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Abstract— This paper presents a new method to generate
point-to-point (PTP) trajectories, such as the ones used by
robots or CNC machines, using an exponential function as
the basis for the trajectory profile. The method is based
on adding a series of time-delayed third-order exponential
functions to generate an approximation to the trapezoidal
velocity profile commonly used in time-optimal motions. The
exponential velocity has zero-starting and ending values as well
as continuous derivatives (acceleration and jerk).

The proposed algorithm has several advantages over con-
ventional trajectory planning methods such as those using S-
curve and trapezoidal velocity profiles. These include: (i) the
generated trajectory is continuous up to the third derivative,
i.e. jerk, resulting in smooth machine motions (ii) only two
control parameters, a gain and a delay, are required simplifying
trajectory planning, and (iii) allows for simple blending of
consecutive trajectories.

The method has been tested experimentally on an industrial
six Degree-of-Freedom (DOF) robot, a KUKA KR5 sixx R650.
The results show position accuracy improvements over conven-
tional S-curve and time-optimal (trapezoidal) velocity methods.
The implementation is based on a simple look-up table which
enables its real-time implementation.

I. INTRODUCTION

Trajectory planning is a key stage in processes requiring
precision movements, such as those often used by machine
tools, CNCs, and robots in general. Limiting jerk has been
shown to reduce wear and extend machine and tool life, as
well as enabling better quality surface finishes in machining
tasks [1], [2]. Actuator performance is adversely affected by
sudden changes in jerk, and minimising jerk discontinuities
leads to the reduction of position tracking errors [3].

Time-optimal trajectories, i.e. minimal travel time,
are commonly generated using bang-bang/bang-cruise-bang
methods, which have a trapezoidal velocity profile [4],
also known as Linear Segments with Parabolic Blends
(LSPB). Such trajectories are based on generating a triangu-
lar/trapezoidal velocity profile using the maximum actuator
accelerations. However, these trajectories demand instanta-
neous acceleration changes. These changes are not physically
realisable, and results in the generation of discontinuous
actuator torques and forces.

An alternative method that limits jerk and has non-
instantaneous acceleration demands is the S-curve veloc-
ity profile [5]. With S-curve velocities, the corresponding
acceleration starts from zero and gradually ramps to a
maximum/minimum value. The continuous acceleration and
bounded jerk characteristics make such trajectories more

adequate for precision motions and extending actuator life-
span. Numerous methods and algorithms have been estab-
lished which generate such trajectories with jerk limitation
[3]–[9]; additionally, the jerk profile can be continuous or
discontinuous depending on the method employed.

The method described in this paper approximates the
trapezoidal velocity profile with a smoother function, which
is less demanding for a controller to perform. The method
is based on adding a series of time-delayed third-order
exponential function with zero start and end values [10]–
[12]. To the best of our knowledge, a method of using this
type of exponential function for velocity trajectory planning
has not been implemented before. A similar method is shown
in [13], but it shows no way of incorporating acceleration
or jerk limitation. Additionally, with the recent release of
the Reflexxes libraries and work by T.Kroeger [14], using
the algorithm for online trajectory generation (OTG) seems
feasible due to its simplistic nature as well as its continuous
acceleration and jerk properties. Although the main focus
here is for pre-planned PTP motions.

The rest of this paper is organised as follows: Section
II describes the exponential function and how limits are im-
plemented; Section III describes the experiments and results;
Section IV is a discussion of the acquired results, with a brief
comparison of the proposed blending functionality against
the one described in [9]; Finally, Section V summarises the
outcome of the paper and discusses possible implementations
and further work.

II. EXPONENTIAL FUNCTION

A third-order exponential function is used to generate the
basic velocity profile, ensuring that it is continuous up to
the third derivative, i.e. jerk. To generalise the analysis, a
non-dimensional time, u, is defined as:

u = α t (1)

The third order exponential function f , is then defined as:

f(u) =
f(t)

vmax
= 1− e−u3

ḟ(u) =
ḟ(t)

αvmax
= 3u2e−u3

f̈(u) =
f̈(t)

α2vmax
= (6u− 9u4)e−u3

(2)
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Where vmax is the trajectory’s maximum or cruising
velocity, α is a time-scaling parameter, and t is the time. This
function was originally developed to synthesize input shaping
functions based on the inverse dynamics of a second order
system [10]. Figure 1a illustrates the exponential function
profile for three values of α = 0.5, 1, 2; the larger values
result in a steeper exponential function, and thus when used
as a velocity profile, generate a greater acceleration. The
normalised acceleration and jerk profiles are illustrated in
Figures 1b and 1c. This normalisation allows the method
to use a single exponential profile to calculate any demand
trajectory. This enables the implementation to be based on
storing the function profile once in a simple look-up table.
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(a) Exponential velocity function with various α values
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(b) Normalised acceleration, ḟ(u)
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(c) Normalised jerk, f̈(u)

Fig. 1: Exponential function characteristics

A. Function maxima

In order to ensure that actuator limits are not violated
during the trajectory, the maximum velocities, accelerations
and jerks must be computed. These maximum values occur
at:

tam =
1

α
· 3

√
2

3
≈ 0.8736

α

tjm =
1

α
· 3

√
3−
√

7

3
=
Q

α
≈ 0.4906

α

(3)

Where tam and tjm represent the times at which the
maximum acceleration and jerk values occur, respectively.
Substituting these times into the respective trajectory equa-
tions, the maximum values are found as:

|Vmax| = |vmax|
|Amax| = |vmax · α · 0.3918| (4)

|Jmax| =
∣∣∣vmax · α2

(
6Q(1/3) − 9Q(4/3)

)
· e−Q

∣∣∣
=
∣∣vmax · α2 · 0.7652

∣∣
Therefore, given the actuator velocity, acceleration and

jerk limits as Vmax, Amax and Jmax respectively, the maxi-
mum α value which can be used, thus generating the fastest
possible motion within the limits, is calculated as:

αmax = min

(
Amax

1.1754 Vmax
;

√
Jmax

2.1524 Vmax

)
(5)

B. Approximation to the time-optimal velocity

Time-optimal LSPB trajectories exploit the maximum
acceleration available to the system to produce the fastest
possible PTP motions. Figure 2 illustrates the position,
velocity and acceleration profile such a motion. This ap-
proach results in step accelerations and trapezoidal veloc-
ity profiles. In this particular example, the desired motion
distance (displacement) is 1 m, the maximum velocity is
1 m/s and the maximum acceleration 2 m/s2. As shown,
the acceleration is discontinuous and changes instantly from
zero to the maximum value. In real systems, this would also
require the force to change instantaneously; this is physically
impossible, resulting in poor motion tracking.
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Fig. 2: LSPB time-optimal trajectory

Using an S-curve velocity profile negates these issues by
smoothing out the trapezoidal velocity, and instead generates
trapezoidal accelerations. This makes the overall motion
slightly slower, as some extra time is required to allow
the system to reach the maximum acceleration, rather than
assuming it will instantly reach the value, i.e. near time
optimal. Figure 3 illustrates an S-curve velocity profile, with
corresponding position and acceleration profiles. The first
derivative of acceleration, i.e. jerk, now has a bounded value,
and its jerk profile (not shown) has a rectangular shape
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Fig. 3: S-curve velocity (jerk limited)

akin to the resultant acceleration profile of the trapezoidal
velocity. The S-curve profiles used in this paper have been
generated using the method in [5].

In order to create an approximation to a near time optimal
trajectory, this paper proposes the use of two of the velocity
profiles defined in Equation 2, used in sequence:

v(t) = f(t)− f(t− Td) ·H(t− Td) (6)

Where H(t) is a Heaviside function, defined as:

H(x) =

{
0 for x < 0

1 for x ≥ 0
(7)

Figure 4 illustrates the resultant exponential velocity pro-
file. From t = 0 until Td a single velocity profile is
evaluated. At time Td the second exponential function starts
being evaluated but is subtracted from the first one. This
results in a velocity profile that is similar in essence to one
produced by the S-curve method, but the subtle difference
is that rather than having a rectangular jerk profile, it more
closely resembles a sinusoidal shape which is smooth and
continuous, as illustrated in Figure 1c.

Being a velocity profile, the position must be calculated
by integrating it over t = 0 to tend, where tend is the
time at which the velocity returns to 0 m/s. Obviously,
the desired end position must be achieved at this point. The
integration of this function cannot be calculated analytically,
and the concatenation of the two profiles at the correct time
complicates this further. The position profile would thus be
obtained by integrating numerically. However, the area under
the profile for a desired displacement, ∆x can be simply
found as:

∆x = Vmax · Td (8)

As illustrated in Figure 4, this is because the summation
of the areas under the combined curves i.e. A1, A2 and A3,
equals a rectangle of height Vmax and width Td.

The function accelerates for Ts seconds; this time defined
as the settling time of the function, is the time taken to reach
99.9% of Vmax, and is computed as:

Ts =
3
√
−ln(0.001)

α
≈ 1.9045

α
(9)

It is possible to attain a settling value closer to 100% of
Vmax by reducing the 0.001 figure.

The velocity then cruises at the maximum speed before
taking Ts seconds to reach the resting velocity. Thus, the
total travel time tend can be calculated by:

tend = Td + Ts (10)
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Fig. 4: Exponential velocity profile

Increasing Vmax means that the delay time Td would
be shorter; additionally, increasing the acceleration means
that Vmax is reached sooner. The parameter tying these
two together, α, is thus evaluated beforehand to ensure that
velocity, acceleration as well as jerk limits are respected; as
described in Equation 5. Thus, given the demanded motion
∆x, the relevant timings Td and tend can be easily calculated.

C. Sequencing point to point trajectories and blending

The section above illustrates how to compute a single
PTP motion. A sequence of motions can be generated by
iterating the procedure. Each required PTP displacement can
be converted into time delays and used sequentially.

Given a sequence of required displacements x =
(x1, x2, ...xn) the corresponding time delays are: Td =
(x1/Vmax, x2/Vmax...xn/Vmax). If each subsequent motion
is started after the previous has reached its desired position
(without any trajectory blending), then the total travel time
for a sequence of n motions is:

Tt =
x1 + x2 + ...+ xN

Vmax
+ n Ts (11)

During the period Td to tend, i.e. the braking period, the
proceeding profile can begin evaluation. This results in the
next function starting before the previous one ends, thus,
blending motions. The amount of overlap or blending is
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varied by controlling the point during the braking region
where the second function begins. A 0% overlap indicates
that subsequent motions only start when the preceding one
reaches its zero velocity. A 100% overlap would cause the
second function to start at Td i.e. overlapping the braking and
acceleration regions of two functions. With a 100% overlap
the total travel time would be:

Tt =
x1 + x2 + ...+ xN

Vmax
+ Ts (12)

Figure 5 illustrates this concept more clearly. Here, the
generated x and y Cartesian velocity commands (absolute
values) for tracing a square are shown. The upper figure
shows how each motion starts and ends at zero velocity,
i.e. without any blending. The lower figure shows the same
commands but with 100% blending applied. As can be seen,
subsequent motions begin evaluation at the delay time, Td
of each preceding one. The velocity is thus always non zero
until the final motion is completed.
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Fig. 5: Unblended and blended Cartesian velocity
commands

Controlling this overlap allows for a simple trade-off
between way-point tracking accuracy and the path’s duration.

III. EXPERIMENTAL RESULTS

The described method was used to generate parameters
(α, Vmax, and Td), given a set of velocity, acceleration
and jerk limits, for stop-to-stop motions between Cartesian-
space points using a Matlab script. A real-time Simulink
model, with an interface block designed for KUKA, uses
these parameters to generate velocity commands to send to
the robot. An image of the device used is shown in Figure
6. The robot controller automatically performs the inverse
kinematics for the joint angles.

Three different paths are used in the experiments; a 10 x
10 cm square, a rough figure of eight - composed of two
hexagonal shapes with 10 cm length sides, and the same 10
cm2 square overlaid 10 times to evaluate repeatability. They
are each effectively sets of waypoints connected together
using the exponentials to describe a path. These are run at
low and high speeds. After each motion is completed, the
robot is homed to the same starting position. In order to

Fig. 6: Kuka 6 DOF robot

compare the accuracy of the methods, the routes traced from
repeating 10 squares are averaged to give a mean travel path.
An average error value, i.e. deviation of end effector from
desired positions, is also found for each method.

The S-curve and trapezoidal velocity algorithms generate
quicker motions. Their limits are thus adjusted (reduced)
so as to slow the motions down to within 100 ms, i.e. the
average speeds equalised; a faster motion is more prone to
overshooting the path points and would thus give an unfair
comparison. The limits given to the different algorithms are
detailed in Table I, and Tables II and III show the resultant
motion durations of using these limits.

The recorded data include: desired input Cartesian posi-
tions, the actual position of the robot end-effector, and the
joint torques. Data is captured every 10 ms.

Figures 7 and 8 illustrate the desired and achieved motions
for a square path (mean of 10 runs) when using the different
methods, run at the higher speed. Results of the slower
motions are excluded as the differences between these (i.e.
low speed tracking accuracy) are negligible. Similarly, the
desired and achieved paths of the figure of eight shapes and
single square runs are excluded; results are similar to the 10
square experiments. The figure of eight shapes are instead
used to illustrate the method’s blending functionality, with
figures 9 and 10 showing the effect of using different overlap
parameters.

TABLE I: Velocity (m/s), acceleration (m/s2) and jerk
(m/s3) limits for each function

Original S Curve (adj.) Trapezoidal (adj.)
Vel Accel Jerk Vel Accel Jerk Vel Accel Jerk

Slow 0.05 5 200 0.05 5 102 0.05 1.2 -
Fast 0.5 8 200 0.5 8 102 0.5 3.6 -

TABLE II: Actual motion durations (s) using original limits

Speed Shape Traced Exponential S Curve Trapezoidal

Low Figure of Eight 25.00 24.85 24.59
10 Squares 81.77 81.26 80.40

High Figure of Eight 4.13 3.68 3.20
10 Squares 13.60 12.10 10.5
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TABLE III: Actual motion durations (s) using adjusted
limits

Speed Shape Traced Exponential S Curve Trapezoidal

Low Figure of Eight As prev 25.00 24.97
10 Squares As prev 81.77 80.67

High Figure of Eight As prev 4.13 4.11
10 Squares As prev 13.60 13.56

0 0.02 0.04 0.06 0.08 0.1

0

0.02

0.04

0.06

0.08

0.1

X − Position [m]

Y
 −

 P
os

iti
on

 [m
]

 

 

Desired Path (X − Waypoints)
Exponential Path
S Curve Path
Trapezoidal Path

Corner A

Corner BCorner C

Fig. 7: Desired and achieved square path

IV. DISCUSSION

Figure 8 shows that the performance of the exponen-
tial method is comparable to the S-curve algorithm, but
in general tracks the corners of the square shape more
accurately. This can be attributed to the continuous jerk of
the exponential method; as mentioned in the literature such
a motion is easier to track. Table IV shows the distances of
the points closest to the corners of the square, with table
V showing the overall mean errors and standard deviations
of the various methods. This was found by averaging the
accuracy error for each of the three indicated corners, A,
B and C. With the unadjusted motions (i.e. faster average
velocities) the performances are even worse in comparison,
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TABLE IV: Mean error from corners (mm)

Corner Exponential S Curve Trapezoidal

A 1.05 1.23 1.98
B 1.1 1.34 2.07
C 1.04 1.27 2.07
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Fig. 9: Figure of eight path with various blend parameters

but this is to be expected.
There is also some slight deviation from the straight-line

paths, but this is present with all the tested methods. The
methods have been implemented using cartesian velocity
control and use of position control would be required to
correct the deviations.

As the jerk profiles of the exponential motions are con-
tinuous, one would expect the resulting joint torques to be
lower than that of the S-curve counterparts. However whilst
being discontinuous, the motions are still jerk bounded; this
leads to the joints experiencing similar torques throughout
the experiments. The results are thus omitted here.

For a given jerk limit, the exponential method is slightly
less efficient due to its inability to generate profiles with
trapezoidal accelerations, such as those shown in Figure 3.
Once the acceleration limit is reached, the velocity also

0.15 0.155 0.16 0.165 0.17 0.175
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

X − Position [m]

Y
 −

 P
os

iti
on

 [m
]

 

 

0% Overlap (4.13s)
60% Overlap (3.12s)
80% Overlap (2.78s)
100% Overlap (2.45s)

Fig. 10: Corner A zoomed view - figure of eight

910



TABLE V: Overall mean error and standard deviation (mm)

Exponential S Curve Trapezoidal

Mean Error 1.06 1.28 2.04
Std Dev 0.06 0.07 0.1

TABLE VI: Effect of overlap on motion duration (figure of
eight path)

Percentage Overlap(%) 0 50 60 80 100
Motion Duration (s) 4.13 3.29 3.12 2.78 2.45

stops increasing, regardless of whether the velocity limit
has been reached (as in Figure 1b). It is therefore not time
optimal as such. Generating such motions would involve
either repeatedly overlaying multiple modified profiles (with
adjusted delays) to approximate a trapezoid, or using the base
function shown in Equation 2 to generate the acceleration
instead of the velocity. The former would lead to multiple
evaluations of the exponential being carried out; the latter
leads to a higher order exponential and the requirement
of integrating twice for the position, somewhat negating
the simplistic nature of this method. An advantage to this
approach however is the generation of continuous jounce
profiles, i.e. the 1st derivative of jerk.

The blending function effectively overlaps the start of the
next motion with that of the current one. This has the effect
of reducing the overall motion duration, as the overall path
length is shortened. A figure-of-eight shape was used to
evaluate various blend percentages, as shown in figures 9
and 10. Table VI shows how the motion duration is affected
by using higher blending percentages; it can effectively be
reduced down to values similar to those produced by the
time-optimal LSPB method, but with the added benefits of
having continuous acceleration and jerk. The trade-off is
slightly reduced accuracy at the waypoints, and as can be
seen in figure 10 results in some rounding of the corners.
The ‘tightness’ of the corner tracking is thus controlled by
how much overlap is used.

The blending method shown in [9] involves generating
multiple stitched fifth order polynomials (quintics) to de-
scribe a motion, e.g. a trapezoidal type acceleration can
require three; one for the acceleration ramp up, one for
the velocity cruise and one for the acceleration ramp down.
Blending the actual motions together then involves an addi-
tional fifth order polynomial, which determines the tightness
of the waypoint. In comparison, the exponential method uses
only one single parameter to control the blending. The com-
putationally expensive calculation of the exponential function
needs to be performed just once off-line and stored in a
normalised manner in the real time controller. The controller
then only needs to perform simple multiplications to compute
the required motion. Current in-progress improvements to
the method are to allow for specifying the tracking tolerance
when blending waypoints.

V. CONCLUSION

An exponential based trajectory-planning algorithm was
implemented and compared with LSPB and S-curve velocity
methods. The method is tested on a KUKA 6 DOF robot; the
results show that the proposed method gives better tracking
accuracy when switching between paths, is jerk continuous,
simpler to implement than the S-curve counterpart and also
provides an easy way of blending continuous paths together.
It is based simply on calculating a sequence of time delays
which are used to start and stop each point to point motion
within the demanded trajectory.

Future work involves optimisation of the procedure to
allow for a more robust trajectory generation method, as it
currently cannot generate motions with sustained accelera-
tions. The method in its current state is therefore ideally
suited to robots/manipulators with high speed, but low force
capabilities. For example a CNC machine or a RepRap style
rapid prototyper.
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