLBACK : int = 100
XA_RBCOMMFAIL : int = 101
XA_RBDEADLOCK : int = 102
XA_RBINTEGRITY : int = 103
XA_RBOTHER : int = 104
XA_RBPROTO : int = 105
XA_RBTIMEOUT : int = 106
XA_RBTRANSIENT : int = 107
XA_RBEND : int = 107
XA_NOMIGRATE : int = 9
XA_HEURHAZ : int = 8
XA_HEURCOM : int = 7
XA_HEURRB : int = 6
XA_HEURMIX : int = 5
XA_RETRY : int = 4
XA_RDONLY : int = 3
XAER_ASYNC : int = -2
XAER_RMERR : int = -3
XAER_NOTA : int = -4
XAER_INVAL : int = -5
XAER_PROTO : int = -6
XAER_RMFAIL : int = -7
XAER_DUPID : int = -8
XAER_OUTSIDE : int = -9

XAException()
XAException()
XAException()

(from xa)

XAResource

TMENDRSCAN : int = 8388608
TMFAIL : int = 536870912
TMJOIN : int = 2097152
TMNOFLAGS : int = 0

TMONEPHASE : int = 1073741824
TMRESUME : int = 134217728

TMSTARTRSCAN : int = 16777216
TMSUCCESS : int = 67108864
TMSUSPEND : int = 33554432

XA_RDONLY : int = 3
XA_OK : int = 0

commit()
end()

forget()
getTransactionTimeout()

isSameRM()
prepare()
recover()
rollback()

setTransactionTimeout()
start()

(from xa)

Xid

MAXGTRIDSIZE : int = 64
MAXBQUALSIZE : int = 64

getFormatId()
getGlobalTransactionId()

getBranchQualifier()

(from xa)

Class Diagram of javax.transaction API

2.3 Why Transactions
The key reason to support transactions is: simplicity. Decades of experience in the IT world have proven that
transactions concentrate complexity at the place where it should be: the resource manager. This implies that they
significantly simplify the work of the application programmer. Transactions provide a simple and clean model of
the world with excellent exception handling. Transactions provide a framework so that programmers only have to
think in consistent states and do not have to handle the messy issues related to partially completed operations
and concurrent access.

A
ll P

age W
ithin This Box

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 8 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

3 Problem Description

Transaction semantics obviously provide a significant increase in robustness and simplicity. ACID properties can
be guaranteed on both successful and failed execution.In current OSGi applications, this robust exception model
is absent and it is left to the implementers of the different subsystem. In many cases it is virtually impossible to
correctly clean up in the light of failures.

This problem is very visible, for example, in the mobile specifications that are being developed for R4. There is
currently a proliferation of “transaction” like APIs in the mobile specifications. This proliferation causes:

 Duplication of effort and code on the platform.
 It is also likely that it creates quality problems because implementing transactions is a complex task

without centralized support.
 Requires that that the transaction coordination is handled by the application programmer because

application subsystems cannot find a current transaction to join.
 Increases the learning curve for application programmers due to the different semantics associated with

the different subsystems
 There is no central overview of the transactional state of the system. This seriously hinders diagnosing

and debugging systems as well as help desks.

There is therefore a need to centralize the management of transactions. This must minimize the code size,
increase reliability, and enable tools.

Requirements

Provide a comprehensive model that allows components in an OSGi Service Platform to perform their actions in a
transactional way.

1. Identify the Java APIs that must be provided by a Transaction Manager to delineate a transaction
boundary and provide a means for resources to join a transaction. Identify the Java API that must be
provided by a resource manager to support two-phase commit, including recovery.

2. The transaction API must be suitable both for enterprise runtimes and embedded systems

3. Reuse existing widely-used Java transaction technology wherever possible. and avoid and repeating
what is already specified elsewhere.

4. The specification should place no requirements on a transaction service implementation to be
recoverable. It should be noted, however, that a transaction service implementation can only provide
transaction atomicity if it supports recovery processing following a crash.

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 9 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

in This Box
age W

ith

5. The transaction service specification must allow implementation of transactional applications without the
need for external changes to the application’s business interfaces and configuration.

4 Technical Solution

4.1 Using JTA
The existing JTA specification addresses the requirements stated above; in addition the JTA XAResource
interface is already implemented by many providers of Java resource adapters. The JTA specification [6] defines
all the Java transaction interfaces and semantics for transaction and resource managers and this specification
reuses those APIs as-is with no modification. The XA+ specification [3] defines the semantics of the underlying
XA protocol. This specification defines only additional information related specifically to the OSGi architecture,
such as how a transaction service reference can be discovered in the OSGi service registry.

4.2 Compliance
This specification defines an OSGi transaction service implementation as one or more OSGi bundles that
collectively implement the classes and interfaces of the javax.transaction package defined in [6]. A compliant
OSGi transaction service implementation must pass all the tests defined by the OSGi transaction service
compatability suite. A compliant OSGi transaction service implementation is not required to be additionally
certified as a compliant JTA implementation, although it may optionally be certified as compliant to the JTA
specification when used as part of a Java EE profile.

4.3 Components of the Transaction Service
There are four basic roles for transaction support in the OSGi framework:

1. Transaction originator. This may be either an application role or a framework role and it is responsible
for demarcating transactional units of work. Application components use the JTA UserTransaction
interface to demarcate transaction contexts.

2. Transaction manager. The transaction manager provides the implementation of transaction capability. It
responds to requests to demarcate transaction contexts, associates transaction contexts with the local
thread of execution, potentially distributes/receives transaction contexts on remote requests, accepts the
registration of transactional participants and coordinates participants to an atomic outcome. The
transaction manager is the core of the OSGI transaction service and MUST implement the
javax.transaction.UserTransaction, javax.transaction.TransactionManager, javax.transaction.Transaction
and javax.transaction.SynchronizationRegistry interfaces as defined in [6].

3. Volatile resources. Some objects have an interest in the outcome of the transaction but do not
participate in 2PC, for example persistent caches that need to be flushed at the end of the transaction
immediately prior to 2PC. These objects implement the javax.transaction.Synchronization interface and
are enlisted in the transaction via the
SynchronizationRegistry.registerInterposedSynchronization(Synchronization).

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 10 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

4. Transactional resources. Resource managers that participate in 2PC provide an implementation of the
javax.transaction.xa.XAResource interface. XAResources are enlisted in a transaction via the
Transaction.enlist(XAResource) interface.

4.3.1 Transaction Originator
A transaction is requested to begin and end (commit or rollback) by the transaction originator and, once started, a
transaction context is associated with the thread of its originator. Application components begin a global
transaction using the begin() method of UserTransaction. Transactions may also be originated by framework
components using the javax.transaction.TransactionManager interface. This is a richer interface than the
UserTransaction interface and provides additional transaction context management operations such as suspend()
and resume() that are not appropriate for application use.

Limitations:

• A global transaction may only be associated with a single thread at any point in time. The specific thread
to which a transaction is associated may change over time. A thread may have no more than one global
transaction concurrently associated with it.

• Nested transactions are not supported. You are not allowed to run a transaction within another one.

4.3.2 Transaction Manager
The transaction manager provides transactional capabilities for the framework. It

• Creates transactions and associates them with the current thread of the originator application.

• Accepts enlistment of volatile and transactional resources.

• Notifies volatile resources of the outcome of the transaction.

• Coordinates transactional resources using the two-phase commit protocol at the end of the transaction.

• Drives the recovery interface of transactional resource following a crash to ensure the atomic completion
of transactional work.

• An OSGi transaction service implementation represents a specific transaction with an object that
implements the javax.transaction.Transaction interface and it is this object with which transactional
resources are enlisted. A Transaction object is obtained for the current transaction from the
getTransaction() method of the TransactionManager interface.

4.3.3 Volatile Resources
Volatile resources are components which do not participate in 2PC but are called immediately prior to and after
2PC. If a request is made to commit the transaction then the volatile participants have the opportunity to perform
some “beforeCompletion” processing such as flushing cached updates to persistent storage. In both the commit
and rollback cases the volatile resources are called after 2PC to perform “afterCompletion” processing (which
cannot affect the outcome of the transaction).

4.3.4 Transaction Resources
Transaction resources are provided by transactional resource managers and MUST implement the
javax.transaction.xa.XAResource interface described in [6]. An XAResource object can be enlisted with the
transaction once resource work is performed under the transaction. The XAResource interface is driven by the

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 11 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

transaction manager during the completion of the transaction and is used to direct the resource manager to
commit or rollback any changes made under the transaction.

4.4 Locating OSGI transaction services
The Java EE specifications define standard JNDI names for the UserTransaction and
TransactionSynchronizationRegistry interfaces in a Java EE server environment and deliberately do not define a
standard means for acquiring an implementation of the TransactionManager interface. This is because the latter
is considered to be a part of the internal implementation of a Java EE application server. An OSGi transaction
service implementation MUST register service objects for the UserTansaction and
TransactionSynchronizationRegistry interfaces in the OSGi service registry, using the names
“javax.transaction.UserTransaction” and “javax.transaction.TransactionSynchronizationRegistry” respectively. An
OSGi transaction service implementation MUST also register a service object for the TransactionManager
interface in the service registry using the name “javax.transaction.TransactionManager” but MAY put restrictions
on which bundles can use this service object.

An OSGi transaction service implementation MAY also bind references to UserTransaction and
TransactionSynchronizationRegistry in a JNDI namespace. interfaces locations the UserTransaction

4.5 Use Cases

4.5.1 Create Transaction
An application component uses the UserTransaction service interface to start a new transaction. If there is
already active transaction in the context of the current tread, the transaction manager will indicate an error.

4.5.2 Join Transaction
When transaction is started, the application performs some operations on the system. While modifying the current
state, it invokes some methods or other services. These services are resource managers that can participate in
the transaction. The resource managers each provide an XAResource object and join the transaction associated
with the current thread via the enlist(XAResource) method of the Transaction object.

4.5.3 Commit Transaction
After performing the required operations, the transaction originator decides whether to initiate commit or rollback
processing and requests commit or rollback processing via the UserTransaction interface. During commit
processing, if at least one of the resources participating in the transaction fails to perform the required operations,
the transaction is rolled back.

4.5.4 Prepare Resource
The transactional manager uses the “two phase commit” pattern to ensure the consistent state of the system.
When the originator requests a commit of the transaction, the TM calls on each participating resource their
“prepare” method. In this stage, the resource provisionally performs any updates and decides whether it make a
commitment to honour a commit outcome if that is what the external coordinator decides. It then waits to be told
the final commit or rollback decision.

4.5.5 Commit Resource
If all participating resources have been successfully prepared, the TM calls the commit() method on each
Transaction Resource. The resource manager is responsible for providing any changes to data visibility that result
from the transactional isolation level of the updates and for making the updates the changes persistent.

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 12 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

4.5.6 Rollback Transaction
If the originator decides to request a rollback of the transaction, or if the transaction fails before a completion
request is made, restores the original state of the system as it was before starting the transaction.

Rollback might be called either because commit failed or for some external reasons – like operation timeout as
example.

4.5.7 Rollback Resource
During a transaction rollback, the TM calls on each resource their “rollback” method. This method discards any
provisional updates within the transaction and so restores the original state of the system.

4.5.8 Assign Transaction to Thread
A transaction MUST NOT be associated with more than one thread at a time but MAY be moved over time from
one thread. While transaction-thread association is provided by the transaction manager, any movement of the
transaction from one thread to another – via the suspend/resume methods of the TransactionManager interface -
is driven by the framework hosting the OSGi transaction service and it is the responsibility of that framework and
the transactional resource managers to understand which transaction context the transactional resources are
running under.

4.6 Functionality
4.6.1 Scope of a global transaction
A transaction context is started and ended by requests from a transaction originor. In between, the transaction is
managed by a transaction manager. Transactional resources may be enlisted in the transaction during its lifetime.
Those transactional resources are coordinated to an atomic outcome by the transaction manager at the end of the
transaction.

4.6.2 Correctness of the State
At the end of transaction, the application must decide whether the changes should be made persistent
(committed) or rolled back. The application requests the transaction manager to perform commit or rollback
processing. The collection of state changes to all transactional resources made under the transaction can have
ACID properties when a global transaction is used. The transaction manager itself is responsible for providing the
Atom property of ACID by driving all resource managers to the same outcome. The resource managers are
responsible for the Isolation and Durability properties of the changes. The Consistency of the data changes is
provided by the application and the resource managers.

4.6.3 End of Transaction
The transaction is disposed after it has been successfully committed or rolled back. The transaction manager
automatically disassociates such transaction from the participating threads. This allows a new transaction to be
started for that threads.

4.6.4 Performance
Global transaction processing can be expensive in terms of performance and resource utilization. Therefore, to
optimize performance you may choose to execute a majority of the code without a transaction, and use
transactions only when necessary. Using the credit card processing example, you may not use transactions to do
data loading, validation, verification, and posting. However, at the point when you transfer money from the
account holder to the holding bank you would then start a transaction. The XA and JTA specifications provide
opportunities for implementation optimizations such as the well-known “one phase commit optimization of two-
phase commit” which causes almost all of the cost of 2PC to be realized only when a transaction with more than
one transactional resource begins commit processing.

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 13 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

4.6.5 Management of Transaction
The component that completes a transaction should be the same component that originated it. Therefore, only the
business method that started the transaction should invoke the commit() and rollback() methods. Spreading
transaction management throughout the application adds complexity and reduced maintainability of the
application from a transaction management standpoint.

4.6.6 Heuristic Exceptions
Heuristic outcomes can result if a transactional resource does not keep the promise it made during the prepare
phase, most typically as a result of a database administrator forcing a unilateral and administrative outcome for
operational reasons. Under such circumstances, the administrator may need to take further action to maintain
integrity across the global transaction as a whole.

4.6.7 Examples

4.6.7.1 Example 1 - Creating and using a Transaction
 UserManager tx = null;
 // UserTransactgion can be received from Service Registry

 // begin transaction
 tx.begin();

 // perform some operations in the context of the transaction
 try {
 Configuration x = config.createConfiguration("abc");
 x.put("prop", "value");
 tx.commit(); // make changes persistent
 } catch (Throwable th) {
 th.printStackTrace();
 tx.rollback(); // rollback changes on fail
 }

4.6.7.2 Example 1 - (Resource) Participating in Transaction
class ConfigResource implements XAResource {
 Transaction t;

 public Configuration createConfiguration(String pid) {
 if(t != null) {
 t.enlist(this)
 // Transactional operation
 ("createConfiguration", pid); addLog
 } else {
 // TODO: non-transactional operation
 }
 }

 public Configuration[] listConfigurations() {
 Configuration ret[] = null;

 if(t != null) {
 // TODO: add the configurations that are still not committed in CURRENT TRANSACTION
 // This is because all changes needs to be visible in the current transaction

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 14 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 }

 }

 public void prepare(Xid xid) {
 // Make and persist a provisional “after copy” of data for this xid
 ...
 }

 public void commit(Xid xid) {
 // Replace the “before” copy with the “after” copy
 // Forget the transaction

 }

 public void rollback(Xid xid) {
 // Discard any provisional “after” copy
 // Forget the transaction
 }
}

5 Security Considerations

5.1 Imposing as Transaction Manager
The transaction manager has a very central role and it is paramount that no bundle except the intended one can
register a Transaction Manager service. This is achieved with ServicePermission REGISTER for this service.

5.2 Transaction Permission
The TransactionPermission defines the security roles required to retrieve or start a transaction.

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 15 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

6 Document Support

6.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Transaction Processing, Jim Gray and Andreas Reuter. Morgan Kaufmann Publishers, ISBN 1.55860-
190-2

[3]. Distributed Transaction Processing: The XA+ Specification Version 2, The Open Group, ISBN: 1-
85912-046-6

[4]. Object Transaction Service v1.4, OMG, http://www.omg.org/cgi-bin/doc?formal/2003-09-02

[5]. WS-AtomicTransaction v1.1, OASIS, http://docs.oasis-open.org/ws-tx/wsat/2006/06

[6]. JTA Specification v1.1, http://java.sun.com/products/jta/

6.2 Author’s Address

Name Peter Kriens

Company aQute

Address 9C, Avenue St. Drézéry

Voice +15123514821

e-mail Peter.kriens@aQute.biz

Name Pavlin Dobrev

Company ProSyst Software GmbH

Address Dürener Str. 405, 50858 Cologne, Germany

Voice +49 221 6604-0

e-mail p.dobrev@prosyst.com

http://java.sun.com/products/jta/
mailto:Peter.kriens@aQute.biz
mailto:p.dobrev@prosyst.com

A
ll P

age w
ithin this B

ox

 RFC 98 Transactions in OSGi Page 16 of 16

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

6.3 Acronyms and Abbreviations

6.4 End of Document

Copyright © OSGi Alliance 2008.
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 119 - Distributed OSGi

47 Pages
Abstract

 This RFC contains a design that meets the requirements described in RFPs 79 and 88. The solution defines a
minimal level of feature/function for distributed OSGi processing, including service discovery and access to and
from external environments. This solution is not intended to preclude any other solution and is not intended as an
alternative to Java EE, SCA, JBI, or any other external API set that may be mapped onto OSGi.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 2 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

0 Document Information

0.1 Table of Contents

0 Document Information ..2
0.1 Table of Contents ...2
0.2 Terminology and Document Conventions ..4
0.3 Revision History..4

1 Introduction..5
1.1 Open Items ...6
1.2 Terminology ..6
1.3 List of Symbols..7

2 Application Domain...8

3 Problem Description..9
3.1 From RFPs 79 & 88: ...9
3.2 Scenario diagrams..10

3.2.1 Consumer Side ..11
3.2.2 Provider Side ...12
3.2.3 A non-OSGi distributed client using an OSGi service ...13
3.2.4 An OSGi client using a remote non-OSGi Service ..13

3.3 Roles...14
3.3.1.1 Solution Architect..16
3.3.1.2 Component Designer..16
3.3.1.3 Developer ...16
3.3.1.4 Assembler...16
3.3.1.5 Solution Deployer ...17
3.3.1.6 Testing..17
3.3.1.7 Runtime (Framework)...17

4 Requirements...17
4.1 From RFP 79 ..17
4.2 From RFP 88 ..18
4.3 Further requirements ..20

4.3.1 Levels of transparency...20

5 Technical Solution...20
5.1 Overview of contributions to the OSGi standard ..20

5.1.1 Summary of Changes to the OSGi Core ...20
5.1.2 Summary of Additional Services..21

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 3 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.2 Distribution software ...21
5.2.1 Functionality...21
5.2.2 Interface description...23

5.2.2.1 Distribution Software Interface ...23
5.2.2.2 Exception Handling...24

5.3 Discovery Service ...25
5.3.1 Functionality...25
5.3.2 Discovery using a local file(s) ..26
5.3.3 Discovery Service Federation and Interworking ..27
5.3.4 Useful Discovery Service Properties ...28
5.3.5 Interface description...28

5.3.5.1 Java interface description...28
5.4 Service Registry Hooks ..32

5.4.1 Registration of Remote Services in Local Service Registry32
5.4.2 Additional filtering...32

5.5 Service Programming Model ..32
5.5.1 Service interface description..33
5.5.2 Properties...33

5.5.2.1 Definition of new Properties..33
5.5.2.2 Standard Properties..33

5.5.3 Intents ..34
5.5.3.1 Example of using Intents ..35
5.5.3.2 Defining Intents...35
5.5.3.3 OSGi-defined Intents ..35
5.5.3.4 SCA-defined Intents ...36
5.5.3.5 Qualified Intents..37
5.5.3.6 Publishing of Qualified Intents..37

5.5.4 Configuration type..37
5.6 Collaboration of new and changed entities...38

5.6.1 Interactions on the service provider side ...38
5.6.1.1 Exposing a Service remotely..38
5.6.1.2 Service Unregistration ..39

5.6.2 Interactions on the service consumer side ..40
5.6.2.1 Lookup for a remote Service ..40
5.6.2.2 Service invocation ..40

5.6.3 Interactions with Non-OSGi service providers and consumers41
5.6.4 Lifecycle dynamics...41

5.7 Best Practices...41
5.7.1.1 Runtime (Framework)...41

5.7.2 Distribution-related limitations on service interface definitions42
5.7.3 Connector...42
5.7.4 Caching..42
5.7.5 Automated Service discovery ..42
5.7.6 Bundle organization ...42
5.7.7 Proxies ...43

5.8 Reference Implementation..43
5.8.1 Installing Distribution Software in an OSGi platform..43

5.9 Reference Implementation based on SCA ...43

6 Considered Alternatives ...43
6.1.1 Alternative: using simple properties to define service remoting43

7 Security Considerations ...45

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 4 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

8 Document Support ..46
8.1 References..46
8.2 Author’s Address ..46
8.3 Acronyms and Abbreviations ..47
8.4 End of Document ..47

0.2 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in [1].

Source code is shown in this typeface.

0.3 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

Initial Jul 17, 2007 Initial draft with information based on RFP 88

Eric Newcomer, IONA, eric.newcomer@iona.com

David Bosschaert, IONA, davidb@iona.com

0.1 July 27, 2007 Added parts related to RFP 79 (service discovery)

Tim Diekmann, Siemens Communications,
tim.diekmann@siemens.com

0.2 August 1-8 Added introductory information, incorporated edits, and filled in sections
from relevant RFPs.

0.3 September, 2007 Changes following feedback from the August Face-to-Face

Tim Diekmann, Siemens Communications,
tim.diekmann@siemens.com

Eric Newcomer, IONA, eric.newcomer@iona.com

David Bosschaert, IONA, davidb@iona.com

0.4 October, 2007 Tim Diekmann, Siemens Communications,

Philipp Konradi, Siemens Corporate Technologies

0.5 November, 2007 Tim Diekmann, Siemens Communications,

Philipp Konradi, Siemens Corporate Technologies

Klaus Kunte, Siemens Enterprise Networks GmbH & Co KG

mailto:eric.newcomer@iona.com
mailto:davidb@iona.com
mailto:tim.diekmann@siemens.com
mailto:tim.diekmann@siemens.com
mailto:eric.newcomer@iona.com
mailto:davidb@iona.com

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 5 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Revision Date Comments

0.6 February, 2008 Changes as a result of discussions at January F2F

Deleted comments that seemed resolved or discussed.

Eric Newcomer

0.7 March, 2008 Tim Diekmann, Siemens Communications. Accepted all changes.

0.8 May, 2008 Eric Newcomer, accepted changes, incorporated text about intents,
cleaned up comments following their resolution.

Graham Charters & Philipp Konradi, qualified intents section.

0.9 June, July 2008 Eric Newcomer, further editorial cleanup

0.9.1 July 2008 Tim Diekmann, minor editorial changes, bug 719

0.9.2 July 2008 Eric Newcomer, changes from July F2F & bug list

0.9.3 August 2008 David Bosschaert, changes relating to bugs 689, 729 and 735.

1 Introduction

This RFC is being created as a design document to meet the requirements described in RFPs 79 and 88. The
focus is on defining a possible solution within the OSGi environment to provide a minimal level of feature/function
for distributed OSGi processing, including service discovery and access to and from external environments. This
solution is not intended to preclude any other solution and is not intended as an alternative to JEE, SCA, JBI, or
any other external API set that may be mapped onto OSGi, although the solution is intended to enable
interworking with external implementations of those and other technologies.

The solution is intended to allow a minimal set of distributed computing functionality to be used by OSGi
developers without having to learn additional APIs and concepts. In other words, if developers are familiar with the
OSGi programming model then they should be able to use the features and functions described in this solution
very naturally and straight forwardly to configure a distribution software solution into an OSGi environment to meet
requirements stated in RFPs 79 and 88. If developers need to use advanced distributed computing capabilities
they can use any other supported APIs defined for OSGi deployment to augment or replace the basic functionality
described in this RFC.

This RFC is based on describing the minimal extensions necessary to the existing OSGi environment for the
purposes of allowing:

• An OSGi bundle deployed in a JVM to invoke a service in another JVM, potentially on a remote
computer accessed via a network protocol

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 6 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

• An OSGi bundle deployed in a JVM to invoke a service (or object, procedure, etc.) in another
address space, potentially on a remote computer, in a non OSGi environment)

• An OSGi service deployed in another JVM, potentially on a remote computer, to find and access a
service running in the “local” OSGi JVM (i.e. an OSGi deployment can accept service invocations
from remote OSGi bundle

• A program deployed in a non OSGi environment to find and access a service running in the “local”
OSGi JVM (i.e. an OSGi deployment can accept service invocations from external environments)

Basic assumptions include that the default mode of distributed access is consistent with the current OSGi
programming model (i.e. a service oriented request/response model) and that in most cases the use of distribution
software can be accomplished through the use of configuration and deployment metadata. The configuration and
deployment metadata is based on the Service Component Architecture (SCA) intent model of abstracting
distributed computing capabilities. The design is intended to work with any broadly adopted type of distributed
computing software system, such as Web services, CORBA, or messaging.

Existing distributed computing technologies are used in all cases to meet the requirements. A further distinction is
drawn between solutions that use the same distributed software system for all communications, and solutions that
use multiple distributed software systems. When multiple distributed software systems are involved additional
metadata may be required to ensure consistency and compatibility of the configurations.

This RFC does not define any new distributed communication protocols, data formats, or policies: it simply defines
an extension to the OSGi programming model and metadata that defines how to access and load modules for
existing communication protocols, data formats, and policies (i.e. qualities of service assertions and associated
configurations) to meet the requirements of RFPs 79 and 88.

1.1 Open Items
• See bug list

1.2 Terminology
OSGi service platform: See OSGi core specification chapter 1.

OSGi bundle: See OSGi core specification chapter 3 and 4.

OSGi service: See OSGi core specification chapter 5.

OSGi service registry: See OSGi core specification chapter 5.

Component: A piece of code (e.g. similar to a Spring bean or a POJO) that is packaged and deployed in a
bundle.

Application: A set of bundles that are logically coupled to perform a common task. The bundles of this
application don’t have to be deployed in the same service platform, but can be spread over multiple service
platforms.

Distribution software (DSW): A software entity providing functionality to an OSGi service platform that supports
the binding and injection of services in other address spaces or across machine boundaries, using various
existing software systems.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 7 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

Discovery service: A software entity providing functionality to an OSGi service platform that supports the
publishing and lookup of services in other address spaces or across machine boundaries, using various existing
discovery systems.

Service consumer: A bundle which requires a service from other service platforms.

Service provider: A bundle which provides a service to other service platforms.

1.3 List of Symbols
The following symbols are used in the drawings in this document to illustrate the desired behavior of the
distributed OSGi design.

Symbol Term Description

OSGi Service

- can be registered by bundles (register)

- can be looked for and used from other bundles (get)

- can be listened on the service listener, e.g. a service tracker listens
on service events (listen)

- can be hooked into the process of service registration and lookup
(hook)

-can be configured to be accessed remotely

OSGi Bundle

- provides modularization and encapsulation of components

- is a deployment unit (software provisioning) for the OSGi runtime

 Extender An (extender) bundle listens for life-cycle events of other bundles
and synchronously acts if necessary e.g. to inject dependencies.
The extender bundle is the one the arrow starts at.

External
Interface

- provides an interface outside of a local OSGi Service Platform

- exposing transport or communication protocols, e.g. SOAP/HTTP,
CORBA/IOP, RMI, etc.

Non OSGi
Platform

- provides a component based environment for enterprise
applications

- offering non OSGI technologies, e.g. SCA, Spring, etc.

OSGi Service
Platform

- provides a service-oriented, component-based environment

- focused on the component integration and the software lifecycle

A
ll P

age W
ithin This Box

listen
register get

hook Service

Platform

Platform

Bundle

Extern
Interface

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 8 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Also UML notation was used for some diagrams in this document. Please refer to www.uml.org for details on the
notation.

2 Application Domain

[copied and combined from RFPs 79 & 88]

The primary design addressed by this RFC is intended to meet requirements for the heterogeneous enterprise IT
environment that includes existing and new non-OSGi based applications that need to communicate with OSGi
based applications, and with which OSGi based applications need to communicate, including connecting
embedded systems to enterprise systems.

Examples of such applications include internet banking applications connected to mainframe databases, travel
applications with multiple providers of travel item reservations that all use different technologies,
telecommunications industry services for broadband telephony and television that rely on legacy billing
applications, and so on. Typical enterprise deployments include large scale applications, which require high
availability, reliability, and scalability of the provided services.

Standalone or single technology applications (i.e. OSGi only) are also in scope, because of the fact that OSGi
based applications might be deployed in more than just one OSGi platform and for scalability and availability
purposes need to be able to find each other across the platform boundaries.

Some core features of heterogeneous enterprises:

• “Stove-piped” applications written using different languages and software systems, including but not
limited to .NET, JEE, C++, CORBA, message oriented middleware, TP monitors, data base management
systems, packaged applications, EDI, and Web technologies

• Applications built and maintained by separate departments and business divisions that were not designed
or built using any consistent principles, and may or may not have integration points exposed.

• Multiple communication protocols and paradigms (i.e. synch and asynch) for interacting with different
applications

• Multiple data formats for the same, or similar data items that need to be accessed consistently or
reconciled for both read and update operations.

• Quality of service requirements inherent in existing applications, including security, transactionality,
reliability, and performance service levels of agreement that need to be met, sometimes expressed in
machine readable policies and configuration files

While OSGi has some of the capabilities in place for interaction with external systems, the requirements of
interacting with heterogeneous IT environments is often dictated by the requirements of the existing applications,
since they represent communications protocols, data formats, programming languages, software systems, and
qualities of service agreements already in place for the business.

http://www.uml.org/

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 9 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

3 Problem Description

3.1 From RFPs 79 & 88:
Sometimes the objective of the interaction between new OSGi based applications and existing applications will be
to perform retrieval and update operations directly on existing data resources. Other times the objective of the
interaction will be to use an existing or new program to serve as a proxy or intermediary for another program’s
data operations. Other times the objective of an interaction will be to request the execution of some business
logic, or to evaluate some data, or perform a complex calculation and return the results.

Independent of the interaction scenario, the services of the new OSGi based application need to be discovered by
potential clients running outside of the hosting OSGi platform.

The problem space, therefore, has the following characteristics:

• Local OSGi services are only accessible from inside the same OSGi platform execution environment.

• Remote OSGi services need to be discovered and accessible from outside of the OSGi platform
execution environment.

• Information about the distributed capability needs to be included in the registration and discovery of
remote OSGi services. A mechanism needs to be defined for plugging in or binding to different
communications protocols and data formats. A mechanism needs to be defined for plugging in or binding
to different data formats – the requirement here in both cases can also be stated as how to bind an OSGi
service to a transport layer and (potentially separately) a data format layer

• A mechanism that defines how to mix ‘n’ match communications protocols and data formats so that data
formats can be reused over multiple transports (e.g.. allow SOAP over JMS or binary over HTTP)

• Existing legacy systems need to be able to locate and access OSGi services of new applications

• Embedded applications need to interoperate with enterprise applications

• Besides the pure interface definition additional metadata needs to be available about the services that are
found remotely in order to assess their eligibility for reference binding. This metadata is part of the service
contract and may include non-functional requirements.

• A mechanism to download a remote service

• A mechanism to configure or plug in quality of service capabilities

• A mechanism to interact with external (i.e. remote) data resources

The requirements of interacting with existing heterogeneous IT environments is often dictated by the requirements
of the existing applications, since they represent communications protocols, data formats, programming
languages, software systems, and qualities of service agreements already in place for the business.

Another requirement centers on interoperability:

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 10 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

1. A service published remotely through OSGi implementation A should be accessible from another Service
that runs in OSGi implementation B.

2. Implementations A and B could be based on entirely different OSGi runtimes.
3. For a user of the OSGi runtime, it should be easy to identify that a certain OSGi runtime can interoperate

with another OSGi runtime by examining the service properties and any associated metadata. So let's say
the user already has an OSGi runtime that exposes its services using a certain wire protocol, e.g.
SOAP/HTTP. If the user starts using another OSGi runtime that says that it supports SOAP/HTTP they
should interoperate.

Whether or not an IDL or some other formalism like special use of Java Interfaces would be needed to satisfy this
is certainly a valid discussion point, but it would be good to try and solve it within the boundaries of Java
Interfaces, simply because this concept is already used in OSGi.

3.2 Scenario diagrams
Schematically, the problem domain centers on a solution to the following scenarios. Note that the non-OSGi
clients and servers mentioned may represent existing and legacy applications that typically can’t be modified.

The scenario illustrated in Figure 1 focuses on a client in one OSGi platform that needs to invoke on a Service
that lives in another OSGi platform. Both client and server might initially not be written to be distributed. However,
it may in certain cases be a possibility to tweak the client and/or service code to make them behave better in this
distributed scenario.

Note that in this case an implementation might choose to use an optimized protocol to communicate between the
OSGi runtimes. Note also, that if the same distribution software (e.g. ESB) is used in both service platform
instances, then the configuration required can also be optimized.

Proto
col

Client

ESB/ other
middleware

<Service>

OSGi Service Platform A

Proto
col

Server

ESB/ other
middleware

<Service>

OSGi Service Platform B

Databinding x
protocol y

QoS z0...zn
e.g. SOAP/HTTP,
CORBA/IOP, RMI,

binary

Figure 1 OSGi service consumer using a remote OSGi-service provider

A
ll P

age W
ithin This Box

The general use case of distributed OSGi is depicted in Figure 1. A client hosted in OSGi Service Platform A
wants to use a service provided by another bundle hosted in OSGi Service Platform B. Since this is a remote
service invocation spanning multiple framework processes (i.e., multiple JVMs), some intermediary bundle is
required in both service platforms to marshal and unmarshal the communication objects. This RFC describes the

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 11 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

mechanisms how to find and match client and server as well as how to implement the intermediary bundle to
enable the remote invocations.

It is the intent of this RFC to allow for any implementation of the distribution software as shown in the picture
utilizing any protocol for the communication, associating metadata with the service to indicate that it’s remotable,
and with which distributed software characteristics (as expressed using “intents”).

Note: As described in the requirements section, RFC 119 is also addressing the scenarios in which the client side
is hosted in a non-OSGi environment. In this case, the left side would be replaced by another client hosting
platform, e.g. .NET. Additionally, OSGi based clients should be able to remotely access services hosted in a non-
OSGi environment, which would mean that the right side is replaced with a different hosting platform.

3.2.1 Consumer Side
The following diagram illustrates the detailed scenario from the consumer side.

 optional

Disc
Protocol.

A

Discovery

OSGi Service Platform A

Distribution
software

Invoc.
Protocol.

(1a)

Spring/DS
iPojo, ...

(1b)(6b)

(3b)

(0)

(5)(6a) B (4)

(3a)

(2)

Figure 2 Service Consumer - in OSGi framework

Figure 2 shows the OSGi implementation in the client OSGi platform A. Bundle A is interested in Service B and
performs a lookup in the service registry (expressing the metadata intents it requires, if any (See Section 5.5.3 for
the definition of intents)) or uses a ServiceTracker to listen for events regarding Service B – step (1a). Service B
can have metadata properties associated with it to indicate that it’s accessible remotely. Optionally, a dependency
management mechanism such as Declarative Services, Spring based components (see RFC 124), or others
could perform the dependency checking and register such a listener (1b).

Step (2) in the diagram refers to RFC 126, service registry hooks (see also Section 5.4). It allows the distribution
software to register a hook in the service registry, which is called when a service is being looked-up or requested.

In the optional step (3a), the distribution software could use the service interface of the discovery service to
perform the lookup of Service B over the network. The Discovery service is an optional service on the requester
side and registers its service upon startup. Discovery allows for synchronous as well as asynchronous discovery
of services suitable for providing Interface B and meeting the requirements of Bundle A.

In step (4) the distribution software creates a local endpoint for the discovered provider of Service B. The
deployed protocol depends on the available protocols for Service B. (See discussion below for details about the
provider side.)

A
ll P

age W
ithin This Box

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 12 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

Step (3) is optional, because the distribution software may also acquire the information about Service B through
other means, such as static configuration (wiring) as part of its implementation, or using a local file (see Section
5.3.2).

The distribution software and the Discovery service do not have to come from the same vendor and adhering to
the OSGi specification allows for seamless integration of different discovery and distribution implementations.

In step (5), the distribution software registers the proxy with Interface B, which causes in step (6a) and (6b) the
service reference to be returned to the calling party or injected by the dependency mechanism.

3.2.2 Provider Side
The following diagram illustrates the provider side.

optional

Disc
Protocol.

B

Discovery

Distribution
software

Invoc.
Protocol.

Spring/DS
iPojo, ...

(1b)

(2)

(7)

(5)

(6)

(1a) B(1a)

OSGi Service Platform B

(3)

(4)

Figure 3: Service provider - OSGi framework

In Figure 3 it is shown how Bundle B inside the OSGi Service Platform B registers a Service B in step (1a),
including its metadata stating it’s remotely accessible and with which characteristics (i.e. any specified properties
and intents). Optionally, this step could also be performed by a dependency management mechanism such as
Declarative Services, Spring, or any other non-standard implementation (1b).

In step (2) the distribution software is notified about the registration of Service B and using additional information
provided by step (3) in which the extender model can obtain any intents). This could be done by an extender or
through properties as part of the registration of Service B. To make Service B reachable through a communication
protocol the distribution software creates a local endpoint for the supported protocol(s) in step (4).

The OSGi Service Platform B may optionally also have deployed a discovery bundle as specified in this RFC. The
discovery bundle registers is standard interface in step (5) and the distribution software is notified about the
presence of the discovery service in step (6). Using the discovery service, the distribution software may then
publish the information about the availability of Service B using any discovery protocol that the discovery service
supports.

A
ll P

age W
ithin This Box

Note: It is entirely possible and encouraged that there are 0..n different discovery bundles deployed in the OSGi
service platform. Multiple distribution software system types are also permitted.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 13 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

3.2.3 A non-OSGi distributed client using an OSGi service
Figure 5 shows a legacy client that needs to invoke a service provided by an OSGi service. The client is written in
a programming language such as C++ and uses a certain distributed protocol, such as SOAP/HTTP(S),
CORBA/IIOP or RMI to access this service.

C++
Client

SOAP/HTTP
CORBA/IIOP

RMI
ApplicationESB

Provider

<Remoteable
Service>

OSGi Service Platform

Figure 4 Remote non-OSGi service consumer using an OSGi service provider

As illustrated in Figure 4, a C++ client deployed in a runtime environment external to OSGi accesses a service
deployed in an OSGi platform using one of the communication protocols supported by a DSW deployed in the
OSGi platform.

Figure 5 illustrates additional detail of the OSGi runtime part of this scenario. While certain services could be
distributed, and are therefore marked with the publish metadata property, it is also possible for other services to
exist in the same OSGi platform that aren’t distributed. A co-located client would be capable of making a direct
invocation on services that are in the same OSGi platform regardless of their distribution status. Note, in doing
this, care must be taken to ensure that the possible change in call semantics (e.g. from remote pass-by-value to
local pass-by-reference in most cases) does not adversely alter the behavior of the service.

Proto
cols

Local
Provider

ESB/other
middleware

<Service>

OSGi Service Platform

Client

Figure 5 Service consumer uses a distributed but locally available service provider

Figure 5 illustrates the scenario in which a remote service call from an external environment passes the call to a
local OSGi service to invoke the actual service target from the remote invocation (and the actual service target
could itself be in a remote OSGi platform).

3.2.4 An OSGi client using a remote non-OSGi Service

A
ll P

age W
ithin This Box

Figure 6 illustrates how an OSGi client invokes a legacy service. The service is exposed using a particular type of
middleware, e.g. SOAP/HTTP, CORBA/IIOP, RMI, etc. The service is also identified within the OSGi environment
as remotely accessible using OSGi metadata (i.e. properties and intents).

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 14 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

C++
Server

Databinding x/
protocol y/

QoS z...
Client ESB/ other

middleware

<Service>

OSGi Service Platform

Figure 6 OSGi service consumer using a remote non-OSGi-service provider

An OSGi service client can access a service proxy created using a distributed software system that connects
remotely to a C++ server deployed in an external runtime environment, using a distributed communications
protocol and data format supplied by the DSW configured into the OSGi platform,

3.3 Roles
When creating a distributed application people with different roles are involved. This section describes the roles
relevant to this document.

Figure 7, Relationships Among Designer, Developer, Architect, Assembler and Deployer Roles

The following table shows how these roles collaborate with each other, which artifacts are required to perform the
tasks in these roles, and which artifacts are produced:

A
ll P

age W
ithin This Box

Solution Architect

Component Designer

Developer

Assembler

Solution Deployer

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 15 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Role Required Artifacts Performed Tasks Collaborates With Produced Artifacts

Solution Architect Application Requirements Analyses requirements

Defines SOA architecture

Defines the Service
Interface and some
properties

Solution Deployer

Component Designer

Solution Specification

Component
Requirements

Service Interface
Definition
(e.g. UML class diagram,
etc.) and property
definition (e.g.
remoteable)

Component
Designer

Component
Requirements

Service Interface
Definition and property
definition

Designs the service
implementation

Specifies the service
interface

Defines service-specific
properties, intents and
optional metadata

Solution Architect

Developer

Assembler

Component Specification

Service Interface
Specification
(e.g. WSDL file, IDL file,
etc.)

Definition of Service
Properties, intents and
optional metadata
(e.g. call by reference,
call by value, remoteable,
etc.)

Developer Component Specification

Service Interface
Specification

Definition of Service
Properties, intents and
optional metadata

Implements the business
logic

Defines implementation-
specific properties

Component Designer

Assembler

Components

Assembler Components

Definition of Service
Properties, intents and
optional metadata

Builds installable
packages

Creates service
properties (types and
defaults)

Components Designer

Developer

Solution Deployer

Bundles

Service Properties,
intents and optional
metadata
(i.e. bundle specific
property file or XML file
containing defaults)

Solution Deployer Solution Specification

Bundles

Service Properties,
intents and optional
metadata

Deploys and configures
the application

Provides solution specific
configuration properties

Solution Architect

Assembler

Application

Configuration Properties,
intents and optional
metadata
(e.g. communication
protocols, policies, etc.)

Note: within a role the members collaborate with each other, e.g. the component designer collaborates with other
component designers

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 16 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

3.3.1.1 Solution Architect
The Solution Architect is responsible for defining the functional and non-functional component requirements and
for providing the service interface definition. In addition he provides the solution specification to the solution
deployer.

He analyses the application requirements and models an appropriate SOA architecture in which functionality is
decomposed into services, which can be distributed over a network and can be combined together and reused to
create applications.

The solution architect divides the required functions of the application between the components and specifies this
architecture design in the component requirements in an informal manner. Furthermore he provides the service
interface definitions in form of UML diagrams, which hides the concrete technology used for the service interface
like WSDL for Web services, CORBA IDL, RPC IDL, etc.

3.3.1.2 Component Designer
The component designer is responsible for creating the service interface and for providing the component
specification, which specifies the design of the service implementation. In addition he provides the service-specific
properties, intents and optional metadata to the assembler and developer.

He works from the service interface definition provided by the solution architect, models the interface objects, e.g.
request/response objects, data types, exceptions, etc, and maybe with support of a tool he creates the service
interface, e.g. WSDL file, IDL file, etc.

The Component Designer also works with definitions of remote services to be consumed by the component.
These are provided by the solution architect and will consist of a service interface description (e.g. Java, WSDL,
IDL), and optionally service properties and intents. These remote service definitions may be defined by the
solution, or could be external interfaces dictated by a third-party.

Analyzing the component requirements the component designer specifies the design of the service
implementation in the component specification. He defines the service-specific properties, intents and optional
metadata inherently associated with the component, such as ‘org.osgi.remote.publish’, call by reference / call by
value semantics, required QoS, etc. He may define additional properties which depend on the concrete
environment the component is used in and thus needs to be provided at runtime.

3.3.1.3 Developer
The developer is responsible for building the components, which is a set of classes comprising the business logic
implementation, according to the component specification.

He works from the service interface provided by the component designer, codes the business logic and creates
the business data objects.

3.3.1.4 Assembler
The assembler is responsible for assembling the components into bundles, which are installable packages, and
for providing the defaults for service properties, intents and optional metadata.

He collects and validates the produced components and packages them appropriately together for an OSGi
bundle, e.g. by analyzing which services communicate with each other he decides to package bundles for service
consumers and service providers.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 17 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Based on the service property, intent and optional metadata definitions from the component designer and the
developer the assembler creates the service properties, intents and optional metadata by means of types and
defaults, and provides additional bundle specific properties, intents and optional metadata, e.g. reuse in multiple
applications, etc. These properties are supplied either in a property file, which are configuration values managed
as key/value pairs, or in XML files, specifying intents, bindings, policy sets and properties. (Depending on the
property file versus XML file discussion)

3.3.1.5 Solution Deployer
The solution deployer is responsible for deploying the application, which is a set of bundles that are coupled
together to perform the solution, and for providing distribution configuration.

He collects the OSGi bundles from the assemblers and configures the distribution software to distribute the
services by providing configuration properties, intents and optional metadata as required by the solution
specification, e.g. communication protocols to be used, policies which needs to be applied, etc. Additionally he
can identify a component as ‘remoteable’ even it was not previously marked as such.

The solution deployer analyses the whole solution for performance issues, and diagnoses errors at the
implementation / binding level.

Note: In the end the distribution software is responsible for providing a default for all those properties, intents and
metadata that were not set in the steps performed by the previously described roles.

3.3.1.6 Testing
Testing is part of each role and is accompanied by each produced artifact to ensure performance, robustness and
interoperability for the whole solution.

3.3.1.7 Runtime (Framework)
Controls the lifecycle of services and service dependencies (e.g. DS, Spring). Unresolved packages, class loading
issues are indicators for improper configuration by the solution deployer.

4 Requirements

4.1 From RFP 79
1. The solution MUST provide means to discover OSGi services from outside the OSGi platform. This

includes external clients as well as other OSGi services hosted in separate platforms.

2. The solution MUST support clients independent of the programming language and independent of the

location they are at.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 18 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

3. The solution SHOULD provide means to discover remote services through the local OSGi service registry

and standard OSGi mechanisms.

4. The solution MUST be independent of the implementation of the discovery protocol. Multiple

implementations must be possible in a single platform. It is understood that only those services will be

discoverable that are actually discoverable by the discovery protocol implementation, i.e. a SLP

implementation of the service discovery can only discover services that are advertised by SLP.

5. The solution SHOULD avoid or minimize the knowledge about the underlying implementation protocol of

the discovery by any service in the local OSGi platform.

6. The OSGi service registry SHOULD contain information about the discovered OSGi services. The

information available for the discovery as well as the registration and lookup SHOULD include

a. Supported communication protocol(s).

b. Meta-data about the OSGi service, defined by the service itself.

c. Provided Interface(s)

d. Quality-of-service information, e.g. transaction support, service specific policies, time constraints,

etc.

e. Transport information, e.g. support for IP V6

f. Version information of the interface

7. The solution SHOULD support an OSGi service registering multiple interfaces.

8. The solution SHOULD support multiple OSGi services registering the same interface.

9. The solution MUST only expose information about those OSGi services that want to be discovered from

external clients. Thus, NOT every OSGi service listed in the OSGi registry MAY automatically be included

in the discovery for external services.

10. The solution SHOULD provide for limited visibility of services in the registry based on security

mechanisms, e.g. authentication and authorization

11. The solution SHOULD ensure a reasonable response time for service lookup requests.

4.2 From RFP 88
1. The solution MUST enable interoperability between OSGi developed services (or components) and services (or
components) developed using non OSGi environments.
The interoperability would typically be provided through the use of existing distributed data bindings and protocols
such, e.g. SOAP/HTTP, CORBA/IIOP, JMS, RMI etc. Not all possible integrations need to be delivered, what is
needed is an extensible framework that can hold these. The Reference Implementation should come with at least
two implementations to prove the scenario and pluggability.

2. The solution SHOULD abstract protocols, data formats, and quality of service features in order to be easily
adaptable to communication protocols, data formats, and qualities of service found in existing enterprise
applications and software systems.
This means that the user code should not be required to be written against a particular type of protocol. This
should be abstracted.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 19 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

3. The solution SHOULD be compatible with multiple external programming languages and operating systems.
So it should allow interoperability with systems written in a variety of programming languages (e.g. C/C++, .NET,
Cobol, scripting languages) running on a number of operating systems such as Windows, UNIX, Mainframes.
Note that these external systems do not need to be running an OSGi platform. Interoperability would be provided
through the distributed databinding & protocol used.

4. The solution SHOULD be extensible for custom developed interoperability solutions (i.e. users can add their
own protocols, data formats, and quality of service extensions).

5. The solution SHOULD be configurable and understand policy expressions for the provisioning of the
interoperability solutions, especially including the quality of service features.
The policy information could be for example expressed as WS-Policy expressions which should give the
administrator the ability to define the distribution-related metadata in a declarative way.

6. The solution SHOULD support high availability and performance requirements typical of existing enterprise
systems.

7. The solution SHOULD bridge the OSGi context sharing mechanism with external context sharing mechanisms
(to support stateful failover, shared stateful sessions, etc.).

8. The solution SHOULD NOT introduce language specific, protocol specific, or quality of service specific
dependencies.

9. The solution for external access SHOULD be as consistent as possible with the solution for accessing internal
OSGi services, to minimize the amount of effort in moving from one to the other.

10. The solution SHOULD provide a consistent mechanism for simultaneously incorporating multiple protocols
and data formats.

11. The solution SHOULD provide a consistent mechanism for quality of service enhancements. .

12. The solution MUST make it possible, but not necessary, for developers to interact with the distributed
attributes of the system, such as distributed error conditions, and information around the data binding, transport
and QoS.
To give application developers the option to find out the distributed properties of the Service and also be capable
of detecting remoting-related specific error conditions if they wish to do so.

13. The solution MUST NOT prevent the use of asynchronous programming models if these are provided by the
transport used.
In other words, if the transport provides an asynchronous protocol such as JMS, CORBA one-ways or other
message queue or publish-and-subscribe model, it must be possible for the application programmer to take
advantage of this asynchronous nature.

14. The solution SHOULD support the capability for a developer to declaratively specify the configuration
requirements for a protocol layer.

15. The solution SHOULD allow a deployer to define wiring and configuration information for bundles and create
distributed solutions with minimal or no code changes.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 20 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

4.3 Further requirements
4.3.1 Levels of transparency

While it would nice to be able to turn an existing OSGi Service & Client into a distributed OSGi system without
making code changes, it cannot be required that distributed OSGi is entirely transparent. The distributed nature of
the system will introduce new scenarios (e.g. new failure scenarios) that were not relevant to non-distributed
OSGi. If the program wishes to, it should be allowed to interact with the distributed nature of the system.
Therefore, the following levels of transparency should be supported:

1. Completely transparent to the developer. No code changes needed in either Client or Service. Metadata
changes will probably be necessary at this level.

2. The programmer should be able to influence the lookup of the Service in the Client based on properties
provided in the metadata (e.g. transport, QoS, etc).

3. For any given distributed service it must be possible to find out what the distribution software is and obtain
additional metadata that describes the data binding, protocol and QoS.

4. It must be possible to preserve distribution software specific exceptions and handle them as before, if
desired. Another exception is defined to indicate a problem occurred in the mapping software.

5 Technical Solution

5.1 Overview of contributions to the OSGi standard
Distributed OSGi enhances the capabilities of the OSGi framework and opens deployment areas in the enterprise
market. This section summarizes the changes to the existing specification as of R4.1, and summarizes the
additional optional services in distributed OSGi Subsequent sections provide more details on each.

5.1.1 Summary of Changes to the OSGi Core
The following changes to the core OSGi specification are contained within this design:

• Adaptation of RFC 126 regarding service registry hooks. The proposed solution for this RFC requires the
ability to hook into the process of registration, see section 5.4

• Changes to the service programming model for distribution:

o Reserved properties starting with org.osgi. including:

 org.osgi.remote.publish – indicates that the provided service is to be made available
remotely, which implies that it is suitable for remote invocations.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 21 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 org.osgi.remote.intents – list of intents (format and syntax defined by SCA) provided by
the component designer and changeable by the deployer.

 org.osgi.remote.configuration.type – identifies the metadata type of additional metadata,
if any, associated with the service provider or consumer, e.g. “SCA”

o Metadata for configuring distribution software, which includes basic intents used when there’s a
single type of distribution software, and additional metadata when multiple types of distribution
software are required

5.1.2 Summary of Additional Services
The distributed OSGi mechanism presented in this RFC 119 is an optional component to an existing OSGi
Service Platform as described in the requirements Section 4. As such, the following new OSGi services are
proposed to be added to the compendium document of the OSGi specification.

• Distribution software – provides remote invocation capability over one or more protocols; takes care of
exposing a service remotely and also provides consumers of remote services with a local reference
(proxy) to invoke the remote service. The distribution software will preserve the OSGi service
programming model by making OSGi services available to external clients and allowing consumer
bundles written in OSGi to bind to external services through OSGi service registry mechanisms. See
Section 5.2 for further details.

• Discovery service – an optional service to locate OSGi based and non-OSGi services over the network
using any available protocol defined by the implementation. A special case of the discovery service may
be provided by the local OSGi framework. See Section 5.3 for further details.

5.2 Distribution software
5.2.1 Functionality

The distribution software is responsible for the actual network communication between a remotely available
service and its consumer, including the data format (i.e. serialization) and communication protocol.

When a consumer invokes on the remote service the distribution software knows how to marshal the arguments
and will then make the dispatch invocation on the remote entity. On completion it will unmarshal the response and
return to the caller.

On the provider (service) side, the distribution software knows how to make an OSGi Service available over the
network so that it can be invoked remotely. The distribution software may optimize on a particular distributed
computing protocol, which may require the OSGi Service Java interface to be mapped onto that technology.
Example target technologies include CORBA, RMI and Web Services technologies. However, this specification
also allows an implementation to use other protocols and bindings, including proprietary ones.

The distribution software is responsible for interpreting the distribution-related metadata on an OSGi service and
making the service available remotely if this is required by this metadata. This metadata can optionally include
instructions about the actual remote data binding and transport to be used, as well as requirements around
security, reliability, transactions and other Qualities of Service, depending on metadata type. Intents are in any
case used to help consumers discover compatible services.

If the DSW detects distributed OSGi metadata it has to configure a proxy for the service, set the appropriate
service properties (derived from the metadata), and register it with the discovery service.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 22 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

On the consumer-side, the distribution software is responsible for creating proxies to remote services so that they
can be invoked by the consumer, and supporting the filtering of services by the consumer to detect a remote
service, if desired.

The distribution software is responsible for interacting with the Discovery Service to register and subsequently
discover services that it has made available over the network. On the client side the Distribution Service will also
interact with the Discovery Service when it needs extra metadata for creating a proxy to the remote service.

Distribution software is an optional component in the OSGi framework that would typically be deployed as one or
more OSGi bundles.

The following diagram illustrates a possible solution to the design using Apache Felix as the OSGi platform and
Apache CXF as the distributed software.

Figure 8, Example Implementation of Distributed OSGi using Web services

A
ll P

age W
ithin This Box

As illustrated in Figure 8, distributed communications between OSGi platform instances can be achieved by
configuring a distributed software system such as Apache CXF into both client and server sides. In this example
Apache Felix is used as the OSGi Framework implementation, and CXF is loaded into the framework. On the
application side, common interface bundles are used, while consumer bundles are deployed on the client side and
service bundles are deployed on the server side. A service proxy on the client side performs the communication
with the remote endpoint deployed on the server side, which is created by CXF when the service is published.
The Discovery service can be used on the client side to discover the location and additional properties of the

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 23 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

remote service. In this example, the discover service references a metadata file in a directory local to the client,
but a remote Discovery service would access a remote discovery mechanism such as UDDI or LDAP.

5.2.2 Interface description
The requirements for the distribution software state that the mechanism of how it implements the remote
capabilities should not be defined in this document. Consequently, there is no mandatory functional interface to be
implemented by a distribution software solution.

On the other hand, the need for identification of the deployed distribution software, its capabilities and version was
raised and agreed upon. Therefore, any distribution software SHOULD implement the interface in Section 5.2.2.1
to return information about itself that is useful for identification and also in logging statements.

5.2.2.1 Distribution Software Interface
The distribution software implementation should be mandated to register a service in the local OSGi Service
Registry that implements a standardized interface, which allows for obtaining static information about the vendor,
version, etc. as well as dynamic information about the remote service proxies it has created, the protocols it
supports, and possibly other runtime statistics, which can be of value for a management console.

/**
 * Every Distribution Provider registers exactly one Service in the
 * ServiceRegistry implementing this interface. The service is registered with
 * extra properties identified at the beginning of this interface to denote the
 * Distribution Provider product name, version, vendor and supported intents.
 */
public interface DistributionProvider {
 /**
 * Service Registration property for the name of the Distribution Provider
 * product.
 */
 static final String PROP_KEY_PRODUCT_NAME =
 "org.osgi.remote.distribution.product";

 /**
 * Service Registration property for the version of the Distribution
 * Provider product.
 */
 static final String PROP_KEY_PRODUCT_VERSION =
 "org.osgi.remote.distribution.product.version";

 /**
 * Service Registration property for the Distribution Provider product
 * vendor name.
 */
 static final String PROP_KEY_VENDOR_NAME =
 "org.osgi.remote.distribution.vendor";

 /**
 * Service Registration property that lists the intents supported by this
 * DistributionProvider.
 */
 static final String PROP_KEY_SUPPORTED_INTENTS =
 "org.osgi.remote.distribition.supported_intents";

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 24 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 /**
 * @return ServiceReferences of services registered in the local Service
 * Registry that are proxies to remote services. If no proxies are
 * registered, then an empty array is returned.
 */
 ServiceReference[] getRemoteServices();

 /**
 * @return ServiceReferences of local services that are exposed remotely
 * using this DisitributionProvider. Note that certain services may be
 * exposed and without being published to a discovery service. This API
 * returns all the exposed services. If no services are exposed an empty
 * array is returned.
 */
 ServiceReference[] getExposedServices();

 /**
 * @return Local ServiceReferences of exposed services that are published
 * remotely to a discovery mechanism using this DisitributionProvider.
 * Note that certain services might be exposed without being published.
 * This API returns all the published service. If no services are
 * published an empty array is returned.
 */
 ServiceReference[] getPublishedServices();

 /**
 * Provides access to extra properties set by the DistributionProvider on
 * client side proxies given an exposed ServiceReference. These properties
 * are not available on the server-side ServiceReference of the published
 * service but will be on the remote client side proxy to this service.
 * This API provides access to these extra properties from the publishing side.
 * E.g. a service is exposed over SOAP and HTTP. Because of this, on the
 * client-side proxy the property org.osgi.remote.intents=”SOAP HTTP” is set.
 * However, these intents are *not* set on the original ServiceRegistration on
 * the server-side since on the server side the service object is a local pojo
 * that doesn’t get accessed over SOAP and HTTP if it was used from there. This
 * API provides access to these extra properties from the server-side.
 *
 * @param sr A ServiceReference of a published service.
 * @return The map of extra properties.
 */
 Map getPublicationProperties(ServiceReference sr);
}

5.2.2.2 Exception Handling
There will be a new type of exception for the ServiceException: REMOTE. This type of exception is thrown when
there is an issue with the distribution software used to covert between the protocol-specific and OSGi invocations.

When using a specific type of distribution software, the exception handling system must allow distribution software
specific exceptions to be captured and propagated to the client as if OSGi was not involved. For example, RMI
exceptions can still be reported.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 25 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

However since distributed OSGi is adding a mapping layer between a service and the distribution software, it’s
possible for an exception to occur within the mapping layer. The REMOTE exception is thrown to indicate a
problem in this area, not to indicate problem within the distribution software itself.

5.3 Discovery Service
The Discovery service is an optional service, which enables services running in a framework to be published for
remote consumers and the discovery of services running outside a framework. The Discovery service typically
accesses metadata external to the OSGi framework.

When the Discovery service publishes a service over its internal protocol it includes the additional metadata of the
service that is passed by the distribution software. This metadata is used for filtering of potential candidates.

5.3.1 Functionality
There are two models for sharing information about distributed services in a system. The ‘pull’ or ‘discovery’
model looks for services available in the network and can be performed eagerly (i.e. before anyone has asked for
the service), or lazily (i.e. triggered as part of a request to use the service). The ‘push’ model uses knowledge of
each service platform’s requirements to push down definitions of matching services.

Distributed OSGi supports the pull model in the optional Discovery Service but allows the ‘push’ model to be
supported as an implementation option, since it does not require any new APIs.

The Discovery service interface defines methods that allow the distribution software to actively discover services
based on filter criteria. In addition, the discovery service may provide an asynchronous notification mechanism,
which alerts interested clients about the availability of remote services.

The strategy and details of an implementation of the discovery service is left to the implementers. The design is
intended to be simple and flexible enough to allow for multiple different implementations to reside in the same
OSGi service platform concurrently. Each discovery service implementation is expected to provide one or multiple
discovery protocols, which are either well known (e.g. SLP, UDDI) or proprietary. Proprietary protocol
implementations allow for reuse of existing mechanisms while open standard implementations allow for better
integration with existing products in the enterprise market.

Distributed services in the sense of this document are described in the ServiceDescription class. The
content of this data container depends on the available information.

The distribution software on the service provider side passes the information about the service provider to the
discovery service. The distribution software calls the discovery method publish() to make the service
discoverable by other OSGi service platforms as well as other external clients capable of understanding the
protocol of the discovery service implementation. The information about the service may only contain those
bindings that the distribution software is able to service. In the case of multiple distribution software
implementations in the same platform, multiple invocations of publish() may occur with different bindings. Figure
9 illustrates how multiple discovery services could be used by the distribution software to publish a service to
more than one type of discovery mechanism (such as SLP and UDDI).

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 26 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

UDDI

B

Discovery
UDDI

Distribution publish(B)

B

JGroupsDiscovery
SLP/JGroups

SLP

Figure 9: OSGi service published over multiple protocols

By implementing a discovery protocol of any open standard, the discovery is not bound to OSGi services alone.
This allows discovery of services implemented and offered in different technologies like .NET, and web services
using SOAP/HTTP(S). Likewise, OSGi services are published using the standard protocol to clients built on other
technologies than OSGi.

5.3.2 Discovery using a local file(s)
The discovery mechanism for metadata in a local file or directory was born from the 'I want to connect to a Google
Service' use-case. Basically, a mechanism is needed to specify that the details of a service without this
information having to access an external discovery service.

The file based discovery service is used in exactly the same way as the External Discovery service, except that it
is not based on a real discovery service that lives somewhere else, but populated by information in bundles that
are part of the local OSGi installation (it could also be configured using other information, e.g. using the Config
Admin Service).

The file based service uses the extender model to check bundles for the existence of a remote-services.xml
file and if such a file is found it would register discovery information about those services the same way as if it had
discovered the service using a remote discovery mechanism. The information registered is exactly the same as
the information an external discovery service would hold.

The following is an example of such a file:

<?xml version="1.0" encoding="UTF-8"?>
<service-descriptions xmlns="http://www.osgi.org/xmlns/rs/v1.0.0">
 <service>
 <provide interface="com.iona.soa.pojo.hello.HelloService"/>
 <property name="org.osgi.remote.intents">SOAP HTTP</property>
 <property name="org.osgi.remote.configuration.type">pojo</property>
 <property
name="org.osgi.remote.address">http://localhost:9000/hello</property>
 </service>
 <service> A

ll P
age W

ithin This Box

 <provide interface="com.iona.soa.pojo.hello.GreeterService"/>
 <property name="org.osgi.remote.intents">SOAP HTTP</property>
 <property name="org.osgi.remote.configuration.type">pojo</property>

http://www.osgi.org/xmlns/rs/v1.0.0
http://localhost:9000/hello

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 27 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

 <property
name="org.osgi.remote.address">http://localhost:9005/greeter</property>
 </service>
</service-descriptions>

Note that this XML file is only an example to illustrate the type of format that could be used to contain distributed
service metadata in a local file. What’s important is the service interface name(s) and associated properties.

The solution should use a folder named “OSGI-INF/remote-services” and parse all files in this folder per
default (i.e., adopt the Spring model).

The location for the service description folder location and individual files within it (represented using a comma-
separated list) can be overriden by a specific header named “Remote-Service”. Multiple headers are allowed.
Use the Spring approach for the path specification in the header (e.g. wildcard support, etc.)

If the header contains a PID (bundle symbolic name + version) then it would also be possible to obtain the
metadata from Config Admin to configure the service descriptions (but not the location).

5.3.3 Discovery Service Federation and Interworking
This section describes potential scenarios for the use of the discovery service. The implementation of a discovery
service may vary depending on the distributed software system involved. These scenarios are intended to
illustrate desirable use cases for using the discovery service to fulfill enterprise requirements.

discovery
service w/ global

cache
d1

discovery
service

d2

discovery
service

d3

via transitivity
services are
found over SLP
and JCS

SLP

JCS

SLP + JCS

Figure 10: multiple discoveries over different protocols

The possible interaction of multiple OSGi service platforms over the discovery mechanism is shown in Figure 10.
Since the discovery service implementation is not specified, it is possible that multiple different protocols may be
deployed simultaneously. An implementation that maintains a cache of service information over all services
discovered in a network, allows for building a transitive hull over the discovery mechanism. Thus, two OSGi
service platforms may discover and reference each other even though there is no common protocol used in the
discovery process.

A
ll P

age W
ithin This Box

The Discovery service implementation should not publish those services that it has discovered from other
discovery instances over the network. This could lead to infinite loops. However, a Discovery service
implementation should answer a request over network if it is aware of a suitable instance through its cache. This
may include services discovered remotely.

http://localhost:9005/greeter

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 28 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

distribution
software

ds1

discovery
service

d1

discovery
service

d3

discovery
service

d2

discovery
service

d1,2,3
Figure 11: possible discovery service implementation

As shown in Figure 11, an implementation of the Discovery service interface may combine the implementation of
multiple different protocols in a single bundle or provide separate bundles for different discovery protocols. This
RFC does not make any assumption about the design choices.

5.3.4 Useful Discovery Service Properties
The following properties are defined for the Discovery service as hints to the implementation based on common
use case requirements. An implementation is not required to honor an optional property. It would be helpful to the
user of the discovery service to be able to cache service descriptions and auto publish them, for example, but
these capabilities are not mandated.

• org.osgi.discovery.strategy.cache -.[global|local]: the value ‘global’ instructs the service implementation to
try and cache all information about services it has discovered so far, local as well as remote. The
feasibility of this strategy depends on the implemented discovery protocol. If the implementation is not
able to get notified for services availability changes then it may only rely on the (stale) information it has
already received. The value ‘Local’ instructs the service implementation to cache all service information it
has seen in a local storage. This is mainly for faster retrieval.

• org.osgi.discovery – [none|auto-publish]: The default value ‘auto-publish’ instructs the Discovery service
implementation to immediately actively push the service information to the network. The value ‘none’
would make the Discovery service wait for requests from the network before the service information is
published.

5.3.5 Interface description

5.3.5.1 Java interface description
Discovery service
public interface Discovery {

A
ll P

age W
ithin This Box

final String ORG_OSGI_DISCOVERY = "org.osgi.discovery";
 final String ORG_OSGI_DISCOVERY_NONE = "none";
 final String ORG_OSGI_DISCOVERY_AUTO_PUBLISH = "auto-publish";

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 29 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 /**
 * Add a ServiceListener
 *
 * @param listener
 */
 void addServiceListener(ServiceListener listener);

 /**
 * Remove a ServiceListener
 *
 * @param listener
 */
 void removeServiceListener(ServiceListener listener);

 /**
 * Compares the given ServiceDescription with the information in the local or global cache
(depending on the
 * cache strategy set in the properties of the Discovery implementation).
 * The ServiceDescription is matched using the Comparable interface.
 * @param serviceDescription
 * @return true if a service matching the given serviceDescription is found in the local
cache
 * @throws IllegalArgumentException if serviceDescription is null or incomplete
 */
 boolean isCached(ServiceDescription serviceDescription);

 /**
 * Returns an array of all ServiceDescription objects currently known to the Discovery
implementation.
 * @return An array of ServiceDescription objects. An empty array is returned if no service
description
 * was found.
 */
 ServiceDescription[] getCachedServiceDescriptions();

 /**
 * Find a service based on the provided service description. The match is performed through
the Comparable interface
 * entation of ServiceDescription. implem
 * @param serviceDescription ServiceDescription of the service to locate
 * @return Collection of ServiceDescription objects matching the service that was found to
satisfy the find criteria.
 * The Collection may be empty if none was found
 * @throws IllegalArgumentException if serviceDescription is null or incomplete
 */
 Collection findService(ServiceDescription serviceDescription);

 /**
 * Find a service based on the provided service description and filter.
 * Discovery implementations might choose to not support this method if the discovery
protocol doesn't support filtering.
 * The match is performed through the Comparable interface implementation of
ServiceDescription.
 * @param serviceDescription ServiceDescription of the service to locate.
 * @param filter an LDAP filter which the service has to satisfy.
 * @return Collection of ServiceDescription objects matching the service that was found to
satisfy the find criteria.
 * The Collection may be empty if none was found
 * @throws IllegalArgumentException if serviceDescription is null or incomplete
 * @throws UnsupportedOperationException if method is not supported by the implementation
 */
 Collection findService(ServiceDescription serviceDescription, String filter);

 /**
 * Asynchronous interface to initiate the search for an suitable service based on the
provided ServiceDescription.
 * The ServiceDescription is matched using the Comparable interface.
 * @param serviceDescription ServiceDescription of the service to locate

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 30 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * @param callback Listener object to notify about the asynchronous response of the find
operation
 * @throws IllegalArgumentException if the serviceDescription is null or incomplete
 */
 void findService(ServiceDescription serviceDescription, ServiceListener callback);

 /**
 * Asynchronous interface to initiate the search for an suitable service based on the
provided ServiceDescription and filter.
 * Discovery implementations might choose to not support this method if the discovery
protocol doesn't support filtering.
 * rviceDescription is matched using the Comparable interface. The Se
 * @param serviceDescription ServiceDescription of the service to locate
 * @param filter an LDAP filter which the service has to satisfy.
 * @param callback Listener object to notify about the asynchronous response of the find
operation
 * @throws IllegalArgumentException if the serviceDescription is null or incomplete
 * @throws UnsupportedOperationException if method is not supported by the implementation
 */
 void findService(ServiceDescription serviceDescription, String filter, ServiceListener
callback);

 /**
 * Publish the provided service. The information is published by the Discovery
implementation.
 * If the property osgi.discovery = auto-publish, the Discovery implementation actively
pushes the
 * information about the service to the network. Otherwise, it is just available upon
request from other
 * Discovery implementations.
 * The ServiceDescription is matched using the Comparable interface.
 * @param serviceDescription ServiceDescription of the service to publish
 * @return true if the service was successfully published.
 * @throws IllegalArgumentException if serviceDescription is null or incomplete
 */
 boolean publish(ServiceDescription serviceDescription);

 /**
 * Publish the provided service. The information is published by the Discovery
implementation.
 * If the parameter autopublish=true, the Discovery implementation actively pushes the
 * information about the service to the network. Otherwise, it is just available upon
request from other
 * Discovery implementations.
 * rviceDescription is matched using the Comparable interface. The Se
 * @param serviceDescription ServiceDescription of the service to publish
 * @param autopublish if true, service information is actively pushed to the network for
discovery
 * @return true if the service was successfully published.
 * @throws IllegalArgumentException if serviceDescription is null or incomplete
 */
 boolean publish(ServiceDescription serviceDescription, boolean autopublish);

 /**
 * Make the given service un-discoverable. The previous publish request for a service is
undone. The service
 * information is removed from the local or global cache.
 * rviceDescription is matched using the Comparable interface. The Se
 * @param serviceDescription ServiceDescription of the service to unpublish
 * @throws IllegalArgumentException if serviceDescription is null or incomplete
 */
 void unpublish(ServiceDescription serviceDescription);

}

ServiceListener

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 31 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

public interface ServiceListener {
 /**
 * Callback indicating that the specified service was discovered and is known to the calling
Discover ementation. y impl
 * @param serviceDescription
 */
 void serviceAvailable(ServiceDescription serviceDescription);

 /**
 * Callback indicating a change in the service description of a previously discovered service.
 * @param oldDescription previous service description
 * @param newDescription new service description
 */
 void serviceModified(ServiceDescription oldDescription, ServiceDescription newDescription);

 /**
 * Callback indicating that the specified service is no longer available/
 * @param serviceDescription ServiceDescription of the service that is no longer available
 */
 void serviceUnavailable(ServiceDescription serviceDescription);
}

ServiceDescription
public interface ServiceDescription extends Comparator {
 /**
 * @return The service interface name
 */
 String getInterfaceName();

 /**
 * Getter method for the property value of a given key.
 *
 * @param key Name of the property
 * @return The property value, null if none is found for the given key
 */
 Object getProperty(String key);

 /**
 * @return <code>java.util.Collection</code> of the property names
available in the ServiceDescription
 */
 Collection keys();

 /**
 * @return Returns all properties of the interface as a
<code>java.util.Map</code>.
 */
 Map getProperties();

}

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 32 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.4 Service Registry Hooks
5.4.1 Registration of Remote Services in Local Service Registry

In the OSGi specification R4.1 the Service Registry serves as a central entity where one could register (locally
available) services as well as search for them. Reusing the same mechanism for remote services would help to
stay as much as possible in the established OSGi programming model and hence help developers in adopting the
new capabilities coming with RFC 119. Using the Service Registry for both, local and remote, services offers also
a certain degree of transparency for service providers and consumers.

The implementation of RFC 119 uses the ListenerHook as defined in RFC 126. This allows the distribution
software to be informed when a consumer is looking for a service that potentially is not available in the local
container (yet) and may therefore be discovered in the network.

5.4.2 Additional filtering
If additional filtering to what service consumers specify in their LDAP filter is required, this can be achieved by
installing a FindHook as described in RFC 126. A FindHook allows the implementor to restrict the visible set of
services for one or more bundles. A possible use for the FindHook is to prevent a particular bundle from seeing
remote services if use of remote services is not desired for this bundle.

For further details regarding the specification of this Service Registry Hook see RFC 126 [5].

5.5 Service Programming Model
Sharing of a common service contract between service consumers and providers is fundamental for their
interaction. Typically a service contract consists of two parts:

• Description of the functionality the service provider offers. That’s mostly expressed by a service interface
description e.g. a Java interface and the service’s documentation.

• Description of the non-functional or quality of service (QoS) requirements regarding the way the agreed
functionality is provided e.g. data has to be encrypted, call semantics.

An important point for RFC119 is its explicit support for dynamic wiring. In contrast to static wiring, where the
concrete communication partners as well as their service contract are known beforehand (at the latest at
deployment time) dynamic wiring allows service consumers and providers to establish contracts at runtime based
on some criteria e.g. interface, supported communication protocols, or a set of QoS requirements (typically
expressed using intents). An actual service contract results from requirements of a service provider and consumer
as well as from the capabilities of distribution software on both sides.

The following types of metadata have been defined for service contracts:

• Service interface – describes the functionality of a service.

• Properties – provide information about the service object.

• Intents – state abstract requirements on service provider and consumer capabilities.

The above metadata may be sufficient when using the same distribution software on both client and service
provider. To facilitate portability of configuration and interoperability in the case where multiple DSW are
deployed, a service can be optionally configured using additional SCA metadata (see section X [tbs]). Other

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 33 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

metadata forms are also permitted (standard or proprietary), through an extensibility mechanism but their
integration into OSGi is not defined.

In the following sections each type of metadata will be described as well as their interdependencies. Intents can
be part of the bundle manifest.mf, an xml file within a bundle, or service configuration data

5.5.1 Service interface description
The service interface description defines the functionality, which a service provides. A service interface is the
most basic service metadata and has to be well known by both interaction partners.

For RFC 119 a service interface is defined using a Java interface. The Java interface is typically used to derive a
DSW interface, and some restrictions on the Java interface are therefore necessary to ensure compatibility across
multiple DSW types (see Section 5.7).

5.5.2 Properties
Property – a property of a service is used to describe it while registering it in OSGi service registry. For more
details on service properties please refer to OSGi 4.1 core specification chapter 5.2.5.

Service properties can be provided statically by the bundle code and/or dynamically as configuration data that is
used during the service registration, for example using the Configuration Admin service of OSGi R4.

Note that the properties defined in this section are for use with remote services only.

5.5.2.1 Definition of new Properties
Any custom service property can easily be defined. Please refer for more details to OSGi 4.1 core specification
chapter 5.2.5. These have no bearing on the distribution of a service.

5.5.2.2 Standard Properties
• org.osgi.remote.publish – [“*” | comma-separated interface name list]: A distribution software

implementation may create and register a binding for a service, if and only if the service has indicated its
intention as well as support for remote invocations by setting this service property in its service
registration. If the property value is set to “*”, all of the interfaces specified in the
BundleContext.registerService() call are being exposed remotely. The value can also be set to a comma-
separated list of interface names, which should be a subset of the interfaces specified in the
registerService call. In this case only the specified interfaces are exposed remotely.

• org.osgi.remote.intents – optional list of intents defined by the component designer and changeable by
the deployer

• org.osgi.remote.configuration.type – identifies the metadata type of additional metadata, if any, that was
provided with the service provider or consumer, e.g. “SCA”

Because distributed OSGi is designed for compatibility with existing distributed software systems, only the
org.osgi.remote.publish property is required. When a DSW encounters this property it knows that more
metadata is required to deploy the service, and uses one of the discovery service mechanisms to obtain it.

The intents property optionally defines the QoS capabilities that a published service provides, and allows a
service requester to filter remote services according to its desired QoS capabilities.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 34 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

The configuration.type optionally defines portable metadata to address the requirement for consistence
across multiple DSW types, for the case in which multiple DSW types are involved.

The following example illustrates a potential XML file that could be used by Declarative Services to register the
properties for distributed OSGi capability. This file would be installed through a bundle and identified by the
bundle’s Service-Component manifest header:

<?xml version="1.0" encoding="UTF-8"?>
<component name="OrderBeerService">
 <implementation .../>
 <service>
 <provide interface="org.beer.OrderBeerService" >
 <property name="org.osgi.remote.publish">*</property>
 <property name="org.osgi.remote.intents">confidentiality</property>
 <provide />
 </service>
</component>

The example illustrates the org.osgi.remote.publish and org.osgi.remote.intents properties
specified for the OrderBeerService, which are associated with its interface. The confidentiality intent
specifies the capability of the service to support encryption, such as through HTTP or IIOP/SSL.

5.5.3 Intents
An intent is an abstraction of a distributed computing capability that can be used to provision and select services.
An intent describes one or more requirements of a service provider and consumer on a service published by the
distribution software in use.

An intent is a high-level, generic statement of ‘what’ a consumer may require of a provider. An intent is also a
statement of what can be required of a deployer by a developer. An intent is associated with a service during
deployment and can be used as a filter by a service consumer during the service discovery operation. When using
an intent to filter a service, the consumer expects that the DSW has implemented the specified intent. The
definition of intents comes from SCA but OSGi developers can also define their own intents, and any intent can be
mapped by a given DSW to a DSW specific mechanism to fulfill the intent. Examples include intents for a reliable
communication protocol, secure transmission, or a specific binding type.

The intent syntax is defined by the Service Component Architecture (SCA) and is extensible. This RFC references
the SCA intents, defines an intent, and describes how to define additional intents.

A service requester can use an intent to help select a compatible service provider, and a service provider can use
an intent to provision and deploy a service that advertises the intent.

When the same type of distributed software system is configured for both requester and provider, the DSW is not
required to use the SCA mechanisms for defining the concrete instantiation of the intents, as long as its abstract
meaning can be fulfilled by the DSW using another, similar mechanism. For example, instead of using WS-Policy
as SCA does, a CORBA DSW might use CORBA policies. Any distribution detail undefined through intents or
additional metadata is left to DSW and its (default) configuration. By default, no intents are attached to a service.

The advantage of this Intents-based approach is that designers and developers can easily state requirements on
service exposure or service reference (proxy) without the need to understand the complexities of mechanisms
actually provided by the distribution software.

Intents may be provided by the component designer or by the deployer through configuration, i.e. Configuration
Admin service, and used by the requester to select a service. For example, if a service requester requires

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 35 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

‘integrity’, only services which have been given the integrity intent (and provisioned accordingly) will be returned
by the distribution software.

Intents are listed in a service property named org.osgi.remote.intents.

5.5.3.1 Example of using Intents
The example below shows how the ‘confidentiality’ and the ‘reliable’ intents can be added to an example
OrderBeerService. This might be desirable in order to prevent people snooping on messages and in order to
ensure that orders are not lost. These would typically be implemented using encryption and a reliable transport,
respectively.

The following example shows how a OrderBeerService requires a BeerWarehouseService which is also
available over a reliable transport, expressed using the reliable intent.

Example XML file used by Declarative Services:

<?xml version="1.0" encoding="UTF-8"?>
<component name="OrderBeerService">
 <implementation .../>
 <service>
 <provide interface="org.beer.OrderBeerService" >
 <property name="org.osgi.remote.publish">*</property>
 <property name="org.osgi.remote.intents">
 confidentiality
 reliable
 </property>
 <provide />
 </service>
 <reference .../>
 <reference name="BeerWarehouseService"
 interface="org.beer.BeerWarehouseService" />
</component>

The example illustrates that the service reference to BeerWarehouseService filters the remote service using
the reliable intent.

5.5.3.2 Defining Intents
An intent is string with an associated abstract meaning (see Section 5.5.3.4 for the list of SCA defined intents).
Their definition can be as simple as choosing a string name and documenting its meaning so that it can be shared
between the various roles involved in creating the distributed system. Any user of Distributed OSGi is free to
define custom intents using the mechanism defined in Section 5.5.3.4.

5.5.3.3 OSGi-defined Intents
OSGi defines one intent, ‘passByReference’, to allow services to specify whether they require by-reference call
semantics.

• passByReference - states that the service requires pass-by-reference semantics. This restricts the
subset of usable bindings to those that support pass-by-reference semantics, such as RMI.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 36 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

• passByValue – states that the service requires pass-by-value semantics. This restricts the subset of
usable bindings to those that support pass-by-value semantics.

When this intent is not used, the pass-by semantics are determined by the DSW.

5.5.3.4 SCA-defined Intents
SCA defines a set of intents (strings and their associated abstract meaning). OSGi re-uses these intent
definitions where appropriate (e.g. for defining service contracts QoS such as ‘confidentiality’, or specific protocol
requirements such as ‘soap.1_1’). Below are examples from the SCA Policy Framework specification (add ref).
Note, the ‘.’ is used to define ‘qualified intents’ which are described in more detail in section 5.5.3.5.

• authentication

o authentication.message

o authentication.transport

• confidentiality

o confidentiality.message

o confidentiality.transport

• integrity

o integrity.message

o integrity.transport

• reliability

• ordered

SCA also defines a schema for adding new intents. A Distribution Software may choose to support this schema
as a mechanism for adding new intent definitions.

The SCA pseudo-schema for intent definition is as follows:

<intent name="NCName"
 constrains="listOfQNames"
 requires="listOfQNames"? >
 <description>
 <!-- description of the intent -->
 </description>
</intent>

Where

• @constrains: specifies the construct that this intent is meant to apply to.
• @requires: defines the set of all intents that the referring intent requires. This allows intents to be

composed out of other intents.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 37 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

The following example shows a new intent called ‘communicationProtection’ which combines the
‘confidentiality’ and ‘integrity’ intents. Its purpose is to ensure the communications cannot be viewed or tampered
with:

<intent name="communicationProtection"
 constrains="binding"
 requires="confidentiality integrity">
 <description>
 Ensure that communications cannot be seen or tampered with by
 unauthorized personnel.
 </description>
</intent>

5.5.3.5 Qualified Intents
An intent and the meaning it conveys can be specialized using a concept known as ‘qualified intents’.

Example: Intent ‘confidentiality’ can be further qualified by extending it to ‘confidentiality.message’ and would
mean that ‘confidentiality’ should be realized at the message level of the communication protocol e.g. by
encrypting the messages. An alternative specialization of the intent ‘confidentiality’ might be
‘confidentiality.transport’ meaning that confidentiality should be realized through an encrypted
transport.

Since qualification of intents is a specialization an intent ‘confidentiality.message’ always fulfills the intent
‘confidentiality’ but not necessarily the other way round.

Qualification of intents is a recursive model so qualified intents may be qualified again e.g.
‘confidentiality.message’ to ‘confidentiality.message.body’.

Please look at [6] for further details on qualified intents.

5.5.3.6 Publishing of Qualified Intents
When publishing a service with qualified intents, the Distribution Software must make sure to list all appropriate
intents for service selection. There are two aspects to this:

1. If service has originally provided a qualified intent, then Distribution Software should list also all more
general intents. A qualified intent is a specialization which means that a client looking for the more
general intents should find a match. For example, ‘confidentiality.message’ would be published
as ‘confidentiality confidentiality.message’ so that a client which does not care how
confidentiality is provided will match the service which specifically provides it through the messages.

2. If service has originally provided a general intent and Distribution Software has implemented it according
to a qualified version of that intent then it should list also all the applicable qualified intents in addition to
the original general intent. For example service which initially stated ‘confidentiality’ should be
published as ‘confidentiality confidentiality.message’ if Distribution Software implemented
‘confidentiality’ at the message level. So clients looking directly for qualified intents can also be
served.

5.5.4 Configuration type

The configuration type identifies the metadata used to describe additional DSW capabilities beyond intents, such
as explicit communication protocol and data format bindings and quality of service policies. The main example in

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 38 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

RFC 119 is SCA, but since RFC 119 is designed to support multiple DSW types, other metadata can be used and
associated with additional configuration types.

The configuration type property is a URL relative to the JAR of the bundle (i.e. it’s a resource in the bundle). Any
sub-properties such as the protocol type property can be represented either as a singleton or as an array.

In general, metadata in a configuration type can be used to create a machine-readable description of a remoted
service. This description can be compared with other descriptions for compatibility (i.e. is the service provider
compatible with the service requester). That is, do they support the same communication protocols, encryption
mechanisms, etc.

Service descriptions can be matched for compatibility initially at the intent level (i.e. intents can be compared for
compatibility) but if the configuration type property is present and indicates additional metadata is available, it
should be possible to perform an additional level of comparison for compatibility on the additional metadata.

If multiple matches are returned, matches based on intent properties are ranked higher than matches found using
additional metadata. It should also be possible to rank services using a comparator.

5.6 Collaboration of new and changed entities
5.6.1 Interactions on the service provider side

5.6.1.1 Exposing a Service remotely

Figure 12: Server side service registration

A
ll P

age W
ithin This Box

How the service B is registered in the OSGi framework and then made available for remote access is shown in
Figure 12. The important part in the picture is that the interface B is augmented with additional metadata or
service contract information, which enables the distribution software to pick the appropriate protocol for the
service binding and publish the service availability and QoS parameters using the Discovery service. The service
metadata is obtained from the providing bundle and service properties that are part of the service registration. The
details about the metadata are explained further in section 5.5.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 39 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

5.6.1.2 Service Unregistration
The following figure depicts the flow of events in the case that a previously discovered and bound service B
becomes unavailable. The scenario assumes that the Discovery Service is informed about the fact that the remote
service is no longer a valid reference.

Figure 13: Unregistration of a service interface

A
ll P

age W
ithin This Box

Proxies to remote services which were configured from a locally installed bundle (e.g. through a local discovery
service) are removed from the registry when the bundles which contributed them are stopped. It is the
Distribution Software’s responsibility to ensure any proxies associated with the metadata are unregistered.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 40 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

5.6.2 Interactions on the service consumer side

5.6.2.1 Lookup for a remote Service

Figure 14: Client side service lookup

In Figure 14 is shown what happens on the service consumer side, if the consumer is hosted in an OSGi platform.
The distribution software is using the optional Discovery service to locate an implementation of service B, which
satisfies the requirements specified in the service lookup. If found, the distribution software creates a proxy for the
available protocol (binding) that implements the service interface as well as the required Qualities of Service. This
proxy is then registered in the local OSGi service registry and returned to the service consumer via the callback.
Proxy’s properties reflect all concrete distribution-related service metadata like used binding, applied policies,
service’s host etc..

On any subsequent lookup for the same interface this proxy may also be returned to other bundles provided that
it’s capable to fulfill their QoS requirements as well.

Note: The proxy implementation is entirely left to the distribution software.

5.6.2.2 Service invocation
Service invocation is exactly the way it is today with local OSGi services. The exception to this is that an
invocation that goes to a remote service can potentially throw a new RuntimeException:
org.osgi.framework.ServiceException with as exception type REMOTE in the event there is a problem
with the remote invocation. This exception can wrap any distribution technology-specific exception.

A
ll P

age W
ithin This Box

As the new exception is a RuntimeException, existing code is not required to check for it, however, distribution-
aware code has the option to catch it and react appropriately.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 41 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.6.3 Interactions with Non-OSGi service providers and consumers
[tbs]

5.6.4 Lifecycle dynamics
Activation of distribution software - When a distribution software becomes installed and activated, it should check
for:

• any services that are already in the OSGi Service Registry and need to be exposed remotely

• any active bundle which contains unresolved references to remote services. Metadata describing the
service may also already exist, being provided manually and not via Discovery Service, and should be
used appropriately.

Deactivation of distribution software - Discovery services should propagate any resulting changes of service
availability. The distribution software should unregister any proxies it has registered in the OSGi registry.

Activation of a discovery service – Distribution software should check for any active bundle having unresolved
references to remote services and try to resolve them with the help of the new Discovery Service.

Deactivation of a discovery service – no special actions are required. The administrator should be aware that this
will mean the framework will not be notified when previously discovered services become unavailable.

Changes of service metadata at runtime -

Changes to defined as well as optional metadata are theoretically possible e.g.

- for defined metadata: value of a property is changed via CAS, intent/policySet was changed/removed

- for optional metadata: new distribution sw providing additional bindings has started

It would make sense to restrict changes on defined metadata if service has already consumers because the
consumer might have done his service provider choice based on that metadata (service contract!). For the same
reasons could the removal of optional intents be critical (because they got used).

Additionally, new distribution software and/or distribution configuration can be added after the service was
registered which can cause the registered service to then be distributed.

It is possible for the same distribution software to be configured to expose the service over multiple protocols, or
for different distribution software types to expose the same service over the same or different protocols.

5.7 Best Practices
This section is non-normative.

5.7.1.1 Runtime (Framework)
Controls the lifecycle of services and service dependencies (e.g. DS, Spring). Unresolved packages, class loading
issues are indicators for improper configuration by the deployer. Runtime enforces policies defined by the
architect and solution designer to guarantee appropriate match up of consumer and producer.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 42 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.7.2 Distribution-related limitations on service interface definitions
In OSGi, service interfaces are defined using Java interfaces. When exposing a service over a remote protocol,
typically such an interface is mapped to a binding-specific interface definition which is then used to advertise the
interface of the service. To make sure such a mapping to a distribution protocol would work, a few things should
be taken into consideration, with regard to interface definition of remote services.

So it will probably be necessary to put some constraints on the possible usage of data types in service interfaces
in order to be able to expose them over remote interfaces. As an example, an interface that has a
java.lang.Object as an argument will probably not be allowed. The exact boundaries of the data fencing will need
to be defined and it would be nice if a tool could or clear methodology could be defined that would allow the
developer to test whether the interfaces at hand satisfy this requirement.

In general, the following rules should be adhered to. The Service interface should be defined in terms of:

 Basic Types: byte, short, int, char, long, float, double, string
 Arrays: of basic types or a complex type which is part of the interface
 Complex types that are aggregations of the above.
 [do we need to add more?]

The above is sometimes referred to as ‘Data Fencing’.

Additionally, because most distribution transports use pass-by-value semantics, a developer should take care not
to depend on any pass-by-reference semantics. In other words, if the caller passes an object to the Service and
the Service modifies that object or makes an invocation on that object that causes a modification as a side-effect,
the remote caller will not see this modification. Distributed Services should avoid such semantics.

The inverse is also an area where a developer should take care. For example, if a developer codes to a service
interface assuming pass-by-value and therefore makes modifications to data which is passed in from a client or
returned from a service, these modifications may become visible in the event the client and service are located in
the same framework instance.

An implementation of Distributed OSGi could provide a tool that checks these constraints on your services and
therefore informs the developer about the suitability for distribution.

5.7.3 Connector
[tbs]

5.7.4 Caching
[tbs]

5.7.5 Automated Service discovery
[tbs]

5.7.6 Bundle organization
For an OSGi client to be able to communicate with a remote Service, it will need access to a Java interface for the
service. When the Service is implemented as an OSGi bundle, the easiest way to achieve this is to put the
interface of the service in a separate bundle. This bundle should then both be installed in the OSGi client
environment as well as on the Service’s OSGi runtime. The service’s implementation will have a dependency on
this bundle.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 43 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.7.7 Proxies
On the client side the DSW is expected to create and register local endpoints for the remote services. These
endpoints are typically created as proxies. In these proxies additional logic with regard to caching and load
balancing may be provided as appropriate. The definition of such smart proxies is left to a separate RFC.

5.8 Reference Implementation
5.8.1 Installing Distribution Software in an OSGi platform

Both for Services and Consumers, the distribution software itself is rovided as an OSGi bundle, which is installed
in the OSGi platform. Any configuration for the distribution software would be provided with this bundle, and will
be automatically applied when the bundle is activated.

5.9 Reference Implementation based on SCA

6 Considered Alternatives

6.1.1 Alternative: using simple properties to define service remoting
This alternative was not considered viable as the simple properties approach is most likely not expressive
enough.

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 44 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

In this alternative the remoteness of the service is simply triggered by the remote.profile property on the Service
Declaration. remote.profile is a simple property that specifies on a high level how the service is remoted, possible
values could be:

• SOAP/HTTP
• SOAP/HTTPS
• CORBA A

ll P
age W

ithin This Box

• RMI
• Other

wire protocol
e.g. SOAP/HTTP,
RMI, CORBA, etc

 O
S

G
i C

lient

Distribution
Software

OSGi Framework

S
ervice P

roxy

Process Boundary

 O
S

G
i S

ervice

Distribution
Software

OSGi Framework

Process Boundary

Properties (Server-side, read only):
remote = false
nothing else mandated

Properties specified by Deployer in configuration for the Service,
e.g. in a DS XML file:

<component name="example.component">
 <implementation class="com.example.Component"/>
 <property name="remote.profile">SOAP/HTTP</property>
 <service>
 <provide interface="com.example.ServiceInterface"/>
 </service>
<component>

Properties (Client-side, read only):
remote = true
remote.profile = SOAP/HTTP
remote.url =
 http://server:1234/myService
remote.interface =
 http://server:1234?wsdl

influences
declares

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 45 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

The Distribution Software picks up this value and, if it supports this kind of profile, does the appropriate thing to
expose the service remotely.

On the Client-side, the remote flag is set to true, as we are dealing with a proxy. The remote.profile contains the
value of the profile as specified in the Service declaration.

Additionally, on the client side, the remote.url property holds the URL of the service. In most distribution
technologies a URL can be used to point to the network location where the service can be contacted. Note that
this URL is only provided to the consumer for informational purposes, the client does not need to deal with the
URL as all the networking is taken care of by the proxy.

On the Service-object itself the remote property should either be set to false or not be set at all. (Note that it is
not mandated, but allowed, to have the remote.profile property as set in the DS configuration file visible on the
actual service object).

Pros:

• Very simple, easy to understand for the user.
• The RFC should list a number of known profiles, which could be implemented by vendors or open

source products to provide interoperability.
• Vendors can add their own proprietary profiles.
• Interoperability on the wire for standardized profiles.

Cons:

• Not very flexible. Especially w.r.t. the specification of Qualities of Service. How will you specify that
SOAP/HTTP with transactions is used? SOAP/HTTP/TX? How about reliability? It has the risk of
becoming unmanageable when looking at all possible combinations. How will we distinguish between
different versions of a binding, e.g. SOAP 1.1 and SOAP 1.2?

• Additional configuration is always needed, which will be vendor-specific.

A variation of this approach could be taken in which transport, binding and potentially QoS information are
specified in separate properties.

7 Security Considerations

Vulnerabilities created by distributed OSGi include those in the bundles for the interfaces and proxies, and in the
distributed software itself.

 In the first case, distributed OSGi functionality must be implemented by trusted bundles, and deployment of
distributed OSGi bundles must obtain the appropriate service permissions. Access to any resources required by
the bundle or bundles also must be controlled via administrative permission. An implementation of distributed
OSGi must prevent unauthorized deployment of bundles and unauthorized access to bundles and resources.

The two major security issues the DSW should address are authorized access to a service and the use of an
encrypted communication protocol. When a remote service request is received, the DSW should check whether
the request is authorized and also whether an encrypted protocol was used to transmit the request. If a request is

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 46 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

not authorized for the service, the DSW should request authentication. If authentication isn’t available, the DSW
should return an error stating the requester is not authorized to access the service. Similarly, if the intent attribute
of confidentiality is present on the service, the DSW should check whether an encrypted communication protocol
was used and return an error to the requester if it was not.

8 Document Support

8.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

[3]. OSGi RFP 79: Remote Service Discovery.
https://www2.osgi.org/members/svn/documents/trunk/rfps/rfp-0079-ServiceDiscovery.doc

[4]. OSGi RFP 88: Externalize OSGi Services.
https://www2.osgi.org/members/svn/documents/trunk/rfps/rfp-0088-ExternalServices.doc

[5]. OSGi RFC 126: https://www.osgi.org/members/svn/documents/trunk/rfcs/rfc0126/rfc-0126-
ServiceRegistryHooks.odt

[6]. SCA Policy Framework 1.00, http://www.oasis-opencsa.org/SCA-policy-framework

[7]. SCA Web Service Binding Specification 1.00, http://www.oasis-opencsa.org/sca-bindings

[8]. SCA JMS Binding Specification 1.00, http://www.oasis-opencsa.org/sca-bindings

8.2 Author’s Address
Name Eric Newcomer

Company IONA Technologies

Address 200 West Street, Waltham, MA 02451 USA

Voice +1 781 902 8366

e-mail eric.newcomer@iona.com

https://www2.osgi.org/members/svn/documents/trunk/rfps/rfp-0079-ServiceDiscovery.doc
https://www2.osgi.org/members/svn/documents/trunk/rfps/rfp-0088-ExternalServices.doc
https://www.osgi.org/members/svn/documents/trunk/rfcs/rfc0126/rfc-0126-ServiceRegistryHooks.odt
https://www.osgi.org/members/svn/documents/trunk/rfcs/rfc0126/rfc-0126-ServiceRegistryHooks.odt
http://www.oasis-opencsa.org/SCA-policy-framework
http://www.oasis-opencsa.org/sca-bindings
http://www.oasis-opencsa.org/sca-bindings
mailto:eric.newcomer@iona.com

A
ll P

age w
ithin this B

ox

 RFC 119 - Distributed OSGi Page 47 of 47

 Draft August 6, 2008

Copyright © OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Name David Bosschaert

Company IONA Technologies

Address The IONA Building, Shelbourne Road, Ballsbridge, Dublin 4, Ireland

Voice +353 1 637 2371

e-mail davidb@iona.com

Name Tim Diekmann

Company TIBCO Software

Address 3303 Hillview Ave, Palo Alto, CA 94034, USA

Voice +1-650-846-5521

e-mail tdiekman@tibco.com

8.3 Acronyms and Abbreviations

OASIS Organization for the Advancement of Structured Information Standards

Open CSA Open Composite Services Architecture

SCA Service Component Architecture

WSDL Web Services Description Language

8.4 End of Document

mailto:davidb@iona.com
mailto:tdiekman@tibco.com

Copyright © The OSGi Alliance 2008.
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively.
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners.

The above notice must be included on all copies of this document that are made.

RFC 124:

A Component Model for OSGi

0.93 Draft

73 Pages
Abstract

The OSGi platform provides an attractive foundation for building enterprise applications. However it lacks a
rich component model for declaring components within a bundle and for instantiating, configuring, assembling

and decorating such components when a bundle is started. This RFC describes a set of core features
required in an enterprise programming model and that are widely used outside of OSGi today when building
enterprise (Java) applications. These features need to be provided on the OSGi platform for it to become a

viable solution for the deployment of enterprise applications. The RFC is written in response to RFP 76

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 2 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

0 Document Information

0.1 Table of Contents

0 Document Information ..2
0.1 Table of Contents ...2
0.2 Status..3
0.3 Terminology and Document Conventions ..3
0.4 Revision History..3

1 Introduction..4

2 Application Domain...5
2.1 Terminology and Abbreviations ..5

3 Problem Description ...6

4 Requirements...7

5 Solution ..8
5.1 Architectural Overview..8
5.2 Module Context Life Cycle and the Extender Bundle...10

5.2.1 Module context creation and destruction...10
5.2.2 Manifest Headers for Managed Bundles ...11

5.3 Declaring Module Components ..13
5.3.1 Naming Components ...14
5.3.2 Instantiating Components ..14
5.3.3 Dependencies ..15
5.3.4 Component Scopes ...26
5.3.5 Lifecycle ...27

5.4 Interacting with the Service Registry ..28
5.4.1 Exporting a managed component to the Service Registry28
5.4.2 Defining References to OSGi Services..31
5.4.3 Dealing with service dynamics...35

5.5 Configuration Administration Service Support..38
5.5.1 Property Placeholder Support..38
5.5.2 Managed Services ...39
5.5.3 Managed Service Factories ...40
5.5.4 Direct access to configuration data..40
5.5.5 Publishing Configuration Admin properties with exported services.......................41

5.6 APIs ..41

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 3 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.6.1 ServiceUnavailableException ..41
5.6.2 ModuleContextListener ... Error! Bookmark not defined.

5.7 ‘osgi’ Schema ...64
5.8 ‘osgix’ Schema..71

6 Considered Alternatives ...72

7 Security Considerations ...72

8 Document Support ..72
8.1 References..72
8.2 Author’s Address ..73
8.3 Acronyms and Abbreviations..73
8.4 End of Document ..73

0.2 Status
This document specifies the Press Release process for the OSGi Alliance, and requests discussion and
suggestions for improvements. Distribution of this document is unlimited within the OSGi Alliance.

0.3 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in [1].

Source code is shown in this typeface.

0.4 Revision History
The last named individual in this history is currently responsible for this document.

Revision Date Comments

0.1 draft Sep 13th 2007 First draft of this RFC
Adrian Colyer, SpringSource, adrian.colyer@springsource.com

0.2 draft Nov 28th 2007 Second draft of RFC2, incorporating design material from Spring
Dynamic Modules 1.0 rc1

0.5 draft Dec 21st 2007 Added first version of section 5.3.
Defined mechanism for accessing ServiceReference objects for a
collection.

0.8 draft March 25th 2008 Addressed comments from January 2008 EEG meeting, completed
section 5.3, added ModuleContextListener type.

0.9 draft May 16th 2008 Addressed comments from John Wells and Alexandre Alves posted to
EEG mailing list

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 4 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Revision Date Comments

0.9.1 draft June 17th 2008 Addressed bugs
• 702: don’t proxy service references
• 703 management of service references within a collection
• 704 Class of a lazy init component is not reference until the

component is about to be instantiated

0.9.2 draft July 3rd 2008 Addressed bugs
• 668: signature of destroy-method callback
• 672: use “mandatory” and “optional” instead of 1..N etc.
• 701: use ‘Map’ instead of ‘Dictionary’
• 667 remove ‘legacy’ spring constructs
• 695 define API for accessing components and meta-data

0.9.3 draft Addressed bugs
• 699 specification of type conversions
• Completed section 5.2.3, Module Context Events

1 Introduction

The OSGi Alliance needs an amended process for the creation and approval of press releases. This document
will describe the process.

In 2006 SpringSource (formerly known as Interface21), the company behind the Spring Framework (“Spring”),
identified a complementary relationship between the application assembly and configuration features supported
by Spring, and the modularity and versioning features of OSGi. Spring is primarily used to build enterprise Java
applications. In this marketplace there is a need for a solution to versioning, simultaneous deployment of more
than one version of a library, a better basis for dividing an application into modules, and a more flexible runtime
and deployment model. OSGi provides a proven solution to these problems. The question became, how can
enterprise application developers take advantage of OSGi (build enterprise applications as a set of OSGi bundles)
when developing Spring applications?

In response to this challenge, the Spring Dynamic Modules project was born (formerly known as the Spring-OSGi
project). Spring Dynamic Modules enables the use of Spring to configure both the internals of a bundle and also
references between bundles. Even with little promotion the project quickly gathered a lot of attention. As of
September 2007 there are over 800 users subscribed to the project’s active discussion group. Enterprise
developers have responded extremely positively to the direction being taken by the project. The Spring Dynamic
Modules project is led by SpringSource, with committers from Oracle and BEA also active. The design of Spring
Dynamic Modules has been influenced by discussion (both face-to-face and in the discussion group) with key
personnel in the OSGi Alliance and from the equinox, Felix, and Knopflerfish OSGi implementations.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 5 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

The strong interest in the Spring-OSGi project demonstrates that the enterprise Java market is attracted to the
OSGi platform, and that the set of capabilities offered by Spring Dynamic Modules represent important additions
to the OSGi platform. At the OSGi Enterprise Expert Group requirements meeting held in Dublin in January 2007
a working group was formed to create an RFP for adding these capabilities to OSGi. The resulting RFP, RFP 76,
was accepted by the OSGi Alliance, and this RFC is written in response to the requirements documented there.

2 Application Domain

The primary domain addressed by this RFP is enterprise Java applications, though a solution to the requirements
raised by the RFP should also prove useful in other domains. Examples of such applications include internet web
applications providing contact points between the general public and a business or organization (for example,
online stores, flight tracking, internet banking etc.), corporate intranet applications (customer-relationship
management, inventory etc.), standalone applications (not web-based) such as processing stock feeds and
financial data, and “front-office” applications (desktop trading etc.). The main focus is on server-side applications.

The enterprise Java marketplace revolves around the Java Platform, Enterprise Edition (formerly known as J2EE)
APIs. This includes APIs such as JMS, JPA, EJB, JTA, Java Servlets, JSF, JAX-WS and others. The central
component model of JEE is Enterprise JavaBeans (EJBs). In the last few years open source frameworks have
become important players in enterprise Java. The Spring Framework is the most widely used component model,
and Hibernate the most widely used persistence solution. The combination of Spring and Hibernate is in common
use as the basic foundation for building enterprise applications. Other recent developments of note in this space
include the EJB 3.0 specification , and the Service Component Architecture project (SCA).

Some core features of the enterprise programming models the market is moving to include:

• A focus on writing business logic in “regular” Java classes that are not required to implement
certain APIs or contracts in order to integrate with a container

• Dependency injection: the ability for a component to be “given” its configuration values and
references to any collaborators it needs without having to look them up. This keeps the
component testable in isolation and reduces environment dependencies. Dependency injection is
a special case of Inversion of Control.

• Declarative specification of enterprise services. Transaction and security requirements for
example are specified in metadata (typically XML or annotations) keeping the business logic free
of such concerns. This also facilitates independent testing of components and reduces
environment dependencies.

• Aspects, or aspect-like functionality. The ability to specify in a single place behavior that augments
the execution of one or more component operations.

In Spring, components are known as “beans” and the Spring container is responsible for instantiating, configuring,
assembling, and decorating bean instances. The Spring container that manages beans is known as an
“application context”. Spring supports all of the core features described above.

2.1 Terminology and Abbreviations
1. Inversion of Control: a pattern in which a framework is in control of the flow of execution, and

invokes user-code at appropriate points in the processing.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 6 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

2. Dependency Injection: a form of inversion of control in which a framework is responsible for
providing a component instance with its configuration values and with references to any
collaborators it needs (instead of the component looking these up).

3. Aspect-oriented programming (AOP): a programming paradigm in which types known as
“aspects” provide modular implementations of features that cut across many parts of an
application. AspectJ is the best known AOP implementation.

4. Application Context: a Spring container that instantiates, configures, assembles and decorates
component instances known as beans, also used to refer to an instance of a Spring container.

5. Bean: a component in a Spring application context

6. JMS: Java Messaging Service

7. JPA: Java Persistence API

8. JavaServlets: Java standard for serving web requests

9. EJB: Enterprise JavaBeans component model defined by the Java Platform, Enterprise Edition

10. JTA: Java Transaction API

11. JSF: JavaServer Faces, component model for web user interfaces

12. JAX-WS: Java API for XML-based web services

13. Module context: a container instance responsible for instantiating, configuring, and managing
components within a module. A bundle has 0..1 module contexts associated with it.

14. Managed component: a component instantiated and configured by a module context.

3 Problem Description

Enterprise application developers working with technologies such as those described in Error! Reference source
not found.chapter 2 would like to be able to take advantage of the OSGi platform. The core features of enterprise
programming models previously described must be retained for enterprise applications deployed in OSGi. The
current OSGi specifications are lacking in the following areas with respect to this requirement:

• There is no defined component model for the internal content of a bundle. Declarative Services only
supports the declaration of components that are publicly exposed.

• The configuration (property injection) and assembly (collaborator injection) support is very basic
compared to the functionality offered by frameworks such as Spring.

• There is no model for declarative specification of services that cut across several components (aspects or
aspect-like functionality)

• Components that interact with the OSGi runtime frequently need to depend on OSGi APIs, meaning that
unit testing outside of an OSGi runtime is problematic

• The set of types and resources visible from the context class loader is unspecified. The context class
loader is heavily used in enterprise application libraries

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 7 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

• Better tolerance of the dynamic aspects of the OSGi platform is required. The programming model should
make it easy to deal with services that may come and go, and with collections of such services, via simple
abstractions such as an injecting a constant reference to an object implementing a service interface, or to
a managed collection of such objects. See the description of osgi:reference in the Spring Dynamic
Modules specification for an example of the level of support required here.

Providing these capabilities on the OSGi platform will facilitate the adoption of OSGi as a deployment platform for
enterprise applications. This should be done in a manner that is familiar to enterprise Java developers, taking into
account the unique requirements of the OSGi platform. The benefits also extend to other (non-enterprise) OSGi
applications that will gain the ability to write simpler, more testable bundles backed by a strong component model.

4 Requirements

1. The solution MUST enable the instantiation and configuration of components inside a bundle based on
metadata provided by the bundle developer.

2. The solution SHOULD NOT require any special bundle activator or other code to be written inside the
bundle in order to have components instantiated and configured.

3. The solution MAY choose to provide an extender bundle that is responsible for instantiating and
configuring components inside a bundle with component metadata, when such bundles are started.

4. The solution SHOULD enable the creation of components inside a bundle to be deferred until the
dependencies of those components are satisfied.

5. The solution MUST provide guarantees about the set of resources and types visible from the context
class loader during both bundle initialization and when operations are invoked on services.

6. The solution MAY provide a means for components to obtain OSGi contextual information (such as
access to a BundleContext) without requiring the programmer to depend on any OSGi “lookup” APIs. This
is required so that components may be unit tested outside of an OSGi runtime.

7. The solution MUST provide a mechanism for a bundle component to be optionally exported as an OSGi
service. It MAY provide scope management for exported service (for example, a unique service instance
for each requesting bundle).

8. The solution MUST provide a mechanism for injecting a reference to an OSGi service into a bundle
component. It SHOULD provide a constant service reference that the receiving component can use even
if the target service backing the reference is changed at run time.

9. The solution MUST provide a mechanism for injecting a reference to a set of OSGi services into a bundle
component. It SHOULD provide access to the matching OSGi services via a constant service reference
that the receiving component can use even if the target services backing the reference change at run
time.

10. The solution MUST provide a mechanism for service clients obtaining references as described to be
notified when a backing target service is bound or unbound.

11. The solution SHOULD tolerate services in use being unregistered and support transparent rebinding to
alternate services if so configured.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 8 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

12. The solution SHOULD support configuration of bundle components with configuration data sourced from
the OSGi Configuration Admin service. It SHOULD support re-injection of configuration value if
configuration information is changed via the Configuration Admin service after the bundle components
have been initially instantiated and configured.

13. The solution SHOULD provide a rich set of instantiation, configuration, assembly, and decoration options
for components, compatible with that expected by enterprise programmers used to working with
containers such as Spring.

14. The solution SHOULD allow multiple component instances to be created dynamically at runtime.

15. The solution SHOULD present a design familiar to enterprise Java developers.

16. The solution MUST enable bundles configured using the component model to co-exist with bundles using
Declarative Services

17. The solution MUST define capabilities available on the OSGi minimum execution environment

18. The solution MAY define enhanced capabilities available on other execution environments, as long as
there is a strict subset/superset relationship between the features offered in less capable execution
environments and the features offered in more capable execution environments.

5 Solution

5.1 Architectural Overview
The runtime components to be created for a bundle, together with their configuration and assembly information,
are specified declaratively in one or more configuration files contained within the bundle. This information is used
at runtime to instantiate and configure the required components when the bundle is started. A bundle with such
information present is known as a managed bundle.

An extender bundle is responsible for observing the life cycle of such bundles. When a bundle is started, the
extender creates a module context1 for that bundle by processing the configuration files and instantiating,
configuring, and assembling the components specified there. The module context is a lightweight container that
manages the created components, known as managed components.When a managed bundle is stopped, the
extender shuts down the module context, which causes the managed components within the context to be cleanly
destroyed.

The declarative configuration for a bundle may also specify that certain of the bundle's managed components are
to be exported as services in the OSGi service registry. In addition, it is possible to declare that a bundle
component depends on a service or set of services obtained via the service registry, and to have those services
dependency injected into the bundle component.

The solution therefore supports an application architecture in which modules are implemented as OSGi bundles
with a module blueprint (the configuration information) and a runtime module context created from that blueprint.
Modules are peers which interact via the service registry.

1 It is tempting to call this a “bundle context”, but that could cause confusion with the BundleContext interface. In
Spring this concept is know as an “application context”.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 9 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

Figure 1 below provides a pictorial overview of the solution. Note that there is no reason an “infrastructure” bundle
cannot also contain configuration information and have a module context automatically managed for it. From the
perspective of the extender, all bundles are equal.

Figure 1 Solution
Overview

The remainder of this section is structured as follows:

 Section 5.2 explains the relationship between bundles and module contexts and the role of the extender
bundle A

ll P
age W

ithin This Box

 Section 5.3 defines the configuration support for declaring components within a module context

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 10 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 Section 5.4 defines how to export managed components as services in the service registry, and how to
import references to services obtained via the registry

 Section 5.5 defines the interaction with the OSGi configuration administration service

5.2 Module Context Life Cycle and the Extender Bundle
5.2.1 Module context creation and destruction
Implementations of this RFC must provide an extender bundle with symbolic name
org.osgi.service.context.extender. This bundle is responsible for creating the module contexts for
managed bundles (every ACTIVE managed bundle has one and only one associated module context). When the
extender bundle is installed and started it looks for any existing managed bundles that are already in the ACTIVE
state and creates module contexts on their behalf. In addition, it listens for bundle starting events and
automatically creates a module context for any managed bundle that is subsequently started.

The extender bundle creates module contexts asynchronously. This behavior ensures that starting an OSGi
Service Platform is fast and that bundles with service inter-dependencies do not cause deadlock on startup. A
managed bundle may therefore transition to the STARTED state before its module context has been created. It is
possible to force synchronous creation of module contexts on a bundle-by-bundle basis. See Section 5.2.2,
“Manifest headers” for information on how to specify this behavior.

If module context creation fails for any reason then logged context creation failure event will be published. The
bundle remains in the ACTIVE state. There will be no services exported to the registry from the module context in
this scenario.

A client interested in the creation of module contexts (in either the success of failure cases) may register a service
of type org.osgi.module.context.ModuleContextListener in the service registry in order to receive module events.

If a component to be created for a module context declares a mandatory dependency on the availability of certain
OSGi services (see Section 5.4) then creation of the module context is blocked until the mandatory dependency
can be satisfied through matching services available in the OSGi service registry. Since a service may come and
go at any moment in an OSGi environment, this behavior only guarantees that all mandatory services were
available at the moment creation of the module context began. One or more services may subsequently become
unavailable again during the process of module context creation. Section 5.4 describes what happens when a
mandatory service reference becomes unsatisfied.

A timeout applies to the wait for mandatory dependencies to be satisfied. By default the timeout is set to 5
minutes, but this value can be configured using the timeout directive. See below for more information on manifest
header entries and the available directives.

It is possible to change the module context creation semantics so that application context creation fails if all
mandatory services are not immediately available upon startup . When configured to not wait for dependencies, a
bundle with unsatisfied mandatory dependencies will be stopped, leaving the bundle in the RESOLVED state.

When a managed bundle is stopped, the module context created for it is automatically destroyed. All services
exported by the bundle will be unregistered (removed from the service registry) and any managed components
within the module context that have specified destroy callbacks will have these invoked.

If a managed bundle that has been stopped is subsequently re-started, a new module context will be created for
it.

If the extender bundle is stopped, then all the module contexts created by the extender will be destroyed. Module
contexts are shutdown in the following order:

1. Module contexts that do not export any services, or that export services that are not currently
referenced, are shutdown in reverse order of bundle id. (Most recently installed bundles have their
module contexts shutdown first).

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 11 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

2. Shutting down the module contexts in step (1) may have released references these contexts were
holding such that there are now additional module contexts that can be shutdown. If so, repeat step 1
again.

3. If there are no more active module contexts, we have finished. If there are active module contexts then
there must be a cyclic dependency of references. The circle is broken by determining the highest ranking
service exported by each context: the bundle with the lowest ranking service in this set (or in the event of
a tie, the highest service id), is shut down. Repeat from step (1).

5.2.2 Manifest Headers for Managed Bundles
The extender recognizes a bundle as a managed bundle and will create an associated module context when the
bundle is started if one or both of the following conditions is true:

 The bundle path contains a folder META-INF/module-context with one or more files in that folder with a
'.xml' extension.

 META-INF/MANIFEST.MF contains a manifest header Module-Context.

In addition, if the optional ModuleContextExtender-Version header is declared in the bundle manifest, then the
extender will only recognize bundles where the specified version constraints are satisfied by the version of the
extender bundle (Bundle-Version). The value of the ModuleContextExtender-Version header must follow the
syntax for a version range as specified in section 3.2.5 of the OSGi Service Platform Core Specification.

In the absence of the Module-Context header the extender expects every ".xml" file in the META-INF/module-
context folder to be a valid module context configuration file, and all directives (see below) take on their default
values. A single module context is constructed from this set of files.

The Module-Context manifest header may be used to specify an alternate set of configuration files. The resource
paths are treated as relative resource paths and resolve to entries defined in the bundle and the set of attached
fragments. When the Module-Context header defines at least one configuration file location, any files in META-
INF/module-context are ignored unless directly referenced from the Module-Context header.

The syntax for the Module-Context header value is:

Module-Context-Value ::= context (',' context) *

context ::= path (';' path) * (';' directive) *

This syntax is consistent with the OSGi Service Platform common header syntax defined in section 3.2.3 of the
OSGi Service Platform Core Specification.

For example, the manifest entry:

Module-Context: config/account-data-context.xml, config/account-security-
context.xml

will cause a module context to be instantiated using the configuration found in the files account-data-context.xml
and account-security-context.xml in the bundle jar file.

The wildcard “*” can be used to match zero or more path characters. A “*” used on its own, as in:

Module-Context: *

Matches all XML files in META-INF/module-context/*.xml (i.e. the default behavior).

A number of directives are available for use with the Module-Context header. These directives are:

 create-asynchronously (false|true)

controls whether the module context is created asynchronously (the default), or synchronously.

For example: Module-Context: *;create-asynchronously=false

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 12 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Creates a module context synchronously, using all of the "*.xml" files contained in the META-INF/module-
context folder.

And: Module-Context: config/account-data-context.xml;create-asynchrously:=false

Creates a module context synchronously using the config/account-data-context.xml configuration file. Care
must be taken when specifying synchronous context creation as the module context will be created on the
OSGi event thread, blocking further event delivery until the context is fully initialized. If an error occurs during
the synchronous creation of the module context then a FrameworkEvent.ERROR event is raised. The
bundle will still proceed to the ACTIVE state.

 wait-for-dependencies (true|false)

controls whether or not module context creation should wait for any mandatory service dependencies to be
satisfied before proceeding (the default), or proceed immediately without waiting if dependencies are not
satisfied upon startup.

For example: Module-Context: config/osgi-*.xml;wait-for-dependencies:=false

Creates a module context using all the files matching "osgi-*.xml" in the config directory. Context creation
will begin immediately even if dependencies are not satisfied. This essentially means that mandatory service
references are treated as though they were optional - clients will be injected with a service object that may
not be backed by an actual service in the registry initially. See section 5.4 for more details.

 timeout (300)

the time to wait (in seconds) for mandatory dependencies to be satisfied before giving up and failing module
context creation. This setting is ignored if wait-for-dependencies:=false is specified. The default is 5 minutes
(300 seconds).

 For example: Module-Context: *;timeout:=60

Creates an application context that waits up to 1 minute (60 seconds) for its mandatory dependencies to
appear.

If there is no Module-Context manifest entry, or no value is specified for a given directive in that entry, then the
directive takes on its default value.

5.2.3 Module Lifecycle Events
When a module context has been successfully created, the extender bundle must invoked the “contextCreated”
operation of any registered services advertising support for the org.osgi.module.context.ModuleContextListener
interface. Only services with a compatible version of the interface will be invoked.

When creation of a module context fails for any reason, then the extender bundle must invoke the
“contextCreationFailed” operation of any registered services advertising support for the
org.osgi.module.context.ModuleContextListener interface. Only services with a compatible version of the interface
will be invoked.

Finer-grained information about the creation of module contexts is available if an EventAdmin service is available.
When an EventAdmin service is available, events are published on the following topics:

• org/osgi/module/context/CREATING – the extender has started to create a module context

• org/osgi/module/context/CREATED – a module context has been successfully created

• org/osgi/module/context/DESTROYING – the extender is destroying a module context

• org/osgi/module/context/DESTROYED – a module context has been destroyed

• org/osgi/module/context/WAITING – creation of a module context is waiting on the availability of a
mandatory service

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 13 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

• org/osgi/module/context/FAILURE – creation of a module context has failed

For each event the following properties are published:

• BUNDLE_SYMBOLICNAME (String) the symbolic name of the bundle for which the context is being
created / destroyed

• BUNDLE_VERSION (Version) the version of the bundle for which the context is being created / destroyed

• TIMESTAMP (Long) the time when the event occurred

In addition for a FAILURE event the EXCEPTION property contains a Throwable detailing the failure cause. For a
WAITING event, the SERVICE_CLASS (String) property details the type of the service that the context is waiting
on, and the SERVICE_FILTER (String) property details the filter (if any).

A WAITING event is issued when a mandatory service is unavailable during context creation. An implementation
may deliver one or more WAITING events for the same unsatisfied service reference before either the reference
is satisfied or creation times out.

5.3 Declaring Module Components
A module context configuration file contains component definitions using XML declarations from the osgi
namespace (see section 5.7). The module context container manages the lifecycle of these components. The
basic structure of a configuration file is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://www.osgi.org/schema/comp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.osgi.org/schema/comp http://www.osgi.org/schema/comp/osgi-comp-r5.xsd">

 <component id="..." class="...">
 <!-- collaborators and configuration for this component go here -->
 </component>

 <component id="..." class="...">
 <!-- collaborators and configuration for this component go here -->
 </component>

 <!-- more component definitions go here... -->

</components>

A module container manages one or more components . These components are created using the configuration
metadata that has been supplied to the container. Component definitions contain the following metadata:

• a package-qualified class name: typically this is the actual implementation class of the componen being defined.

• component behavioral configuration elements, which state how the component should behave in the container
(scope, lifecycle callbacks, and so forth).

• references to other components which are needed for the component to do its work; these references are also
called collaborators or dependencies.

• other configuration settings to set in the newly created object. An example would be the number of connections
to use in a component that manages a connection pool, or the size limit of the pool.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 14 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.3.1 Naming Components
Every component has one or more ids (also called identifiers, or names; these terms refer to the same thing).
These ids must be unique within the module the component is hosted in. A component will almost always have
only one id, but if a component has more than one id, the extra ones can essentially be considered aliases.

The 'id' or 'name' attributes are used to specify the component identifier(s). The 'id' attribute allows you to specify
exactly one id, and as it is a real XML element ID attribute, the XML parser is able to do some extra validation
when other elements reference the id; as such, it is the preferred way to specify a component id. However, the
XML specification does limit the characters which are legal in XML IDs. This is usually not a constraint, but if you
have a need to use one of these special XML characters, or want to introduce other aliases to the component,
you may also or instead specify one or more component ids, separated by a comma (,), semicolon (;), or
whitespace in the 'name' attribute.

Please note that you are not required to supply a name for a component. If no name is supplied explicitly, the
container will generate a unique name for that component. The motivations for not supplying a name for a
component will be discussed later (one use case is inner components).

5.3.1.1 Aliasing components
In a component definition itself, you may supply more than one name for the component, by using a combination
of up to one name specified via the id attribute, and any number of other names via the name attribute. All these
names can be considered equivalent aliases to the same component, and are useful for some situations, such as
allowing each component used in an application to refer to a common dependency using a component name that
is specific to that component itself.

5.3.2 Instantiating Components
You can specify the type (or class) of object that is to be instantiated using the 'class' attribute of the
<component/> element. The class element specifies the class of the component to be constructed in the common
case where the container itself directly creates the component by calling its constructor reflectively (somewhat
equivalent to Java code using the 'new' operator). In the less common case where the container invokes a static,
factory method on a class to create the component, the class property specifies the actual class containing the
static factory method that is to be invoked to create the object (the type of the object returned from the invocation
of the static factory method may be the same class or another class entirely, it doesn't matter).

5.3.2.1 Instantiation using a constructor
When creating a component using the constructor approach, the class being created does not need to implement
any specific interfaces or be coded in a specific fashion. Just specifying the component class should be enough.
However, depending on what type of IoC you are going to use for that specific component, you may need a
default (empty) constructor – this is required for “setter” injection.

You can specify your component class like so:

<component id="exampleComp" class="examples.Example"/>

<component name="anotherExample" class="examples.ExampleTwo"/>

The mechanism for supplying arguments to the constructor (if required), or setting properties of the object
instance after it has been constructed, is described shortly.

5.3.2.2 Instantiation using a static factory method
When defining a component which is to be created using a static factory method, along with the class attribute
which specifies the class containing the static factory method, another attribute named factory-method is needed
to specify the name of the factory method itself. The container expects to be able to call this method (with an
optional list of arguments as described later) and get back a live object, which from that point on is treated as if it

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 15 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

had been created normally via a constructor. One use for such a component definition is to call static factories in
legacy code.

The following example shows a component definition which specifies that the component is to be created by
calling a factory-method. Note that the definition does not specify the type (class) of the returned object, only the
class containing the factory method. In this example, the createInstance() method must be a static method.

<component id="exampleComponent" class="examples.ExampleComponent2"

 factory-method="createInstance"/>

The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

5.3.2.3 Instantiation using an instance factory method
In a fashion similar to instantiation via a static factory method, instantiation using an instance factory method is
where a non-static method of an existing component from the container is invoked to create a new component. To
use this mechanism, the 'class' attribute must be left empty, and the 'factory-component' attribute must specify the
name of a component in the container that contains the instance method that is to be invoked to create the object.
The name of the factory method itself must be set using the 'factory-method' attribute.

<!-- the factory component, which contains a method called createInstance() -->

<component id="serviceLocator" class="com.foo.DefaultServiceLocator">

 <!-- inject any dependencies required by this locator component -->

</component>

<!-- the component to be created via the factory component -->

<component id="exampleComponent"

 factory-component="serviceLocator"

 factory-method="createService"/>

5.3.3 Dependencies
A typical module is not made up of a single object (or component). Even the simplest of modules will no doubt
have at least a handful of objects that work together. This next section explains how you go from defining a
number of component definitions that stand-aloneto a fully realized module where objects work (or collaborate)
together to achieve some goal.

5.3.3.1 Injecting Dependencies
The basic principle behind Dependency Injection (DI) is that objects define their dependencies (that is to say the
other objects they work with) only through constructor arguments, arguments to a factory method, or properties
which are set on the object instance after it has been constructed or returned from a factory method. Then, it is
the job of the container to actually inject those dependencies when it creates the component. This is
fundamentally the inverse, hence the name Inversion of Control (IoC), of the component itself being in control of
instantiating or locating its dependencies on its own using direct construction of classes, or something like the
Service Locator pattern.

Constructor Injection

Constructor-based DI is effected by invoking a constructor with a number of arguments, each representing a
dependency. Additionally, calling a static factory method with specific arguments to construct the component, can
be considered almost equivalent, and the rest of this text will consider arguments to a constructor and arguments

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 16 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

to a static factory method similarly. Find below an example of a class that could only be dependency injected
using constructor injection. Notice that there is nothing special about this class.

public class SimpleMovieLister {

 // the SimpleMovieLister has a dependency on a MovieFinder

 private MovieFinder movieFinder;

 // a constructor so that the container can 'inject' a MovieFinder

 public SimpleMovieLister(MovieFinder movieFinder) {

 this.movieFinder = movieFinder;

 }

 // business logic that actually 'uses' the injected MovieFinder is omitted...

}

Constructor argument resolution matching occurs using the argument's type. If there is no potential for ambiguity
in the constructor arguments of a component definition, then the order in which the constructor arguments are
defined in a component definition is the order in which those arguments will be supplied to the appropriate
constructor when it is being instantiated. Consider the following class:

package x.y;

public class Foo {

 public Foo(Bar bar, Baz baz) {

 // ...

 }

}

There is no potential for ambiguity here (assuming of course that Bar and Baz classes are not related in an
inheritance hierarchy). Thus the following configuration will work just fine, and you do not need to specify the
constructor argument indexes and / or types explicitly.

<components>

 <component name="foo" class="x.y.Foo">

 <constructor-arg>

 <component class="x.y.Bar"/>

 </constructor-arg>

 <constructor-arg>

 <component class="x.y.Baz"/>

 </constructor-arg>

 </component>

</components>

When another component is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as specifying value=”true”, the container cannot determine
the type of the value, and so cannot match by type without help. Consider the following class:

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 17 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

package examples;

public class ExampleComponent {

 // No. of years to the calculate the Ultimate Answer

 private int years;

 // The Answer to Life, the Universe, and Everything

 private String ultimateAnswer;

 public ExampleBean(int years, String ultimateAnswer) {

 this.years = years;

 this.ultimateAnswer = ultimateAnswer;

 }

}

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the 'type' attribute. For example:

<component id="exampleComponent" class="examples.ExampleComponent">

 <constructor-arg type="int" value="7500000"/>

 <constructor-arg type="java.lang.String" value="42"/>

</component>

Constructor arguments can have their index specified explicitly by use of the index attribute. For example:

<component id="exampleComponent" class="examples.ExampleComponent">

 <constructor-arg index="0" value="7500000"/>

 <constructor-arg index="1" value="42"/>

</component>

As well as solving the ambiguity problem of multiple simple values, specifying an index also solves the problem of
ambiguity where a constructor may have two arguments of the same type. Note that the index is 0 based.

Setter Injection

Setter-based DI is realized by calling setter methods on your components after invoking a no-argument
constructor or no-argument static factory method to instantiate your component. It is also possible to mix both
constructor-based and setter-based injection for the same component. For example, mandatory properties could
be specified via constructor injection, and optional properties via setter injection. Properties are assumed to follow
JavaBeans conventions.

Here is an example:

<component id="exampleComponent" class="examples.ExampleComponent">
 <!-- setter injection using the nested <ref/> element -->
 <property name="componentOne" ref=”anotherComponent”/>
 <!-- setter injection using the neater 'ref' attribute -->
 <property name="componentTwo" ref="yetAnotherComponent"/>
 <property name="integerProperty" value="1"/>
</component>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 18 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

<component id="anotherExampleComponent" class="examples.AnotherComponent"/>

<component id="yetAnotherComponent" class="examples.YetAnotherComponent"/>

public class ExampleComponent {
 private AnotherComponent compOne;
 private YetAnotherComponent compTwo;
 private int i;

 public void setComponentOne(AnotherComponent compOne) {
 this.compOne = compOne;
 }

 public void setComponentTwo(YetAnotherComponent compTwo) {
 this.compTwo = compTwo;
 }

 public void setIntegerProperty(int i) {
 this.i = i;
 }
}
As you can see, setters have been declared to match against the properties specified in the XML file, using
JavaBeans conventions.

Properties and configuration details
Component properties and constructor arguments can be defined as either references to other managed
components (collaborators), or values defined inline. A number of sub-element types are supported within the
<property/> and <constructor-arg/> elements for just this purpose.

The <value/> element specifies a property or constructor argument as a human-readable string representation.
The container converts these string values from a String to the actual type of the property or argument.

<component id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <!-- results in a setDriverClassName(String) call -->
 <property name="driverClassName">
 <value>com.mysql.jdbc.Driver</value>
 </property>
 <property name="url">
 <value>jdbc:mysql://localhost:3306/mydb</value>
 </property>
 <property name="username">
 <value>root</value>
 </property>
 <property name="password">
 <value>masterkaoli</value>
 </property>
</component>

The <property/> and <constructor-arg/> elements also support the use of the 'value' attribute, which can
lead to much more succinct configuration. When using the 'value' attribute, the above component definition reads
like so:

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 19 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

<component id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <!-- results in a setDriverClassName(String) call -->
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://localhost:3306/mydb"/>
 <property name="username" value="root"/>
 <property name="password" value="masterkaoli"/>
</component>

The idref element is simply an error-proof way to pass the id of another component in the container (to a
<constructor-arg/> or <property/> element).

<component id="theTargetComponent" class="..."/>
<component id="theClientComponent" class="...">
 <property name="targetName">
 <idref component="theTargetComponent" />
 </property>
</component>

The above component definition snippet is exactly equivalent (at runtime) to the following snippet:

<component id="theTargetComponent" class="..." />
<component id="theClientComponent" class="...">
 <property name="targetName" value="theTargetComponent" />
</component>

The main reason the first form is preferable to the second is that using the idref tag allows the container to
validate at deployment time that the referenced, named component actually exists. In the second variation, no
validation is performed on the value that is passed to the 'targetName' property of the 'client' component. Any
typo will only be discovered (with most likely fatal results) when the 'client' component is actually instantiated. If
the 'client' component is a prototype component, this typo (and the resulting exception) may only be discovered
long after the container is actually deployed.

Additionally, if the component being referred to is in the same XML unit, and the component name is the
component id, the 'local' attribute may be used, which allows the XML parser itself to validate the component id
even earlier, at XML document parse time.

<property name="targetName">
 <!-- a component with an id of 'theTargetComponent' must exist; otherwise an XML
 exception will be thrown -->
 <idref local="theTargetComponent"/>
</property>

The ref element is the final element allowed inside a <constructor-arg/> or <property/> definition element.
It is used to set the value of the specified property to be a reference to another component managed by the
container (a collaborator). As mentioned in a previous section, the referred-to component is considered to be a
dependency of the component whose property is being set, and will be initialized on demand as needed (if it is a
singleton component it may have already been initialized by the container) before the property is set.

Specifying the target component by using the component attribute of the <ref/> tag is the most general form, and
will allow creating a reference to any component in the same module context (whether or not in the same XML
file). The value of the 'component' attribute may be the same as either the 'id' attribute of the target component, or
one of the values in the 'name' attribute of the target component.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 20 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

<ref component="someComponent"/>

Specifying the target component by using the local attribute leverages the ability of the XML parser to validate
XML id references within the same file. The value of the local attribute must be the same as the id attribute of the
target component. The XML parser will issue an error if no matching element is found in the same file. As such,
using the local variant is the best choice (in order to know about errors as early as possible) if the target
component is in the same XML file.

<ref local="someComponent"/>

Inner Components
A <component/> element inside the <property/> or <constructor-arg/> elements is used to define a so-called
inner component. An inner component definition does not need to have any id or name defined, and it is best not
to even specify any id or name value because the id or name value simply will be ignored by the container.

<component id="outer" class="...">
 <!-- instead of using a reference to a target copmonent, simply define the target
component inline -->
 <property name="target">
 <component class="com.example.Person"> <!-- this is the inner component -->
 <property name="name" value="Fiona Apple"/>
 <property name="age" value="25"/>
 </component>
 </property>
</component>

Note that in the specific case of inner components, the 'scope' flag and any 'id' or 'name' attribute are effectively
ignored. Inner components are always anonymous.. Please also note that it is not possible to inject inner
components into collaborating components other than the enclosing component.

Collections
The <list/>, <set/>, <map/>, and <props/> elements allow properties and arguments of the Java Collection
type List, Set, Map, and Properties, respectively, to be defined and set.

<component id="moreComplexObject" class="example.ComplexObject">
 <!-- results in a setAdminEmails(java.util.Properties) call -->
 <property name="adminEmails">
 <props>
 <prop key="administrator">administrator@example.org</prop>
 <prop key="support">support@example.org</prop>
 <prop key="development">development@example.org</prop>
 </props>
 </property>
 <!-- results in a setSomeList(java.util.List) call -->
 <property name="someList">
 <list>
 <value>a list element followed by a reference</value>
 <ref bean="myDataSource" />
 </list>
 </property>
 <!-- results in a setSomeMap(java.util.Map) call -->
 <property name="someMap">
 <map>
 <entry>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 21 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 <key>
 <value>an entry</value>
 </key>
 <value>just some string</value>
 </entry>
 <entry>
 <key>
 <value>a ref</value>
 </key>
 <ref bean="myDataSource" />
 </entry>
 </map>
 </property>
 <!-- results in a setSomeSet(java.util.Set) call -->
 <property name="someSet">
 <set>
 <value>just some string</value>
 <ref bean="myDataSource" />
 </set>
 </property>
</bean>

Note that the value of a map key or value, or a set value, can also again be any of the following elements:

 component
 ref
 idref
 list
 set
 map
 props
 value
 null

If you are using Java 5 or Java 6, you will be aware that it is possible to have strongly typed collections (using
generic types). That is, it is possible to declare a Collection type such that it can only contain String elements (for
example). If you are dependency injecting a strongly-typed Collection into a component, you can take advantage
of type-conversion support such that the elements of your strongly-typed Collection instances will be converted to
the appropriate type prior to being added to the Collection.

public class Foo {

 private Map<String, Float> accounts;

 public void setAccounts(Map<String, Float> accounts) {
 this.accounts = accounts;
 }
}

<components>
 <component id="foo" class="x.y.Foo">
 <property name="accounts">
 <map>
 <entry key="one" value="9.99"/>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 22 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 <entry key="two" value="2.75"/>
 <entry key="six" value="3.99"/>
 </map>
 </property>
 </component>
</components>

When the 'accounts' property of the 'foo' component is being prepared for injection the string values '9.99', '2.75',
and '3.99' will be converted into objects of type Float. This feature is only support on Java 5 or higher runtime
environments.

Type Conversion

String values in module context configuration files must be converted to the type expected by an injection target
(method or constructor parameter, or field) before being injected. The module context container supports a
number of type conversions by default, and provides an extension mechanism for configuring additional type
converters.

The default type conversions supported by the module context container are:

• String to primitive types (permissible values for booleans are “yes”,”no”,”true”,”false”,”on”,”off”) and their
object equivalents (e.g. Float, float).

• String to class
• String to java.io.File
• String to Locale
• String to Pattern (only support on JDK 1.5 or later)
• String to URL
• String to java.lang.Properties (String must follow the format describe in the JavaDoc for Properties)
• Collection to Collection (converts any source collection type to a given target Collection type)
• String to Date (uses the default pattern yyyy-MM-dd)

Additional converters may be defined by implementing the
org.osgi.module.context.convert.Converter interface.

Interface Converter {

 public Class[] getSourceClasses();

 public Class[] getTargetClasses();

 public Object convert(Object source, Class targetClass) throws Exception;

}

A bundle can declare a type converter for use by any module context container instantiated for that bundle by
defining it with the Module-Context-Type-Converter header in MANIFEST.MF.

Module-Context-Type-Converter: fully-qualified-type-name;from=”fqn,fqn,fqn”;to=”fqn,fqn,fqn”

For example:

Module-Context-Type-Converter:
com.xyz.converters.UserIdConverter;from=”java.lang.String”;to=”com.xyz.user.UserId”

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 23 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Any type converters locally registered in this way take precedence over the default type converters in the case
that both a default type converter and a locally-registered type converter are able to perform the same conversion.

In addition to this bundle-specificc declaration of type converters, it is also possible for a bundle to globally
register type converters to be used by any module context container. A type converter is globally exported by
adding the directive “scope:=platform” to the converter declaration.

For example the declaration:

Module-Context-Type-Converter: org.local.converter.MyConverter;from=”a.b.C”;to=”d.e.F”,
 org.global.converter.GlobalConverter;from=”g.h.I”;to=”j.k.L”;scope:=platform

makes MyConverter available only within the module context container associated with the bundle, but makes
GlobalConverter available for use by all.

A module context container must make available for type conversion all type-compatible global converters
declared in bundles that have been successfully resolved at the point in time the module context container is
instantiated (when its corresponding bundle is started).

Given a bundle C declaring a type converter in its manifest, and a bundle B for which a module context is to be
created, then the type converter in C is type-compatible with B iff:

• C is wired to the same exporter of the Converter type as the extender bundle responsible for creating the
module context

• B and C are both wired to the same exporter of the Converter type (or B does not import the Converter
type)

• For all type names in the “from” attribute of the converter declaration, B and C are both wired to the same
exporter of those types

• For all type names in the “to” attribute of the converter declaration, B and C are both wired to the same
exporter of those types

Nulls
The <null/> element is used to handle null values. Empty arguments for properties and the like are treated as
empty Strings. The following XML-based configuration metadata snippet results in the email property being set to
the empty String value ("")

<component class="ExampleComponent">
 <property name="email"><value/></property>
</component>

This is equivalent to the following Java code: exampleComponent.setEmail(""). The special <null> element may
be used to indicate a null value. For example:

<component class="ExampleComponent">
 <property name="email"><null/></property>
</component>

The above configuration is equivalent to the following Java code: exampleComponent.setEmail(null).

Configuration metadata shortcuts
The <property/>, <constructor-arg/>, and <entry/> elements all support a 'value' attribute which may
be used instead of embedding a full <value/> element. Therefore, the following:

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 24 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

<property name="myProperty">
 <value>hello</value>
</property>

<constructor-arg>
 <value>hello</value>
</constructor-arg>

<entry key="myKey">
 <value>hello</value>
</entry>

are equivalent to:

<property name="myProperty" value="hello"/>

<constructor-arg value="hello"/>

<entry key="myKey" value="hello"/>

The <property/> and <constructor-arg/> elements support a similar shortcut 'ref' attribute which may be
used instead of a full nested <ref/> element. Therefore, the following:

<property name="myProperty">
 <ref bean="myComponent">
</property>

<constructor-arg>
 <ref bean="myComponent">
</constructor-arg>

... are equivalent to:

<property name="myProperty" ref="myComponent"/>

<constructor-arg ref="myComponent"/>

Note however that the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for
<ref local="xxx">. To enforce a strict local reference, you must use the long form.

Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the
'key' / 'key-ref' and 'value' / 'value-ref' attributes. Therefore, the following:

<entry>
 <key>
 <ref component="myKeyComponent" />
 </key>
 <ref component="myValueComponent" />
</entry>

is equivalent to:

<entry key-ref="myKeyComponent" value-ref="myValueComponent"/>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 25 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Again, the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref
local="xxx">.

Compound Property Names
Compound or nested property names are perfectly legal when setting component properties, as long as all
components of the path except the final property name are not null. Consider the following component definition...

<component id="foo" class="foo.Bar">
 <property name="fred.bob.sammy" value="123" />
</component>

The foo component has a fred property which has a bob property, which has a sammy property, and that final
sammy property is being set to the value 123. In order for this to work, the fred property of foo, and the bob
property of fred must be non-null after the bean is constructed, or a NullPointerException will be thrown.

5.3.3.2 Using depends-on
For most situations, the fact that a component is a dependency of another is expressed by the fact that one
component is set as a property of another. This is typically accomplished with the <ref/> element. For the
relatively infrequent situations where dependencies between components are less direct (for example, when a
static initializer in a class needs to be triggered, such as database driver registration), the 'depends-on' attribute
may be used to explicitly force one or more components to be initialized before the component using this element
is initialized. Find below an example of using the 'depends-on' attribute to express a dependency on a single
component.

<component id="compOne" class="ExampleComponent" depends-on="manager"/>

<component id="manager" class="ManagerComponent" />

If you need to express a dependency on multiple components, you can supply a list of component names as the
value of the 'depends-on' attribute, with commas, whitespace and semicolons all valid delimiters, like so:

<component id="compOne" class="ExampleComponent" depends-on="manager,accountDao">

 <property name="manager" ref="manager" />

</component>

<component id="manager" class="ManagerComponent" />

<component id="accountDao" class="x.y.jdbc.JdbcAccountDao" />

The 'depends-on' attribute is used not only to specify an initialization time dependency, but also to specify the
corresponding destroy time dependency (in the case of singleton components only). Dependent components that
are defined in the 'depends-on' attribute will be destroyed first prior to the relevant component itself being
destroyed. This thus allows you to control shutdown order too.

5.3.3.3 Lazily instantiated components
By default all singleton components in a module context will be pre-instantiated at startup. Pre-instantiation
means that the module context will eagerly create and configure all of its singleton components as part of its
initialization process. Generally this is a good thing, because it means that any errors in the configuration or in the
surrounding environment will be discovered immediately (as opposed to possibly hours or even days down the
line).

However, there are times when this behavior is not what is wanted. If you do not want a singleton component to
be pre-instantiated you can selectively control this by marking a component definition as lazy-initialized. A lazily-
initialized component is not created at startup and will instead be created when it is first requested.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 26 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

Lazy loading is controlled by the 'lazy-init' attribute on the <component/> element; for example:

<component id="lazy" class="com.foo.ExpensiveToCreateComponent" lazy-init="true"/>

<component name="not.lazy" class="com.foo.AnotherComponent"/>

The component named 'lazy' will not be eagerly pre-instantiated when the module context is starting up, whereas
the 'not.lazy' cqmponent will be eagerly pre-instantiated.

Even though a component definition may be marked up as being lazy-initialized, if the lazy-initialized component
is the dependency of a singleton component that is not lazy-initialized, then when the module context is eagerly
pre-instantiating the singleton, it will have to satisfy all of the singletons dependencies, one of which will be the
lazy-initialized component! In this situation a component that you have explicitly configured as lazy-initialized will
in fact be instantiated at startup; all that means is that the lazy-initialized component is being injected into a non-
lazy-initialized singleton component elsewhere.

It is also possible to control lazy-initialization at the container level by using the 'default-lazy-init' attribute
on the <components/> element; for example:

<components default-lazy-init="true">

 <!-- no components will be pre-instantiated... -->

</components>

(Note to reviewers, I've elected to exclude Spring autowiring support from this version of the specification – please
object if you think it should be included).

The class referenced by the class attribute of a lazy-init component declaration is guaranteed not to be referenced
in conjunction with that lazily initialized component until such time as the component is about to be instantiated.

5.3.4 Component Scopes
When you create a component definition what you are actually creating is a recipe for creating actual instances of
the class defined by that component definition. The idea that a component definition is a recipe is important,
because it means that, just like a class, you can potentially have many object instances created from a single
recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an object
that is created from a particular component definition, but also the scope of the objects created from a particular
component definition. This approach is very powerful and gives you the flexibility to choose the scope of the
objects you create through configuration instead of having to 'bake in' the scope of an object at the Java class
level. Components can be defined to be deployed in one of a number of scopes, specified using the scope
attribute:

Scope Name Description

singleton scopes a single component definition to a single object
instance per module context

prototype scopes a single component definition to any number of
object instances

bundle scopes a single component definition to a single object
per requesting client bundle

When a component is a singleton, only one shared instance of the component will be managed, and all requests
for componets with an id or ids matching that component definition will result in that one specific component
instance being returned by the container.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 27 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

<component id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>

The non-singleton, prototype scope of component deployment results in the creation of a new component
instance every time a request for that specific component is made. As a rule of thumb, you should use the
prototype scope for all components that are stateful, while the singleton scope should be used for stateless
components.

<component id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>

See section 5.4.1 for a discussion of the bundle scope, which may be used when exporting a component as an
OSGi service.

Implementations of this RFC are free to define additional scope values beyond those defined here.

5.3.5 Lifecycle
Specifying an init-method for a component enables a component to perform initialization work once all the
necessary properties on a component have been set by the container. Specifying a destroy-method enables a
component to get a callback when the module context containing it is destroyed. Destroy-method callbacks are
not supported for components with a prototype scope – it is the responsibility of the application to manage the
lifecycle of prototype instances after they have been created.

<component id="exampleInitComponent"

 class="examples.ExampleComponent" init-method="init"/>

public class ExampleComponent {

 public void init() {

 // do some initialization work

 }

}

<component id="exampleDestroyComponent" class="examples.ExampleComponent" destroy-
method="cleanup"/>

public class ExampleComponent {

 public void cleanup() {

 // do some destruction work (like releasing pooled connections)

 }

}

The container can be configured to 'look' for named initialization and destroy callback method names on every
component. This means that you, as an application developer, can simply write your application classes, use a
convention of having an initialization callback called init() (or any other name of your choosing), and then (without
having to configure each and every component with an 'init-method="init"' attribute) be safe in the knowledge that
the container will call that method when the component is being created. To specify default init and destroy
methods use the default-init-method and default-destroy-method attributes on the enclosing
components element. For example:

<components default-init-method="onInit" default-destroy-method="onDestroy">

 <component id="someComponent" class="SomeClass">

 <!-- onInit() and onDestroy() methods will be called if implemented by
SomeClass -->

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 28 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 </component>

</components>

The method referenced by an init-method or default-init-method attribute must return void, and take no
arguments. The method referenced by a destroy-method or default-destroy-method attribute must return void, and
take either no arguments or an int reason code. NOTE: open discussion point. A component is only destroyed
when its enclosing module context is destroyed. A module context is only destroyed when a bundle is stopping.
So the only reason code we could ever give at the moment is “BUNDLE_STOPPING”. It would be very nice to be
able to support “BUNDLE_UPDATING” and “BUNDLE_REFRESHING” as additional codes as well, but this would
require a change to the BundleEvent so that we could distinguish. Without such a change, is the reason code
version really worth specifying?

5.4 Interacting with the Service Registry
The osgi namespace provides elements that can be used to export managed components as OSGi services, to
define references to services obtained via the registry.

5.4.1 Exporting a managed component to the Service Registry
The service element is used to define a component representing an exported OSGi service. At a minimum you
must specify the managed component to be exported, and the service interface that the service advertises.

For example, the declaration

<service ref="componentToPublish" interface="com.xyz.MessageService"/>

exports the component with name componentToPublish as a service in the OSGi service registry with interface
com.xyz.MessageService. The published service will have a service property with the name
org.osgi.service.context.compname set to the component id of the target component being registered
(componentToPublish in this case).

The component defined by the service element is of type org.osgi.framework.ServiceRegistration
and is the ServiceRegistration object resulting from registering the exported component with the OSGi
service registry. By giving this component an XML id you can inject a reference to the ServiceRegistration
object into other components if needed. For example:

<service id="myServiceRegistration"

 ref="componentToPublish" interface="com.xyz.MessageService"/>

As an alternative to exporting a named component, the component to be exported to the service registry may be
defined as an anonymous inner component of the service element.

<service interface="com.xyz.MessageService">

 <component class="SomeClass">

 ...

 </component>

</service>

If the component to be exported implements the org.osgi.framework.ServiceFactory interface then the
ServiceFactory contract is honored as per section 5.6 of the OSGi Service Platform Core Specification. As an
alternative to implementing this OSGi API, this RFC introduces a component scope known as bundle scope.
When a component with bundle scope is exported as an OSGi service then one instance of the component will be
created for each unique client (service importer) bundle that obtains a reference to it through the OSGi service

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 29 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

registry. When a service importing bundle is stopped, the component instance associated with it is disposed. To
declare a component with bundle scope simply use the scope attribute of the component element:

<service ref="compToBeExported" interface="com.xyz.MessageService"/>

<component id="compToBeExported" scope="bundle"
class="com.xyz.MessageServiceImpl"/>

5.4.1.1 Controlling the set of advertised service interfaces for an exported service
The OSGi Service Platform Core Specification defines the term service interface to represent the specification of
a service's public methods. Typically this will be a Java interface, but the specification also supports registering
service objects under a class name, so the phrase service interface can be interpreted as referring to either an
interface or a class.

There are several options for specifying the service interface(s) under which the exported service is registered.
The simplest mechanism, shown above, is to use the interface attribute to specify a fully-qualified interface name.
To register a service under multiple interfaces the nested interfaces element can be used in place of the
interface attribute.

<service ref="componentToBeExported">

 <interfaces>

 <value>com.xyz.MessageService</value>

 <value>com.xyz.MarkerInterface</value>

 <interfaces>

<service>

The interface attribute must not be used in conjunction with the interfaces element.

Using the auto-export attribute you can avoid the need to explicitly declare the service interfaces at all by
analyzing the object class hierarchy and its interfaces.

The auto-export attribute can have one of four values:

 disabled : the default value; no auto-detected of service interfaces is undertaken and the interface
attribute or interfaces element must be used instead.

 interfaces : the service will be registered using all of the Java interface types implemented by the
component to be exported

 class-hierarchy : the service will be registered using the exported component's implementation type
and super-types

 all-classes : the service will be registered using the exported component's implementation type and
super-types plus all interfaces implemented by the component.

For example, to automatically register a component under all of the interfaces that it supports you would declare:

<service ref="componentToBeExported" auto-export="interfaces"/>

Given the interface hierarchy:

public interface SuperInterface {}

public interface SubInterface extends SuperInterface {}

then a service registered as supporting the SubInterface interface is not considered a match in OSGi when a
lookup is done for services supporting the SuperInterface interface. For this reason it is a best practice to

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 30 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

export all interfaces supported by the service being registered explicitly, using either the interfaces element or
auto-export="interfaces".

5.4.1.2 Controlling the set of advertised properties for an exported service
As previously described, an exported service is always registered with the service property
org.osgi.service.context.compname set to the name of the component being exported. Additional service
properties can be specified using the nested service-properties element. The service-properties
element contains key-value pairs to be included in the advertised properties of the service. The key must be a
string value, and the value must be a type recognized by OSGi Filters. See section 5.5 of the OSGi Service
Platform Core Specification for details of how property values are matched against filter expressions.

The service-properties element must contain at least one nested entry element. For example:

<service ref="componentToBeExported" interface="com.xyz.MyServiceInterface">

 <service-properties>

 <entry key="myOtherKey" value="aStringValue"/>

 <entry key="aThirdKey" value-ref="componentToExposeAsProperty"/>

 <service-properties>

</service>

See section 5.5 for details on how to register service properties sourced from the Configuration Admin service.

5.4.1.3 The depends-on attribute
As previously described, an exported service is always registered with the service property
org.osgi.service.context.compname set to the name of the component being exported. Additional service
properties can be specified using the nested service-properties element. The service-properties
element contains key-value pairs to be included in the advertised properties of the service. The key must be a
string value, and the value must be a type recognized by OSGi Filters. See section 5.5 of the OSGi Service
Platform Core Specification for details of how property values are matched against filter expressions.

The service-properties element must contain at least one nested entry element. For example:

<service ref="componentToBeExported" interface="com.xyz.MyServiceInterface">

 <service-properties>

 <entry key="myOtherKey" value="aStringValue"/>

 <entry key="aThirdKey" value-ref="componentToExposeAsProperty"/>

 <service-properties>

</service>

See section 5.5 for details on how to register service properties sourced from the Configuration Admin service.

5.4.1.4 The ranking attribute
When registering a service with the service registry, you may optionally specify a service ranking (see section
5.2.5 of the OSGi Service Platform Core Specification). When a bundle looks up a service in the service registry,
given two or more matching services the one with the highest ranking will be returned. The default ranking value
is zero. To explicitly specify a ranking value for the registered service, use the optional ranking attribute.

<service ref="componentToBeExported" interface="com.xyz.MyServiceInterface"

 ranking="9"/>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 31 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.4.1.5 Registration Listener
The service defined by a service element is registered with the OSGi service registry when the module context
is first created. It will be unregistered automatically when the bundle is stopped and the module context is
disposed. Services are also unregistered and re-registered if a mandatory dependency of the service is
unsatisfied or becomes satisfied again (see section 5.4.2).

If you need to take some action when a service is registered or unregistered then you can define a listener
component using the nested registration-listener element.

The declaration of a registration listener must use either the ref attribute to refer to a top-level component
definition, or declare an anonymous listener component inline. For example:

<service ref="componentToBeExported" interface="SomeInterface">

 <registration-listener ref="myListener" (1)

 registration-method="serviceRegistered" (2)

 unregistration-method="serviceUnregistered"/> (2)

 <registration-listener registration-method="register"> (3)

 <component class="SomeListenerClass"/> (4)

 </registration-listener>

</service>

(1) Listener declaration referring to a top-level component.

(2) The registration and unregistration methods to be invoked on the component referenced in (1).

(3) Declare only a registration method for this listener.

(4) Listener component declared anonymously in-line.

The optional registration-method and unregistration-method attributes specify the names of the
methods defined on the listener component that are to be invoked during registration and unregistration.
Registration and unregistration callback methods must have a signature matching one of the following formats:

public void anyMethodName(ServiceType serviceInstance, Map serviceProperties);

where ServiceType can be any type compatible with the exported service interface of the service.

The register callback is invoked when the service is initially registered at startup, and whenever it is subsequently
re-registered. The unregister callback is invoked during the service unregistration process, no matter the cause
(such as the owning bundle stopping).

The registration/unregistration methods are only invoked when a service of a type compatible with the declared
ServiceType is registered/unregistered.

5.4.2 Defining References to OSGi Services
This RFC supports the declaration of components that represent services accessed via the OSGi Service
Registry. In this manner references to OSGi services can be injected into bundle components. The service lookup
is made using the service interface type that the service is required to support, plus an optional filter expression
that matches against the service properties published in the registry.

For some use cases, a single matching service that meets the application requirements is all that is needed. The
reference element defines a reference to a single service that meets the required specification. In other

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 32 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

scenarios, especially when using the OSGi whiteboard pattern, references to all available matching services are
required. RFC 124 supports the management of this set of references as a List or Set.

5.4.2.1 Referencing an individual service
The reference element is used to define a reference to a service in the service registry.

Since there can be multiple services matching a given description, the service returned is the service that would
be returned by a call to BundleContext.getServiceReference. This means that the service with the highest ranking
will be returned, or if there is a tie in ranking, the service with the lowest service id (the service registered first with
the framework) is returned (please see Section 5 from the OSGi specification for more information on the service
selection algorithm).

Interface attribute and interfaces element

The interface attribute identifies the service interface that a matching service must implement. For example,
the following declaration creates a reference component called messageService, which is backed by the
service returned from the service registry when querying it for a service offering the MessageService interface.

<reference id="messageService" interface="com.xyz.MessageService"/>

Just as with the service element, when specifying multiple interfaces, use the nested interfaces element
instead of the interface attribute:

<reference id="importedOsgiService">

 <interfaces>

 <value>com.xyz.MessageService</value>

 <value>com.xyz.MarkerInterface</value>

 <interfaces>

</reference>

It is illegal to use both the interface attribute and the interfaces element at the same time.

The component defined by the reference element implements all of the advertised service interfaces of the
service that are visible to the bundle. Implementations of this RFC may choose to document a limitation that
class-based (as opposed to interface-based) service interfaces that include final methods are not supported.

Filter attribute

The optional filter attribute can be used to specify an OSGi filter expression and constrains the service registry
lookup to only those services that match the given filter.

For example:

<reference id="asyncMessageService" interface="com.xyz.MessageService"

 filter="(asynchronous-delivery=true)"/>

will match only OSGi services that advertise the MessageService interface and have the property named
asynchronous-delivery set to value 'true'.

Component name attribute

The component-name attribute is a convenient short-cut for specifying a filter expression that matches on the
component name property automatically set when exporting a component using the service element.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 33 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

For example:

<reference id="messageService" interface="com.xyz.MessageService"

 component-name="defaultMessageService"/>

will match only OSGi services that advertise the MessageService interface and have the property named
org.osgi.service.context.compname set to value defaultMessageService.

If both a filter attribute value and a component-name attribute value are specified, then matching services must
satisfy the constraints of both.

Availability attribute

The availability attribute is used to specify whether or not a matching service is required at all times. An
availability value of mandatory (the default) indicates that a matching service must always be available. An
availability value of optional indicates that a matching service is not required at all times. A reference with
mandatory availability is also known as a mandatory service reference and, by default, module context creation is
deferred until the reference is satisfied.

Note: It is an error to declare a mandatory reference to a service that is also exported by the same bundle, this
behavior can cause module context creation to fail through either deadlock or timeout.

Depends-on attribute

The optional depends-on attribute can be used to specify that the service reference should not be looked up in
the service registry until the named dependent component has been instantiated.

Obtaining a ServiceReference object

If the property into which a reference component is to be injected has type ServiceReference (instead of the
service interface supported by the reference), then an OSGi ServiceReference for the service, as
provided by the OSGi Service Platform in which the application is running, will be
injected in place of the service itself.

The injected service reference refers to the service instance satisfying the reference at the time the reference is
injected. The ServiceReference object will not be updated if the backing service later changes. If there is no
matching service instance at the time of injection (for example, the reference is to an optional service), then ‘null’
will be injected.

For example, given the following Java class declaration and component declarations:

public class ComponentWithServiceReference {

 private ServiceReference serviceReference;

 private SomeService service;

 // getters/setters ommitted

}

<reference id="service" interface="com.xyz.SomeService"/>

<component id="someComponent" class="ComponentWithServiceReference">

 <property name="serviceReference" ref="service"/> (1)

 <property name="service" ref="service"/> (2)

</component>

Then

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 34 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

(1) The ServiceReference object for the service obtained via the reference element will be injected into
the serviceReference property.

(2) An object representing the service itself will be injected into the service property

5.4.2.2 Referencing a collection of services
Sometimes an application needs access not simply to any service meeting some criteria, but to all services
meeting some criteria. The matching services may be held in a List or Set (optionally sorted).

The difference between using a List and a Set to manage the collection is one of equality. Two or more services
published in the registry (and with distinct service ids) may be "equal" to each other, depending on the
implementation of equals used by the service implementations. Only one such service will be present in a set,
whereas all services returned from the registry will be present in a list. The ref-set and ref-list schema
elements are used to define collections of services with set or list semantics respectively.

These elements support the attributes interface, filter, component-name, and availability with the
same semantics as for the reference element. An availability value of optional indicates that it is permissible
for there to be no matching services. An availability value of mandatory indicates that at least one matching
service is required at all times. Such a reference is considered a mandatory reference and any exported services
from the same bundle (service defined components) that depend on a mandatory reference will automatically be
unregistered when the reference becomes unsatisfied, and re-registered when the reference becomes satisfied
again.

The component defined by a ref-list element is of type java.util.List. The component defined by a
ref-set element is of type java.util.Set.

The following example defines a component of type List that will contain all registered services supporting the
EventListener interface:

<ref-list id="myEventListeners" interface="com.xyz.EventListener"/>

The members of the collection defined by the component are managed dynamically. As matching services are
registered and unregistered in the service registry, the collection membership will be kept up to date. Each
member of the collection supports the service interfaces that the corresponding service was registered with and
that are visible to the bundle.

Sorted collections are also supported. It is possible to specify a sorting order using either the comparator-ref
attribute, or the nested comparator element. The comparator-ref attribute is used to refer to a named
component implementing java.util.Comparator. The comparator element can be used to define an inline
component. For example:

<ref-set id="myServices" interface="com.xyz.MyService"

 comparator-ref="someComparator"/>

<ref-list id="myOtherServices"

 interface="com.xyz.OtherService">

 <comparator>

 <component class="MyOtherServiceComparator"/>

 </comparator>

</ref-list>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 35 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

To sort using a natural ordering instead of an explicit comparator, you can use the natural-ordering element
inside of comparator. You need to specify the basis for the natural ordering: based on the service references,
following the ServiceReference natural ordering defined in the OSGi Core Specification section 6.1.2.3; or based
on the services themselves (in which case the services must be Comparable).

<ref-list id="myServices" interface"com.xyz.MyService">

 <comparator><natural-ordering basis="service"/></comparator>

</ref-list>

<ref-set id="myOtherServices"interface="com.xyz.OtherService">

 <comparator><natural-ordering basis="service-reference"/></comparator>

</ref-set>

Obtaining Service Reference Objects

If the property into which a reference set or list is to be injected is of type Collection<ServiceReference> or a
subtype thereof (e.g. List<ServiceReference>, Set<ServiceReference>), then the injection collection will contain
the ServiceReference objects for the matching services rather than the service objects themselves.

To support JDK 1.4 and below where generic types are not available, the property can also be declared as a Map
type. In this case the property will be injected with a Map keyed by service id, with ServiceReference objects as
the values.

5.4.3 Dealing with service dynamics
The component defined by a reference element is unchanged throughout the lifetime of the module context
(the object reference remains constant). However, the OSGi service that backs the reference may come and go at
any time. For a mandatory service reference, creation of the module context will block until a matching service is
available. For an optional service reference (optional availability), the reference component will be created
immediately, regardless of whether or not there is currently a matching service.

When the service backing a reference component goes away, an attempt is made to replace the backing service
with another service matching the reference criteria. An application may be notified of a change in backing service
by registering a listener. If no matching service is available, then the reference is said to be unsatisfied. An
unsatisfied mandatory service causes any exported service (service component) that depends on it to be
unregistered from the service registry until such time as the reference is satisfied again.

When an operation is invoked on an unsatisfied reference component (either optional or mandatory), the
invocation blocks until the reference becomes satisfied. The optional timeout attribute of the reference element
enables a timeout value (in milliseconds) to be specified. If a timeout value is specified and no matching service
becomes available within the timeout period, an unchecked ServiceUnavailableException is thrown.

The timeout attribute is not supported by the ref-set and ref-list elements.

While a reference component will try to find a replacement if the backing service is unregistered, a reference
collection-based component will simply remove the service from the collection. The recommend way of traversing
a collection is by using an Iterator. During iteration, all Iterators held by the user will be transparently
updated so it is possible to safely traverse the collection while it is being modified. Moreover, the Iterators will
reflect all the changes made to the collection, even if they occurred after the Iterators were created (that is, during
the iteration). Consider a case where a collection shrinks significantly (for example a large number of OSGi
services are shutdown) right after an iteration started. To avoid dealing with the resulting 'dead' service
references, iterators do not take collection snapshots but instead are updated on each service event so they
reflect the latest collection state, no matter how fast or slow the iteration is.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 36 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

It is important to note that a service update will only influence Iterator operations that are executed after the event
occurred. Services already returned by the iterator will not be updated even if the backing service has been
unregistered. If an operation is invoked on such a service that has been unregistered, a
ServiceUnavailableException will be thrown.

The Iterator contract is guaranteed: the next() method always obeys the result of the previous hasNext()
invocation. Within this contract, an implementation is free to add additional matching elements into the collection
during iteration, and to remove as yet unseen elements from the collection during iteration. A client may therefore
see the return value of repeated calls to hasNext() change over time: for example after returning false a new
member may be added to the collection causing a subsequent invocation of hasNext() to return true. The next()
method always obeys the result of the previous hasNext() invocation, so if hasNext() returns true there is
guaranteed to be an available object on a call to next().T

Any elements added to the collection during iteration over a sorted collection will only be visible if the iterator has
not already passed their sort point.

Collections of ServiceReferences are managed in the same way as collections of the service objects themselves
(i.e. ServiceReference objects may be added and removed dynamically so long as the Iterator contract is
honored).

5.4.3.1 Mandatory dependencies
An exported service may depend, either directly or indirectly, on other services in order to perform its function. If
one of these services is considered a mandatory dependency (has ‘mandatory’ availability) and the dependency
can no longer be satisfied (because the backing service has gone away and there is no suitable replacement
available) then the exported service that depends on it will be automatically unregistered from the service registry
- meaning that it is no longer available to clients. If the mandatory dependency becomes satisfied once more (by
registration of a suitable service), then the exported service will be re-registered in the service registry.

This automatic unregistering and re-registering of exported services based on the availability of mandatory
dependencies only takes into account declarative dependencies. If exported service S depends on component A,
which in turn depends on mandatory imported service M, and these dependencies are explicit in the module
configuration file as per the example below, then when M becomes unsatisfied S will be unregistered. When M
becomes satisfied again, S will be re-registered.

<service id="S" ref="A" interface="SomeInterface"/>

<component id="A" class="SomeImplementation">

 <property name="helperService" ref="M"/>

</component>

<reference id="M" interface="HelperService"

 availabilitylity="mandatory"/>

If however the dependency from A on M is not established through configuration as shown above, but instead at
runtime through for example passing a reference to M to A without any involvement from the container, then this
dependency is not tracked.

5.4.3.2 Service Listeners
Applications that need to be aware of when a service backing a reference component is bound and unbound, or
when a member is added to or removed from a collection, can register one or more listeners using the nested
listener element. The listener element refers to a component (either by name, or by defining one inline) that

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 37 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

will receive bind and unbind notifications. The bind-method and unbind-method attributes indicate the operations
to be invoked on the listener component during a bind or unbind event respectively.

For example:

<reference id="someService" interface="com.xyz.MessageService">

 <listener bind-method="onBind" unbind-method="onUnbind">

 <component class="MyCustomListener"/>

 </listener>

</reference>

The signature of a custom bind or unbind method must be one of:

public void anyMethodName(ServiceType service, Map properties);

public void anyMethodName(ServiceReference ref);

where ServiceType can be any type. The bind and unbind callbacks are invoked only if the service instance
is assignable to a reference of type ServiceType.

The properties parameter contains the set of properties that the service was registered with.

If the method signature has a single argument of type ServiceReference then the ServiceReference of the
service will be passed to the callback in place of the service object itself.

When the listener is used with a reference declaration:

 A bind callback is invoked when the reference is initially bound to a backing service, and whenever the
backing service is replaced by a new backing service.

 An unbind callback is only invoked when the current backing service is unregistered, and no replacement
service is immediately available (i.e., the reference becomes unsatisfied).

When the listener is used with a collection declaration (set or list):

 A bind callback is invoked when a new service is added to the collection.

 An unbind callback is invoked when a service is unregistered and is removed from the collection.

Bind and unbind callbacks are made synchronously as part of processing an OSGi serviceChanged event for the
backing OSGi service, and are invoked on the OSGi thread that delivers the corresponding OSGi ServiceEvent.

5.4.3.3 Module-wide defaults for service references
Elements in the osgi namespace may optionally be enclosed in a top-level "osgi" element. This element
supports the setting of default-availability and default-timeout attribute values that then serve as the
defaults for the availability and timeout attributes of the reference, ref-set, and ref-list elements
when no value is specified.

5.5 Module Context API
The ModuleContext interface provides access to the component objects within the module context and to
metadata describing the components within the context. A component that implements the
ModuleContextAware interface will be injected with an instance of ModuleContext during configuration.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 38 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.6 Namespace Extension Mechanism
TODO; describe how additional namespaces are supported: see bug 694.

Outline solution:Namespace handlers are identified by the XML Schema URI of the schema that they support. A
handler is simply a type that implements the NamespaceHandler interface.In addition a schema definition
resource mapping can be used to specify a resource path to the associated xsd file within the bundle defining the
handler

A manifest header is used to declare a namespace handler:

Module-Context-Namespace-Handler:
http\://www.mycompany.com/schema/myns;handler=com.xyz.Foo;schema=/com/xyz/foo.xsd

The handler is available for use only for contexts created for the declaring bundle unless the “scope:=platform”
directive is also specified.

The Module-Context-Namespace-Handler value is a comma-delimited list of handlers provided by the bundle.
Each entry in the list names a schema URI, and the required handler and schema attributes referenced the
namespace handler type and schema definition file within the bundle.

If multiple bundles declare a handler for the same URI, then the handler from the bundle with the lowest bundle id
will be used.

Only see type-compatible namespace handlers:

• Bundle defining the namespace handler must be wired to the same exporter of the
org.osgi.module.context package as the bundle defining the handler

TODO: define NamespaceHandler interface and all that goes with it (access to ParserContext, BeanBuilder
interface etc.).

5.7 Configuration Administration Service Support
The osgix namespace defines configuration elements and attributes supporting the OSGi Compendium
Services. Currently the only service with dedicated support in this namespace is the Configuration Admin service.

5.7.1 Property Placeholder Support
Component property values may be sourced from the OSGi Configuration Administration service. This support is
enabled via the property-placeholder element. The property placeholder element provides for replacement
of delimited string values (placeholders) in component property expressions with values sourced from the
configuration administration service. The required persistent-id attribute specifies the persistent identifier to
be used as the key for the configuration dictionary. The default delimiter for placeholder strings is "${...}".
Delimited strings can then be used for any property value of any component, and will be replaced will the
configuration administration value with the given key.

Given the declarations:

<osgix:property-placeholder persistent-id="com.xyz.myapp"/>

<component id="someComponent" class="AClass">

 <property name="timeout" value="${timeout}"/>

</component>

Then the timeout property of someComponent will be set using the value of the timeout entry in the configuration
dictionary registered under the com.xyz.myapp persistent id.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 39 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

The placeholder strings are evaluated at the time that the component is instantiated. Changes to the properties
made via Configuration Admin subsequent to the creation of the component do not result in re-injection of
property values. See the managed-service and managed-service-factory elements if you require this
level of integration. The placeholder-prefix and placeholder-suffix attributes can be used to change
the delimiter strings used for placeholder values.

It is possible to specify a default set of property values to be used in the event that the configuration dictionary
does not contain an entry for a given key. The defaults-ref attribute can be used to refer to a named
component of Properties or Map type. Instead of referring to an external component, the default-properties
nested element may be used to define an inline set of properties.

<osgix:property-placeholder persistent-id="com.xyz.myapp">

 <default-properties>

 <property name="productCategory" value="E792"/>

 <property name="businessUnit" value="811"/>

 </default-properties>

</osgix:property-placeholder>

The persistent-id attribute must refer to the persistent-id of an OSGi ManagedService, it is a configuration
error to specify a factory persistent id referring to a ManagedServiceFactory.

Placeholder expressions can be used in any attribute value, as the whole or part of the value text.

5.7.2 Managed Services
The managed-service element is used to define a component based on the configuration information stored
under a given persistent id. It has two mandatory attributes, class and persistent-id. The persistent-id
attribute is used to specify the persistent id to be looked up in the configuration administration service; class
indicates the Java class of the component that will be instantiated.

A simple declaration of a managed service component looks as follows:

<osgix:managed-service id="myService" class="com.xyz.MessageService"

 persistent-id="com.xyz.messageservice"/>

The properties of the managed-service component are dependency injected by name (a component property
"foo" will be injected with the value stored under key "foo" in the dictionary) based on the configuration found
under the given persistent id. It is possible to declare regular component property elements within the managed-
service declaration. If a property value is defined both in the configuration object stored in the Configuration
Admin service, and in a nested property element, then the value from Configuration Admin takes precedence.
Property values specified via property elements can therefore be treated as default values to be used if none is
available through Configuration Admin.

The configuration data stored in Configuration Admin may be updated after the component has been created. By
default, any updates post-creation will be ignored. To receive configuration updates, the update-strategy
attribute can be used with a value of either component-managed or container-managed.

The default value of the optional update-strategy attribute is none. If an update strategy of component-
managed is specified then the update-method attribute must also be used to specify the name of a method
defined on the component class that will be invoked if the configuration for the component is updated. The update
method must have one of the following signatures:

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 40 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

public void anyMethodName(Map properties)

public void anyMethodName(Map<String,?> properties); // for Java 5

When an update strategy of container-managed is specified then the container will autowire the component
instance by name based on the new properties received in the update. For container-managed updates, the
component class must provide setter methods for the component properties that it wishes to have updated.
Container-managed updates cannot be used in conjunction with constructor injection. Before proceeding to
autowire based on the new property values, a lock is taken on the component instance. This lock is released once
autowiring has completed. A class may therefore synchronize its service methods or otherwise lock on the
component instance in order to have atomic update semantics.

5.7.3 Managed Service Factories
The managed-service-factory element is similar to the managed-service element, but instead defines a
set of components, one instance for each configuration stored under the given factory pid. It has two mandatory
attributes, factory-pid and class.

A simple managed-service-factory declaration looks as follows:

<osgix:managed-service-factory id="someId" factory-pid="org.xzy.services"

 class="MyServiceClass"/>

This declaration results in the creation of zero or more component instances, one instance for each configuration
registered under the given factory pid. The components will have synthetic names generated by appending "-"
followed by the persistent id of the configuration object as returned by Configuration Admin, to the value of the id
attribute used in the declaration of the managed-service-factory. For example: someId-
config.admin.generated.pid.

Over time new configuration objects may be added under the factory pid. A new component instance is
automatically instantiated whenever a new configuration object is created. If a configuration object stored under
the factory pid is deleted, then the corresponding component instance will be disposed. The optional destroy-
method attribute of the managed-service-factory element may be used to specify a destroy callback to be
invoked on the component instance. Such a method must have a signature:

public void anyMethodName();

It is also possible for the configuration of an existing component to be updated. The same update-strategy
and update-method attributes are available as for the managed-service element and with the same
semantics (though obviously only the component instance whose configuration has been updated in Configuration
Admin will actually be updated). The same client-locking semantics also apply when using the container-managed
update strategy.

5.7.4 Direct access to configuration data
If you need to work directly with the configuration data stored under a given persistent id or factory persistent id,
the easiest way to do this is to register a service that implements either the ManagedService or
ManagedServiceFactory interface and specify the pid that you are interested in as a service property. For
example:

<service interface="org.osgi.service.cm.ManagedService" ref="MyManagedService">

 <service-properties>

 <entry key="service.pid" value="my.managed.service.pid"/>

 </service-properties>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 41 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

</service>

<component id="myManagedService" class="com.xyz.MyManagedService"/>

where the class MyManagedService implements org.osgi.service.cm.ManagedService.

5.7.5 Publishing Configuration Admin properties with exported services
Using the property-placeholder support it is easy to publish any named configuration-admin property as a property
of a service exported to the service registry. For example:

<service interface="MyInterface" ref="MyService">

 <service-properties>

 <entry key="akey" value="${property.placeholder.key}"/>

 </service-properties>

</service>

To publish all of the public properties registered under a given persistent-id as properties of an exported service,
without having to explicitly list all of those properties up-front, use the nested config-properties element.

<service interface="org.osgi.service.cm.ManagedService" ref="MyManagedService">

 <service-properties>

 <osgix:config-properties persistent-id="pid"/>

 </service-properties>

</service>

Only public properties registered under the pid (properties with a key that does not start with ".") will be published.
To have the advertised service properties updated when the configuration stored under the given persistent id is
update, specify the optional update="true" attribute value.

5.8 APIs
5.8.1 Package org.osgi.module.context

5.8.1.1 ModuleContext
package org.osgi.module.context;

import org.osgi.framework.BundleContext;
import org.osgi.module.context.reflect.ComponentMetadata;
import org.osgi.module.context.reflect.LocalComponentMetadata;
import org.osgi.module.context.reflect.ServiceExportComponentMetadata;
import org.osgi.module.context.reflect.ServiceReferenceComponentMetadata;

/**
 * ModuleContext providing access to the components, service exports, and
 * service references of a module. Only bundles in the ACTIVE state may
 * have an associated ModuleContext. A given BundleContext has at most one
associated
 * ModuleContext.
 *
 * An instance of ModuleContext may be obtained from within a module context
 * by implementing the ModuleContextAware interface on a component class.
 * Alternatively you can look up ModuleContext services in the service registry.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 42 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * The Constants.BUNDLE_SYMBOLICNAME and Constants.BUNDLE_VERSION service
 * properties can be used to determine which bundle the published ModuleContext
 * service is associated with.
 *
 * @see ModuleContextAware
 * @see org.osgi.framework.Constants
 *
 */
public interface ModuleContext {

 /**
 * The names of all the named components within the module context.
 *
 * @return an array containing the names of all of the components within
 * the module.
 */
 String[] getComponentNames();

 /**
 * Get the component instance for a given named component.
 *
 * @param name the name of the component for which the instance is to be
retrieved
 *
 * @return the component instance, the type of the returned object is
dependent
 * on the component definition, and may be determined by introspecting
the
 * component metadata.
 *
 * @throws NoSuchNamedComponentException if the name specified is not the
name of a
 * component within the module.
 */
 Object getComponent(String name) throws NoSuchComponentException;

 /**
 * Get the component metadata for a given named component.
 *
 * @param name the name of the component for which the metadata is to be
retrieved.
 *
 * @return the component metadata for the component.
 *
 * @throws NoSuchNamedComponentException if the name specified is not the
name of a
 * component within the module.
 */
 ComponentMetadata getComponentMetadata(String name);

 /**
 * Get the service reference metadata for every OSGi service referenced
by
 * this module.
 *

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 43 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * @return an array of metadata, with one entry for each referenced
service.
 * If the module does not reference any services then an empty array will
be
 * returned.
 */
 ServiceReferenceComponentMetadata[] getReferencedServicesMetadata();

 /**
 * Get the service export metadata for every service exported by this
 * module.
 *
 * @return an array of metadata, with one entry for each service export.
 * If the module does not export any services then an empty array will be
 * returned.
 */
 ServiceExportComponentMetadata[] getExportedServicesMetadata();

 /**
 * Get the metadata for all components defined locally within this
module.
 *
 * @return an array of metadata, with one entry for each component.
 * If the module does not define any local components then an empty array
will
 * be returned.
 */
 LocalComponentMetadata[] getLocalComponentsMetadata();

 /**
 * Get the bundle context of the bundle this module context is
 * associated with.
 *
 * @return the module's bundle context
 */
 BundleContext getBundleContext();

}

5.8.1.2 ModuleContextAware

package org.osgi.module.context;

/**
 * If a component implements this interface then the setModuleContext operation
 * will be invoked after the component instance has been instantiated and before
 * the init-method (if specified) has been invoked.
 *
 */
public interface ModuleContextAware {

 /**

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 44 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * Set the module context of the module in which the implementor is
 * executing.
 *
 * @param context the module context in which the implementor of
 * this interface is executing.
 */
void setModuleContext(ModuleContext context);

}

5.8.1.3 ModuleContextListener
package org.osgi.module.context;

public interface ModuleContextListener extends java.util.EventListener {

 void contextCreated(String bundleSymbolicName, org.osgi.framework.Version version);

 void contextCreationFailed(String bundleSymbolicName, org.osgi.framework.Version version,

 Throwable rootCause);

}

5.8.1.4 ServiceUnavailableException
package org.osgi.module.context;

public class ServiceUnavailableException extends RuntimeException {

 public ServiceUnavailableException(

 String message,

 Class serviceType,

 String filterExpression);

 public Class getServiceType();

 public String getFilter();

}

5.8.1.5 NoSuchComponentException

public class NoSuchComponentException extends RuntimeException {

 private final String componentName;

 public NoSuchComponentException(String componentName) {
 this.componentName = componentName;
 }

 public String getComponentName() {
 return this.componentName;
 }

 public String getMessage() {
 return "No component named '" +

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 45 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

 (this.componentName == null ? "<null>" :
this.componentName) +
 "' could be found";
 }

}

5.8.2 Package org.osgi.module.context.reflect

5.8.2.1 ComponentMetadata

package org.osgi.module.context.reflect;

/**
 * Metadata for a component defined within a given module context.
 *
 * @see LocalComponentMetadata
 * @see ServiceReferenceComponentMetadata
 * @see ServiceExportComponentMetadata
 */
public interface ComponentMetadata {

 /**
 * The name of the component.
 *
 * @return component name. The component name may be null if this is an
anonymously
 * defined inner component.
 */
 String getName();

A
ll P

age W
ithin This Box

 /**
 * Any aliases by which the component is also known.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 46 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 *
 * @return an array of aliases by which the component is known (does not
 * include the component name as returned by getName()). If the component
 * has no aliases then an empty array is returned.
 */
 String[] getAliases();

 /**
 * The names of any components listed in a "depends-on" attribute for
this
 * component.
 *
 * @return an array of component names for components that we have
explicitly
 * declared a dependency, or an empty array if none.
 */
 String[] getExplicitDependencies();
}

5.8.2.2 LocalComponentMetadata
package org.osgi.module.context.reflect;

/**
 * Metadata for a component defined locally with a module context.
 *
 */
public interface LocalComponentMetadata extends ComponentMetadata {

 static final String SCOPE_SINGLETON = "singleton";
 static final String SCOPE_PROTOTYPE = "prototype";
 static final String SCOPE_BUNDLE = "bundle";

 /**
 * The name of the class type specified for this component.
 *
 * @return the name of the component class.
 */
 String getClassName();

 /**
 * The name of the init method specified for this component, if any.
 *
 * @return the method name of the specified init method, or null if
 * no init method was specified.
 */
 String getInitMethodName();

 /**
 * The name of the destroy method specified for this component, if any.
 *
 * @return the method name of the specified destroy method, or null if no
 * destroy method was specified.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 47 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 */
 String getDestroyMethodName();

 /**
 * The constructor injection metadata for this component.
 *
 * @return the constructor injection metadata. This is guaranteed to be
 * non-null and will refer to the default constructor if no explicit
 * constructor injection was specified for the component.
 */
 ConstructorInjectionMetadata getConstructorInjectionMetadata();

 /**
 * The property injection metadata for this component.
 *
 * @return an array containing one entry for each property to be
injected. If
 * no property injection was specified for this component then an empty
array
 * will be returned.
 *
 */
 PropertyInjectionMetadata[] getPropertyInjectionMetadata();

 /**
 * The field injection metadata for this component.
 *
 * @return an array containing one entry for each field to be injected.
If no
 * field injection was specified for this component then an empty array
will be
 * returned.
 *
 */
 FieldInjectionMetadata[] getFieldInjectionMetadata();

 /**
 * The method injection metadata for this component.
 *
 * @return an array containing one entry for each method to be invoked
using method
 * injection after constructing the component instance. If no method
injection
 * was specified for this component then an empty array will be returned.
 */
 MethodInjectionMetadata[] getMethodInjectionMetadata();

 /**
 * Is this an abstract component declaration.
 *
 * @return true, iff this component definition is marked as abstract and
hence
 * has no associated component instance.
 */
 boolean isAbstract();

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 48 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 /**
 * Is this component to be lazily instantiated?
 *
 * @return true, iff this component definition specifies lazy
 * instantiation.
 */
 boolean isLazy();

 /**
 * The metadata for the parent definition of this component declaration,
if any.
 *
 * @return the component metadata for the parent component definition if
this component
 * was declared using component metadata inheritance.
 */
 LocalComponentMetadata getParent();

 /**
 * The metadata describing how to create the component instance by
invoking a
 * method (as opposed to a constructor) if factory methods are used.
 *
 * @return the method injection metadata for the specified factory
method, or null if no
 * factory method is used for this component.
 */
 MethodInjectionMetadata getFactoryMethodMetadata();

 /**
 * The component instance on which to invoke the factory method (if
specified).
 *
 * @return when a factory method and factory component has been specified
for this
 * component, this operation returns the metadata specifying the
component on which
 * the factory method is to be invoked. When no factory component has
been specified
 * this operation will return null. A return value of null with a non-
null factory method
 * indicates that the factory method should be invoked as a static method
on the
 * component class itself.
 */
 ComponentMetadata getFactoryComponent();

 /**
 * The specified scope for the component lifecycle.
 *
 * @return a String indicating the scope specified for the component.
 *
 * @see SCOPE_SINGLETON
 * @see SCOPE_PROTOTYPE

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 49 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * @see SCOPE_BUNDLE
 */
 String getScope();
}

5.8.2.3 ConstructorInjectionMetadata
package org.osgi.module.context.reflect;

/**
 * Metadata for a component defined locally with a module context.
 *
 */
public interface LocalComponentMetadata extends ComponentMetadata {

 static final String SCOPE_SINGLETON = "singleton";
 static final String SCOPE_PROTOTYPE = "prototype";
 static final String SCOPE_BUNDLE = "bundle";

 /**
 * The name of the class type specified for this component.
 *
 * @return the name of the component class.
 */
 String getClassName();

 /**
 * The name of the init method specified for this component, if any.
 *
 * @return the method name of the specified init method, or null if
 * no init method was specified.
 */
 String getInitMethodName();

 /**
 * The name of the destroy method specified for this component, if any.
 *
 * @return the method name of the specified destroy method, or null if no
 * destroy method was specified.
 */
 String getDestroyMethodName();

 /**
 * The constructor injection metadata for this component.
 *
 * @return the constructor injection metadata. This is guaranteed to be
 * non-null and will refer to the default constructor if no explicit
 * constructor injection was specified for the component.
 */
 ConstructorInjectionMetadata getConstructorInjectionMetadata();

 /**

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 50 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * The property injection metadata for this component.
 *
 * @return an array containing one entry for each property to be
injected. If
 * no property injection was specified for this component then an empty
array
 * will be returned.
 *
 */
 PropertyInjectionMetadata[] getPropertyInjectionMetadata();

 /**
 * The field injection metadata for this component.
 *
 * @return an array containing one entry for each field to be injected.
If no
 * field injection was specified for this component then an empty array
will be
 * returned.
 *
 */
 FieldInjectionMetadata[] getFieldInjectionMetadata();

 /**
 * The method injection metadata for this component.
 *
 * @return an array containing one entry for each method to be invoked
using method
 * injection after constructing the component instance. If no method
injection
 * was specified for this component then an empty array will be returned.
 */
 MethodInjectionMetadata[] getMethodInjectionMetadata();

 /**
 * Is this an abstract component declaration.
 *
 * @return true, iff this component definition is marked as abstract and
hence
 * has no associated component instance.
 */
 boolean isAbstract();

 /**
 * Is this component to be lazily instantiated?
 *
 * @return true, iff this component definition specifies lazy
 * instantiation.
 */
 boolean isLazy();

 /**
 * The metadata for the parent definition of this component declaration,
if any.
 *

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 51 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * @return the component metadata for the parent component definition if
this component
 * was declared using component metadata inheritance.
 */
 LocalComponentMetadata getParent();

 /**
 * The metadata describing how to create the component instance by
invoking a
 * method (as opposed to a constructor) if factory methods are used.
 *
 * @return the method injection metadata for the specified factory
method, or null if no
 * factory method is used for this component.
 */
 MethodInjectionMetadata getFactoryMethodMetadata();

 /**
 * The component instance on which to invoke the factory method (if
specified).
 *
 * @return when a factory method and factory component has been specified
for this
 * component, this operation returns the metadata specifying the
component on which
 * the factory method is to be invoked. When no factory component has
been specified
 * this operation will return null. A return value of null with a non-
null factory method
 * indicates that the factory method should be invoked as a static method
on the
 * component class itself.
 */
 ComponentMetadata getFactoryComponent();

 /**
 * The specified scope for the component lifecycle.
 *
 * @return a String indicating the scope specified for the component.
 *
 * @see SCOPE_SINGLETON
 * @see SCOPE_PROTOTYPE
 * @see SCOPE_BUNDLE
 */
 String getScope();
}

5.8.2.4 PropertyInjectionMetadata
package org.osgi.module.context.reflect;

/**
 * Metadata describing a property to be injected. Properties are defined

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 52 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * following JavaBeans conventions.
 */
public interface PropertyInjectionMetadata {

 /**
 * The name of the property to be injected, following JavaBeans
conventions.
 *
 * @return the property name.
 */
 String getName();

 /**
 * The value to inject the property with.
 *
 * @return the property value.
 */
 Value getValue();
}

5.8.2.5 FieldInjectionMetadata
package org.osgi.module.context.reflect;

/**
 * Metadata describing a field of a component that is to be injected.
 */
public interface FieldInjectionMetadata {

 /**
 * The name of the field to be injected.
 *
 * @return the field name
 */
 String getName();

 /**
 * The value to inject the field with.
 *
 * @return the field value
 */
 Value getValue();

}

5.8.2.6 MethodInjectionMetadata
package org.osgi.module.context.reflect;

/**

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 53 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * Metadata describing a method to be invoked as part of component configuration.
 *
 */
public interface MethodInjectionMetadata {

 /**
 * The name of the method to be invoked.
 *
 * @return the method name, overloaded methods are disambiguated by
 * parameter specifications.
 */
 String getName();

 /**
 * The parameter specifications that determine which method to invoke
 * (in the case of overloading) and what arguments to pass to it.
 *
 * @return an array of parameter specifications, or an empty array if the
 * method takes no arguments.
 */
 ParameterSpecification[] getParameterSpecifications();
}

5.8.2.7 ParameterSpecification
package org.osgi.module.context.reflect;

/**
 * Metadata describing a parameter of a method or constructor and the
 * value that is to be passed during injection.
 *
 * @see NamedParameterSpecification
 * @see TypedParameterSpecification
 * @see IndexedParameterSpecification
 */
public interface ParameterSpecification {

 /**
 * The value to inject into the parameter.
 *
 * @return the parameter value
 */
 Value getValue();
}

5.8.2.8 TypedParameterSpecification
package org.osgi.module.context.reflect;

/**
 * Parameter specification for injection of a parameter by type.

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 54 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 */
public interface TypedParameterSpecification extends ParameterSpecification {

 /**
 * The name of the type that the parameter type must be assignable from.
 *
 * @return the parameter type name
 */
 String getTypeName();

}

5.8.2.9 IndexedParameterSpecification
package org.osgi.module.context.reflect;

/**
 * Parameter specification for injection of a parameter identified by its position
in the
 * argument list.
 *
 */
public interface IndexedParameterSpecification extends ParameterSpecification {

 /**
 * The index into the argument list of the parameter to be injected.
 *
 * @return the parameter index, indices start at 0.
 */
 int getIndex();
}

5.8.2.10 NamedParameterSpecification
package org.osgi.module.context.reflect;

/**
 * Parameter specification for injection of a parameter by name.
 *
 */
public interface NamedParameterSpecification extends ParameterSpecification {

 /**
 * The name of the parameter to be injected.
 *
 * @return the parameter name
 */
 String getName();

}

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 55 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.8.2.11 Value
package org.osgi.module.context.reflect;

/**
 * A value to inject into a field, property, method argument or constructor
 * argument.
 */
public interface Value {
 // deliberately left empty
}

5.8.2.12 ComponentValue
package org.osgi.module.context.reflect;

/**
 * A value represented by an anonymous local component definition.
 */
public interface ComponentValue extends Value {

 LocalComponentMetadata getComponentMetadata();

}

5.8.2.13 ReferenceValue

package org.osgi.module.context.reflect;

/**
 * A value which refers to another component in the module context by name.
 */
public interface ReferenceValue extends Value {

 /**
 * The name of the referenced component.
 */
 String getComponentName();

}

5.8.2.14 ReferenceNameValue
package org.osgi.module.context.reflect;

/**
 * A value which represents the name of another component in the module context.
 * The name itself will be injected, not the component that the name refers to.
 *
 */

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 56 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

public interface ReferenceNameValue extends Value {

 String getReferenceName();

}

5.8.2.15 MapValue
package org.osgi.module.context.reflect;

import java.util.Map;

/**
 * A map-based value. Map keys are instances of Value, as are the Map entry
 * values themselves.
 *
 */
public interface MapValue extends Value, Map/*<Value,Value>*/ {

}

5.8.2.16 SetValue

package org.osgi.module.context.reflect;

import java.util.Set;

/**
 * A set-based value. Members of the set are instances of Value.
 */
public interface SetValue extends Value, Set/*<Value>*/ {

}

5.8.2.17 ListValue

package org.osgi.module.context.reflect;

import java.util.List;

/**
 * A list-based value. Members of the List are instances of Value.
 */
public interface ListValue extends Value, List/*<Value>*/ {

}

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 57 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.8.2.18 PropertiesValue

package org.osgi.module.context.reflect;

import java.util.Properties;

/**
 * A properties-based value.
 */
public interface PropertiesValue extends Value, Properties {

}

5.8.2.19 NullValue

package org.osgi.module.context.reflect;

/**
* A null value.
*/
public interface NullValue extends Value{

}

5.8.2.20 TypedStringValue

package org.osgi.module.context.reflect;

/**
 * A simple string value that will be type-converted if necessary before
 * injecting into a target.
 *
 */
public interface TypedStringValue extends Value {

 /**
 * The string value (unconverted) of this value).
 */
 String getStringValue();

 /**
 * The name of the type to which this value should be coerced. May be
null.
 */
 String getTypeName();
}

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 58 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.8.2.21 ServiceExportComponentMetadata
package org.osgi.module.context.reflect;

import java.util.Properties;

/**
 * Metadata representing a service to be exported by a module context.
 *
 */
public interface ServiceExportComponentMetadata extends ComponentMetadata {

 /**
 * Do not auto-detect types for advertised service intefaces
 */
 public static final int EXPORT_MODE_DISABLED = 1;

 /**
 * Advertise all Java interfaces implemented by the exported component as
 * service interfaces.
 */
 public static final int EXPORT_MODE_INTERFACES= 2;

 /**
 * Advertise all Java classes in the hierarchy of the exported
component's type
 * as service interfaces.
 */
 public static final int EXPORT_MODE_CLASS_HIERARCHY = 3;

 /**
 * Advertise all Java classes and interfaces in the exported component's
type as
 * service interfaces.
 */
 public static final int EXPORT_MODE_ALL = 4;

 /**
 * The component that is to be exported as a service. Value must refer to
a component and
 * therefore be either a ComponentValue, ReferenceValue, or
ReferenceNameValue.
 *
 * @return the component to be exported as a service.
 */
 Value getExportedComponent();

 /**
 * The type names of the set of interface types that the service should
be advertised
 * as supporting.
 *

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 59 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * @return an array of type names, or an empty array if using auto-export
 */
 String[] getInterfaceNames();

 /**
 * Return the auto-export mode specified.
 *
 * @return One of EXPORT_MODE_DISABLED, EXPORT_MODE_INTERFACES,
EXPORT_MODE_CLASS_HIERARCHY, EXPORT_MODE_ALL
 */
 int getAutoExportMode();

 /**
 * The user declared properties to be advertised with the service.
 *
 * @return Properties object containing the set of user declared service
properties (may be
 * empty if no properties were specified).
 */
 Properties getServiceProperties();

 /**
 * The ranking value to use when advertising the service
 *
 * @return service ranking
 */
 int getRanking();

 /**
 * The listeners that have registered to be notified when the exported
service
 * is registered and unregistered with the framework.
 *
 * @return an array of registration listeners, or an empty array if no
listeners
 * have been specified.
 */
 RegistrationListenerMetadata[] getRegistrationListeners();

}

5.8.2.22 RegistrationListenerMetadata

package org.osgi.module.context.reflect;

/**
 * Metadata for a listener interested in service registration and unregistration
 * events for an exported service.
 */
public interface RegistrationListenerMetadata {

 /**

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 60 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * The component instance that will receive registration and
unregistration
 * events. The returned value must reference a component and therefore be
 * either a ComponentValue, ReferenceValue, or ReferenceNameValue.
 *
 * @return the listener component reference.
 */
 Value getListenerComponent();

 /**
 * The name of the method to invoke on the listener component when
 * the exported service is registered with the service registry.
 *
 * @return the registration callback method name.
 */
 String getRegistrationMethodName();

 /**
 * The name of the method to invoke on the listener component when
 * the exported service is unregistered from the service registry.
 *
 * @return the unregistration callback method name.
 */
 String getUnregistrationMethodName();

}

5.8.2.23 ServiceReferenceComponentMetadata
package org.osgi.module.context.reflect;

/**
 * Metadata describing a reference to a service that is to be imported into the
module
 * context from the OSGi service registry.
 */
public interface ServiceReferenceComponentMetadata extends ComponentMetadata {

 /**
 * A matching service is required at all times.
 */
 public static final int AVAILABILITY_MANDATORY = 1;

 /**
 * A matching service is not required to be present.
 */
 public static final int AVAILABILITY_OPTIONAL = 2;

 /**
 * Whether or not a matching service is required at all times.
 *
 * @return one of MANDATORY_AVAILABILITY or OPTIONAL_AVAILABILITY

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 61 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 */
 int getServiceAvailabilitySpecification();

 /**
 * The interface types that the matching service must support
 *
 * @return an array of type names
 */
 String[] getInterfaceNames();

 /**
 * The filter expression that a matching service must pass
 *
 * @return filter expression
 */
 String getFilterString();

 /**
 * The set of listeners registered to receive bind and unbind events for
 * backing services.
 *
 * @return an array of registered binding listeners, or an empty array
 * if no listeners are registered.
 */
 BindingListenerMetadata[] getBindingListeners();

}

5.8.2.24 UnaryServiceReferenceComponentMetadata
package org.osgi.module.context.reflect;

/**
 *
 * Service reference that will bind to a single matching service
 * in the service registry.
 *
 */
public interface UnaryServiceReferenceComponentMetadata extends
 ServiceReferenceComponentMetadata {

 /**
 * Timeout for service invocations when a matching backing service
 * is unavailable.
 *
 * @return service invocation timeout in milliseconds
 */
 long getTimeout();

}

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 62 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.8.2.25 CollectionBasedServiceReferenceComponentMetadata
package org.osgi.module.context.reflect;

/**
 * Service reference that binds to a collection of matching services from
 * the OSGi service registry.
 *
 */
public interface CollectionBasedServiceReferenceComponentMetadata extends
 ServiceReferenceComponentMetadata {

 /**
 * Create natural ordering based on comparison on service objects.
 */
 public static final int ORDER_BASIS_SERVICES = 1;

 /**
 * Create natural ordering based on comparison of service reference
objects.
 */
 public static final int ORDER_BASIS_SERVICE_REFERENCES = 2;

 /**
 * Track matching services in a managed Set
 */
 public static final int COLLECTION_TYPE_SET = 1;

 /**
 * Track matching services in a managed List
 */
 public static final int COLLECTION_TYPE_LIST = 2;

 /**
 * The type of collection to be created.
 *
 * @return one of COLLECTION_TYPE_SET or COLLECTION_TYPE_LIST
 */
 int getCollectionType();

 /**
 * The comparator specified for ordering the collection, or null if no
 * comparator was specified.
 *
 * @return if a comparator was specified then a Value object identifying
the
 * comparator (a ComponentValue, ReferenceValue, or ReferenceNameValue)
is
 * returned. If no comparator was specified then null will be returned.
 */
 Value getComparator();

 /**
 * Should the collection be ordered based on natural ordering?
 *

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 63 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 * @return true, iff natural-ordering based sorting was specified.
 */
 boolean isNaturalOrderingBasedComparison();

 /**
 * The basis on which to perform natural ordering, if specified.
 *
 * @return one of ORDER_BASIS_SERVICES and ORDER_BASIS_SERVICE_REFERENCES
 */
 int getNaturalOrderingComparisonBasis();
}

5.8.2.26 BindingListenerMetadata

package org.osgi.module.context.reflect;

/**
 * Metadata for a listener interested in service bind and unbind events for a
service
 * reference.
 */
public interface BindingListenerMetadata {

 /**
 * The component instance that will receive bind and unbind
 * events. The returned value must reference a component and therefore be
 * either a ComponentValue, ReferenceValue, or ReferenceNameValue.
 *
 * @return the listener component reference.
 */
 Value getListenerComponent();

 /**
 * The name of the method to invoke on the listener component when
 * a matching service is bound to the reference
 *
 * @return the bind callback method name.
 */
 String getBindMethodName();

 /**
 * The name of the method to invoke on the listener component when
 * a service is unbound from the reference.
 *
 * @return the unbind callback method name.
 */
 String getUnbindMethodName();

}

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 64 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.9 ‘osgi’ Schema
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.osgi.org/schema/context"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.osgi.org/schema/context"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.0-rc2">

 <!-- Schema elements for core component declarations -->

 <xsd:complexType name="identifiedType" abstract="true">
 <xsd:attribute name="id" type="xsd:ID">
 </xsd:attribute>
 </xsd:complexType>

 <xsd:element name="components">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="component"/>
 <xsd:any namespace="##other" processContents="strict" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="default-lazy-init" default="false" type="xsd:boolean">
 </xsd:attribute>
 <xsd:attribute name="default-init-method" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="default-destroy-method" type="xsd:string">
 </xsd:attribute>
 <xsd:anyAttribute namespace="##other" processContents="lax"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="description">
 <xsd:complexType mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:group name="componentElements">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="constructor-arg"/>
 <xsd:element ref="property"/>
 <xsd:any namespace="##other" processContents="strict" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:group>

 <xsd:attributeGroup name="componentAttributes">
 <xsd:attribute name="name" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="class" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="parent" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="scope" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="abstract" type="xsd:boolean">

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 65 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 </xsd:attribute>
 <xsd:attribute name="lazy-init" default="default" type="defaultable-boolean">
 </xsd:attribute>
 <xsd:attribute name="depends-on" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="init-method" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="destroy-method" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="factory-method" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="factory-component" type="xsd:string">
 </xsd:attribute>
 <xsd:anyAttribute namespace="##other" processContents="lax"/>
 </xsd:attributeGroup>

 <xsd:element name="component">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="identifiedType">
 <xsd:group ref="componentElements"/>
 <xsd:attributeGroup ref="componentAttributes"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="constructor-arg">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="1">
 <xsd:element ref="component"/>
 <xsd:element ref="ref"/>
 <xsd:element ref="idref"/>
 <xsd:element ref="value"/>
 <xsd:element ref="null"/>
 <xsd:element ref="list"/>
 <xsd:element ref="set"/>
 <xsd:element ref="map"/>
 <xsd:element ref="props"/>
 <xsd:any namespace="##other" processContents="strict"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="index" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="type" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="ref" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="value" type="xsd:string">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="property" type="propertyType">
 </xsd:element>

 <xsd:element name="arg-type">
 <xsd:complexType mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded"/>
 <xsd:attribute name="match" type="xsd:string">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ref">

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 66 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="component" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="local" type="xsd:IDREF">
 </xsd:attribute>
 <xsd:attribute name="parent" type="xsd:string">
 </xsd:attribute>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="idref">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="component" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="local" type="xsd:IDREF">
 </xsd:attribute>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="value">
 <xsd:complexType mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded"/>
 <xsd:attribute name="type" type="xsd:string">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="null">
 <xsd:complexType mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 </xsd:element>

 <!-- Collection Elements -->
 <xsd:group name="collectionElements">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="component"/>
 <xsd:element ref="ref"/>
 <xsd:element ref="idref"/>
 <xsd:element ref="value"/>
 <xsd:element ref="null"/>
 <xsd:element ref="list"/>
 <xsd:element ref="set"/>
 <xsd:element ref="map"/>
 <xsd:element ref="props"/>
 <xsd:any namespace="##other" processContents="strict"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:group>

 <xsd:element name="list" type="listOrSetType">
 </xsd:element>

 <xsd:element name="set" type="listOrSetType">
 </xsd:element>

 <xsd:element name="map" type="mapType">

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 67 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 </xsd:element>

 <xsd:element name="entry" type="entryType">
 </xsd:element>

 <xsd:element name="props" type="propsType">
 </xsd:element>

 <xsd:element name="key">
 <xsd:complexType>
 <xsd:group ref="collectionElements"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="prop">
 <xsd:complexType mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded"/>
 <xsd:attribute name="key" type="xsd:string" use="required">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="propertyType">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="1">
 <xsd:element ref="component"/>
 <xsd:element ref="ref"/>
 <xsd:element ref="idref"/>
 <xsd:element ref="value"/>
 <xsd:element ref="null"/>
 <xsd:element ref="list"/>
 <xsd:element ref="set"/>
 <xsd:element ref="map"/>
 <xsd:element ref="props"/>
 <xsd:any namespace="##other" processContents="strict"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required">
 </xsd:attribute>
 <xsd:attribute name="ref" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="value" type="xsd:string">
 </xsd:attribute>
 </xsd:complexType>

 <!-- Collection Types -->

 <!-- base collection type -->
 <xsd:complexType name="baseCollectionType">
 </xsd:complexType>

 <!-- base type for collections that have (possibly) typed nested values -->
 <xsd:complexType name="typedCollectionType">
 <xsd:complexContent>
 <xsd:extension base="baseCollectionType">
 <xsd:attribute name="value-type" type="xsd:string">
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- 'map' element type -->
 <xsd:complexType name="mapType">
 <xsd:complexContent>
 <xsd:extension base="typedCollectionType">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 68 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 <xsd:element ref="entry"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="key-type" type="xsd:string">
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- 'entry' element type -->
 <xsd:complexType name="entryType">
 <xsd:sequence>
 <xsd:element ref="key" minOccurs="0"/>
 <xsd:group ref="collectionElements"/>
 </xsd:sequence>
 <xsd:attribute name="key" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="key-ref" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="value" type="xsd:string">
 </xsd:attribute>
 <xsd:attribute name="value-ref" type="xsd:string">
 </xsd:attribute>
 </xsd:complexType>

 <!-- 'list' and 'set' collection type -->
 <xsd:complexType name="listOrSetType">
 <xsd:complexContent>
 <xsd:extension base="typedCollectionType">
 <xsd:group ref="collectionElements"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- 'props' collection type -->
 <xsd:complexType name="propsType">
 <xsd:complexContent>
 <xsd:extension base="baseCollectionType">
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="prop"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- simple internal types -->
 <xsd:simpleType name="defaultable-boolean">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="default"/>
 <xsd:enumeration value="true"/>
 <xsd:enumeration value="false"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- Elements from Spring Dynamic Modules project -->

 <xsd:attributeGroup name="defaults">
 <xsd:attribute name="default-timeout" type="xsd:long" default="30000"/>
 <xsd:attribute name="default-availability" type="Tavailability" default="mandatory"/>
 </xsd:attributeGroup>

 <xsd:simpleType name="TdefaultCardinalityOptions">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="1..X"/>
 <xsd:enumeration value="0..X"/>
 </xsd:restriction>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 69 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 </xsd:simpleType>

 <!-- reference -->
 <xsd:element name="reference" type="TsingleReference"/>

 <xsd:complexType name="Treference">
 <xsd:complexContent>
 <xsd:extension base="identifiedType">
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="interfaces" type="listOrSetType" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="listener" type="Tlistener" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="interface" use="optional" type="xsd:token"/>
 <xsd:attribute name="filter" use="optional" type="xsd:string"/>
 <xsd:attribute name="depends-on" type="xsd:string" use="optional"/>
 <xsd:attribute name="component-name" type="xsd:string" use="optional"/>
 <xsd:attribute name="availability" use="optional" type="Tavailability" default="mandatory"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Tlistener">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <!-- nested component declaration -->
 <xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="skip"/>
 </xsd:sequence>

 <!-- shortcut for bean references -->
 <xsd:attribute name="ref" type="xsd:string" use="optional"/>
 <xsd:attribute name="bind-method" type="xsd:token" use="optional"/>
 <xsd:attribute name="unbind-method" type="xsd:token" use="optional"/>
 </xsd:complexType>

 <!-- single reference -->
 <xsd:complexType name="TsingleReference">
 <xsd:complexContent>
 <xsd:extension base="Treference">
 <xsd:attribute name="timeout" use="optional" type="xsd:long"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:simpleType name="Tawailabilitylity">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="required"/>
 <xsd:enumeration value="optional"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- reference collections (set, list) -->
 <xsd:element name="ref-list" type="TreferenceCollection"/>

 <xsd:element name="ref-set" type="TreferenceCollection"/>

 <xsd:complexType name="TreferenceCollection">
 <xsd:complexContent>
 <xsd:extension base="Treference">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <xsd:element name="comparator" type="Tcomparator"/>
 </xsd:sequence>
 <xsd:attribute name="comparator-ref" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 70 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 <xsd:complexType name="Tcomparator">
 <xsd:choice>
 <xsd:element name="natural" type="TnaturalOrdering"/>
 <xsd:sequence minOccurs="1" maxOccurs="1">
 <!-- nested bean declaration -->
 <xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="skip"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:complexType>

 <xsd:complexType name="TnaturalOrdering">
 <xsd:attribute name="basis" type="TorderingBasis" use="required"/>
 </xsd:complexType>

 <xsd:simpleType name="TorderingBasis">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="service"/>
 <xsd:enumeration value="service-reference"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- service -->
 <xsd:element name="service" type="Tservice"/>

 <xsd:complexType name="Tservice">
 <xsd:complexContent>
 <xsd:extension base="identifiedType">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <xsd:element name="interfaces" type="listOrSetType" minOccurs="0"/>
 <xsd:element name="service-properties" minOccurs="0" type="mapType"/>
 <xsd:element name="registration-listener" type="TserviceRegistrationListener"
 minOccurs="0" maxOccurs="unbounded"/>
 <!-- nested bean declaration -->
 <xsd:any namespace="##other" minOccurs="0" maxOccurs="1" processContents="skip"/>
 </xsd:sequence>
 <xsd:attribute name="interface" type="xsd:token" use="optional"/>
 <xsd:attribute name="ref" type="xsd:string" use="optional"/>
 <xsd:attribute name="depends-on" type="xsd:string" use="optional"/>
 <xsd:attribute name="auto-export" type="TautoExportModes" default="disabled"/>
 <xsd:attribute name="ranking" type="xsd:int" default="0"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="TserviceRegistrationListener">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <!-- nested bean declaration -->
 <xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="skip"/>
 </xsd:sequence>

 <!-- shortcut for bean references -->
 <xsd:attribute name="ref" type="xsd:string" use="optional"/>
 <xsd:attribute name="registration-method" type="xsd:token" use="optional"/>
 <xsd:attribute name="unregistration-method" type="xsd:token" use="optional"/>
 </xsd:complexType>

 <xsd:simpleType name="TautoExportModes">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="disabled"/>
 <xsd:enumeration value="interfaces"/>
 <xsd:enumeration value="class-hierarchy"/>
 <xsd:enumeration value="all-classes"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 71 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

5.10 ‘osgix’ Schema
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.osgi.org/schema/osgi-compendium"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:osgi="http://www.osgi.org/schema/context"
 targetNamespace="http://www.osgi.org/schema/osgi-compendium"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.0-rc2">

 <xsd:import namespace="http://www.osgi.org/schema/context"/>

 <!-- property placeholder -->

 <xsd:element name="property-placeholder" type="TpropertyPlaceholder"/>

 <xsd:complexType name="TpropertyPlaceholder">
 <xsd:complexContent>
 <xsd:extension base="osgi:identifiedType">
 <xsd:sequence minOccurs="0" maxOccurs="1">
 <!-- nested properties declaration -->
 <xsd:element name="default-properties" type="osgi:propsType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="persistent-id" type="xsd:string" use="required"/>
 <xsd:attribute name="placeholder-prefix" type="xsd:string" use="optional" default="${"/>
 <xsd:attribute name="placeholder-suffix" type="xsd:string" use="optional" default="}"/>
 <xsd:attribute name="defaults-ref" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- managed-service -->

 <xsd:element name="managed-service" type="TmanagedService"/>

 <xsd:complexType name="TmanagedService">
 <xsd:complexContent>
 <xsd:extension base="osgi:identifiedType">
 <xsd:group ref="osgi:beanElements"/>
 <xsd:attributeGroup ref="osgi:beanAttributes"/>
 <xsd:attribute name="persistent-id" type="xsd:string" use="required"/>
 <xsd:attribute name="updateStrategy" type="TupdateStrategyType" use="optional"/>
 <xsd:attribute name="update-method" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- managed-service-factory -->

 <xsd:element name="managed-service-factory" type="TmanagedServiceFactory"/>

 <xsd:complexType name="TmanagedServiceFactory">
 <xsd:complexContent>
 <xsd:extension base="osgi:identifiedType">
 <xsd:group ref="osgi:beanElements"/>
 <xsd:attributeGroup ref="osgi:beanAttributes"/>
 <xsd:attribute name="factory-pid" type="xsd:string" use="required"/>
 <xsd:attribute name="updateStrategy" type="TupdateStrategyType" use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:simpleType name="TupdateStrategyType">
 <xsd:restriction base="xsd:string">

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 72 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

 <xsd:enumeration value="none"/>
 <xsd:enumeration value="bean-managed"/>
 <xsd:enumeration value="container-managed"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- config-properties -->

 <xsd:element name="config-properties" type="TconfigProperties"/>

 <xsd:complexType name="TconfigProperties">
 <xsd:attribute name="persistent-id" type="xsd:string" use="required"/>
 <xsd:attribute name="update" type="xsd:boolean" use="optional" default="false"/>
 </xsd:complexType>

</xsd:schema>

6 Considered Alternatives

Todo: document considered alternatives for behavior of a mandatory reference that becomes unsatisfied.

.

7 Security Considerations

Description of all known vulnerabilities this may either introduce or address as well as scenarios of how the
weaknesses could be circumvented.

8 Document Support

8.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.
[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

A
ll P

age w
ithin this B

ox

 RFC 0076 OSGi Alliance Press Release Process Page 73 of 73

 Draft

Copyright © The OSGi Alliance 2008 All Rights Reserved

A
ll P

age W
ithin This Box

8.2 Author’s Address

Name Adrian Colyer

Company SpringSource

Address Kenneth Dibben House
Enterprise Road
Chilworth
Southampton SO16 7NS
ENGLAND

Voice +44 2380 111500

e-mail adrian.colyer@springsource.com

8.3 Acronyms and Abbreviations

8.4 End of Document

The OSGi Alliance and its members specify, create, advance, and promote wide industry adoption
of an open delivery and management platform for application services in home, commercial
buildings, automotive and industrial environments. The OSGi Alliance serves as the focal point for
a collaborative ecosystem of service providers, developers, manufacturers, and consumers. The
OSGi specifications define a standardized, component oriented, computing environment for
networked services. OSGi technology is currently being delivered in products and services
shipping from several Fortune 100 companies. The OSGi Alliance’s horizontal software integration
platform is ideal for both vertical and cross-industry business models within home, vehicle, mobile
and industrial environments. As an independent non-profit corporation, the OSGi Alliance also
provides for the fair and uniform creation and distribution of relevant intellectual property –
including specifications, reference implementations, and test suites – to all its members.

HOW TO REACH US:

OSGi Alliance
Bishop Ranch 6
2400 Camino Ramon, Suite 375
San Ramon, CA 94583 USA

Phone: +1.925.275.6625
E-mail: marketinginfo@osgi.org
Web: http://www.osgi.org

OSGi is a trademark of the OSGi Alliance in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

All other marks are trademarks of their respective companies.

http://www.osgi.org/
mailto:marketinginfo@osgi.org

	OSGi Early Draft 4.2
	OSGi Service Platform Release 4
	Preface

	Core Design Documents
	rfc-0120-security_enhancements.pdf
	0 Document Information
	0.1 Table of Contents
	0.2 Terminology and Document Conventions
	0.3 Revision History

	1 Introduction
	2 Application Domain
	2.1 Terminology + Abbreviations

	3 Problem Description
	4 Requirements
	5 Technical Solution
	5.1 Ordered Table with Decision Column Discussion
	5.2 Conditional Permission Table Requirements
	5.3 Negative Condition Requirements
	5.4 Atomic API Discussion
	5.5 Javadoc
	5.5.1 org.osgi.service.condpermadmin Class BundleLocationCondition
	5.5.1.1 getCondition

	5.5.2 org.osgi.service.condpermadmin Class BundleSignerCondition
	5.5.2.1 getCondition

	5.5.3 org.osgi.service.condpermadmin Interface Condition
	5.5.3.1 TRUE
	5.5.3.2 FALSE
	5.5.3.3 isPostponed
	5.5.3.4 isSatisfied
	5.5.3.5 isMutable
	5.5.3.6 isSatisfied

	5.5.4 org.osgi.service.condpermadmin Interface ConditionalPermissionAdmin
	5.5.4.1 addConditionalPermissionInfo
	5.5.4.2 setConditionalPermissionInfo
	5.5.4.3 getConditionalPermissionInfos
	5.5.4.4 getConditionalPermissionInfo
	5.5.4.5 getAccessControlContext
	5.5.4.6 createConditionalPermissionsUpdate
	5.5.4.7 createConditionalPermissionInfoBase

	5.5.5 org.osgi.service.condpermadmin Interface ConditionalPermissionInfo
	5.5.5.1 delete

	5.5.6 org.osgi.service.condpermadmin Interface ConditionalPermissionInfoBase
	5.5.6.1 ALLOW
	5.5.6.2 DENY
	5.5.6.3 getConditionInfos
	5.5.6.4 getPermissionInfos
	5.5.6.5 getGrantDecision
	5.5.6.6 getName

	5.5.7 org.osgi.service.condpermadmin Interface ConditionalPermissionsUpdate
	5.5.7.1 getConditionalPermissionInfoBases
	5.5.7.2 commit

	5.5.8 org.osgi.service.condpermadmin Class ConditionInfo
	5.5.8.1 ConditionInfo
	5.5.8.2 ConditionInfo
	5.5.8.3 getEncoded
	5.5.8.4 toString
	5.5.8.5 getType
	5.5.8.6 getArgs
	5.5.8.7 equals
	5.5.8.8 hashCode

	5.6 Open Issues
	5.7 Closed Issues
	5.7.1 Default Decision
	5.7.1.1 Original Issue
	5.7.1.2 Resolution

	5.7.2 An Alternate Update model
	5.7.2.1 Original Issue
	5.7.2.2 Resolution

	5.7.3 Utility methods
	5.7.3.1 Original Issue
	5.7.3.2 Resolution

	6 Considered Alternatives
	6.1 com.bea.sandbox.security.permission Class DeniablePermission
	6.1.1 DeniablePermission
	6.1.2 DeniablePermission
	6.1.3 implies
	6.1.4 hashCode
	6.1.5 equals
	6.1.6 toString

	6.2 Deny Permission Column
	6.2.1 Add Deny Column to Permission Table Discussion
	6.2.1.1 Deny Column Requirements

	6.2.2 NOT Condition Discussion
	6.2.3 NotCondition Requirements
	6.2.4 NotCondition Javadoc

	org.osgi.service.condpermadmin Class NotCondition
	getCondition
	6.2.5 Other API modifications
	6.2.6 org.osgi.service.condpermadmin.ConditionInfo
	6.2.6.1 Constructor

	ConditionInfo
	6.2.6.2 isNot method

	isNot
	6.2.7 org.osgi.service.condpermadmin.ConditionPermissionInfo
	6.2.7.1 getDenyPermissionInfos method

	getDenyPermissionInfos
	6.2.8 org.osgi.service.condpermadmin.ConditionalPermissionAdmin
	6.2.8.1 addConditionalPermissionInfo

	addConditionalPermissionInfo
	6.2.8.2 setConditionalPermissionInfo

	setConditionalPermissionInfo
	6.2.9 Issues
	6.2.10 Friends API

	7 Security Considerations
	8 Document Support
	8.1 References
	8.2 Author’s Address
	8.3 Acronyms and Abbreviations
	8.4 End of Document

	rfc-0121-BundleTracker.pdf
	0 Document Information
	0.1 Table of Contents
	0.2 Terminology and Document Conventions
	0.3 Revision History

	1 Introduction
	2 Application Domain
	3 Problem Description
	4 Requirements
	5 Technical Solution
	5.1 Design Discussion
	5.1.1 Overview
	5.1.2 org.osgi.util.tracker package
	5.1.3 Tracking Criteria
	5.1.4 Synchronous Listener
	5.1.5 Customized object

	5.2 org.osgi.util.tracker.BundleTracker
	5.2.1 context
	5.2.2 BundleTracker
	5.2.3 addingBundle
	5.2.4 close
	5.2.5 getBundles
	5.2.6 getObject
	5.2.7 getTrackingCount
	5.2.8 modifiedBundle
	5.2.9 open
	5.2.10 remove
	5.2.11 removedBundle
	5.2.12 size

	5.3 org.osgi.util.tracker.BundleTrackerCustomizer
	5.3.1 addingBundle
	5.3.2 modifiedBundle
	5.3.3 removedBundle

	6 Considered Alternatives
	6.1 Using Services to model Bundles
	6.2 Using asynchronous Bundle Listener

	7 Security Considerations
	8 Document Support
	8.1 References
	8.2 Author’s Address
	8.3 Acronyms and Abbreviations
	8.4 End of Document

	rfc-0125-Bundle-License.pdf
	rfc-0126-ServiceRegistryHooks.pdf
	0Document Information
	0.1Table of Contents
	0.2Terminology and Document Conventions
	0.3Revision History

	1Introduction
	2Application Domain
	3Problem Description
	4Requirements
	5Technical Solution
	5.1Modifications to current API
	5.1.1New ServiceEvent type

	5.2New Hook Classes
	5.2.1PublishHook
	5.2.2FindHook
	5.2.3ListenerHook

	5.3Backwards Compatibility Requirements

	6Javadoc
	6.1org.osgi.framework.hooks.service
Interface PublishHook
	6.1.1event

	6.2org.osgi.framework.hooks.service
Interface FindHook
	6.2.1find

	6.3org.osgi.framework.hooks.service
Interface ListenerHook
	6.3.1initial
	6.3.2added
	6.3.3removed

	6.4org.osgi.framework.hooks.service
Class ListenerHook.Listener
	6.4.1ListenerHook.Listener
	6.4.2getBundleContext
	6.4.3getServiceListener
	6.4.4getFilter

	7Considered Alternatives
	7.1Pre and post hooks
	7.2Listening to specific service names
	7.3Framework Proxying of Hook Generated Objects
	7.4Full Manipulation Capabilities
	7.4.1.1Chained Hook Classes
	7.4.1.2PublishHook
	7.4.1.3FindHook
	7.4.1.4BindHook
	7.4.1.5EventHook
	7.4.2Exposure to Hook Generated Objects
	7.4.3AdminPermission

	8Security Considerations
	9Document Support
	9.1References
	9.2Author’s Address
	9.3Acronyms and Abbreviations
	9.4End of Document

	rfc-0128-AppAdminExitValue.pdf
	0 Document Information
	0.1 Table of Contents
	0.2 Terminology and Document Conventions
	0.3 Revision History

	1 Introduction
	2 Application Domain
	2.1 Terminology

	3 Problem Description
	4 Requirements
	4.1 Use Cases
	4.1.1 Launching Native Commands
	4.1.2 Eclipse RCP Applications

	5 Technical Solution
	5.1 Method getExitValue
	5.1.1 ApplicationException JavaDoc
	5.1.1.1 APPLICATION_EXITVALUE_NOT_AVAILABLE

	5.1.2 ApplicationHandle JavaDoc
	5.1.2.1 APPLICATION_SUPPORTS_EXITVALUE
	5.1.2.2 GetExitValue

	6 Considered Alternatives
	6.1 No Block and timeout

	7 Security Considerations
	7.1 Exit Value Sensitivity
	7.2 Exit Value Memory Leak

	8 Document Support
	8.1 References
	8.2 Author’s Address
	8.3 Acronyms and Abbreviations
	8.4 End of Document

	RFC-0129-Initial_Provisioning_Update.pdf
	0Document Information
	0.1Table of Contents
	0.2Terminology and Document Conventions
	0.3Revision History

	1Introduction
	2Application Domain
	3Problem Description
	4Requirements
	5Technical Solution
	5.1Manifest header
	5.2Extension
	5.3Priority
	5.4Bundle MIME Type

	6Security Considerations
	7Document Support
	7.1References
	7.2Author’s Address
	7.3End of Document

	rfc0132-Command_Line_Interface.pdf
	0Document Information
	0.1Table of Contents
	0.2Terminology and Document Conventions
	0.3Revision History

	1Introduction
	2Problem Description
	2.1Framework Launching
	2.2Command Interface

	3Requirements
	3.1Non Functional
	3.2Launching
	3.3Command Names
	3.4Shell
	3.5Shell Commands
	3.6Source Providers

	4Technical Solution
	4.1Launching
	4.2Life Cycle Issues
	4.3Properties
	4.4Starting Procedure
	4.5Shell Design
	4.6Command Service
	4.7Thread IO Service
	4.8Shell syntax: TSL
	4.8.1Introduction to TSL (Tiny Shell Language).
	4.8.2Program Syntax
	4.8.3 Examples of Syntax usage

	4.9Standard IO Handling
	4.10Command Provider Discovery
	4.11Other Commands
	4.12Piping
	4.13Command Calling
	4.13.1Remove Variable
	4.13.2Assignment
	4.13.3Single Value
	4.13.4Call Cmd
	4.13.5Message Send

	4.14Argument Coercion
	4.15Converters
	4.16Printing or Not
	4.17TSL In OSGi
	4.18Services and their Commands
	4.19Help

	5Javadoc
	5.1org.osgi.framework.launch
Interface SystemBundle
	5.1.1SECURITY
	5.1.2STORAGE
	5.1.3LIBRARIES
	5.1.4EXECPERMISSION
	5.1.5ROOT_CERTIFICATES
	5.1.6WINDOWSYSTEM
	5.1.7init
	5.1.8waitForStop

	5.2org.osgi.service.command
Interface CommandProcessor
	5.2.1COMMAND_SCOPE
	5.2.2COMMAND_FUNCTION
	5.2.3createSession

	5.3org.osgi.service.command
Interface CommandSession
	5.3.1execute
	5.3.2execute
	5.3.3close
	5.3.4getKeyboard
	5.3.5getConsole
	5.3.6get
	5.3.7put
	5.3.8format
	5.3.9convert

	5.4org.osgi.service.command
Interface Converter
	5.4.1CONVERTER_CLASSES
	5.4.2INSPECT
	5.4.3LINE
	5.4.4PART
	5.4.5convert
	5.4.6format

	5.5org.osgi.service.command
Interface Function
	5.5.1execute

	5.6org.osgi.service.threadio
Interface ThreadIO
	5.6.1setStreams
	5.6.2close

	6Alternatives
	6.1Considered setParentBundle

	7Security Considerations
	8Document Support
	8.1References
	8.2Author’s Address
	8.3Acronyms and Abbreviations
	8.4End of Document

	rfc-0134-DS updates.pdf
	0Document Information
	0.1Table of Contents
	0.2Terminology and Document Conventions
	0.3Revision History

	1Introduction
	2Application Domain
	3Technical Solution
	3.1Bug 144: No component instance if no Configuration
	3.2Bug 244: Extend SCR to allow alternate activate and deactivate method signatures
	3.2.1Component deactivation reasons

	3.3Bug 567: Allow use of wildcards in Service-Component header
	3.4Bug 600: Making name attributes optional
	3.5XML schema namespace change

	4Considered Alternatives
	5Security Considerations
	6Document Support
	6.1References
	6.2Author’s Address
	6.3Acronyms and Abbreviations
	6.4End of Document

	Enterprise Design Documents
	RFC 98 Transactions in OSGi.pdf
	0 Document Information
	0.1 Table of Contents
	0.2 Terminology and Document Conventions
	0.3 Revision History

	1 Introduction
	2 Application Domain
	2.1 Crash Recovery
	2.2 Java Transaction Architecture
	2.3 Why Transactions

	3 Problem Description
	Requirements
	4 Technical Solution
	4.1 Using JTA
	4.2 Compliance
	4.3 Components of the Transaction Service
	4.3.1 Transaction Originator
	4.3.2 Transaction Manager
	4.3.3 Volatile Resources
	4.3.4 Transaction Resources

	4.4 Locating OSGI transaction services
	4.5 Use Cases
	4.5.1 Create Transaction
	4.5.2 Join Transaction
	4.5.3 Commit Transaction
	4.5.4 Prepare Resource
	4.5.5 Commit Resource
	4.5.6 Rollback Transaction
	4.5.7 Rollback Resource
	4.5.8 Assign Transaction to Thread

	4.6 Functionality
	4.6.1 Scope of a global transaction
	Correctness of the State
	4.6.3 End of Transaction
	4.6.4 Performance
	4.6.5 Management of Transaction
	4.6.6 Heuristic Exceptions
	4.6.7 Examples
	4.6.7.1 Example 1 - Creating and using a Transaction
	4.6.7.2 Example 1 - (Resource) Participating in Transaction

	5 Security Considerations
	5.1 Imposing as Transaction Manager
	5.2 Transaction Permission

	6 Document Support
	6.1 References
	6.2 Author’s Address
	6.3 Acronyms and Abbreviations
	6.4 End of Document

	rfc-0119-Distributed_OSGi-AugDraft.pdf
	0 Document Information
	0.1 Table of Contents
	0.2 Terminology and Document Conventions
	0.3 Revision History

	1 Introduction
	1.1 Open Items
	1.2 Terminology
	1.3 List of Symbols

	2 Application Domain
	3 Problem Description
	3.1 From RFPs 79 & 88:
	3.2 Scenario diagrams
	3.2.1 Consumer Side
	3.2.2 Provider Side
	3.2.3 A non-OSGi distributed client using an OSGi service
	3.2.4 An OSGi client using a remote non-OSGi Service

	3.3 Roles
	3.3.1.1 Solution Architect
	3.3.1.2 Component Designer
	3.3.1.3 Developer
	3.3.1.4 Assembler
	3.3.1.5 Solution Deployer
	3.3.1.6 Testing
	3.3.1.7 Runtime (Framework)

	4 Requirements
	4.1 From RFP 79
	4.2 From RFP 88
	4.3 Further requirements
	4.3.1 Levels of transparency

	5 Technical Solution
	5.1 Overview of contributions to the OSGi standard
	5.1.1 Summary of Changes to the OSGi Core
	5.1.2 Summary of Additional Services

	5.2 Distribution software
	5.2.1 Functionality
	5.2.2 Interface description
	5.2.2.1 Distribution Software Interface
	5.2.2.2 Exception Handling

	5.3 Discovery Service
	5.3.1 Functionality
	5.3.2 Discovery using a local file(s)
	5.3.3 Discovery Service Federation and Interworking
	5.3.4 Useful Discovery Service Properties
	5.3.5 Interface description
	5.3.5.1 Java interface description

	5.4 Service Registry Hooks
	5.4.1 Registration of Remote Services in Local Service Registry
	5.4.2 Additional filtering

	5.5 Service Programming Model
	5.5.1 Service interface description
	5.5.2 Properties
	5.5.2.1 Definition of new Properties
	5.5.2.2 Standard Properties

	5.5.3 Intents
	5.5.3.1 Example of using Intents
	5.5.3.2 Defining Intents
	5.5.3.3 OSGi-defined Intents
	5.5.3.4 SCA-defined Intents
	5.5.3.5 Qualified Intents
	5.5.3.6 Publishing of Qualified Intents

	5.5.4 Configuration type

	5.6 Collaboration of new and changed entities
	5.6.1 Interactions on the service provider side
	5.6.1.1 Exposing a Service remotely
	5.6.1.2 Service Unregistration

	5.6.2 Interactions on the service consumer side
	5.6.2.1 Lookup for a remote Service
	5.6.2.2 Service invocation

	5.6.3 Interactions with Non-OSGi service providers and consumers
	5.6.4 Lifecycle dynamics

	5.7 Best Practices
	5.7.1.1 Runtime (Framework)
	5.7.2 Distribution-related limitations on service interface definitions
	5.7.3 Connector
	5.7.4 Caching
	5.7.5 Automated Service discovery
	5.7.6 Bundle organization
	5.7.7 Proxies

	5.8 Reference Implementation
	5.8.1 Installing Distribution Software in an OSGi platform

	5.9 Reference Implementation based on SCA

	6 Considered Alternatives
	6.1.1 Alternative: using simple properties to define service remoting

	7 Security Considerations
	8 Document Support
	8.1 References
	8.2 Author’s Address
	8.3 Acronyms and Abbreviations
	8.4 End of Document

	rfc-124.pdf
	0 Document Information
	0.1 Table of Contents
	Status
	0.3 Terminology and Document Conventions
	0.4 Revision History

	1 Introduction
	2 Application Domain
	2.1 Terminology and Abbreviations

	3 Problem Description
	4 Requirements
	5 Solution
	5.1 Architectural Overview
	5.2 Module Context Life Cycle and the Extender Bundle
	5.2.1 Module context creation and destruction
	5.2.2 Manifest Headers for Managed Bundles
	5.2.3 Module Lifecycle Events

	5.3 Declaring Module Components
	5.3.1 Naming Components
	5.3.1.1 Aliasing components

	5.3.2 Instantiating Components
	5.3.2.1 Instantiation using a constructor
	5.3.2.2 Instantiation using a static factory method
	5.3.2.3 Instantiation using an instance factory method

	5.3.3 Dependencies
	5.3.3.1 Injecting Dependencies
	Constructor Injection
	Setter Injection
	Properties and configuration details
	Inner Components
	Collections
	Type Conversion
	Nulls
	Configuration metadata shortcuts
	Compound Property Names

	5.3.3.2 Using depends-on
	5.3.3.3 Lazily instantiated components

	5.3.4 Component Scopes
	5.3.5 Lifecycle

	5.4 Interacting with the Service Registry
	5.4.1 Exporting a managed component to the Service Registry
	5.4.1.1 Controlling the set of advertised service interfaces for an exported service
	5.4.1.2 Controlling the set of advertised properties for an exported service
	5.4.1.3 The depends-on attribute
	5.4.1.4 The ranking attribute
	5.4.1.5 Registration Listener

	5.4.2 Defining References to OSGi Services
	5.4.2.1 Referencing an individual service
	Interface attribute and interfaces element
	Filter attribute
	Component name attribute
	Availability attribute
	Depends-on attribute
	Obtaining a ServiceReference object

	5.4.2.2 Referencing a collection of services
	Obtaining Service Reference Objects

	5.4.3 Dealing with service dynamics
	5.4.3.1 Mandatory dependencies
	5.4.3.2 Service Listeners
	5.4.3.3 Module-wide defaults for service references

	5.5 Module Context API
	5.6 Namespace Extension Mechanism
	5.7 Configuration Administration Service Support
	5.7.1 Property Placeholder Support
	5.7.2 Managed Services
	5.7.3 Managed Service Factories
	5.7.4 Direct access to configuration data
	5.7.5 Publishing Configuration Admin properties with exported services

	5.8 APIs
	5.8.1 Package org.osgi.module.context
	5.8.1.1 ModuleContext
	5.8.1.2 ModuleContextAware
	5.8.1.3 ModuleContextListener
	5.8.1.4 ServiceUnavailableException
	5.8.1.5 NoSuchComponentException

	5.8.2 Package org.osgi.module.context.reflect
	5.8.2.1 ComponentMetadata
	5.8.2.2 LocalComponentMetadata
	5.8.2.3 ConstructorInjectionMetadata
	5.8.2.4 PropertyInjectionMetadata
	5.8.2.5 FieldInjectionMetadata
	5.8.2.6 MethodInjectionMetadata
	5.8.2.7 ParameterSpecification
	5.8.2.8 TypedParameterSpecification
	5.8.2.9 IndexedParameterSpecification
	5.8.2.10 NamedParameterSpecification
	5.8.2.11 Value
	5.8.2.12 ComponentValue
	5.8.2.13 ReferenceValue
	5.8.2.14 ReferenceNameValue
	5.8.2.15 MapValue
	5.8.2.16 SetValue
	5.8.2.17 ListValue
	5.8.2.18 PropertiesValue
	5.8.2.19 NullValue
	5.8.2.20 TypedStringValue
	5.8.2.21 ServiceExportComponentMetadata
	5.8.2.22 RegistrationListenerMetadata
	5.8.2.23 ServiceReferenceComponentMetadata
	5.8.2.24 UnaryServiceReferenceComponentMetadata
	5.8.2.25 CollectionBasedServiceReferenceComponentMetadata
	5.8.2.26 BindingListenerMetadata

	5.9 ‘osgi’ Schema
	5.10 ‘osgix’ Schema

	6 Considered Alternatives
	7 Security Considerations
	8 Document Support
	8.1 References
	8.2 Author’s Address
	8.3 Acronyms and Abbreviations
	8.4 End of Document

