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Abstract. As it is known, in a regular polyhedron every face has the same number of 

edges and every vertex has the same number of edges, as well. A polyhedron is called 
topologically regular if further conditions (e.g. on the angle of the faces or the edges) are not 
imposed. An ordinary polyhedron is called a toroid if it is topologically torus-like (i.e. it can be 
converted to a torus by continuous deformation), and its faces are simple polygons. A toroid is 
said to be regular if it is topologically regular. It is easy to see, that the regular toroids can be 
classified into three classes, according to the number of edges of a vertex and of a face. There 
are infinitelly many regular toroids in each classes, because the number of the faces and vertices 
can be arbitrarilly large. Hence, we study mainly those regular toroids, whose number of faces 
or vertices is minimal, or that ones, which have any other special properties. Among these 
polyhedra, we take special attention to the so called „Császár-polyhedron”, which has no 
diagonal, i.e. each pair of vertices are neighbouring, and its dual polyhedron (in topological 
sense) the so called „Szilassi-polyhedron”, whose each pair of faces are neighbouring. The first 
one was found by Ákos Császár in 1949, and the latter one was found by the writer of this 
paper, in 1977. 
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As it is known, in regular polyhedra, the same number of edges meet at each vertex, and each 
face has the same number of edges. A polyhedron is topologically regular if no further conditions 
(e.g. on the angles of the faces or the edges) are imposed. In this article we shall deal with such 
polyhedra, but we must first consider some concepts and simple facts concerning polyhedra. 

We will assume that the edges of the polyhedra are to be straight line segments and the faces 
are to be planar. 

A polyhedron is called ordinary, if any two points of the polyhedral body can be joined by a 
broken line not intersecting the surface of the polyhedron, and at each vertex, the faces containing 



 174

that vertex form a cycle such that the adjacent members of the cycle are the adjacent faces (i.e. the 
faces with a common edge). In an ordinary polyhedron, each edge borders exactly two faces. 

A polyhedron is simple, if it is ordinary, topologically sphere-like (i.e. it can be transformed 
to a sphere by continuous deformation), and its faces are simple polygons. (The simple polygon is 
topologically circle-like.) For example, convex polyhedra are simple, but not all simple polyhedra 
are convex. For simple polyhedra Euler's formula 

V - E + F = 2 

holds, where V, E and F are the numbers of vertices, edges and faces, respectively. 
Application of this relationship readily shows that there are only five topologically regular, 

simple polyhedra, and each of them can be realized so that its faces and solid angles are regular and 
congruent, but it does not follow from Euler's formula. 

An ordinary polyhedron is called a toroid, if it is topologically torus-like (i.e. it can be 
transformed to a torus by continuous deformation), and its faces are simple polygons. For toroids 
Euler's formula is modified to 

V - E + F = 0 . 

(We could have defined toroids more generally as ordinary, but not simple polyhedra, the 
surface of which is connected. This generalization will not be needed here.) 

 A toroid, in the stricter sense, is said to be regular, 
if the same number of edges meet at each vertex, and each face has the same number of edges. 
Studying toroids, we cannot expect all of the faces or solid angles to be regular and congruent, so 
the description regular here is clearly a topological property. 

Let us consider some of the more interesting regular toroids. Several of the toroids mentioned 
here have been discovered by the author of this paper, including the one named after him, 
discovered in 1977 [7].  

 

1. Assume each face of a regular toroid has a edges, and at each vertex meets exactly b edges. 
Both products F∗ a and V∗b are equal to twice the number of edges, since every edge is incident 
with two faces and two vertices. Hence, from Euler's formula for toroids above, 

2 2
0

E E
E

a b
+ − =  . 

Since E > 0, this leads to the Diophantine equation 
1 1 1

0
2a b

+ − =  . 

This equation has only three integral solutions satisfying the conditions a ≥ 3 and b ≥ 3. 

Hence, we can distinguish three classes of regular toroids, according to the numbers of edges 
incident with each face and each vertex: 

class T1 :  a=3, b=6; 

class T2 :  a=4, b=4; 

class T3 :  a=6, b=3. 

As it is known, there are only three ways of tiling the plane with regular polygons; namely, 
with regular triangles, squares and regular hexagons. (Every edge must border exactly two faces; if 
this condition is omitted the tilings with triangles and squares are not unique.) 

These three tilings correspond topologically to the three classes above. If a sufficiently large 

rectangle is taken from such a tiled plane, and the opposite edges are glued together, we obtain a 
map drawn on a torus which is topologically regular. (Two opposite edges of the rectangle are glued 
together first, to form a cylindrical tube, and then the remaining two, now circular edges are glued 
together, yielding a torus.) If the resulting regular map drawn on the torus has sufficiently many 
regions, there is no obstacle in principle to its realization with plane surfaces. We may say, 
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therefore, that each of the three classes contains an infinite number of regular toroids. However, it is 
interesting to determine for each class the lowest number of faces or vertices required to construct a 
regular toroid in that class, possibly with the restricting condition that the faces or solid angles 
belong to as few congruence classes as possible. 

 

2. With the use of sufficiently high number of triangles we can easily construct toroid 
belonging to class T1. (Figure 1.) It would be appropriate here to formulate the following problem; 
at least how many triangles are necessary to construct a toroid? 

 
Figure 1.

1   A toroid with 48 triangles  in class T1 

 
At every vertex of a regular toroid in class T1 exactly six edges meet, so that such a toroid has 

at least seven vertices. 
The Császár-polyhedron [1], [2], [6] (pp. 244-246) is such a toroid with only seven vertices. 

This polyhedron does indeed belong to class T1 for any two of its vertices are joined by an edge, 
and thus six edges meet at each vertex. The number of its vertices is the lowest possible not only in 
class T1 , it can easily be seen that a toroid with less than seven vertices does not exist. 

 
The model of the toroid, denoted by C0 , which is constructed on the basis of the data 

published by professor Ákos Császár at Budapest University who is a member of the Hungarian 
Academy of Sciences [2], appears fairly crowded.  

It has a dihedral angle which is greater than 352°. We have prepared a computer program to 
search for a less crowded version. Given the rectangular coordinates of the seven vertices, the 
program first checks whether the polyhedron defined by the seven points intersects itself. If it does 
not, the program then calculates the lengths of the edges, the interedge angles and the dihedral 
angles of the polyhedron. Tables 2 and 3 show the data of five variants of the polyhedron. Variant 
C1 , can be obtained from C0 by a slight modification of the coordinates of the vertices, whereas C1 , 
C2 , C3  and  C4  is essentially different from each other.  
Let us consider two models of Császár-polyhedron essentially congruent if:  

- one of the polyhedra can be transferred into the other by gradually changing the 
coordinates of one of the polyhedra without causing self intersection in the surface; 
- one of the polyhedra can be transferred into the other by reflection; 
- one of the polyhedra can be transferred into the other by executing the above 
operations one after another; 

otherwise the two Császár-polyhedra are essentially different. 

                                                           

1 Most of the attached pictures were made with the software MAPLE. Then the pictures were made 
somewhat more plastic with the use of the software Corel PHOTO-PAINT. 
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Let us try to find a variant among the essentially congruent polyhedra which is not crowded 
too much and is aesthetically pleasing, and on the other hand, let us try to find two essentially 
different versions. 

J. Bokowski and A. Eggert proved in 1986 that the Császár-polyhedron has only four 
essentially different versions.[1]  

It is to be noted that in topological terms the various versions of Császár-polyhedron are 
isomorphic, there is only one way to draw the full graph with seven vertices on the torus. (Figure 2) 
The vertices of the polyhedra are marked accordingly. In this way the faces of the polyhedron can 
be identified with the same triplets of numbers. 

 

 
Figure 2.  The full graph with seven vertices which can be drawn on the torus 

 
(1-2-6) (1- 4 -2) (5-3-2) (4-1-3) (2-7-6) (3-7-2) (1-7-3) 
(6-5-1) (6- 3-5) (2-4-5) (3-6-4) (5-7-1) (4-7-5) (6-7-4) 

 
Table 1.  Faces of the Császár-polyhedron 

 

It may be observed that in all  variants vertices 1 and 6, 2 and 5 , 3 and 4, are reflected images 
of each other relative to the z axis of the coordinate system; accordingly, the pairs of faces written 
one under the other in the last two lines of Table 1 are congruent. The solid angles corresponding to 
the foregoing vertex pairs are also congruent. Therefore, in all four variants the faces belong to 
seven congruence classes, and the solid angles to four congruence classes. For this reason the 
triangles shown one below another in Table 1 are congruent. 

The pictures of the four versions are shown below, together with the nets suitable for 
producing the models. 

One variant is shown below for each of the four versions, which are (in our opinion) not 
crowded too much. Table 2 includes the coordinates of the vertices, while Table 3 shows the edge 
length values and the face angles belonging to the edges. 



 177

 

 
1 3

7 324

6

5

4

2

3

1

5

6

45Figure 3.  Variant C1 of the Császár-polyhedron  
 
 
 

 

 
 

Figure 4.  Variant C2 of the Császár-polyhedron 
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Figure 5.  Variant C3 of the Császár-polyhedron 

 
 
 

 

 
 

Figure 6.  Variant C4 of the Császár-polyhedron 
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 C0 C1 C2 C3 C4 
Vertices x y z x y z x y z x y z x y z 

1. 3 -3 0 4 15  0 0 12 0 0 12 0 0 12 0 0 
2. 3 3 1 0 8 4 0 6 2  6 2  0 12 12 2  0 12 12 2

3. 1 2 3 -1 2 11 3 -3 6 2 3−  -4 -3 
13 2

2
 

-3 3 
8 2  

4. -1 -2 3 1 -
2

11 -3 3 6 2 3− 4 3 13 2

2

 
3 -3 8 2  

5. -3 -3 1 0 -
8

4 0 6 2−  6 2  0 -
12 

12 2  0 -
12 

12 2  

6. -3 3 0 4 15− 0 0 -
12

0 0 -
12 

0 0 -
12

0 0 

7. 0 0 15 0 0 20 0 0 12 2  0 0 26 2

3

 
0 0 

4 2  

 
Table 2.  Coordinates for the four variants of Császár-polyhedron 

 

 

 C0 C1 C2 C3 C4 
Edges d f d f d f d f d f 

(1-6) 8.5 153° 31.0 127° 24 90° 24   71° 24 71°
(2-5) 8.5 321° 16.0 344° 16.9 270° 24   54° 24 56°
(3-4) 4.5 253° 4.5 257° 8.5 114° 10   76° 8.5 286°

(2-4)=(5-3) 6.7 78° 12.3 69° 6.9 296° 12.6 204° 16.3 191°
(2-3)=(5-4) 3.0 216° 9.3 209° 12.2 35° 17.4   42° 11.0 103°
(3-7)=(4-7) 12.2 269° 9.3 279° 12.2 291° 5.9 244° 7.1 22°
(2-7)=(5-7) 14.6 18° 17.9 36° 12 61° 12.9 340° 16.5 307°
(1-5)=(6-2) 6.1 87° 17.9 90° 16.9 90° 24   53° 24 22°
(1-2)=(6-5)   6.1 44° 17.9 67° 16.9 15° 24   51° 24 66°
(1-4)=(6-3)   5.1 352° 18.3 343° 16.2 237° 12.6 157° 14.8 39°
(1-3)=(6-4)   6.2 58° 19.9 57° 11.0 279° 18.7 339° 19.0 272°
(1-7)=(6-7) 15.3 76° 25.3 57° 20.8 24° 17.1 74° 13.3 272°

 

Table 3.  Data for the four variants of the Császár-polyhedron 

d: Edge length  

           f: Face angles belonging to edges  

 

3. Class T2 of regular toroids consists of those torus-like ordinary polyhedra in which four 
edges meet at each vertex and the faces are quadrilaterals. (Figure 7.) This type of regular toroids is 

the easiest to construct. 
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Figure 7.  Two toroids with 35 faces in class T2 

 
Let us take an (e.g. regular) p-sided polygon, and rotate it by (k/q) 2π where q  is an integer 

γ  ≥3, and k = l, 2, ..., q, about a straight line t which lies in the plane of the polygon, but does not 
intersect it. The resulting toroid, which consists of p . q trapezia (or rectangles), is regular and 
belongs to class T2. As an example, for p = q = 3 the toroid in Figure 8 is obtained. This is the 
member with the lowest number of faces in class T2 since every toroid of type T2 has at least nine 
vertices (and nine faces). (Each vertex is incident with four faces which altogether have a total of 
nine vertices; for ordinary polyhedra any two of these nine vertices must be distinct.) 

 
Figure 8.  A toroid with minimal faces in class T2 

 

In the case p = 3, q = 4 (or p = 4, q = 3) the above procedure yields a regular toroid in T2, 
with 12 faces and 12 vertices. However, it is not known whether there exist a regular toroid in T2 
with 10 or 11 faces (vertices), though a graph having 10 or 11 vertices (and regions) and which 
belongs to class T2 , can be drawn on torus. (Figure 9.) If so it would have to be obtained by a 
different method, since this one requires that F  be a product of two integers each ≥3. 

 

  
 
Figure 9.  A graph belonging to class T2 drawn on a torus. Vertices 10 and 11have the same 

number of regions. 
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4. If constructing toroids belonging to class T3 , care should be taken to make sure that the six 
points defining one region (face) are in the same plane. This requirement can be easily met, if the 
toroid has "sufficiently high number" of faces. (Figure 10.) 

 

 
Figure 10.  A toroid with 42 faces in class T3 

 
It can be seen that any toroid of Class T3 has a concave face, and even all the faces could be 

concave. Such toroid is shown in Figure 11, which consists of 12 L-shaped hexagons, i.e. two pairs 
of 6 congruent hexagons. Yet another unique feature is that any face is perpendicular to the adjacent 
faces, and the angle of the meeting faces and the angle of the polygons have only two values in 
terms of congruency.  

A somewhat more complicated toroid is shown below, which also belongs to Class T3, and 
consists of 24 L-shaped hexagons. In terms of congruency, its faces are divided into four groups 
(Figure 12). 

 

 
 

 
Figure 11. 12.  Toroids of class T3 consisting of L-shaped hexagons 

 

We shall prove that there exists in class T3 a regular toroid with nine faces such that its faces 
and solid angles belong to two, respectively three, congruence classes. 

Let us project a cube perpendicularly to a plane π  perpendicular to one of its internal 
diagonals selected in advance. The resulting projection is a regular hexagon, therefore the 
projections of any two skew facial diagonals parallel to π, that are incident with adjacent faces of 
the cube, trisect each other. This means that the line segments joining the corresponding points of 
trisection of the facial diagonals in question are parallel to the selected internal diagonal. 
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Figure 13. , 14.  A toroid  with nine faces  which are of two kinds concerning their 

congruency 

 

Utilizing this we can pierce the cube with a triangular prism, whose edges are parallel to the 
diagonal of the cube and pass through the points of trisection of the pairs of skew facial diagonals of 
the cube (Figure 13). 

The external part of the resulting toroid surface consists of the six mutually congruent 
concave hexagons remaining from the faces of the cube, while its internal part is formed by the 
three, mutually congruent convex hexagons arising during the penetration (Figure 14). 

Let us now establish the dual of this polyhedron, which would form a regular octahedron from 
the originally assumed cube (Figure 15).  This can be accomplished with a spatial polarity referring 
to a sphere, where the centre of the sphere coincides with that of the cube.  Because the original 
shape is centrally symmetric, the dual is also centrally symmetric. In this way we obtain a toroid of 
Class T1, which has two kinds of solid angles and three kinds of polygon angles in terms of 
congruency.  The six triangles forming the "inner part" of the toroid are regular, because these 
triangles were obtained from the regular corners of the cube.  

 
Figure 15.  A toroid belonging to Class T1 having two kinds of solid angles in terms of 

congruency 

 
5. We have just created a regular toroid consisting of nine faces only (Figure 14). One might 

wonder; is it possible to create a (regular) toroid from even less faces?  
As we have seen, the most important property of the Császár-polyhedron is that any two 

vertices are joined by an edge. There is a very close relationship, so-called duality, between this 
polyhedron and the polyhedron with the lowest number of faces in class T3, the main characteristic 
of the latter being that any two faces have a common edge (Figure 16). ) This relationship is partly 
topological, however, if we create a new polyhedron by means of projective transformation from a 
given polyhedron, e.g. with the use of polarity referring to a sphere (as we did above), then the new 
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polyhedron will be metric as well.  

 
Figure 16.  Toroid with seven faces topologically isomorphic with Heawood's seven colors 

toroidal map
2
 

 

The data of the faces and the network needed to fit them together are given in Figure 17, 
based on the drawings of Stewart [5] (pp. 248-249). 

` 

 
 

  

Figure 17. Data for making seven faced toroid 

                                                           

2 It was Martin Gardner who used the term "Szilassi polyhedron" first to identify this polyhedron [3] 
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The author of this paper constructed this seven faced polyhedron in 1977 after producing the 
dual of  the Császár-polyhedron using the spherical polarity of a sphere. In this way, however, the 
structure obtained consisted of self-intersecting polygons. A computer assisted analysis had to be 
used to find the undesirable intersections, as a result of which the data could be modified to obtain 

the above (in Figure 17.) polyhedron bordered by simple polygons.  
Once one model of the structure is known, it is easy to develop a straightforward method to 

construct the polyhedron. This will be described briefly below. 
Consider a tetrahedron, which has an axis of symmetry. Assume, that this axis is aligned with 

the z axis of the coordinate system. The structure will be established in a way that this axial 
symmetry will be maintained. (Figure 18, 19.) 

One pierces the tetrahedron with a triangular prism, the edges of which are parallel with the 
(xy) plane of the coordinate system, and let one of its edge be aligned with two opposite edges of 
the tetrahedron, and let the other two edges be aligned with the axis of symmetry of two faces. 

 

  

  

 
Figure 18., 19., 20., 21.  Deduction of the seven faced toroid  

 

Two quadrangles of the toroid thus obtained are not yet adjacent to two-two faces of the 
tetrahedron. For this reason we may complement the structure with two smaller tetrahedrons, the 
face planes of which coincide with the planes of the faces already obtained. In the polyhedron thus 
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produced any two faces are adjacent, however, two faces are not simple hexagons; one of the 
vertices of each of these hexagons is on the opposite edge (Figure 20). 

We can eliminate this undesirable coincidence by shifting the edge of the piercing prism (i.e. 
the edge which intersected two edges of the tetrahedron) closer to the opposite face (Figure 21). 
Now we obtained the ordinary polyhedron we have been looking for. 

Starting from the same tetrahedron now we can produce more or less airy (harmonic) variants 
of the obtained toroid. 

 

  
 

Figure 22.. , 23.. , 24..  Several variants of the seven faced toroid 

 

These seven faced toroids are not regarded as essentially different, even if they can be 
transformed into each other only by reflecting in a plane. The author does not know whether this 
polyhedron has an essentially different version (similarly to the Császár-polyhedron). Any variant 
of this polyhedron, too, is symmetrical about the z axis of the coordinate system. Thus, its faces 
belong to four congruence classes, and its vertices into seven congruence classes. 

It can be seen that a toroid cannot be constructed with fewer than seven facial planes, hence 
this polyhedron has the lowest number of faces in any toroid, not only in class T3 . 

 
6. Various problems arose in the last two centuries in connection with the colouring of maps, 

e.g. the four-colour problem. In 1890 it was proved by Heawood that seven colours are sufficient 
for colouring any map drawn on a torus. At the same time he also showed that seven colours are 
necessary too, by drawing on the torus a map consisting of seven regions, any two of which were 
adjacent, so that in order to get the required colouring each region had to be given a different 
colour. By the polyhedron described here Heawood's seven-colour map can be constructed from 
seven simple planar hexagons, that is Heawood's toroidal map topologically isomorphic to this 
toroid. 

Heawood's seven-colour map can also be realized with a toroid each face of which is a regular 
polygon. (In this case, of course, the regions no longer consist of a single face.) The network of this 
construction (due to Stewart [6], p. 199), together with the separate interior and exterior halves of 
the toroid, may be seen in Figure 25. The numbers in the polygons denote the colours. Examination 
of Figure 25 or of a model prepared on this basis confirms that every colour is in fact adjacent to all 
of the other colors. 
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Figure 25.   Realization of Heawood's map with a toroid having regular polygons 

 
A similarly interesting construction is the toroid in which the regions are not only adjacent, 

but also congruent. Each such region consists of four triangles which are congruent in pairs. For its 
construction, let us consider the regular heptagon A1, A2, A3, … A7  . 

 
Figure 26.  Realization of Heawood's map with toroid constructed of seven regions any of 

which is congruent and neighbouring with each other. Every region consists of four triangles. 
 

We rotate it by the angle 
5 2

2 7

π

 around its centre, and then shift it in the direction 

perpendicular to its plane. In this way we obtain the regular heptagon B1, B2, B3, ...B7 . For each i = 
1, 2, ..., 7, the figure consisting of the triangles 

1 2i i i
A A B

+ −
� , 

1i i i
AB A

+
�  , 

1 1i i i
B B A

+ +
� and 

3 1
 B

i i i
A B

+ +
�  is coloured one colour and is considered as one region (Figure 26). (If some index 

does not lie between 1 and 7, 7 is either added to it or subtracted from it so as to yield a number 
between I and 7, i.e. indices are taken (modulo 7)+1.) 

 If the i-th region is rotated by the angle 
2

7

π

 around the axis joining the centres of the two 

regular heptagons, we obtain the (i + 1)-th region. These regions are therefore indeed congruent and 
altogether form a toroid. Examining the indices of the edges bordering the regions one can see that 
each of them is indeed adjacent to all of the others. For example, the neighbour of the i-th region 
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along the edge 
i i

AB  is the (i + 1)-th region, and its neighbour along the edge 
2i i

AB
−

 is the (i-3)-th 

region. 
 
For the construction of the polyhedron, we may arbitrarily fix the distance of the planes of the 

two regular heptagons or, for example, the sides of the isosceles triangle 
1 2i i i

A A B
+ −

� . From these, 

the other data may be calculated. Table 4 provides the data of three variants of the toroid, differing 
in their edge lengths. 

 

V1 V2 V3 Edges 
 

i=1,2,…7 
d F d F d f 

1i i
A A

+
 6   64°  1' 6   51°45'   6   43°21' 

2i i
AB

−

 6 150°13' 8 152°13' 10 153°  1' 

i i
AB  13.48   51°12' 14.48   65°11' 13.48   74°33' 

1i i
A B

+
 10.04 332°13' 11.35 325°13' 10.04 320°43' 

 

Table 4.  The toroid with seven congruent, pairwishe adjacent regions  

d: Edge length  

                              f: Face angles belonging to edges  

 

This polyhedron is a regular toroid in class T1 its faces belong to two congruence classes and 
its solid angles to one congruence class, i.e. they are congruent. It has 7·4 = 28 faces. 

A toroid of the same kind (i.e. with congruent solid angles and with two types of faces) in 
class T2 having fewer faces and vertices can also be obtained if we set out this construction from a 
regular hexagon instead of a heptagon. This has 12 vertices and only 24 faces. A regular toroid with 
an even smaller number of faces cannot be obtained in this way, because, for instance, for a regular 
pentagon all of the edges AiBi, meet in one point, the centre of symmetry of the figure. 

 

7. What is the smallest number of faces needed to construct a toroid consisting purely of 
congruent faces?  Stewart [6] (p. 250) constructed a regular toroid in class T1 consisting of 36 
congruent isosceles triangles. 

We shall show that there exists a toroid with a total of 24 faces that are congruent isosceles 
triangles. 

 
For the construction we take a regular triangle, rotate it by 60° around its centre, and then 

shift it by a distance p (to be determined later) in the direction perpendicular to its plane. The 
resulting six points define six isosceles triangles with base a and side b. These form the interior part 
of the toroid. The exterior part of the toroid surface will be constructed from isosceles triangles 
congruent with the previous ones. For this, six new vertices must be taken so that their distance 
from each other is b and from the previous vertices a or b, respectively. The six vertices are situated 
so that three of them are at a distance g from the plane of the lower regular triangle we started with, 
while the three between them are at a distance q from the plane of the upper regular triangle. Figure 

27 presents a two-imageplane picture of the construction. The perpendicular projection of the outer 
six points to the first image plane is a regular hexagon. Let r be the radius of its circumscribed 
circle, while the radius of the circumscribed circle of the regular triangle we started with is the 
unity.  
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Figure 27., 28.  A toroid  with 24 faces consisting of only congruent triangles 

 
With these variables the rectangular coordinates of the points P, Q, R, S, T in Figure 27. can 

be expressed as follows: 

( )1,0,P p  , ( ),0,Q r q  , 3
, ,

2 2

r r
R p q
⎛ ⎞−

−⎜ ⎟⎜ ⎟
⎝ ⎠

 , 
1 3
, ,0

2 2
S
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 , 
1 3
, ,0

2 0
T
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

 . 

Our task is to select the data so that the conditions ST PQ a= =  and SP PR QR b= = =  be 
satisfied. Five equations can be set up from the coordinates of the points: 

( ) ( )

( )

2

2 22

2 2

2

2 2 2

22 2

3 ,

1 ,

1 ,

3
1 ,

2 4

2 .

a

a r q p

b p

r
b r q

b r p q

=

= − + −

= +

⎛ ⎞
= − + +⎜ ⎟
⎝ ⎠

= + −

 

The positive roots of this system of equations are: 

3 2

2
p

+
=  , 

1 2

2
q

+
=  , 1 2r = +  , 3a =  ,

15 6 2

2
b

+
=  . 

From this, the single parameter determining the toroid is the ratio 

5 2 2
: 1.39896... 1.4

2
b a

+
= = ≈  . 

It must be noted that this toroid is not regular, since five edges meet at six of its vertices, and 
seven edges meet at the other six. The corresponding six solid angles of either type are congruent. 
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We are not aware of the existence of a toroid with less than 24 congruent faces.(Figure 28.) 
Finally, it should be mentioned that polyhedra in Figures 3. - 6. , 12. , 14., 15., 16. . and 26, 

all of the toroids mentioned above have a dextro and a laevo variant; although these are congruent, 
they can be transformed into each other only by reflection in a plane. 
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